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Gluon contribution to the angular momentum distribution
of a dressed quark state
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We compute the contribution of the gluonic component of the energy-momentum tensor (EMT) to the
angular momentum (AM) density in various decompositions. We use the light-front Hamiltonian technique,
and a two-component formalism in light-front gauge, where the constrained degrees of freedom are
eliminated. Instead of a nucleon, we consider a simple composite spin-1/2 state, namely a quark dressed with
a gluon. We present two-dimensional light-front distributions in transverse impact parameter space and
compare the different angular momentum decompositions at the density level. Incorporating also the
contribution coming from the quark part of the EMT, we verify the spin sum rule for such a state.
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I. INTRODUCTION

Understanding the spin structure of a nucleon has been a
major challenge in hadron physics. Over three decades ago,
the quark model provided a simple, nonrelativistic, con-
stituent-based explanation for proton spin [1,2]. However,
the European Muon Collaboration’s deep-inelastic scatter-
ing experiments revealed that quark spin contributes only a
small fraction to the proton’s spin [3—-6]. With the advent of
QCD, it was thought that the rest of the nucleon spin could
come from the intrinsic spin of the gluons. However, even
the gluon spin measured through different experiments
could not account for the total proton spin [7-13]. These
findings show that the nucleon is a highly relativistic bound
state, with its spin arising largely from the interactions
among its constituents, rather than solely the result of the
intrinsic properties of its constituents. Therefore, a signifi-
cant fraction of the spin budget has to be accounted for by
the orbital angular momentum (OAM) of both quarks and
gluons. Present experiments like JLab 12 GeV [14] and the
upcoming Electron-lon Collider at Brookhaven National
Lab [15] aim to measure the OAM and spin of all partons
with increased accuracy; this will help us understand the
origin of proton spin. On the theory side, for a long time,
issues like gauge invariance of the spin decomposition
of the nucleon puzzled researchers. With significant
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advancement in the past decade, this issue now has been
resolved [16]. The quark-gluon interactions, as well as the
intrinsic transverse motion of the quarks and gluons, play a
major role in the spin of the nucleon. In fact, the decom-
position of the nucleon spin-1/2 into orbital and intrinsic
parts coming from quarks and gluons is not unique. For a
long time, Ji [17] and Jaffe-Manohar (JM) [18] decom-
positions were used in this context. The Jaffe-Manohar
approach gives the decomposition of spin into intrinsic and
orbital parts coming from quarks and gluons. This has a
partonic interpretation but it is not gauge-invariant, while
Ji’s method is gauge-invariant but doesn’t separate the
contribution of the gluon into spin and orbital parts. Ji’s
method is an improvement upon the longest-known
Belinfante decomposition [19-21] which only decomposes
proton spin into total angular momentum of quarks and
gluons, each gauge-invariant. Recent advances suggest that
by introducing the physical component of the gauge field,
both Ji’s and JM’s decompositions can be made gauge-
invariant and complete, resulting in two distinct classes of
decomposition, that are called canonical and Kinetic,
respectively [16,22-26]. This gauge-invariant extension
of angular momentum decomposition is essential in relat-
ing the theoretical quantities to experimental observables.
A thorough overview of these decompositions, including
the related theoretical challenges and their solutions, and
the latest developments, are provided in [16,27].

While collider experiments and theoretical developments
have provided valuable insights into the origin of nucleon
spin, most efforts have focused on integrated quantities,
such as the total spin and the orbital angular momentum
contributions of quarks and gluons. Little attention has
been given to how these quantities are distributed spatially
inside the nucleon. For instance, all the aforementioned
decompositions differ from each other by the addition of
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boundary terms or what are also called superpotentials. In
the integrated quantities, these do not contribute. However,
the presence of superpotentials can affect the different
decompositions of the nucleon spin at the density level. In
particular, total angular momentum densities computed
using different decompositions do not agree with each
other in the absence of superpotentials [28,29]. So it is
interesting to investigate the role of superpotentials at
the density level. In the literature, spatial distributions
of angular momentum are typically constructed in two
different frames in order to give them a probabilistic or
density interpretation. The first involves calculating three-
dimensional distributions in the Breit frame, but these
require relativistic corrections unless the nucleon is
assumed to be infinitely massive [30,31]. The alternative
approach is to construct two-dimensional distributions
within the light-front framework, which, due to Galilean
symmetry in the plane transverse to the direction of motion
in the light-front approach, are free from relativistic
corrections. This gives the picture of nucleon spin distri-
bution in the impact parameter space. A phenomenological
way to study the spatial distribution of angular momentum
is through the generalized parton distributions (GPDs)
which play a vital role in the hard exclusive reactions like
deeply virtual Compton scattering and deeply virtual
meson production [32-37]. GPDs do not have a probabi-
listic interpretation. However, when the momentum transfer
in the process is purely in the transverse direction, the
Fourier transform of GPDs with respect to transverse
momentum transfer gives access to the impact-parameter
distribution of partons. Such impact-parameter distribu-
tions have a probabilistic interpretation [38] and their
moments give various gravitational form factors which
are essential in studying the distribution of energy, pres-
sure, shear, and also angular momentum in nucleons
[39-42]. Superpotential terms that link different decom-
positions of angular momentum influence the relationship
between the Fourier transform of the GPDs in impact
parameter space and the angular momentum distributions in
the transverse plane.

Different definitions of the angular momentum distribu-
tions were investigated in [28,29] using a scalar-diquark
model, and it was shown that when all the superpotential
terms are included, the total angular momentum distribu-
tion is the same for Belinfante and Ji decomposition.
Distributions of quark angular momentum have also been
studied in a light-front quark-diquark model using soft wall
AdS/QCD [43] and in the Basis Light Front Quantization
(BLFQ) framework [44]. Although a few model-dependent
studies have been conducted on understanding the effect of
superpotential terms on the nucleon spin decomposition
problem, they lack two important ingredients. First is that
none of these models have a gluonic degree of freedom;
because of which contribution of the gluon to the angular
momentum or its distributions cannot be calculated in these

models. Secondly, due to the absence of gluons in these
models, it is not possible to verify the integrated spin sum
rule for any of the decompositions, where the gluon
contribution plays an important role. Only very recently
have several spectator models been proposed to explore
gluon parton distributions [45—49], but none of them have
discussed the effect of superpotential terms to the distri-
bution of gluon angular momentum. This is partially due to
the absence of a direct observable, unlike the quark spin
density, which can be linked to the axial-vector form factor.
This is not solely due to the gluon’s color-gauge-variant
nature, as even color-gauge-invariant quantities, like quark
spin density in a world without weak interaction, would be
unobservable without an external probe [50]. Observability
depends on the existence of an external probe that couples
to the quantity, not just gauge invariance. Also, in spectator-
type models for the nucleon, it is very difficult to satisfy the
momentum sum rule [51] as well as the spin sum rule [52].
This is because, in most spectator-type phenomenological
models for the nucleon, the model parameters are fitted
using the data on form factors and parton distributions.
Due to a multitude of complexities associated with
including a gluon in a model for the nucleon, in this work
we consider a simpler, relativistic, composite spin-1/2
state, namely a quark dressed with a gluon at one loop
in QCD, using which we can perturbatively calculate the
contribution of both quark and gluon OAM and spin
density [53,54]. We have recently utilized this state to
study pressure and shear distributions related to gravita-
tional form factors [55,56]. We compute spatial distribu-
tions on the light front using overlaps of light-front wave
functions (LFWFs) within the framework of light-front
Hamiltonian perturbation theory. One key advantage is that
the LFWFs for this state can be calculated analytically
using the light-front QCD Hamiltonian, incorporating
complete quark-gluon interactions up to one loop [57].
These LFWFs are boost-invariant since they are expressed
in terms of internal coordinates, which are independent of
the reference frame [58]. We adopt the two-component
formalism from [59], where constrained degrees of freedom
are eliminated in the light-front gauge using constraint
equations. This enables the analytical calculation of matrix
elements for all components of the energy-momentum
tensor (EMT) relevant to angular momentum distributions.
Additionally, the Galilean nature of the transverse boost in
light-front dynamics allows for a clear separation between
the dynamics of the center of mass and the internal
dynamics when calculating the longitudinal component
of angular momentum [60]. In the previous work [61],
we computed the spatial densities of total angular momen-
tum coming from the quark part of the EMT. We
observed that these densities, when calculated using differ-
ent decompositions, do not agree. We also calculated the
missing superpotential term in the dressed quark state
which is responsible for this disparity. In this work, we
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present the spatial densities of various angular momentum
decompositions coming from the gluon part of the EMT,
and by combining the results of both papers, we verify the
integrated spin sum rule for each of the decompositions.

