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In light of the recent data for B̄ðsÞ → Dð�Þ
ðsÞP and B̄ðsÞ → DðsÞV decays, we perform a model-independent

phenomenological analysis in the presence of quasielastic rescattering. With the Wilson coefficients
including contributions beyond the standard model, the lifetimes of the B meson and B0

d − B̄0
d mixing are

investigated to clarify correlations among the observables. We show that parameter regions for quasielastic
rescattering, the size of color-suppressed tree amplitudes, and new physics are constrained due to the
lifetime data. As a consequence, it is revealed that this scenario can be tested by the future LHCb
measurement of the width difference in B0

d − B̄0
d mixing and semileptonic CP asymmetry.

DOI: 10.1103/PhysRevD.111.095020

I. INTRODUCTION

Decays of B mesons played an important role in testing
the standard model (SM), as well as possible new physics
(NP) contributions. Of the specific decay modes, non-
leptonic channels are rather challenging processes in the
context of strong interactions. A theoretical framework for
these decays can be given by the QCD factorization
(QCDF) approach [1]. In particular, it has been shown
that for decays into heavy-light final states, such as
B̄d → Dþπ−, vertex corrections are dominated by hard
gluon exchange for large mb (see Ref. [2] for the factori-
zation proof in the soft-collinear effective theory).
Furthermore, there exist no penguin or annihilation dia-
grams for the mentioned channel. Owing to this

observation, B̄d → Dþπ− decay is theoretically more trac-
table than those for light-light final states.
Recently, it was pointed out [3] that there are discrep-

ancies between the experimental data1 [6] and the pre-
diction of the QCDF approach, where the theoretical
analysis is performed at next-to-next-to-leading order
(NNLO) [7]. It was also found that subleading power
corrections, such as that from the three-particle Fock state
of the light meson, etc., are not large enough to explain the
data.2 The mentioned circumstance possibly implies that
final-state interactions (FSIs) [9,10] are required for the
nonleptonic decays and/or NP contributions are present.
In previous works, FSIs were discussed in the Regge

theory [11] and addressed in the QCDF approach [1]. A
phenomenological framework incorporating FSIs was
given by the quasielastic rescattering discussed in
Refs. [12–15]: in the limit of SU(3) symmetry, where
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1See Ref. [4] for the recent experimental result. As to the
theoretical side, recent discussion for B → DP decays in regards
to SU(3) breaking was found in Ref. [5].

2In another recent work [8], the analysis was carried out in
light-cone QCD sum rules, giving an alternative prediction to the
QCDF. While explaining the data within uncertainty, it was
commented [8] that the additional investigations are required in
view of the limited precision in the nonperturbative input.
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mesons in the same flavor multiplet degenerate, FSIs are
given by a mixing matrix that acts on the amplitudes with
specific final states. An observable effect is a change in the
relative phase between the amplitudes with final states
lying in different SU(3) multiplets, since mixing between
states with different quantum numbers does not occur and
thus it only alters the phases. Formulated in this way, the
quasielastic rescattering gives a tractable approach for
including two-body FSIs.
In Ref. [16], it was shown that, even if the quasielastic

rescattering is incorporated, the puzzle for the branching
ratios cannot be resolved in a reasonable way, in the sense
that color-allowed and color-suppressed processes are not
simultaneously explained, with an overall coefficient of the
color-suppressed tree amplitude treated as a free parameter.
In this circumstance, the possibility that NP is affecting the
short-distance Wilson coefficients is not straightforwardly
ruled out and was investigated [16] with the FSIs, where
parameter regions are more extended as compared to the
case without rescattering. See Refs. [17–20] for further
studies in the context beyond the SM.
It is worth noting that the aforementioned scenario with

NP is supposed to confront constraints from other observ-
ables with nonleptonic transitions. This was pointed out in
Ref. [3] (see also Ref. [21]), while dedicated numeri-
cal results were obtained in Ref. [22]. In particular, the
total widths of the B meson and B0

d − B̄0
d mixing (see

Refs. [23,24] for recent analyses) are considered as con-
straints on the NP scenario. For the former, a lifetime ratio
τðBþÞ=τðBdÞ plays a particularly suitable role, since
theoretical uncertainty is better controlled and is charac-
terized by the contribution of Pauli interference.
In this work, we carry out a phenomenological analysis

of BðsÞ → Dð�Þ
ðsÞM in the presence of the quasielastic

rescattering and clarify its correlation with τðBþÞ=τðBdÞ
and B0

d − B̄0
d mixing. We show that these observables lead

to constraints and/or predictions of the scenario in which

rescattering contributions are involved in BðsÞ → Dð�Þ
ðsÞM

decays. In particular, it is demonstrated that some of the
model-parameter space is significantly constrained to
explain the observables. As a resulting prediction, the
width difference ðΔΓdÞ and the semileptonic CP asymme-
try ðAd

SLÞ are evaluated.
This paper is organized as follows. In Sec. II, a basic

framework for quasielastic rescattering is introduced for
B → DM decays. The constraints from branching ratios on
the model parameters are obtained in an analytical manner
for both b → cūs and b → cūd transitions. The SU(3)
symmetry breaking is considered within the formalism for
the latter processes. In Secs. III and IV, B-meson lifetimes
and B0 − B̄0 mixing are respectively discussed. In Sec. V,
the phenomenological analysis is given for the mentioned
observables. The correlation patterns for QCD factorization
parameters and the rescattering angle satisfying the phe-
nomenological constraints are obtained numerically. We

show that this scenario can be testable via ΔΓd and Ad
SL

with future LHCb measurements. Finally, concluding
remarks are given in Sec. VI.

II. B → DM DECAYS

In this section, we investigate B-meson nonleptonic
decays into two-body exclusive final states that include a
charmed meson. The effective Hamiltonian relevant for
b → cq̄2q3 (q2 ¼ u; c; q3 ¼ d; s) is given by

HW ¼ GFffiffiffi
2

p
�
VcbV�

q2q3

X2
i¼1

ciQ
q̄2q3
i

− VtbV�
tq3

�X6
i¼3

ciQ
q3
i þ c8Q

q3
8

��
: ð2:1Þ

The definitions of the operators that appear in Eq. (2.1) are
given in Appendix B 1. The radiative QCD corrections to
the Wilson coefficient can be obtained in Ref. [25] and
references therein, with a certain care of the difference in
the notation.

A. Quasielastic rescattering

Here we recapitulate the FSI discussed in Refs. [12–15];
see also Ref. [16]. Decay amplitudes without FSIs are given
by vector notations and classified as AS;Iz , where S and Iz
denote the strangeness and the diagonalized component of
isospin,

A−1;0 ¼
�
AðB̄0 → DþK−Þ
AðB̄0 → D0K̄0Þ

�
;

A1;−1 ¼
�
AðB̄0

s → Dþ
s π

−Þ
AðB̄0

s → D0K0Þ

�
: ð2:2Þ

The FSIs can be taken into account by the quasielastic
scattering; due to 3̄ × 8 ¼ 15þ 6þ 3̄ for the final state that
consists of DΠ, where Π is an SU(3) octet state, the
rescattering matrix is decomposed as [12–14]

S1=2 ¼ eiδ15 j15; aih15;aj þ eiδ6 j6; bih6; bj
þ

X
m;n¼3̄;3̄0

jm; ciU1=2
mn hn; cj: ð2:3Þ

For the 15 and 6 terms in Eq. (2.3), in the limit of the flavor
symmetry, the final states with definitive quantum numbers
such as isospin do not mix under the FSIs and thus the
rescattering merely alters the phase of the amplitude. In
contrast to this case, for the last term in Eq. (2.3), one needs
to take account of the mixing between 3̄ and 3̄0 states in the
presence of the SU(3) singlet state that consists of light
flavors accompanied by a D meson. This is represented as
2 × 2 matrix given by U1=2

mn in Eq. (2.3).
Incorporating the FSIs, the amplitudes in Eq. (2.2) are

modified as
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Af
S;Iz

¼ V−1
S;Iz

S1=2S;Iz
VS;IzAS;Iz ; ð2:4Þ

where S1=2S;Iz
represents the rescattering matrix for specific

quantum numbers, while VS;Iz is a diagonal matrix defined
by [15,16]