The paper is arranged in the following manner: In Sec. 11,
we review the different decompositions of angular momen-
tum density in the literature; in Sec. III, we define angular
momentum densities in the front form; in Sec. IV, we
describe the two-component formalism and a dressed quark
state in the light-front Hamiltonian approach; in Sec. V, we
present the calculation of angular momentum densities in
the front form; in Sec. VI, we verify the spin sum rules.
Numerical results are given in Sec. VII and the conclusion
in Sec. VIIL

II. ENERGY-MOMENTUM AND GENERALIZED
ANGULAR MOMENTUM TENSORS

The Lorentz transformation affects a multi component
field in two ways: by shifting the space-time coordinates on
which the fields depend and by mixing different compo-
nents of fields among each other. By virtue of Noether’s
theorem, requiring the field theory to be invariant under this
transformation leads to a conserved current, identified as
the generalized angular momentum tensor (J#*”). Similarly,
invariance under space-time translations yields another
conserved current, the EMT. These tensors are related to
each other,

JHUP = xVTHP — xPTHV 4 SHUP — [JVP | SHUP (1)

where TH, L*P  and S** denote the EMT, OAM and
intrinsic spin angular momentum tensor, respectively. In
QCD, multiple decompositions of EMT are possible. This
in turn leads to nonuniqueness in the way that the angular
momentum of a nucleon is shared among its constituents,
i.e., quarks and gluons.

The QCD Lagrangian can be written as

(i< _
Laocp = "'(E”” 0% — m)w + gwr, Aty
1
- ETr[G"”GﬂD], (2)
where 0% =@ — " and the field strength is G" =
AL — 0¥ Al — ig[AG. AY]. We begin with the Belinfante-
improved EMT [19,20] which can be derived from this

Lagrangian by considering the EMT as a conserved current
under local space-time translations [62],

WY ey v
TBel - TBel,q + TBel.g

1, = >
= (DY + DIy - 2GR G, (3)

<> <>

where D# = 0 # —2igA* for derivatives acting on quark
fields. T%. is symmetric and gauge-invariant. Another
rigorous way to obtain the Belinfante EMT is through
functional variation of an action of QCD coupled to a
weak external gravitational field with respect to the
metric [42,63]. Using this EMT, we can find an expression
for the angular momentum density that is also symmetric
and gauge-invariant,

Tgat = ¥ Ty = X' T
1_ R Loy .2
= ZU]}/ﬂx[’/le]w + Zx[”y/yp]lD l‘w

— 2Tr[GHxl G, (4)
Due to the symmetric nature of the EMT, the spin of the
nucleon can only be decomposed into the total angular
momentum contributions from quarks and gluons. These
contributions cannot be further broken down into orbital
and spin parts because the antisymmetric component of the

EMT, which is associated with spin density, is absent in
the EMT,

0”J/‘“/3 =0= 6,,(L/“"ﬂ + SHP) =0 = aﬂL““ﬂ
= —aﬂ(swﬂ) = T% —Th* = —dﬂ(SWﬁ). (5)
Nonetheless, it is possible to further decompose the total
angular momentum coming from the quark part into orbital
and spin contribution by the subtraction of a boundary term

or what are also called superpotentials. This procedure
gives a new decomposition known as kinetic EMT [17],

1 Ay
Tllgn = Tpléyel - Eaxlsqﬂ - Tﬁfﬂ,q + Tﬁ/n,g (6)

1 <
= 5Dy = 2Tr[GH Gy, (7)

where S = TPy, ysy. Ji proposed the use of asym-

metric EMT and angular momentum tensor

HUp __  HYP Hrp uep
Jkin - Lkin.q + Skin,q + ‘]kin,g

1_ g 1 _
= S0P xtiD My + S ey ysy
— 2Tr[GH "G (8)

Using Egs. (4) and (8), it can be shown that the Belinfante
and kinetic decompositions are related as

uvp Hp __ y pup Hvp wp  __ quup
JBel,q - Mq - Lkin,q + Skin,q’ ‘]Bel,g - Jkin,g’ (9)
where M4 =10,[x*S¥" — xS¢"].
However, even in the kinetic decomposition, the total
angular momentum coming from the gluon part of the EMT
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is not decomposed further. It is because of the absence of an
antisymmetric part in the gluon EMT that is associated with
the total derivative of the gluon spin density. This can be
remedied by subtraction of a superpotential corresponding
to gluon

my
Tkin, g

— 20, Tr[GMAY] = =2Tr[GMd"A,] — gpy* A%y, (10)
where we have used the relation G} = 0“A; — d;A” —
l'g[Ay,Al] = DyA/l — 0,1A” since DyA/l = 0”A,1 — lg[Ay,A/l]
for derivatives acting on gluon fields and the QCD equation
of motion

2Tr[D,GHAY] = —giy* Aly. (11)

Thus, subtracting a superpotential from the full kinetic
EMT, we get

1 <
T = 20, Tr[GYAY) = S0 by = 2Te[GH oA
= T/égn,q + Tlggn,g = T/g:na (12)

where Tk, is the canonical EMT which was first proposed
by Jaffe-Manohar [18]. The term gyy*A*y gives rise to the
potential angular momentum [64—66]. Similar to the
Belinfante EMT, the canonical EMT can also be obtained
directly by using Noether’s theorem but now by demanding
invariance under global instead of local space-time
translations [62]. Nonetheless, the calculation shown above
illuminates the fact that different EMTs are related by
superpotential terms. The generalized angular momentum
tensor obtained from canonical EMT given in Eq. (12) is

T = Lighq + Seahq + Léah g + Stang
1 1ylvi g ol 1 HVpoy A lv p]
= SPrIatio Py 5 ey ysy = 2Tr[GH oA

— 2Tr[GH A7), (13)

Comparing the kinetic and canonical decompositions we
get
pep uup g pup
Leang + P = Lygn g
0 0 7 p

Jiing T Me” = Leang + Seang, (14)
where P§” = giry*xV APy is the potential angular momen-
tum and M%7 = —20,Tr[G*x*A?)] is the superpotential
associated with gluon.

Although a complete decomposition of angular momen-
tum is obtained using the canonical EMT, it is not gauge-
invariant because it contains an ordinary derivative
instead of a covariant one. To decompose the gluon part
of EMT in a gauge-invariant way, one can follow the
covariant formulation proposed by Wakamatsu [25]. It is

based on the idea of decomposing gluon fields into two
parts [22,23],

AP = A + Al (15)

where Apye is a pure-gauge term that transforms like the
full gauge potential and has a null field strength

Ggﬁre - allf4fyure - aI/AA’[';ul‘e - ig[Agul‘ev A;ure]
— DhureAbye — ¥ Altye = 0, (16)

i
and Apy ¢

The gauge transformation properties of the two parts are:

is the physical part that transforms covariantly.