V−1;0 ¼ diagð1; 1Þ; V1;−1 ¼ diag

�
1;
fDs

fπ
fDfK

�
: ð2:5Þ

Due to Eq. (2.5), SU(3) breaking for the rescattering is
included in b → cūd via the decay constants, but not in
b → cūs. If we consider the state with S ¼ −1 and Iz ¼ 0
as an example, the rescattering matrix that mixes DþK−

and D0K̄0 final states can be obtained from components of
the SU(3) representations,

15ðS ¼ −1; I ¼ 1Þ∶ 1ffiffiffi
2

p ðjDþK−i þ jD0K̄0iÞ; ð2:6Þ

6ðS ¼ −1; I ¼ 0Þ∶ 1ffiffiffi
2

p ðjDþK−i − jD0K̄0iÞ; ð2:7Þ

without antitriplet states. Likewise, the decomposition of
S ¼ 1; Iz ¼ −1 can also be obtained. The above relations
are readily solved with respect to jDþK−i and jD0K̄0i. By
acting the matrix in Eq. (2.3) on those states for both S ¼
−1; Iz ¼ 0 and S ¼ 1; Iz ¼ −1, one can obtain [12]

S1=2−1;0¼S1=21;−1¼
eiδ15

2

�
1þeiδ

0
1−eiδ

0

1−eiδ
0
1þeiδ

0

�
; δ0 ¼ δ6−δ

15
;

ð2:8Þ

where the overall phase denoted by δ
15

cancels out when
the branching ratios are calculated. It should be noted that
for the above two choices of strangeness and isospin, the
antitriplet term in Eq. (2.3) is not involved in the discussion.
In the following sections, we also discuss processes with

final states of S ¼ 0; Iz ¼ 3=2 and S ¼ 1; Iz ¼ 1, corre-
sponding, e.g., to Bþ → D̄0πþ and Bþ → D̄0Kþ. These
cases do not undergo the rescattering since there are no
other decay channels that mix together. Hence, the re-
scattering is considered for the S ¼ −1; Iz ¼ 0 and
S ¼ 1; Iz ¼ −1 cases (or their CP-conjugate processes)
individually.

B. Branching ratios

In this section, relations constraining parameters of the
QCDF approach and rescattering from branching ratios of
B-meson two-body decays are obtained. For definitiveness,
the discussion of B̄ → DK̄, which proceeds via b → cūs, is
given first. Subsequently, other processes with b → cūd
transitions are also analyzed. The resulting relations in
Eqs. (2.16)–(2.18) and (2.29)–(2.31) play a major role in
the numerical analysis.

1. b → cūs

Below, B̄ → DK̄ with the final state that consists
of two pseudoscalars is discussed first. In the presence
of the rescattering, branching ratios of the nonleptonic
decays are

Brij ≡ Br½P → Mi
1M

j
2� ¼

τijpcm½P → Mi
1M

j
2�

8πm2
P

jVcbV�
usj2jAf½P → Mi

1M
j
2�j2; ð2:9Þ

with ði; jÞ ¼ ðþ;−Þ; ð0; 0Þ; ð0;−Þ, and τij denoting a lifetime of the initial particle, which is τðBþÞ; τðBdÞ,
or τðBsÞ. In Eq. (2.9), pcm is a momentum of either particle in the final state defined in the rest frame of the initial
particle,

pcm½P → M1M2� ¼
1

2mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

P − ðmM1
þmM2

Þ2�½m2
P − ðmM1

−mM2
Þ2�

q
: ð2:10Þ

In Eq. (2.9), the subscript f represents the presence
of FSIs.
In the case without rescattering, the processes are

represented by topological amplitudes,

Aþ− ≡A½B̄0 → DþK−� ¼ TDK; ð2:11Þ

A00 ≡A½B̄0 → D0K̄0� ¼ CDK; ð2:12Þ

A0− ≡A½B− → D0K−� ¼ TDK þ CDK; ð2:13Þ

where TDK and CDK are color-allowed and -suppressed tree
diagrams, respectively. In the QCDF approach [1], these
amplitudes are evaluated as

TDK ¼ NT
DKa1; CDK ¼ NC

DKa
eff
2 : ð2:14Þ

In the above relation, NTðCÞ
DK is a normalization factor that is

a product of the Fermi constant, the decay constant, and the
form factor defined in Eq. (A1). For later convenience, we
introduce the notation

BðsÞ → Dð�Þ
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ā2 ¼ ðNC
DKa

eff
2 Þ=ðNT

DKa1Þ: ð2:15Þ

By using the three relations for ði; jÞ ¼ ðþ;−Þ; ð0; 0Þ,
and ð0;−Þ in Eq. (2.9), one can determine Reðā2Þ; Imðā2Þ,
and δ0 with the branching ratio data and a given value of a1.
With the derivation discussed in Appendix A 1, the results
read

Reðā2Þ ¼
ðτþ−=τ0−ÞBr0− − Brþ− − Br00

2N DK
; ð2:16Þ

Imðā2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brþ− þ Br00

N DK
− 1 − ½Reðā2Þ�2

s
; ð2:17Þ

δ0 ¼ Arcsin

�
Brþ− −Br00

N DK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
DK þB2

DK

p �
−ωDK;

× π −Arcsin

�
Brþ− −Br00

N DK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2
DK þ B̄2

DK

p �
−ωDK ðmod 2πÞ;

ð2:18Þ

where the definitions of N DK; ADK; BDK, and ωDK are
given in Appendix A 1. It should be noted that there are
twofold ambiguities for δ0 and the sign of Imðā2Þ. The
solutions in Eqs. (2.16)–(2.18) exist only if the following
conditions are satisfied:

N DK ≠ 0; ð2:19Þ

Brþ− þ Br00

N DK
− ½Reðā2Þ�2 ≥ 1; ð2:20Þ

−1 ≤
Brþ− − Br00

N DK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
DK þ B2

DK

p ≤ 1: ð2:21Þ

The above conditions follow from the derivation procedure
in Appendix A 1.
In what follows, the cases of B̄ → DK̄� and B̄ → D�K̄

decays are discussed to obtain relations similar to
Eqs. (2.16)–(2.21). For processes including a vector meson
in the final state, a formula for branching ratios analogous
to Eq. (2.9) is

Br½P → M�
1M2� ¼

τPpcm½P → M�
1M2�

8πm2
P

jVcbV�
usj2

X
ϵ

jAf½P → M�
1M2�j2; ð2:22Þ

Br½P → M1M�
2� ¼

τPpcm½P → M1M�
2�

8πm2
P

jVcbV�
usj2

X
ϵ

jAf½P → M1M�
2�j2: ð2:23Þ

For the amplitudes in Eqs. (2.22) and (2.23), the polarization is factored out as follows:

Af½P → M�
1M2� ¼ ðϵ� · pBÞĀf½P → M�

1M2�;
Af½P → M1M�

2� ¼ ðϵ� · pBÞĀf½P → M1M�
2�: ð2:24Þ

By evaluating the polarization sum,

X
ϵ

jϵ� · pBj2 ¼
�
mB

mV
pcm

�
2

; ð2:25Þ

the branching ratios in Eqs. (2.22) and (2.23) are recast into the forms

Br½P → M�
1M2� ¼

τPp3
cm½P → M�

1M2�
8πm2

M�
1

jVcbV�
usj2jĀf½P → M�

1M2�j2; ð2:26Þ

Br½P → M1M�
2� ¼

τPp3
cm½P → M1M�

2�
8πm2

M�
2

jVcbV�
usj2jĀf½P → M1M�

2�j2: ð2:27Þ

One can also obtain the resulting relations in Eqs. (2.16)–
(2.21) for B̄ → DK̄� and B̄ → D�K̄ by simply replacing
D → D� and K → K�, respectively, with the proper
replacement of data for the branching ratio on the rhs.
The definitions of normalization factors for the case
including a vector meson are given in Eqs. (A2) and (A3).

2. b → cūd

By making some replacements in the previous discus-
sions for b → cūs decays, we can also obtain similar results
for b → cūd decays. In this case, nonvanishing SU(3)
breaking for the rescattering in Eq. (2.5) must be taken into
account. In addition, mass differences in hadrons for
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normalization factors and phase space need to be consis-
tently included, unlike the case of b → cūs decays, where
the isospin symmetry relates the masses of the relevant
particles. The parameters relevant for SU(3) breaking are
defined in Appendix A 2.
For b → cūd, we introduce a normalized coefficient for

color-suppressed tree diagram,

ā2 ¼ ðND0K̄0

C aeff2 Þ=ðNDþ
s π

−

T a1Þ: ð2:28Þ

The above object is not to be confused with the one for
b → cūs in Eq. (2.15).
In a way analogous to b → cūs decays, solutions of the

parameters for b → cūd decays are

Reðā2Þ ¼
ð1þ Δð1Þ

DPÞ τ
þ−

τ0−
Br0− − ð1þ Δð2Þ

DPÞ½Brþ− þ ð1þ Δð3Þ
DPÞBr00�

2N Dþ
s π

−
−
1

2
ð1þ Δð2Þ

DPÞΔð4Þ
DP; ð2:29Þ

Imðā2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Δð5Þ

DPÞ
�
Brþ− þ ð1þ Δð3Þ

DPÞBr00
N Dþ

s π
−

− 1

�
− ½Reðā2Þ�2

s
; ð2:30Þ

δ0 ¼Arcsin

�
Brþ−−ð1þΔð3Þ

DPÞBr00
N Dþ

s π
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
DPþB2

DP

p �
−ωDP;

×π−Arcsin

�
Brþ−−ð1þΔð3Þ

DPÞBr00
N Dþ

s π
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
DPþB2

DP

p �
−ωDP ðmod2πÞ;

ð2:31Þ

where the definitions of ΔðiÞ
DPði ¼ 1;…; 5Þ; N Dþ

s π
− ;

ωDP; ADP, and BDP are given in Appendix A 2. It is found
that the twofold ambiguities exist for Eqs. (2.30) and (2.31)
and b → cūs decays. The solutions in Eqs. (2.29)–(2.31)
exist only if the conditions given below are satisfied:

N Dþ
s π

− ≠ 0; ð2:32Þ

ð1þΔð5Þ
DPÞ

�
Brþ−þð1þΔð3Þ

DPÞBr00
N Dþ

s π
−

−1

�
− ½Reðā2Þ�2≥0;

ð2:33Þ

−1 ≤
Brþ− − ð1þ Δð3Þ

DPÞBr00
N Dþ

s π
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
DP þ B2

DP

p ≤ 1: ð2:34Þ

As shown in Eqs. (A19) and (A20), ΔðiÞ
DP vanishes in the

SU(3) limit. Hence, the structures of Eqs. (2.29)–(2.34) for
b → cūd are reduced to those for b → cūs in Eqs. (2.16)–
(2.21) in the SU(3) limit. It should be noted that the
dependence on heavy-to-light form factors appears solely

from Δð2Þ
DP in Eq. (A19).

For other b → cūd decays including a vector meson, the
result corresponding to B̄ → D�P can be obtained by the
replacement of D → D�, while the one for B̄ → DV decay
can be given by P → V; K → K�, and π → ρ in
Eqs. (2.29)–(2.34).

III. LIFETIMES OF B MESONS

In this section, we recapitulate how the total width of
beauty mesons is evaluated at leading order (LO) in QCD.
This observable is analyzed by means of the heavy quark
expansion (HQE): after the correlation functions are
computed in the Euclidean domain, the expression is
analytically continued to the Minkowski region, leading
to the 1=mb expansion for the observable. See Refs. [23,26]
for the recent works within the SM.
We restrict ourselves to the isospin limit, where μπ , μG

for Bd are identical to those for Bþ. With q ¼ u; d and
Bu ¼ Bþ, the total width is written as

ΓðBqÞ ¼ Γ2-quark þ Γ4-quark
q : ð3:1Þ

The lifetime ratio is calculated from the above objects,

τðBþÞ
τðBdÞ

¼1−
ΓðBþÞ−ΓðBdÞ

ΓðBþÞ ¼1−
Γ4-quark
u −Γ4-quark

d

ΓðBþÞ : ð3:2Þ

In the isospin limit for the matrix elements, τðBþÞ=τðBdÞ−1
is proportional to the spectator effect. In what follows, the
two terms in Eq. (3.1) are discussed.

A. Two-quark operators

In the limit of the isospin symmetry, Γ2-quark in Eq. (3.1)
does not depend on the label of q. The contributions from
two-quark operators in the above equation are classified by
the nonleptonic and semileptonic pieces,

Γ2-quark¼
X
q2;q3

ΓNLðb→cq̄2q3Þþ
X
l

ΓSLðb→clν̄Þ; ð3:3Þ

where the summations are taken for all of the possible
combinations with q2 ¼ u; c; q3 ¼ d, s, and l ¼ e, μ, τ. It
should be noted that the b → u transition, neglected in

BðsÞ → Dð�Þ
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Eq. (3.3), is Cabibbo suppressed, while larger contributions
arise from b → c. The partial widths that appear in Eq. (3.3)
are expanded by 1=mb, leading to

ΓNLðb → cq̄2q3Þ ¼ Γ0jVcbV�
q2q3 j2

×

�
Ccq̄2q3
LP þ Ccq̄2q3

π
μ2π
m2

b

þ Ccq̄2q3
G

μ2G
m2

b

�
;

ð3:4Þ

ΓSLðb → clν̄Þ ¼ Γ0jVcbj2
�
Cclν̄
LP þ Cclν̄

π
μ2π
m2

b

þ Cclν̄
G

μ2G
m2

b

�
;

ð3:5Þ
where Γ0 ¼ G2

Fm
5
b=ð192π3Þ. The matrix elements of the

two-quark operators, μ2π and μ2G, are defined in Eq. (B10).
Furthermore, the nonleptonic coefficients in Eq. (3.4) stem
from quadratic combinations of the jΔBj ¼ 1 Wilson
coefficients,

Ccq̄2q3
I ¼ 3c21C

cq̄2q3
I;11 þ 2c1c2C

cq̄2q3
I;12 þ 3c22C

cq̄2q3
I;22 ; ð3:6Þ

where I ¼ LP, π, G. In Eq. (3.6), the contribu-
tion of NP is contained only in c1 and c2, while

Ccq̄2q3I; ij ði; j ¼ 1; 2; I ¼ LP; π; GÞ can be obtained in pre-
vious works, e.g., Ref. [27] and references therein.

B. Four-quark operators

The contribution of the spectator effect in Eq. (3.1) is
rewritten as

Γ4-quark
u ¼ Γint; Γ4-quark

d ¼ Γann; ð3:7Þ
where int and ann represent the Pauli interference and weak
annihilation, respectively. The above objects are propor-
tional to the matrix elements of four-quark operators
defined in Eqs. (B11)–(B18). In the case of dimension-
six contributions, the matrix elements can be obtained from
Ref. [28], while dimension-seven operators are evaluated
via the vacuum insertion approximation, leading to [29]

Γint ¼
G2

Fm
2
b

12π
jVcbV�

udj2f2BmBð1 − zÞ2
�
ðc21 þ c22 þ 6c1c2Þ

×
�
B1 −

�
1þ z
1 − z

þ 1

2

��
m2

B

m2
b

− 1

��
þ 6ðc21 þ c22Þϵ1

�
;

ð3:8Þ

Γann ¼ −
G2

Fm
2
b

12π
jVcbV�

udj2f2BmBð1 − zÞ2
��

c21
3
þ 2c1c2 þ 3c22

���
1þ z

2

�
B1 − ð1þ 2zÞB2

þ
�
1þ zþ z2

1 − z
þ 6z2

1 − z
−
1

2

�
1þ z

2

�
−
1

2
ð1þ 2zÞ

��
m2

B

m2
b

− 1

��
þ2c21

��
1þ z

2

�
ϵ1 − ð1þ 2zÞϵ2

��
: ð3:9Þ

In the above relations, z represents ðmc=mbÞ2.

IV. B0
d − B̄0

d MIXING

In this section, observables for neutral meson mixing of
beauty mesons are discussed. In previous works, NP
contributions to the width differences in the D0 − D̄0

and B0
s − B̄0

s mixings were discussed in Refs. [30–32].
Moreover, CP violation in the B0 − B̄0 mixing was also
investigated beyond the SM in Refs. [32–40].