Agure — U<A’1§ure + é@”) U_l,

Aﬂ

H
phys — UA

Py U™ (17)
Two decompositions of EMT—gauge-invariant canonical
(gic) and gauge-invariant kinetic (gik)—are obtained using
this procedure, each of which decomposes the nucleon spin
into five components: spin and OAM of quarks and gluons
and potential angular momentum. The Chen et al. or gic
decomposition is a gauge-invariant extension (GIE) of the
canonical decomposition and it is given as

+ 1

WY ey
T =T e

gic gic,q
1. < h
= SWrMiD jurety = 2Tr[GH (Do A7™)] - (18)
where Dhye = 0 — 2igAlye and Dy AR = AP —

2ig[A’I§ure,A§hyS]. Using this EMT, we obtain the gauge-
invariant canonical angular momentum tensor,

1. o I
Tl = Ql//r”x[”lD Doy + €W Ysw

— 2Tr[Gal Dpe AT = 2TX[GHY AL ] (19)

The canonical and gic decompositions are also related by a
superpotential,

T, = The + 20, Tr[GH A% (20)
T — JER 4 20, TH[ G XY Afle). (21)

The gik EMT, i.e., GIE of kinetic decomposition [24,25],
can be obtained from the gic EMT just by subtracting
gz/"/y”A;hySy/, i.e., the potential momentum, from the quark
part and adding it to the gluon part using the QCD equation
of motion. The EMT and generalized angular momentum
tensor is thus given as
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1 - ,
Ty = El//}’”lD “w + 2Tr[(D;) G Ay,

—2Tr [G/M (le)ureAzhysﬂ ’ (22)

Jhr — 1_ v Bp] 1 VPO T,
sk = S Wr'xViD Py + STy y sy

- ZTY[G”/IX[VDS]UreAEhys - (’DlGﬁ”>x[DA/p)]hys]

— 2Tx[GHMAY .

(23)

In summary, the decompositions can be divided into two
categories, kinetic and canonical [16]. The kinetic class
includes Belinfante, Ji, and Wakamatsu decomposition.
The canonical class includes Jaffe-Manohar and Chen et al.
decomposition. The covariant way of decomposing the
QCD angular momentum tensor leads to five separately
gauge-invariant terms. These terms are spin and OAM of
quarks and gluons and potential angular momentum. The
potential angular momentum, being gauge-invariant in
itself, can be added to the OAM of the quark or gluon
part giving canonical and kinetic families, respectively. All
these decompositions differ from each other by super-
potential terms at the level of densities. Thus, it is
interesting to investigate the effect of the superpotentials
on the distributions of angular momentum.

III. ANGULAR MOMENTUM DISTRIBUTIONS
IN LIGHT-FRONT FORMALISM

To calculate the spatial distribution of angular momen-
tum in different decompositions, we evaluate the matrix
element of the angular momentum tensor. However,
when such matrix elements are computed between plane
wave states, the orbital angular momentum operator
X*THP — xPTH leads to ambiguities, as the spatial integra-
tion of the EMT can yield either infinite or zero values [16].
A standard solution is to use wave packet states [67]. In this
work, we start with the off-forward matrix element of the
EMT following the approach of [18,68]; this method
resolves the ambiguity and also relates the matrix element
of the EMT to angular momentum densities [16,28,67]. We
use this approach to evaluate angular momentum distribu-
tions in light-front (LF) framework. As discussed in the
Introduction, this avoids issues related to relativistic effects
in the Breit frame, which are not present in the front form
due to the Galilean nature of the transverse Lorentz
subgroup [58]. We begin with the definition of OAM
distribution,

INT
(27)*

(T g, (24)

L) =, [

where (T+K), = (P SITEO)ps)

2o

We have taken the momentum of the initial state to be p
and the final state p’. The helicities, s, of the initial and final
states are the same as the operator structure of the angular
momentum component does not involve a helicity flip. We
define the average momentum of the initial and final states
to be P and the momentum transfer A:

A= (p'=p).
(25)

1
pr=(pt.pt.p), Pr=3(p"+p),

The initial and final state are on-mass-shell, this gives the
constraint P- A = 0 and P2 = m? — ", Using these rela-
tions, we get the light-front energy transfer A~ and the
average light-front energy P~ as

_ PL AL —PAT

A_ P+ 9
=1 {(P LA m (P8 ’"2] (26)
2L (P +5) (P*=%)

We calculate spatial densities in LF formalism using the
Drell-Yan (DY) frame where A* = 0 and P+ = 0. Thus,

AL 1, AR
o= = =
P (P, 2,2P+<m + 4>>
At 1 A2
pH = <P+’7’F<m2+T>>’ (27)

and the invariant momentum transfer,
A = (p' = p)* = (0,A%,0). (28)

In this frame, we find that

()Aijem-x _ Mijei(%A—%—Aiﬂ) _ —ixie"'“
L s
0 . o
= i—je’A"‘ = x| e,
N
and we obtain
. 3 dAYdPAL . [o(THF)
<LZ>()C) = —l€3jk/WetAx|: aAJ LF:| ) (29)
1

Now, integrating the above expression over x~ which
means taking AT = 0, and using Eq. (24), we get

/ dx=(L7) (x) = (L) (b)

_ _l'e3ﬂc/dzAl e—iAi.bi |:6<T+]€'>LF:| ’ (30)
(2r)? oA,
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where b is the impact parameter. As shown in Ref. [16],
zero energy transfer ensures that the matrix elements of
angular momentum components of quark and gluon both
are separately time-independent. Similarly, the expression
of the spatial distribution of intrinsic spin is given as

(5960 =3 [ S5

For any decompositions in which the total angular momen-
tum of a quark or gluon is not decomposed further into
orbital and spin contributions, the impact-parameter dis-
tribution for total angular momentum is given as

. / INT
ik [ dATdAT
(22)2y/p p

o it N s
2 (27)32+/p* p”r

—iATh (SHK) R (31)

M(x) =§

iA‘xal<p’,s|ijl+k _

0eiATN Lk e
i ) 15 s

> A+

Tk
(J)(b*) = —l€3’k/ R o-iA b [a<TBel>LF

. (32
o | e

The general form of the impact-parameter distribution of
the superpotential differs from the other expressions of
distributions shown above. So, we derive it using the
general form of total divergence terms, i.e., MW" =
KO, (x*S™P — xP S, where k is a constant. This constant
is just introduced because, as seen from Egs. (6) and (12),
the prefactor to the total divergence term is different for
quark and gluon. To derive the distribution of the
z-component of the total divergence term we have to use
the component M*/k:

xkSHi|p, s)

iA-x

aAk ><p/vs|Sl+j|p7s>:|

K dATd* A+ d 0 .
— A 3]k iA-x 3kj ,iA-x /, Sl+] ,
3] = SIS ) + sl s

dAT P AL

—K€3jk/—
(2”)32 /p+p/+

w M) () = ke / A

e—zAL bLAl J
(2m)?

aAJ <S1+k> .

IV. DRESSED QUARK STATE AND
TWO-COMPONENT FORMALISM

As discussed in the Introduction, to investigate the
contribution to the angular momentum distributions com-
ing from the gluon, instead of a nucleon state, we choose a
quark dressed with a gluon. In comparison to a nucleon, it
is a simple state with a gluonic degree of freedom [57,69].
This composite state with momentum p and helicity o is
defined as

p.o) =wi(p.o)bs(p)|0)
/dIchdeLa’chrdQlcl 3+
- p
,1] p 1673/ kT kT
Xy (p, 5|k1,/11,k2’/12> (P ki — k)

x b} (ki)a], (k»)]0). (34)

In Eq. (34), w1 (p, o) in the first term corresponds to the sin-
gle particle Fock space contribution with momentum (hel-
icity) p(o). The two-particle LEWE, w»(p, 6|k, A1 k2, 42),
is related to the probability amplitude of finding two
particles, namely a quark and a gluon with momentum

. 6
iAx( Al I+k

(33)

|
(helicity) k,(4;) and k,(4,). b" and a' correspond to the
creation operator of quark and gluon, respectively.