A. Dispersive part and absorptive part

The dispersive part for the B0
d − B̄0

d mixing amplitude in
the SM is dominated by the contribution of intermediate top
quarks. In this case, an expression where external quark
momenta and masses are neglected, represented by the
Inami-Lim function [41],

M21 ¼
G2

FM
2
W

12π2
mBd

f2Bd
½ηðμbÞ�VLLBd

1ðμbÞS0
�
m̄2

t ðmtÞ
M2

W

�
× ðV�

tbVtdÞ2; ð4:1Þ

S0ðxÞ ¼
4x − 11x2 þ x3

4ð1 − xÞ2 −
3x3 ln x
2ð1 − xÞ3 ; ð4:2Þ

gives an excellent approximation.
For the absorptive part, the theoretical analysis can be

performed by HQE, analogously to the total width of B
mesons. In contrast to the case of the total width, the
leading contribution to the width difference arises from
four-quark operators. At next-to-leading order (NLO)
in power corrections ð1=mbÞ, the width difference in the
B0 − B̄0 mixing is obtained [42–44].3 The SM contribution
to Γ21 in the B0

d − B̄0
d mixing with NLO power correction is

given by [43]

Γ21 ¼ −
G2

Fm
2
b

24πmBd

½cd;mix
1 ðμ2ÞhB̄0

djOd
1jB0

di

þ cd;mix
2 ðμ2ÞhB̄0

djOd
2jB0

di þ δd1=m�: ð4:3Þ

The expressions for the coefficients are given by [43]

3See also NNLO in the power correction ð1=m2
bÞ in Ref. [32].
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cd;mix
k ¼ ðV�

tbVtdÞ2Duu
k þ 2V�

cbVcdV�
tbVtdðDuu

k −Dcu
k Þ þ ðV�

cbVcdÞ2ðDuu
k þDcc

k − 2Dcu
k Þ; ðk ¼ 1; 2Þ ð4:4Þ

δd1=m ¼ ðV�
tbVtdÞ2δuu d1=m þ 2V�

cbVcdV�
tbVtdðδuu d1=m − δcu d1=mÞ þ ðV�

cbVcdÞ2ðδuu d1=m þ δcc d1=m − 2δcu d1=mÞ: ð4:5Þ

For ðq1; q2Þ ¼ ðc; cÞ; ðc; uÞ, and ðu; uÞ with k ¼ 1, 2,

Dq1q2
k ðμ2Þ ¼

X
i;j¼1;2

ciðμ1Þcjðμ1ÞFq1q2;mix
k;ij ðμ1; μ2Þ þ

αs
4π

½c1ðμ1Þ�2Pq1q2
k;11 ðμ1; μ2Þ

þ αs
4π

c1c8ðPq1
k;18 þ Pq2

k;18Þ þ
X
i¼1;2

X
r¼3;6

cicrðPq1
k;ir þ Pq2

k;irÞ: ð4:6Þ

The phase-space functions were calculated in Refs. [43,45]
at the precision of NLO in QCD. It should be noted that in
our notation of c1 and c2, we need to replace the indices
1 → 2 and 2 → 1 for i, j in Refs. [43,45]. The phase-space
integral proportional to the quadratic term with respect to c1
and c2 is decomposed by the LO and NLO parts in QCD,

Fq1q2;mix
k;ij ¼ Aq1q2;mix

k;ij þ αs
4π

Bq1q2;mix
k;ij : ð4:7Þ

Aq1q2;mix
k;ij and Bq1q2;mix

k;ij in Eq. (4.7), as well as the phase-
space functions related to the penguin operators in
Eq. (4.6), can be extracted from Ref. [43], while Dcu;mix

k
can be extracted from Ref. [45].
The dimension-seven contributions were also obtained in

Ref. [43],

δcc d1=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4z

p �
ð1þ 2zÞ½K2ðhRd

2i þ 2hRd
4iÞ

− 2K1ðhRd
1i þ hRd

2iÞ�

−
12z2

1 − 4z
½K1ðhRd

2i þ 2hRd
3iÞ þ 2K2hRd

3i�
�
; ð4:8Þ

δcu d1=m ¼ ð1 − zÞ2
�
ð1þ 2zÞ½K2ðhRd

2i þ 2hRd
4iÞ

− 2K1ðhRd
1i þ hRd

2iÞ�

−
6z2

1 − z
½K1ðhRd

2i þ 2hRd
3iÞ þ 2K2hRd

3i�
�
; ð4:9Þ

δuud1=m ¼ K2ðhRd
2i þ 2hRd

4iÞ − 2K1ðhRd
1i þ hRd

2iÞ; ð4:10Þ

with K1 ¼ 3c22 þ 2c1c2 and K2 ¼ c21. The width difference
in the Bd system is given by [43]

ΔΓd ¼ −2jM21jRe
�
Γ21

M21

�
: ð4:11Þ

B. CP violation

CP violation in the B0
d − B̄0

d mixing can be measured in,
e.g., the semileptonic CP asymmetry, given by

Ad
SLðtÞ¼

N½B̄0
dðtÞ→lþνlX�−N½BdðtÞ→l−ν̄lX�

N½B̄0
dðtÞ→lþνlX�þN½BdðtÞ→l−ν̄lX�

; ð4:12Þ

where the above object is approximated to an excellent
precision as

Ad
SL ¼ jp=qj2 − jq=pj2

jp=qj2 þ jq=pj2 ≃ Im
�
Γ12

M12

�
: ð4:13Þ

In Eq. (4.13), M12 and Γ12 are calculated as complex
conjugate of Eqs. (4.1) and (4.3).

V. NUMERICAL RESULTS

In the analysis, Reðā2Þ; Imðā2Þ, and δ0 are treated as
parameters determined in the numerical result, since they
are not predictable within the QCDF approach. As to the
color-allowed tree diagram, the coefficient consists of the
SM part and NP contributions,

a1ðmbÞ ¼ aSM1 ðmbÞ þ cNP1 ðmbÞ þ
cNP2 ðmbÞ

3
: ð5:1Þ

For the SM contribution, the universal value of aSM1 ðmbÞ ¼
1.070� 0.012 [16] is adopted, realized to the high pre-
cision [7] at NNLO. Contributions beyond the SM are
included at the scale of μ ¼ MW ,

ciðMWÞ ¼ cSMi ðMWÞ þ cNPi ðMWÞ ði ¼ 1; 2Þ; ð5:2Þ

while the Wilson coefficients of the (chromomagnetic)
penguin operators are fixed to the SM values at the same
scale. Here cNPi ðMWÞ (i ¼ 1; 2) in Eq. (5.2) is set to a real-
valued parameter and is taken as independent of the flavors,
which universally affect b → cq̄2q3 for q2 ¼ u, c and
q3 ¼ d, s. With Eq. (5.2), the radiative corrections are
discussed separately for the SM and NP, where LO is
sufficiently accurate for NP,
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�
cNP1 ðmbÞ
cNP2 ðmbÞ

�
¼ UðLOÞ

�
cNP1 ðMWÞ
cNP2 ðMWÞ

�
: ð5:3Þ

In the above relation, UðLOÞ can be obtained as it is
customarily done [25].
In what follows, the detail of the numerical investigation

is outlined; for definitiveness, one of the six categories in
Table I is discussed, while the other five cases are analyzed
in a similar way. We first generate a value of a1ðmbÞ
randomly from the range