The LFWFs can be written in terms of relative momenta
so that they are independent of the momentum of the
composite state [58]. This is due to the Galilean transverse
boost in the light-front framework. The relative momenta
x;, ki satisfy the relation x; +x, = 1 and ki + x5 = 0:

+ +
ki _xip )

ki =« +xpt, (35)
where x; is the longitudinal momentum fraction for the
quark or gluon, inside the two-particle LFWF. The boost-

invariant two-particle LFWF can be written as

g [ x(1—x) ] T¢
2027)° [k +m*(1—x)?] VT —x
2kt - ef*) 1

(k)6 e)

4531_,12 (x,xh) =

X)(Z'I |:_

C (= * —-X c
s e) o, (36)
\ P+l//2( ’G‘klv/ll;k2712)a and g is

the quark-gluon coupling. 7¢ and 6/{2 are color SU(3)

where @7 ,; (x;,k) =
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matrices and polarization vector of the gluon. The quark
mass and the two-component spinor for the quark are
denoted by m and y,, respectively, and 1 = 1, 2 correspond
to helicity up/down of the quark. We have used the notation
61 = 0, and 6, = —o; [57]. In the expression above, x and
k* are longitudinal momentum fraction and the relative
transverse momentum of quark, respectively. So, to do
calculations of angular momentum of the gluon part, we
substitute x — 1 — x and k — —« in Eq. (36) in accordance
with the constraints on the relative momenta [60],

257 8 o v

2kt el* 1
x;(j,] [ ( %2 ) + (+- k) (6t ef)

3,4, (x,xt) =

X 1—x
+im(t e ) —— |yt (37)
/12 1 —x ZJWI ’
where y; gives the normalization of the state,

? 1+x A? 2x
29 / 1 - .
il 872 Cr | dx o8 m*(1-x)?) 1-x

(38)

In the above expression, A is the cutoff on the transverse
momentum integration. We use the two-component
formalism [59] of light-front Hamiltonian QCD, where
in the light-front gauge A™ =0, one can eliminate the
unphysical degrees of freedom using the equations of
constraint. Using the light-front representation of gamma

matrices, the quark field can be decomposed as y =

Ty = Ay =57y,

o .

where A, are projection operator, £ represents the two-
component light-front quark field, and # is the constrained
field:

=50 [ B e s e, o

) = (ai) (o (0 + gA () + imlely). (1)

_ _dkr it
20273k
gluon field are given by

where [dk] The dynamical components of the

Z/\/W a;(k)e —zkv+€J_* T(k)eiloy]’

(42)

where y; is the eigenstate of 6> and ei are the polarization
vectors of the transverse gauge field. The yw~ component
and the longitudinal component of the gauge field A~ are
constrained fields and can be written in terms of y+ and A+
in the following way:

ot + gat

0ty = (ia* AN pmy ., (43)

1 o o
SOVEL = (0B, + gf """ AE) = gw Ty, (44)

where T“ are the Gell- Mann SU(3) matrices: [T, Tb] =
f"”‘ T¢ and Tr(T“T”) 1845, m is the quark mass, a*
vt p=7", and E;" 20+Aa,(z—1,2).
Following the approach of [55,56,70,71], to make
smooth plots of the spatial distributions, we use a
Gaussian wave packet state in momentum space centered
at the origin. The state is confined in transverse momentum

space with definite longitudinal momentum and can be
expressed as

1 d*ptdp*
e A ST NS
167
with ¢(p)=p*6(p* —p§)d(p*). We a choose a Gaussian

shape for ¢(p~) in transverse momentum:

ppt) = (46)
where o is the width of the Gaussian.

V. ANGULAR MOMENTUM DISTRIBUTIONS
FROM GLUON PART OF EMT

In this section, we discuss the spatial densities of the
gluon angular momentum in a dressed quark state, by
taking different decompositions. The impact-parameter
distribution of gluon OAM in canonical decomposition
is given by Eq. (30),

< >(bl) 16";J]<\/'&e—l'AL~bl %
can,g (271')2 aAi
= i/%e—iALbL
T

|:0<T$1Lg> LF a<Tca%1g> :|
oa? oal) Iy

(47)

where b is the Fourier conjugate of the transverse
momentum transfer A . In order to calculate these den-
sities, we must first evaluate the matrix element of the EMT
to which they are associated. So, we consider the gluon part
of the canonical EMT given by Eq. (12),
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Tik e = —2Tr[GT0FA,] = Gy 0" AL = (0T A7) (d*Ar) (48)

dict Pk dic dPlet e ,
/ KE[=(et - ep)az(k)ay (K)e 6 - (ef - e5)ay (k)al, (K ) e~
A0

(167%)2k'*

+ (€3 ep)a (Kay (K)e 0 — (ef - e3)a; (k)ay (K )+, (49)

We calculate the matrix elements of 73X ¢(0) by sandwiching the above expression between dressed quark state given in
Eq. (34). Only the two-particle diagonal term is nonzero which is then expressed in terms of boost-invariant LFWF and
Jacobi momenta (x, k*). We have shown the form of the diagonal matrix element in Eqs. (E4) and (ES) in the Appendix,
which are obtained after performing the integration over the Jacobi momenta. Substituting these expressions in Eq. (47),
we get

(Liang) (07)
JZAJ_ a1 Al d.x X— 2 1 + A2
=g¢’C ARG S 1)2A2)1 —(x—1)2A2%'1 50
g f/(2ﬂ)26 /SHQ(X—I)AZO)/ {( mc  (x=1) )og( 1+a)> (x=1)"Aw Og<m2x2>}’ (50)
where o' = /1 + % and A is the ultraviolet cutoff on the transverse momentum. A gives the scale dependence of the
results.

For the spatial distribution of the intrinsic part of the gluon, we write the operator structure of the gluon spin term in
Eq. (13) as

Seihie = —2Tr[GTVAN] = ~G Ak + GH* Al = —(97 AL)AL + (7 A) Al
/ dk* dPke-ak' a2k
A

(160" [(e’el eieﬂ,)a,l(k)a,{/(k’) e~ ikt y+(e’ek*—e’jeﬁ,)a,l(k)a}(k’)e—i(k_k/).y

(el —efe))a; (K)ay (K)e "0 — (¢ el — efrel) ) (k)ay (K') e U], (51)

Again, after evaluating the diagonal and off-diagonal (vanishes) matrix element in terms of LFWF and Jacobi momenta and
substituting them in Eq. (31), we get

dZAJ_ gl AL dx
Sz L) = FAC / —ib--A /
< can,g>< ) g f (2]_[)2 e 87Z2A4

X

((x=2)(x = 1)2A% 4 2m2x((3x — 4)A? — (x — 2)A?)) log (2 ) 2
[ (= 1w ) s 1°g< : ZH >

Similarly, the impact-parameter distribution for the gluon part of the kinetic total angular momentum is calculated using
Egs. (7) and (32):

d2A s [ dx 1
Vi kmg =7C ) /167r2 (1 —x)A%"

+ A0 <(x — 1) (4m*x* + (x = 2)(x = 1)A?) — (x = 2)x(4m>x* + (x — 1)2A?) log (ﬁ;))] . (53)

The relevant x integrations and the steps of the calculation are given in Appendixes B, C, and E.

In order to make a proper comparison between the canonical and kinetic decomposition, it is important to include the
correction term to the kinetic total angular momentum. This term corresponds to the superpotential given in Eq. (12). It’s
expression at the distribution level is given as
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(M3)(6) = el

2 AL 9

(22

—iA, b, I+k
"5a7 (S

Substituting the matrix element of S’g”‘ given in Egs. (E15) and (E16) in the above expression, we get the spatial distribution

of the superpotential term:

dZAJ_ gl AL dx
M= bL — 2C / —ib--A /
< g>( ) f (2][)2 € 87[2(1 —x)3A4w’3

1+ o

X [Zmzx3 (4m?x + (x — 1)A?) log< .

Since the gluon part of Belinfante decomposition is exactly
same as that of kinetic decomposition,

(Tharg) (B7) = (Jiin o) (B7). (55)

Now, consider the relevant light-front components of gic
decomposition given in Eqgs. (18) and (19),

1_ =
Tngllc{ - 2‘//7/+1D I}éurel// - ZTI‘[GJH1 (DlpgureAphyg)]’ (56)

1
Sl = Sy oysw - 2Te[G A, . (57)

and the relevant light-front components of gik decompo-
sition given in Eq. (23),

1
T+k Wy lD W+2Tr[(IDﬂGi+) phys}

gik T 2
- 2TI’[G+’1 (DllgureAEhys)]’ (58)

1
Sat = €y rsy - 2Te[G Ay . (59)

where Af, = A" — A% . Due to Stuckelberg symmetry
[16,72], the separation of the gauge field into a pure and
physical part is not unique [73-76]. As shown by Hatta
in [75] and [77], in light-front gauge with antisymmetric
boundary conditions, Apure = 0and Aphys = AK._In the two-
component framework, we use antisymmetric boundary
condition in light-front gauge [59]. The OAM and spin
distribution of quark and gluon calculated from the gic
decomposition of EMT is the same as the canonical OAM
and spin distribution. Due to the same reason, distributions

+w

/> — A2 (x = 1)} (4m?x> + (x = 2)(x — 1)A2)|.  (54)

|
in gik decomposition coincide with the kinetic one in the
light-front gauge, for a dressed quark.

VI. VERIFICATION OF THE SPIN SUM RULE

In this section, we verify the longitudinal spin sum rule
for a dressed quark state, using different decompositions of
angular momentum. The spin sum rule states that at the
integrated level, the sum of all the angular momentum
contributions of any decomposition should be equal to 1/2.
The total angular momentum of the nucleon is related to a
conserved operator, and this is independent of the renorm-
alization scale. However, individually the orbital and
intrinsic parts of the quark and gluon angular momentum
in different decompositions are not related to conserved
operators [78] and their matrix elements depend on the
renormalization scale. As discussed in the Introduction, it is
difficult to verify the spin sum rule in phenomenological
spectator-type models of the nucleon. A field-theory-based
perturbative model like ours, on the other hand, is a very
useful tool to explicitly verify the sum rule at the level of
one loop.

A. Kinetic decomposition

Mathematically, the spin sum rule for the kinetic
decomposition can be given as follows:

[ L) 64) + (S50 + U ) 0] = 5.
(60

From Egs. (C1), (C6), and (C15), we see that the expres-
sions on the LHS involve a two-dimensional inverse
Fourier transform over AL. These expressions, when used
in the above equation, lead to a simplification. Since, b is
a Fourier conjugate of A, integrating over b amounts to
taking the limit A+ = 0 in these expressions. Thus, we get
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1—x

o) 1250

Cr 1 2
[ b a0 = “’7[ e (2]
/szL kmq |: 92 {1+x
1—x+x
1—x
1 g f
2 872 dx(x =

/fbj_ kmg bJ—

gch 11+210g A?
87° [18 ' 3

Here, x is the fraction of longitudinal momentum taken by a
quark, and 1 — x is the momentum fraction of the gluon. In

the expression of (Sg;, ), the first line (second line) of the

integrand represents the single-particle contribution (two-
particle contribution) to the matrix element. The single-
particle contribution as shown in Eq. (38) is the normali-
zation factor of the dressed quark state. It is crucial
for verifying the spin sum rule. As seen above, the
A-dependent term in the two-particle contribution to
the quark spin distribution is precisely canceled by a
A-dependent term coming from the single-particle contri-
bution, yielding a cutoff-independent result for the quark
spin distribution. Substituting these expressions in Eq. (60),
we find that the longitudinal spin sum rule is indeed
verified for the kinetic (Ji) decomposition

(61)

1
<L§1n q> <Slz<1n q> <J§1n g> 5 .

m2

e (mzuA g x>2) H

2 1622’

92 /dx(l—x [x—(x—l—l)log( 2) +2(1+x)10g(1—x)}

|

In fact, by adding all the terms, all terms of O(g?) get
canceled. As stated before, the total angular momentum of
the dressed quark does not depend on the renormalization
scale. In our approach, A introduces the scale dependence.
Cancellation of A dependent terms verifies the scale
independence of the total angular momentum. As we show
below, this is true for all decompositions.

B. Belinfante decomposition

The longitudinal spin sum rule for the Belinfante
decomposition is given as

(Ther ) (0)] = (62)

[ @ a0 +

Integrating Eq. (D9) and (C15) over the impact parameter
space gives

1 2Cr [1+ 2
/szLugeLq)(bL) :E/dx{l —98”{ [1_’; o
(2 -x)

g<m2<1A ix>2> ) 12—xxH

g*C
- [l
872

1—-x

dx[ (1—x)+(x2—1)1og<

L= 2;(—1 3_x;+ 2x3) log (mz(f\z_ x)2> }

i-7)|

/deL<J§eLg>(bL) - —g;:f/dx[ (1=x)+ (x> = 1)1og(mz(1/\ix)2>}

In the expression of (Jg, ), the first line (second line)
of the integrand represents the single-particle contribu-
tion (two-particle contribution) to the matrix element. It
can be seen from above that O(g?) terms in the matrix
element of quark and gluon total angular momentum

exactly cancel each other, thus giving the Belinfante spin
sum rule:

1
<le?.el,q> + <J1Z331,g> = 5 . (63)
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The explicit factor of % is present due to the single-particle
contribution to the quark total angular momentum matrix
element. Thus the normalization of the dressed quark state, i.e.,
v 1, plays a vital role in the verification of the spin sum rule.

C. Canonical decomposition

The longitudinal spin sum rule for the canonical (Jaffe-
Manohar) decomposition has the following form:

L z L g l %
/sz (Ling) (0F) [9—|—310 (

/ P (L) (01) + (Siang) (B) + (Limg) (B4
+{Sing) 61 = 5. (64)

where

87
FCy [1+x A? 2x
A2t (S J_ f 1 —
[ v isimnon) =3 [ an - o (G =) -
2Cf 1—x+x) 1+ x? A?
log
Y 1—x 1—x m*(1 —x)?
1 g f 1 QZCf
T -y ==L
+ 872 =1 2 16x°
2C A2
/dsz Léng) (bF) = g zf/dx{x(x—l-l){l—log( >+210g(1 —x)]}
2 2
FC 17 5. (A
—-_ L 0 2
87 [9 et |

2
Ay Cy
[ @S0 =5

dx{2x —(x+1)log <A2> +2(x+ 1) log(1 — x)}

FCy 5+31 A2
T8 272%% '

Once again, the single-particle contribution to the quark
spin proves integral in making the quark spin independent
of the cutoff. Other A-dependent terms in OAM of quark
and OAM and spin of gluon cancel amongst each other.
Substituting these components in Eq. (64), we find that the
canonical decomposition also follows the spin sum rule,

1
<Lézm,q> + <Sézmq> + <Lgan.g> + <Sgan.g> = E (65)

It is noteworthy that the A-dependent terms in (L&, ).
(Liang), and (S%,,) align precisely with the results
obtained for the canonical decomposition in [60]. However,
the finite parts differ because in [60] quark mass effects
were ignored to avoid introducing higher twist contribu-
tions to the quark and gluon OAM. Another key difference
is that their approach derived the canonical decomposition
by using a Belinfante EMT and neglecting surface terms.
While this leads to a similar result to ours when considering
the total (integrated) values, as we will demonstrate in the
next section, choosing the Belinfante or canonical EMT
yields different results for the total angular momentum at

I

the density level. It is to be noted that in this work we have
used the two-component method in light-front QCD in
light-front gauge, and eliminated the constrained fields.
The equation of constraints cannot be solved for k™ =0
(light-front zero modes) [59]. In coordinate space this
means that the light-front gauge has a singularity at the
longitudinal boundary. Using antisymmetric boundary
conditions, the zero modes are removed. The results in
this section thus do not include the zero modes, and they are
not needed in the verification of the spin sum rule. We have
also restricted ourselves to the topologically trivial sector of
the theory [60].