0 < a1ðmbÞ < amax
1 ; ð5:4Þ

with the upper limit selected to cover the relevant parameter
range, amax

1 ¼ 1.15. As a next step, we generate Brij with
ði; jÞ ¼ ðþ;−Þ; ð0; 0Þ; ð0;−Þ, Vcb; fT; fC, and fB→D;þ− as
random Gaussian numbers. Here, fTðfCÞ represents a
decay constant for a meson that is emitted from the W

boson in the color-allowed (color-suppressed) tree process,
while fB→D;þ− represents heavy-to-heavy form factors with
proper charge assignment in the final state. The central
value and uncertainty for Brij are given in Table I, while
those for the other ones are given in Table II of Appendix C.
With the generated parameters, Reðā2Þ; Imðā2Þ, and δ0

are computed from Eqs. (2.16)–(2.18) or (2.29)–(2.31),
with the choice of overall signs in Eqs. (2.17) and (2.30)
and the twofold ambiguity of δ0 in Eqs. (2.18) and (2.31)
selected randomly with a large sampling number. At this
stage, we properly remove the parameter set that does not
satisfy Eqs. (2.19)–(2.21) or (2.32)–(2.34) in such a way to
ensure the existence of the solutions.
It should be noted that cNP1 ðMWÞ and cNP2 ðMWÞ are not

simultaneously determined by the given value of a1ðmbÞ in
Eq. (5.1). In view of this aspect, cNP2 ðMWÞ is computed
from the fixed values of a1ðmbÞ and cNP1 ðMWÞ, via the
relation in Eq. (5.1), i.e.,

cNP2 ðMWÞ ¼
a1ðmbÞ − aSM1 ðmbÞ − ðUðLOÞ

11 þ UðLOÞ
21 =3ÞcNP1 ðMWÞ

UðLOÞ
12 þ UðLOÞ

22 =3
: ð5:5Þ

This means that the possible values of cNP2 ðMWÞ are
scanned in the parameter space. For aSM1 ðmbÞ, its imaginary
part arises solely from the radiative correction [1,7] and is
negligible to high accuracy for our current purpose.
The τðBþÞ=τðBdÞ in the presence of NP can be evaluated

from cNP2 ðMWÞ and cNP1 ðMWÞ. In analyzing the lifetime
ratio, input parameters including the heavy-quark mass and
power correction parameters in the heavy quark effective
theory (HQET) are adopted from Ref. [47] in the kinetic
scheme [48,49]. As to the value in the SM at NLO QCD,
the recent result [26] is�

τðBþÞ
τðB0

dÞ
�
SM;NLO

¼ 1.081þ0.014
−0.016 : ð5:6Þ

We adopt the central value and the larger side of the
uncertainty in Eq. (5.6). For the interference terms between
SM and NP contributions, as well as the terms purely
originating from NP, we consider the LO accuracy in QCD
correctionswith cSM1 ðmbÞ ¼ 1.098 and cSM2 ðmbÞ ¼ −0.231,
which can be obtained with Ref. [25]. The same accuracy is
used in the numerical analysis of Bd − B̄d mixing. For the
charm-quark mass input, the m̄cðmcÞ is converted to one at
3 GeV via RunDec [58], leading to mc ¼ 0.985 GeV.
One can define χ2 to impose the constraints on the

parameters of the NP scenario [22]. In our analysis, the
following χ2 functions are introduced:

χ2ðAÞ ¼
Xð0;0Þ;ð0;−Þ

ði;jÞ¼ðþ;−Þ

�
Brij −Brijcent

δBrij

�2

þ
�jVcbj− jVcbjcent

δjVcbj
�

2

þ
�
fT −fT;cent

δfT

�
2

þ
�
fC−fC;cent

δfC

�
2

þ
�
fB→D;þ− −fB→D;þ−

cent

δfB→D;þ−

�
2

;

ð5:7Þ

χ2ðBÞ ¼ χ2ðAÞ þ
8<
: ½τðBþÞ=τðBdÞ�th− ½τðBþÞ=τðBdÞ�expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ½τðBþÞ=τðBdÞ�2thþδ½τðBþÞ=τðBdÞ�2exp
q

9=
;

2

: ð5:8Þ

It should be noted that χ2ðAÞ does not include the τðBþÞ=τðBþÞ constraint, while χ2ðBÞ does. The above two quan-
tities are evaluated based on the parameters generated from the Gaussian distribution, as described before. This ana-
lysis is not the minimization procedure and instead scans the parameter region [22] in the present case, inclu-
ding rescattering for the exclusive decays. In Eq. (5.7), ð� � �Þcent represents the central value of relevant quantities,
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while δð� � �Þ stands for its uncertainty given in
Tables I and II. The heavy-to-light form factors are set
to their central values and not included in Eqs. (5.7) and
(5.8) since the branching ratios have rather weak depend-
ence on those quantities, which are accompanied by SU(3)

breaking, as given in Δð2Þ
DP in Eq. (A19). As for jVcbjcent and

δjVcbj in Eq. (5.7), we use the value obtained by the
exclusive fitting [51] exhibited in Table II. In Eq. (5.8), the
larger theoretical uncertainty of the lifetime ratio in
Eq. (5.6) is adopted as δ½τðBþÞ=τðBdÞ�th ¼ 0.016. The
experimental data from the Heavy Flavor Averaging
Group (HFLAV) are set to ½τðBþÞ=τðBdÞ�exp ¼ 1.078 and
δ½τðBþÞ=τðBdÞ�exp ¼ 0.004.

Assembling the mentioned procedure, χ2ðAÞ and χ2ðBÞ can
be calculated with d.o.f. equal to 7 and 8, respectively. The
values of χ2ðAÞ ≈ 8.18ðχ2ðAÞ ≈ 14.3Þ and χ2ðBÞ ≈ 9.30ðχ2ðBÞ ≈
15.8Þ are used to determine the 1σ (2σ) region that satisfies
the phenomenological constraints. Furthermore, ΔΓd and
Ad

SL are evaluated as resulting predictions satisfying the
mentioned constraints. The explained routine is repeated
with a number of random values for a1ðmbÞ in Eq. (5.4).
Furthermore, different fixed values of cNP1 ðMWÞ are inves-
tigated in the following results.
The input parameters to compute the B0

d − B̄0
d mixing are

displayed in Table II. The bottom-quark mass and charm-
quark mass are fixed to m̄bðmbÞ and m̄cðmbÞ, respectively,
while the top-quark mass is set to m̄tðmtÞ. In order to get

FIG. 1. Left column: parameter regions that satisfy the phenomenological constraints without τðBþÞ=τðBdÞ, for the a1ðmbÞ versus jā2j
plane. Middle column: parameter regions that satisfy the constraints including τðBþÞ=τðBdÞ in addition to those in left column. See the
main text for details. The blue bands represent aSM1 ðmbÞ ¼ 1.070� 0.012 [16], universal to the high precision [7] at NNLO. The red and
pink points represent the regions where the constraints are satisfied at 1σ and 2σ confidence levels, respectively. Right column:
predictions forΔΓd=Γd andAd

SL that satisfy the phenomenological constraints including the τðBþÞ=τðBdÞ data. The central value for the
SM prediction is given by a black point, while the yellow and light purple bands represent the current HFLAV 1σ ranges [62]. The future
experimental uncertainties [63,64], where the central values are assumed to remain unchanged from those in HFLAV [62], are
represented as purple and green bands. The upper, middle, and lower rows, respectively, represent the results with
cNP1 ðMWÞ ¼ −0.3;−0.63, and −0.9.
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m̄cðmbÞ and m̄tðmtÞ, the respective inputs are converted via
RunDec [58], giving m̄cðmbÞ ¼ 0.942 GeV and m̄tðmtÞ ¼
163.3 GeV. This procedure is used to compute the con-
tributions induced by NP with the operator basis in
Appendix B 2.4 As for the SM contribution, we use [61]

½ΔΓd�SM ¼ ð2.7� 0.4Þ × 10−3 ps−1;

½Ad
SL�SM ¼ −ð5.1� 0.5Þ × 10−4: ð5:9Þ

For the experimental data of ΔΓd=Γd and Ad
SL, the current

values are given by HFLAV [62],

�
ΔΓd

Γd

�
HFLAV

¼ 0.001� 0.010;

½Ad
SL�HFLAV ¼ −0.0021� 0.0017: ð5:10Þ

For the latter two quantities, the experimental uncertainties
are much larger than the theoretical central values in
Eq. (5.9). As for the future experimental projection, an
improvement of (statistical) uncertainty is expected for
ΔΓd=Γd via upgrade II in the LHCb measurement [63].

FIG. 2. Plots similar to the middle column of Fig. 1 except that six different types of final states are analyzed, with fixed
cNP1 ðMWÞ ¼ −0.6. The constraint of the τðBþÞ=τðBdÞ data is included in the individual plots.