VII. NUMERICAL ANALYSIS

In this section, we show the plots of the longitudinal
component of the angular momentum distribution of
gluons. The analysis in the previous section shows that
the AM distribution for gluons is the same for Belinfante
and Ji decomposition. So, we only plot the results for J]M
and Ji decomposition. As we stated before, we use a
Gaussian wave packet state in transverse momentum space
with fixed p™. For the analysis, we have chosen the
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FIG. 1. Plots of longitudinal angular momentum distribution of gluons as a function of b . Left: Sum of the (L, o) (dashed line) and
(S%n.g) (dot-dashed line) given by (J&,¢) (solid line). Right: (J&,, ) (solid line) is given by the sum of (Jf;, ,) (dashed line) and (M})
(dot-dashed line). Here, m = 0.3 GeV, g =1, C; =1, and A = 2.63 GeV.

following parameters: the quark mass m = 0.3 GeV, the
coupling constant g = 1, the color factor C; = 1, and the
ultraviolet cutoff A = 2.63 GeV. Here we show the varia-
tion of the angular momentum with respect to |1; |- Also,
the y-axis is multiplied by a factor of \l_; 1| to correctly
represent the data in radial coordinates.

In Fig. 1, the plot on the left panel is a graphical
representation of <Jgan,g> (bJ_) - <Lgan,g> (bl) + <Séan,g> (bJ_)

The OAM has a positive contribution whereas the spin
density has a negative contribution. In the right panel, we
show that the kinetic (also valid for Belinfante) total AM
distribution, (J§;,,)(b1), is not equal to the total AM
density of the gluon. A correction term corresponding to
the superpotential, (M3)(b,), which is ignored in a
symmetric gluon part of the EMT like the Belinfante or
kinetic decomposition, has to be added to (Ji;,,)(b1) to
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FIG. 2. Plot of the dependence of different components of AM distribution on transverse momentum UV cutoff. Top-left: Variation of
(L&an,g) with A. Top-right: Variation of (S%,, ;) with A. Bottom: Variation of (J&,, ) with A. Five different values of A are considered for

the analysis: A = 2.4, 2.5, 2.6, 2.7, 2.8 GeV.
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Plots showing the dependence of different components of AM distribution on the width of the Gaussian wave packet, ¢. Four

different values of o are considered for the analysis: o = 0.05, 0.10, 0.15, 0.20 GeV. Here, m = 0.3 GeV, A =2.63 GeV,

get the same total AM distribution for both decompositions.
It is also evident from the comparison between these plots
and those of the previous work that the gluon contribution
to the AM density is significantly smaller than the quark
contribution for the state that we have considered.

As we discussed earlier, in systems with nontrivial
interactions, such as in the dressed quark state, the quark
and gluon contributions to the Ji angular momentum are
dependent on the renormalization scale [78-80]. In our
framework, the scale dependence arises from imposing a
cutoff on the integration over transverse momentum
[55,56]. In Fig. 2, we show the cutoff dependence of
different terms of the gluon AM density in our model. The
correction terms used to compare the three definitions are
cutoff-independent. In the previous work where we calcu-
lated the spatial densities of quark angular momentum, the
expected equality Ji;, , = Ji, , + Mg did not hold for
different values of A so we chose a suitable value for
the cutoff to get the equality. However, in the case of gluon,
the equality J&,,, = Jﬁin’g + M5 = fgel’g + M3 holds irre-
spective of the value of cutoff. Thus, the spatial density of
the total angular momentum of gluon is the same for all the
decompositions irrespective of the value of cutoff.
However, the individual terms of the decompositions are
still cutoff-dependent as expected. Figure 3 shows the

variation of the results with the width of the wave packet
state, 0. The width indicates the spread of the distribution.
We observe that in all cases, the peaks of the distributions
shift away from the center, and the distributions become
broader in b space with an increase of the width of the
Gaussian.

VIII. CONCLUSIONS

In this work, we have conducted a detailed investigation
into the spatial distribution of angular momentum using
various decomposition methods. We demonstrate that
boundary terms, which vanish upon integration, play a
crucial role when analyzing distributions in position space.
Previous studies addressing spatial distributions of angular
momentum components have predominantly relied on
models of nucleon states without the inclusion of gluons.
In contrast, our study employs a relativistic spin-1/2 state
consisting of a quark dressed with a gluon, treated
perturbatively within the one-loop approximation in
QCD. This state incorporates gluonic degrees of freedom
and enables the analytical calculation of quark-gluon
LFWFs using light-front Hamiltonian QCD. These
LFWFs are frame-independent due to their dependence
on internal coordinates. Using a two-component formalism
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in the light-front gauge, we examine the distributions of
longitudinal components of gluon spin, OAM, and total
angular momentum, all derived from the overlaps of these
two-particle LFWFs. Our study explicitly presents the
gluonic contributions to the EMT, complementing previous
work that focused on quark contributions to these observ-
ables. Furthermore, we illuminate the distinctions between
the Ji and Jaffe-Manohar angular momentum decomposi-
tions coming from the superpotential term that becomes
significant at the distribution level. We compute the missing
superpotential term in the context of the dressed quark
state. Additionally, in the light-front gauge, where the
physical gauge field coincides with the total gauge poten-
tial, the decompositions by Wakamatsu and Chen et al.
yield results consistent with Ji and JM decompositions.
Lastly, we explicitly verify the longitudinal spin sum rule
for all decomposition—we show that the contribution from
the single particle sector of the Fock space expansion of the
state plays an important role in the spin sum rule. We also

|

/deLi:ﬂlog{MerZ(l—x)z]
D, ’

m?(1 —x)?
1 T 115
Pt = ey
/ D\D, (1-x)*q¢*f,
2l x(0) = q<i>£
DD, B (1-x) 612 2fy
2 l,c(l),c(Z)_ q(l)q(Z) . | 2m*\ f;
> s wa + | 1+— AR
12 q q S
)2 L @[, 2m f
&L TGS I - 122 ) L3
/ . DD, i f1f3+2+ 42 * 612 2f4

2

explicitly show that by adding the quark and gluon
contributions, the scale dependence in the total spin is
canceled, as expected.
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APPENDIX A: INTEGRALS USED
TO CALCULATE QUARK TERMS

The following integrals are used to calculate the ana-
lytical expressions of the spatial distributions:

(i))3
o 1 (D)7 3
N (1 —x) =2 gD |1 +1
/dK 1D2 ﬂ:( x)|: 4q + Og m2(1

S

— x)Z

()22 1 A2
AN Sy N e 1 P
/ ‘ DD, wl=x) R R m?(1—x)?

(1) ()2
Pttt
/ DD,

where i = (1,2) and

Dy =« +m?*(1 —x)?,

1 4m?
f1’=§\/ +7, Sfa:

1 A2 3
— - —— g
z(1 x)[ 4q [H—log(mz(l_x)z) +2 P

2
10g<1+q(

(A1)

(A2)

(A3)

(A4)

et
+;<q(1222q(2) + <%q(2) - (q(l);zzq(z) 4fjf_lr;_22>f3} . (A7)

D, == (k* + (1 —x)gt)* + m?>(1 — x)?, (A9)
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APPENDIX B: INTEGRALS USED TO CALCULATE GLUON TERMS

The following integrals are used to calculate the analytical expressions of the spatial distributions:

/dzxi;]:nln {1+W?;}, (B1)

/ o d11d2 . (21n_ - f | (B2)

[ e s - 3 f; (83)

/ it K(CZZS) = ”A(Al)ﬁm [—1 + <1 ;?2>ﬁ] (B4)

[ L R (1 (L)) 2 (), 9

a0 T T S A

/dsz(ﬂ;);jn:%(]_x)A(z) {—1+}2_1n<mATiz>} () (A(Z);A(Z) B+%<1+—(li’:§iu)}z}, (B7)

/d K“;l’;z)y %(l—x)A(l) {—l—l—fg—ln(%)} +n(1—x)%[§+%<l+%>}}, (BS)
where

d; = [k +m*x?, dy = [(k*t + (1 = x)A+)? + m?x?], (B9)

fi=4/1 +%, fai= 1n<_11+7+f}1>. (B10)

APPENDIX C: SPATIAL DISTRIBUTION OF ANGULAR MOMENTUM COMPONENTS
OF KINETIC (JI) DECOMPOSITION

1. Quark OAM distribution

The distribution of kinetic quark OAM has already been derived in the previous work.' We just state the final result here
for completion:

. L [ dPAE HTingie AT ir
(Liing) (07) =i (27)? ¢ 2 )
OAY 0AY DY

2 1 2 2
FCr [ dPA . 6( 2m 1+ A
72712/(271)26 o\ Tar )\ I,) ~ooee (1)

2
where @ = /1 42,

'Refer to [61] for the complete derivation of kinetic quark OAM and the corresponding discussion on the vanishing of the off-
diagonal matrix element of EMT and thus the vanishing of the potential angular momentum in a two-body system like the dressed quark
state.
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2. Quark spin distribution
Consider the quark spin operator from Eq. (8):

dk't Pk dkt Pkt .

k | ]

DY / Terveie KB (e, (c2)
v

Nondiagonal matrix element of S;[’lkq(O)

(1S58 (0)[2) = (IS5 (0)[1) = 0. (C3)

Diagonal matrix element of S;rlflk (0)

The single-particle contribution is given as

(1, T|S1J(r1[]1kq( L) etk etike 7 1+x2 A? 2x
= = 1—— 1 - . 4
2p* 7l == [ 8;:2Cf/dx{ I—x Og<m2(l—x)2> 1—xH (€4)

The two-particle contribution is

C GO _PCr /arxaﬂ:cL 1
2p+ 4 877,'3 (1 —X)D1D2
X K2 (14+x2) +xt - A1 =x)(1+22) +i(1=x) (1 =x2) (kDA —x @A) —m?(1 = x)*].  (C5)

After performing the x integration in the above equation using Appendix A and using Eq. (31), we get:

| d’At ‘
. bJ_ _ €3]k / e—tAJ'-bJ' S+]k
< ki q>( ) 2 (277,')2 < >LF DY

e3ketik= /512AL ALl /d 1 $#C 122 A? 2x
2 (2r)? 4 3222 | 1-x \m?*(1-x?) 1-x
2 2 2
g-Cy ) 14+ w 1l-—w 14+ w 5 A
-_— 1 1 1 —(1 log| ———
3272%(1 — x) {w( +x) Og(—l +w T\ )R\ o +o (147 log m?(1 —x)?
AL, 1 g°C 1—o? 1+
_ —iAtb dx |- f 2x — 1+ x2 1 ) C6
[ [ als et (= [ e (5] (555 <0

3. Gluon total AM distribution
The operator structure of gluon EMT in the kinetic decomposition is given by Eq. (7):

T+k

kin,g — = 2Tr[G+’1Glﬂ

1
=2Tr|3GGH + GG
— l GGtk + GHLGrL

2 a a a a

— (@A AL + (0 AT OAD) = (04D 0*5) + 2000"a8) (5 ) € . (1)

D

ND

The notations D and ND in the above expression denote the diagonal and nondiagonal overlap contributions to the matrix
elements, respectively. For our analysis, we ignore the higher-order terms that contain three gluon fields.
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Diagonal matrix element of T, £(0):
Substituting the expressions of gluon fields in the diagonal terms we get

(0YAL)(0FAT) + (07 AT) (0" AL) — (97 AL) (9AY)
dkt d*ktdk'+ d* '+
“,/ (1673)%K'*

[{=eh (k- e7) = K¥(er - ) + e (K - e7) }ag(k)ay (K)em )

+ {5 (K- ) + K (ef - e57) — elF (K - ef) Yay (k) a), (k) e~ k=KD
el (R - ) + K (e eﬁ)—ey(k’l-e V}a; (K)ay (k)=
+{=ef () = K (ef™ - ef) + € (K- 47) g (k) (K) el 0], (C8)

The diagonal contribution coming from this operator is given by

(2T gl2.1) 1 AN AL
—ap £ = /dXdQKL@ /v( ){]j<u+x7>o€j,z +e’j,2(xi—x7>-ej2
2,5 pi

A* A* A+t
+ <1<”‘ +x7> G L*) + (Kk —x7> (ej,z* “€;) — ’}*( L —|—x7> €
AL
- <K‘L — x7> . ej,z*} 95 4, (x.5h). (C9)

By substituting the two-particle LEFWF in the above expression, evaluating the spinor products, and performing the kappa
integrals, the following expression for the components of the matrix element of gluon EMT is given:

2.4(T5L(0)]2, dxdit 1
21l k;;f 21 _ o, [ WP (=262 0) 4 KRR - 22(2 =) (A - a0 - i)

><1<(2)2((] —-x)(2- (2—x)x)A(1) — i(2—x)xA(2)) +x(Dx@ 2(1 —x)(ZA(z) —i(2—x)x(A(1) —iA(z))))]
x(4m?x — (2= x)A?) log (1t 2
lngf/16 5 )[_ ( ( A2)’ )og (15 ) (Z_x)<l—x—xlog<%>>] (C10)

X

1+

2’ Ttﬁ 2’ d x(4m X — (2 x)Az) 10g 0] 8
RATEORD e, [ i s e (22 )_(z_x)<1_x_x10g<mgx2>>], cin

2p

where ' = /1 + (4’"))2‘ = and the kappa integrals are given in Appendix B.
Nondiagonal matrix element of Ty, ,(0):
The operator structure of the nondiagonal component is

2a(0°5) () €0

Akt kL dk i dicE d2k: ){T/l‘a)(;L
_2 E:/ 373 [ek ay, (ka)b! (K)by (k) — €k al (k)b (Kb, (k)] SA~22. (Cl2
g/v,/l,b (1673)3VK Tk ™ [’13 1 (ka) by (K) b, (K) A 1( 3)b; (K)bs(K)] kT -k (€12)

The contribution to the matrix element coming from this operator is given by

094017-17



MUKHERIJEE, SAHA, and SINGH PHYS. REV. D 111, 094017 (2025)

1]
Jox

k
=Y / dxdzxi[(—%—C)ofi,ramqbz,b(x,xl)+¢z;}2<x,xl>odlr“ )(—%ﬂ (C13)
PN

o [(171200°48) (35 ) €020l + ol2gtorat) () ()

where x and k- are the longitudinal and transverse momentum fraction of the gluon inside the dressed quark state. This
spinor product gives an integrand that is odd in . Thus, after k integration, this term vanishes. We have no contribution from
the off-diagonal terms. So, we only have to evaluate the contribution of diagonal terms. We evaluate the contribution to
<T§ﬁ_g>LF from the diagonal term, i.e., Egs. (C10) and (C11):

<J§in,g

+1 +2
\(bL) ./d2AL -ibh AL |:0<Tkin$g>LF 3 a<Tkin,g>LF:| . (C14)
DY

=1
(27)? FINg FINK

From Eq. (C14) we get

dZAL Bl AL dx 1
Jz. bJ_ — 2C / —ib—-A /
< k1n,g>( ) gty (271')2 e 1672 (1 _ x)2A4w/3

1 /
X [x(8m4x3 +6m*(x — 2)x*A% + (x — 2)(x — 1)2A%) log< ltr‘” ,>
- w

+ A% <(x — 1)(dm2x% + (x = 2)(x — 1)A2) — (x — 2)x(4m>x® + (x — 1)>A2) log <mAT;> ﬂ . (C15)

4. Spatial distribution of superpotential for quark

The distribution of the correction term corresponding to the superpotential in Eq. (6) can be evaluated using Eq. (33) with
k= 1/2 and S\,

MZ> bl :l 3jk dzAJ_ 7iAJ_'bJ_Ali Slj\»k (C16
< q ( ) 2€ (2ﬂ')2e aAj< km,q>' )

Diagonal matrix element of Sllji;l]fq(O):
Using Egs. (C4) and (C5) with « integration carried out, we get

(st ) = (11Sking (O)I1) N (21Sing (0)12)

kin,q/ — 2p+

=t e [T ()
_ k- [%/ 1d—xx{ {a)(l +x%) + <1 _ww2>x] log <_11—:_0;)> —(1+x?%)log <#2—x)2) H . (C17)

Nondiagonal matrix element of Sﬁr[l'fq(O):

(1Sidq(0)12) = (2[Sihg (0)[1) = 0. (C18)

Substituting these expressions in Eq. (C16), we get

_FCy [dAt
1622 ) (27)?