4In Ref. [59] (see also the review in Ref. [60]), the new
operator basis was discussed. This leads to a difference in which
operator is treated as the leading power one.
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Moreover, the uncertainty of Ad
SL is also reduced due to

Runs 1–5 (300 fb−1) data at LHCb [64]. Those future
projections read

δ

�
ΔΓd

Γd

�
future

¼ 1 × 10−3;

δðAd
SLÞfuture ¼ 2 × 10−4: ð5:11Þ

The above numerics are adopted as the reference values,
assuming that the corresponding central values are
unchanged from the current HFLAV data.

In order to exhibit how the τðBþÞ=τðBþÞ constraint
works, we consider three choices of parameters:
cNP1 ðMWÞ ¼ −0.3;−0.63, and −0.9. For illustrative pur-
poses, we first take B → DP for the b → cūd transition. In
the left column of Fig. 1, the allowed parameter regions that
satisfy the phenomenological constraints without the
τðBþÞ=τðBdÞ data based on Eq. (5.7) are exhibited for
the a1ðmbÞ versus jā2j plane. These three plots are to be
contrasted with those in the middle column in Fig. 1, which
account for the τðBþÞ=τðBdÞ constraint in addition to those
in left column, based on Eq. (5.8). The middle column
panels give an improved result compared with Ref. [16],
since the constraint of the lifetime ratio is included.

FIG. 3. Plots similar to Fig. 2 with the vertical axes replaced by δ0, the rescattering angle. The constraint of the τðBþÞ=τðBdÞ data is
included in the individual plots.
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Comparing the left and middle columns of Fig. 1, one
immediately finds that how stringent the lifetime constraint
is depends crucially on the choice of the NP parameters.
Among the displayed results, cNP1 ðMWÞ ¼ −0.3, corre-
sponding to the upper-left and upper-middle panels, gives
a result that is most significantly constrained by the lifetime
ratio. However, for the case of cNP1 ðMWÞ ¼ −0.9, the
lifetime constraint works weakly, as shown in the lower-
left and lower-middle panels in Fig. 1.
Furthermore, in the right column of Fig. 1, the resulting

predictions for B0
d − B̄0

d mixing are exhibited. The results
are based on the parameter region that satisfies the
phenomenological constraints including τðBþÞ=τðBdÞ for
68% CL. In order to compute ΔΓd=Γd, the formula in
Eq. (4.11) and the HFLAV lifetime of Bd in Eq. (C1) are
used. Among the plotted choices of cNP1 ðMWÞ, −0.3 gives a
prediction that is closest to the SM, while the deviation
range from the SM becomes wider for cNP1 ðMWÞ ¼ −0.63
and −0.9. As can be seen in the middle-right and lower-
right panels, the resulting variation ranges are larger than
the future size of the experimental uncertainties. Hence, we
conclude that this type of scenario, where NP contributions
are involved in the presence of rescattering, can be testable
via future LHCb measurements. In Fig. 2, the results
similar to the middle column of Fig. 1, except that six
different types of final states are analyzed with fixed
cNP1 ðMWÞ ¼ −0.6. As shown in the plots, the patterns of
the constrained parameter regions are different individually.
Moreover, plots showing the correlation between a1ðmbÞ
and δ0 are displayed in Fig. 3. It should be noted that the
constraint from τðBþÞ=τðBdÞ is included in all plots in
Figs. 2 and 3. As can be seen from the plots, the rescattering
angle gives a pattern characterized by the sign choice and
twofold ambiguity, as explained before.

VI. SUMMARY

In this work, the phenomenological analysis of B → DM
decays in the presence of quasielastic rescattering was
carried out via a model-independent manner, which in
general includes the contributions of NP. The rescattering
phase and coefficient of the color-suppressed tree diagram
(denoted as aeff2 ) were analytically constrained by the
experimental data of the branching ratios and theoretical
inputs such as form factors. These feasible restrictions were
applied for the final states with S ¼ −1; Iz ¼ 0 and
S ¼ 1; Iz ¼ −1, where the branching ratios are altered
only by the relative phase between δ6 and δ

15
. The

numerical results were given for the two-body nonleptonic

decays of B̄ðsÞ → Dð�Þ
ðsÞP and B̄ðsÞ → DðsÞV in a systematic

way. For both b → cūs and b → cūd, the set of the
constraining relations were obtained, where the latter

includes the SU(3) breaking from the decay constants
and masses.
We included the B-meson lifetime ratio to impose

constraints on the phenomenological discussion of B →
DM in the presence of the quasielastic rescattering. These
observables are correlated with B → DM due to the non-
leptonic Wilson coefficients. For the NP contributions, we
considered the model-independent modification of the
Wilson coefficients for the current-current operators,
denoted as c1 and c2. Depending on the parameter space,
we found that the lifetime ratio can give a stringent bound
on the rescattering and NP parameters, as the NP contri-
bution modifies Pauli interference, affecting the lifetime
difference between Bþ and Bd. Meanwhile, it was also
found that some specific parameter sets, such as
cNP1 ðMWÞ ¼ −0.9 with cNP2 ðMWÞ varied, are rather weakly
constrained by the lifetime ratio. Based on this methodo-
logy, the allowed parameter regions for a1ðmbÞ, aeff2 , and δ0

were discussed, where the correlations between them were
clarified numerically.
Furthermore, the width difference and CP violation in

B0
d − B̄0

d mixing, where the latter is measured via the
semileptonic asymmetry, were analyzed as predictions that
satisfy the phenomenological constraints, such as
τðBþÞ=τðBdÞ and Br½B → DM�. We found that for some
specific choices of Wilson coefficients from NP, the two
mentioned observables can be considerably shifted from
the SM predictions. This deviation size is larger than the
future uncertainties in the LHCb experiment [63,64], and
thus the considered scenario, in which the rescattering and
beyond-the-SM contributions are involved, is testable via
future measurements.
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APPENDIX A: DETERMINATIONS OF ā2 AND δ0
FROM EXPERIMENTAL DATA

1. b → cūs

Here, the derivations of Eqs. (2.16)–(2.18) are given. The
coefficients in Eq. (2.14) are defined by
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NT
DK ¼ GFffiffiffi

2
p ðm2

B −m2
DÞfKFBD

0 ðm2
KÞ; NC

DK ¼ GFffiffiffi
2

p ðm2
B −m2

KÞfDFBK
0 ðm2

DÞ; ðA1Þ

NT
D�K ¼ GFffiffiffi

2
p 2mD�fKABD�

0 ðm2
KÞ; NC

D�K ¼ GFffiffiffi
2

p 2mD�fD�FBKþ ðm2
D� Þ; ðA2Þ

NT
DK� ¼ GFffiffiffi

2
p 2mK�fK�FBDþ ðm2

K� Þ; NC
DK� ¼ GFffiffiffi

2
p 2mK�fDABK�

0 ðm2
DÞ: ðA3Þ

In what follows, we consider B-meson decays into two
pseudoscalars for definitiveness, unless otherwise speci-
fied. In the presence of quasielastic rescattering, amplitudes
are given by

Aþ−
f ¼ NT

DKa1

�
1þ eiδ

0

2
þ ā2

1 − eiδ
0

2

�
eiδ15 ; ðA4Þ

A00
f ¼ NT

DKa1

�
1 − eiδ

0

2
þ ā2

1þ eiδ
0

2

�
eiδ15 ; ðA5Þ

A0−
f ¼ NT

DKa1ð1þ ā2Þ: ðA6Þ

One can find that dependence on the heavy-to-light form
factors is absorbed by ā2, so that Eqs. (A4)–(A6) can be
evaluated solely by the heavy-to-heavy form factors. This is
not the case for b → cūd decays, as explicitly shown later.
It should be noted that the overall phase in Eqs. (A4)–

(A6) cancels out when being squared for the evaluation of
decay rates. By substituting Eqs. (A4)–(A6) into Eq. (2.9),
one can obtain the branching ratios

Brþ−

N DK
¼1þcosδ0

2
þjā2j2

1−cosδ0

2
þ Imðā2Þsinδ0; ðA7Þ

Br00

N DK
¼1−cosδ0

2
þjā2j2

1þcosδ0

2
− Imðā2Þsinδ0; ðA8Þ

τþ−

τ0−
Br0−

N DK
¼ 1þ jā2j2 þ 2Reðā2Þ; ðA9Þ

where the following objects are introduced:

N DK ¼ τPpcm½P → M1M2�
8πm2

P
jVcbV�

usj2ðNT
M1M2

Þ2ja1j2;

ðA10Þ

N D�K ¼ τPp3
cm½P → M�

1M2�
8πm2

M�
1

jVcbV�
usj2ðNT

M�
1
M2
Þ2ja1j2;

ðA11Þ

N DK� ¼ τPp3
cm½P → M1M�

2�
8πm2

M�
2

jVcbV�
usj2ðNT

M1M�
2
Þ2ja1j2:

ðA12Þ

Furthermore, the following variables are introduced:

ADK ¼ 2 Imðā2Þ; ðA13Þ

BDK ¼ 1 − jā2j2; ðA14Þ

ωDK ¼

8>><
>>:

Arcsin

�
BDKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
DKþB2

DK

p
�

for ADK ≥ 0;

πsignðBDKÞ − Arcsin

�
BDKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
DKþB2

DK

p
�

for ADK < 0:

ðA15Þ

By rewriting the three relations in Eqs. (A7)–(A9) in terms
of Reðā2Þ; Imðā2Þ and δ0, one can obtain Eqs. (2.16)–(2.18)
if the conditions of Eqs. (2.19)–(2.21) are satisfied.

2. b → cūd

The derivation of Eqs. (2.29)–(2.31) is given in a way
similar to b → cūs decays, except that the SU(3) breaking
should be taken into account. We introduce parameters

related to SU(3) breaking,

zDP ¼ fDs
fπ

fDfK
; rDP ¼ pcm½B̄0

s → D0K̄0�
pcm½B̄0

s → Dþ
s π

−� ; ðA16Þ

zD�P ¼ fD�
s
fπ

fD�fK
; rD�P ¼

�
mD�þ

s

mD�0

�
2 p3

cm½B̄0
s → D�0K̄0�

p3
cm½B̄0

s → D�þ
s π−� ;

ðA17Þ

BðsÞ → Dð�Þ
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zDV ¼ fDs
fρ

fDfK�
; rDV ¼

�
mρþ

mK�0

�
2 p3

cm½B̄0
s → D0K̄�0�

p3
cm½B̄0

s → Dþ
s ρ

−� ;

ðA18Þ

Δð1Þ
DP ¼

�
NDþ

s π
−

T

ND0π−
T

ND0π−
C

ND0K̄0

C

�−1N Dþ
s π

−

N D0π−

τ0−

τþ− − 1;

Δð2Þ
DP ¼ 1

z2DP

NDþ
s π

−

T

ND0π−
T

ND0π−
C

ND0K̄0

C

− 1; ðA19Þ

Δð3Þ
DP ¼ z2DP

rDP
− 1; Δð4Þ

DP ¼ z2DP

�
NDþ

s π
−

T

ND0π−
T

ND0π−
C

ND0K̄0

C

�−2

− 1;

Δð5Þ
DP ¼ 1

z2DP
− 1: ðA20Þ

On the basis of the previously introduced notations, the
decay amplitudes for b → cūd processes with FSIs can be
given as follows:

Af½B̄0
s →Dþ

s π
−�¼NT

Dþ
s π

−a1

�
1þeiδ

0

2
þzDPā2

1−eiδ
0

2

�
eiδ15 ;

ðA21Þ

Af½B̄0
s →D0K̄0�¼

NT
Dþ

s π
−

zDP
a1

�
1−eiδ

0

2
þzDPā2

1þeiδ
0

2

�
eiδ15 ;

ðA22Þ

Af½B− → D0π−� ¼ NT
D0π−

a1

�
1þ

NT
Dþ

s π
−

NT
D0π−

NC
D0π−

NC
D0π̄0

ā2

�
:

ðA23Þ

Since ā2 is defined so as to absorb ND0K̄0

C , the overall
dependence on heavy-to-light form factors vanishes in
Eqs. (A21) and (A22), whereas it is included as a prefactor
of ā2 in Eq. (A23). Furthermore, the following parameters
are introduced:

ADP ¼ 2zDP Imðā2Þ; ðA24Þ

BDP ¼ 1 − z2DPjā2j2: ðA25Þ

The expression of ωDP is found by the replacement of
ADK → ADP and BDK → BDP for ωDP in Eq. (A15).
By using the SU(3)-breaking parameters, one can write

relations similar to Eqs. (A7)–(A9) in the case of b → cūd
decays, which is omitted here. These relations are solved
with respect to the QCDF approach and the rescattering
parameters, leading to Eqs. (2.29)–(2.31) under the con-
ditions of Eqs. (2.32)–(2.34).

APPENDIX B: EFFECTIVE WEAK OPERATORS
AND MATRIX ELEMENTS

1. ΔB= 1 processes

The effective operators for the weak Hamiltonian in
Eq. (2.1) are defined by [22]

Qq̄2q3
1 ¼ ðc̄αbαÞV−Aðq̄β3qβ2ÞV−A; Qq̄2q3

2 ¼ ðc̄αbβÞV−Aðq̄β3qα2ÞV−A; ðB1Þ

Qq3
3 ¼ q̄α3b

αÞV−Aðq̄βqβÞV−A; Qq3
4 ¼ ðq̄α3bβÞV−Aðq̄βqαÞV−A; ðB2Þ

Qq3
5 ¼ q̄α3b

αÞV−Aðq̄βqβÞVþA; Qq3
6 ¼ ðq̄α3bβÞV−Aðq̄βqαÞVþA; ðB3Þ

Qq3
8 ¼ gs

8π2
mbq̄α3σ

μνð1þ γ5ÞtaαβbβGa
μν; ðB4Þ

where sums over colors denoted by α and β and flavor indices are taken implicitly. For ð� � �ÞV�A, the current is represented
as γμð1� γ5Þ.
As for B-meson decays into an exclusive hadronic state, matrix elements relevant for our work are parametrized by form

factors [1,65],

hPðp0ÞjcγμbjBðpÞi ¼ FBPþ ðq2Þ
�
ðpþ p0Þμ −m2

B −m2
D

q2
qμ
�
þ FBP

0 ðq2Þm
2
B −m2

D

q2
qμ; ðB5Þ

hVðp0; ϵÞjcγμγ5bjBðpÞi ¼
�
ðmB þmVÞϵ�μABV

1 ðq2Þ − ϵ� · q
mB þmV

ðpþ p0ÞμABV
2 ðq2Þ

−2mV
ϵ� · q
q2

qμABV
3 ðq2Þ

�
þ 2mV

ϵ� · q
q2

qμABV
0 ðq2Þ; ðB6Þ

ABV
3 ðq2Þ ¼ mB þmV

2mV
ABV
1 ðq2Þ −mB −mV

2mV
ABV
2 ðq2Þ; ðB7Þ
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where P and V are a pseudoscalar and vector meson,
respectively, with q ¼ p − p0.

2. ΔB= 0 processes

Operators for theΔB ¼ 0 transition are divided into two-
quark and four-quark operators. For the former, the
dimension-five operators are defined by [23]

Oπ ¼ −b̄vðiDμÞðiDμÞbv; ðB8Þ

OG ¼ b̄vðiDμÞðiDνÞð−iσμνÞbv; ðB9Þ

where bðxÞ ¼ e−imbv·xbvðxÞ. The matrix elements for the
above operators are

μ2π ¼
hBjOπjBi

2mB
; μ2G ¼ hBjOGjBi

2mB
: ðB10Þ

The matrix elements in Eq. (B10) enter our analysis in the
denominator of the second term in Eq. (3.2). As for the
four-quark operators, we introduce [29]

Qq
1 ¼ ðb̄qÞV−Aðq̄bÞV−A; ðB11Þ

Qq
2 ¼ ðb̄qÞS−Pðq̄bÞSþP; ðB12Þ

Qq
3 ¼ b̄taqÞV−Aðq̄tabÞV−A; ðB13Þ

Qq
4 ¼ ðb̄taqÞS−Pðq̄tabÞSþP; ðB14Þ

where ð� � �ÞS�P represents a bilinear of the form ð1� γ5Þ.
The matrix elements for Eqs. (B11)–(B14) are defined by

hBqjQq
1jBqi ¼ f2Bq

m2
Bq
B1; ðB15Þ

hBqjQq
2jBqi ¼ f2Bq

m2
Bq
B2; ðB16Þ

hBqjQq
3jBqi ¼ f2Bq

m2
Bq
ϵ1; ðB17Þ

hBqjQq
4jBqi ¼ f2Bq

m2
Bq
ϵ2: ðB18Þ

3. ΔB= 2 processes

Effective operators relevant for B0
d − B̄0

d mixing are given
by dimension-six operators,

Od
1 ¼ðb̄αdαÞV−Aðb̄βdβÞV−A; Od

2¼ðb̄αdαÞS−Pðb̄βdβÞS−P;
ðB19Þ

Od
3 ¼ðb̄αdβÞS−Pðb̄βdαÞS−P; Od

4 ¼ðb̄αdαÞS−Pðb̄βdβÞSþP;

ðB20Þ

Od
5 ¼ ðb̄αdβÞS−Pðb̄βdαÞSþP; ðB21Þ

as well as those giving 1=mb suppressed contributions
[42,43],

Rd
1 ¼

md

mb
ðb̄αdαÞS−Pðb̄βdβÞSþP; ðB22Þ

Rd
2 ¼

1

m2
b

½b̄αD⃖ργ
μð1 − γ5ÞDρqα�½b̄βγμð1 − γ5Þqβ�; ðB23Þ

Rd
3 ¼

1

m2
b

½b̄αD⃖ρð1 − γ5ÞDρqα�½b̄βð1 − γ5Þqβ�; ðB24Þ

Rd
4 ¼

1

mb
½b̄αð1 − γ5ÞiDμqα�½b̄βγμð1 − γ5Þqβ�: ðB25Þ

The matrix element of the operators are given by

hB̄djOd
1jBdi ¼

8

3
f2Bd

m2
Bd
Bd
1; hB̄djOd

2jBdi ¼ −
5

3
f2Bd

m2
Bd

�
mBd

mb þmd

�
2

Bd
2; ðB26Þ

hB̄djOd
3jBdi ¼

1

3
f2Bd

m2
Bd

�
mBd

mb þmd

�
2

Bd
3; hB̄djOd

4jBdi ¼ 2f2Bd
m2

Bd

�
mBd

mb þmd

�
2

Bd
4; ðB27Þ

hB̄djOd
5jBdi ¼

2

3
f2Bd

m2
Bd

�
mBd

mb þmd

�
2

Bd
5; ðB28Þ

hB̄djRd
1jBdi ¼

7

3

md

mb
f2Bd

m2
Bd
Bd
R1
; hB̄djRd

2jBdi ¼ −
2

3
f2Bd

m2
Bd

�
m2

Bd

m2
b

− 1

�
Bd
R2
; ðB29Þ

hB̄djRd
3jBdi ¼

7

6
f2Bd

m2
Bd

�
m2

Bd

m2
b

− 1

�
Bd
R3
; hB̄djRd

4jBdi ¼ −f2Bd
m2

Bd

�
m2

Bd

m2
b

− 1

�
Bd
R4
: ðB30Þ

BðsÞ → Dð�Þ
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It should be noted that the matrix element of Rd
1 vanishes in

the massless limit of the down quark. As for Rd
4, the

operator is related to other ones [43],

Rq
4 ¼

1

4
Oq

1 þ
1

2
Oq

2 þ
1

2
Oq

3 −
mq

mb
Oq

5 þ
1

2
Rq
2: ðB31Þ

Hence, hB̄djRd
4jBdi can be represented by other matrix

elements, which is used in our numerical result.

APPENDIX C: NUMERICAL INPUT

The experimental values of branching ratios for B →
DM decays are extracted from the 2024 Particle Data

Group publication [6] and given in Table I. The exper-
imental values of the B-meson lifetimes from HFLAV [62]
are given by

τðBþÞ ¼ ð1.638� 0.004Þ ps;
τðBdÞ ¼ ð1.519� 0.004Þ ps;
τðBsÞ ¼ ð1.520� 0.005Þ ps: ðC1Þ

Other input parameters necessary to implement the analysis
are given in Table II.

TABLE I. Experimental data of branching ratios of B-meson nonleptonic decays. One for B− → D0ρ− is from
Belle II [46], while the others are extracted from [6].

B → DPðb → cūdÞ B → DPðb → cūsÞ
B0
s → D−

s π
þ ð2.98� 0.14Þ × 10−3 B0 → D−Kþ ð2.05� 0.08Þ × 10−4

B0
s → D̄0K̄0 ð4.3� 0.9Þ × 10−4 B0 → D̄0K0 ð5.5� 0.4Þ × 10−5

Bþ → D̄0πþ ð4.61� 0.10Þ × 10−3 Bþ → D̄0Kþ ð3.64� 0.15Þ × 10−4

B → D�Pðb → cūdÞ B → D�Pðb → cūsÞ
B0
s → D�−

s πþ ð1.9þ0.5
−0.4Þ × 10−3 B0 → D�−Kþ ð2.16� 0.08Þ × 10−4

B0
s → D̄�0K̄0 ð2.8� 1.1Þ × 10−4 B0 → D̄�0K0 ð3.6� 1.2Þ × 10−5

Bþ → D̄�0πþ ð5.17� 0.15Þ × 10−3 Bþ → D̄�0Kþ ð4.19þ0.31
−0.28 Þ × 10−4

B → DVðb → cūdÞ B → DVðb → cūsÞ
B0
s → D−

s ρ
þ ð6.8� 1.4Þ × 10−3 B0 → D−K�þ ð4.5� 0.7Þ × 10−4

B0
s → D̄0K̄�0 ð4.4� 0.6Þ × 10−4 B0 → D̄0K�0 ð4.5� 0.6Þ × 10−5

B− → D0ρ− ð9.39� 0.21� 0.50Þ × 10−3 Bþ → D̄0K�þ ð5.3� 0.4Þ × 10−4

TABLE II. Input parameters given in units of proper powers of GeV. For the parameters inΔB ¼ 0 processes [47],mkin
b , μ2π , and μ2G are

defined via the kinetic scheme [48,49] with the hard Wilsonian cutoff at 1 GeV. The bag parameters for dimension-six operators relevant
toΔB ¼ 2 processes [50] are based on the weighted average of the HQET sum rules and lattice QCD. For the form factors, the numerics
in Table 4 of Ref. [16] are adopted, which are based on the recent phenomenological fit in Ref. [51] for the heavy-to-heavy form factors
and on Refs. [52–54] for the heavy-to-light form factors.

αsðMZÞ 0.1180� 0.0009 [6] MW 80.3692� 0.0133 [6]
sin θ12 0.22501� 0.00068 [6] sin θ13 0.003732þ0.000090

−0.000085 [6]
sin θ23 0.04183þ0.00079

−0.00069 [6] δ 1.147� 0.026 [6]
m̄cðmcÞ 1.2730� 0.0046 [6] m̄bðmbÞ 4.183� 0.007 [6]
mkin

b 4.573� 0.012 [47] mpole
t

172.4� 0.7 [6]

μ2π 0.477� 0.056 [47] μ2G 0.306� 0.050 [47]
B̄1ðm̄bÞ 1.028þ0.064

−0.056 [28] B̄2ðm̄bÞ 0.988þ0.087
−0.079 [28]

ϵ̄1ðm̄bÞ −0.107þ0.028
−0.029 [28] ϵ̄2ðm̄bÞ −0.033� 0.021 [28]

Bd
1ðm̄bÞ 0.835� 0.028 [50] Bd

2ðm̄bÞ 0.791� 0.034 [50]
Bd
3ðm̄bÞ 0.775� 0.054 [50] Bd

4ðm̄bÞ 1.063� 0.041 [50]
Bd
5ðm̄bÞ 0.994� 0.037 [50] Bs

R2
0.89� 0.38 [55]

Bs
R3

1.07� 0.42 [55] GF 1.1663788 × 10−5 [6]
fπ� 0.1302� 0.0008 [56] fK� 0.1557� 0.0003 [56]
fD 0.2120� 0.0007 [56] fDs

0.2499� 0.0005 [56]
fB 0.1900� 0.0013 [56] fBs

0.2303� 0.0013 [56]
fρ 0.213� 0.005 [52] fK� 0.204� 0.007 [52]

(Table continued)
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