(M) (b) it / (1—5615;3&* [(@A? = 2m2)((4m? + A2)(1 + x2) — 4m>x) + 4m>xA2].  (C19)
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APPENDIX D: SPATIAL DISTRIBUTION OF ANGULAR MOMENTUM COMPONENTS
OF BELINFANTE (BEL) DECOMPOSITION

1. Quark total AM distribution
Consider the quark part of Belinfante EMT in Eq. (3):

v 1_ s
Tpao(¥) = ;W) ["iD* +7*iD ]y (x)

1 1_ <
5 Thh g = 3 T o) + 30410 T (x), (D1)
—
Ist term 2nd term

the first term in this expression has already been calculated.
The second term has the following operator structure:

k/+Jzk’J‘dk+d2kJ‘ . 1 . 1
12 / (62 Ve e k'v‘)(} [ak(k+ k') <k )(0 k' + im) + ('K — im) (k’*) ket + k’*)]){i
/ k’+Jszdk+JlkJ‘dk+afzk
4 o= (1623 ki VI &

x e * b (Kb, (k)

W Kkt + ki + KT . kK — ki k.
ik'-y T, k 3 i k —ik3-y 3 k lk'; y
xe n%{—gjg—w%muge e e (e
kt kT kTt i k+—|—k/++k+ . o
+ {(U 6‘/13) kf]ﬁa% (k3) —iksy + (01 i;) Wﬂl (k3)€lk3 y}O'k:|)(1€ lkyb}(k/)bi(k). (DZ)

Diagonal matrix element of Ty, ,(0):
We know from the calculation of Tt q that it does not have any single-particle contribution; so the only single-particle
contribution comes from the second term and it is a diagonal overlap:

(LMNTgg1. 1) 1 i :
—— =gl Aai et — oty
P
< |TBelq‘1 T> 2A(2),T (3 I 2A(2
—g = [lel APy yoVye) = =7 lwi A% (D3)
(1 T|T§e21q > i 2A(1),,T (3 I 2 A (1
2]7—+_ZHW1| AWypoDs) = 2y PA0 (D4)
2, M Tk Ak e Al k
< /N Belq /dxdz qu /L))(} Kk+(1—x)— +le|i+x=—)—im 6_
2 , 1 2 2 2
/12,11,1
O'k AI P 1
+? o k! —x5 +im ) |, @5, 4, (x.K5), (D5)

where x is the quark momentum fraction and '+ = k- + (1 — x)AL.

(2, T|T§e11q > 5 ded’xc 1 m?(1—x)*(4c +2(1 —x)AM 4iA@)
2p* F/ 327% (1-x) DD,
(4;< +2(1=x)AM =i APH[(1 +x2) (k2 + (1 =x)rct - AL) +i(1—x)(1 = x2) (kAR — P AD))]
DD,
(D6)
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(2 4TE5412.1) " /dxd%cl 1 m2(1=x)*(4c® +2(1 —x)A® —iaM)
2t YTF ] T308 (1-x) D, D,

y (46 +2(1=x) AP + iAMDY [(1+x2) (k2 + (1T =x)rct - AL) +i(1=x)(1 = x2) (kM AR =P A))]

DD, '

(D7)

Nondiagonal matrix element of Ty, ,(0):

1 .
bﬁKl T|TBelq|2’T> <2 T|TBelq|1 k 66,1 )+ (Gleﬁz)ak‘l'zeljz)}{ild)gl,zz (X’KL)

\/163 \/1—

&y ,12()5 K ))(/1 ('€ )a* +6*(c'e) +2€3 )xo].

This spinor product gives an integrand that is odd in . Thus, after x integration this term vanishes and so we have no
contribution from the off-diagonal terms. So, we only have to evaluate the contribution of diagonal terms, i.e., sum of
Eq. (D3) with Eq. (D6) and sum of Eq. (D4) with Eq. (D7). Belinfante total angular momentum distribution is given as:

(Therg) (b) =

+1 +2
d2 e _ibt.AL |:0<TBelq> a<TBelq> :| ) (DS)
DY

(2r)? PING PINE

After performing « integration on Eqgs. (D6) and (D7) and substituting them along with the single-particle contribution in the
above equation, we get

AL L 1 @Cr (1447 A? 2x g>C
Jz bL) = —ibt-A /d 2 / 1 _ f
Uhaq) (b7 /(27:)26 x{ [2 1622\ T=—x 2\m2(1=x7) "1=xf] T1622(1 —x)a%ar

X [(8m4(1 =2x)(1=x(1=x)) +6m?*(1 = (2—x)x(1 +2x))A% + (1 = (2 —x)x(1 —|—2x))A4)log< 14::2))

1
—wA2<4m2(1—(1—x)x)+(1+x2)A2+(1—(2—x)x(1+2x))(4m2+A2)1og<#;)2)>]}. (D9)

APPENDIX E: SPATIAL DISTRIBUTION OF ANGULAR MOMENTUM COMPONENTS
OF CANONICAL (JM) DECOMPOSITION

1. Gluon OAM distribution

The impact-parameter distribution of orbital angular momentum of gluon can be found from

d*A- o(TH) (T2
< cang>(bl) / 5 e zALbL|: < ca(.2g)>LF_ < ca(.ig>>LF i (El)
(2m)? 0A" oAV 1L,
where
Tja’fl_g = =2Tr[G10*A,] = GFHo*AL = (0T AL)(0FAL). (E2)

The contribution to the matrix element from this term is only diagonal. The operator structure of this term is as follows:
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dkt d*ktdkt d*k'+
(1673)%k'*

(0TAL)(0FAL) = / K*[=(ef - e5)a;(k)ay (K )e™ k+)y + (ef ey )a(k )aj,(k’) e~ (k=)
A

+ (e - ef)aj(k)ay (K)e 0y — (e} - e5*)aj (k)a), (K) e +0]

i (2.0 AL) (*AL) (0) 2. 0)

k k
/dxc[zlcj'gbi PACH S ){(K/k—l—x%) (€3 - j*) + <K'k —x%)( j* et)} b5, 4, (xxh). (E3)
2 o0

Diagonal matrix element of Tty ¢(0):
To evaluate the matrix element of canonical EMT, we substitute gluon LFWF expressions in Eq. (E3):

1 2.MT 2NN =dgC dxd’rc 2% (1 A 234 12 (D) 4 (1 A

g( MT & g M) =4 f m[( KW+ (1=x)AW) (mx* 426 () + (1 =x)AL)

+x(kW 4 ix@) (=24 x) (kD) + (1= x) AD) 4 (2P + x(=ikD + k@) (=2 +x)) (k) + (1-x)AP))]

) dx 1+ A2
:_lgch/16ﬂ2 (X—Z)(X—I)A(z) |:—1+(l),10g<_14_’_a),) —10g<w):| (E4)

Lo |2,¢>:gch/ﬂ[(zkm+(1_X)A(2>)(m2x4+2,<<1>(,<<1>+(1_X)A(l>)
2p+ 2 167[3.XD1D2

() i) (=2 42) () 4 (1=2) A0 4 (26 4 x(=i ) 462 (2242)) (2 + (1 =) A) )]

) dx 1+ A2

Substituting these components in Eq. (E1), we get
(Lang) (07)
A’A+ o [dx x=2 1+a A?
— 2C~ - = -ib—A /_7 2 2,2 —12A21 _ _12A2 1 e ) E6
g //(2”)23 872 (x—1)A%0/ (2 + (x = 1)"A%) log -1+ (x=1)"Aw'log m?x? (E6)

2. Gluon spin distribution

The impact-parameter distribution of spin angular momentum of gluon can be found from

(Seng)61) =5 [ 25 CA a5ty (E7)
e 2 (2m)? ¢ DY
where
sr = —2Tr[GHl A7, E8
g

The operator structure corresponding to the gluon spin in the canonical decomposition can be expressed as

Seis = 2Tr[G1UAN) = —G A% + GFA) = —(07AL)AK 4 (97 A%)A]
/ dkt d*k+dk'+ dke'+
3\2 /4
vl (1673)2K

[(ejel = efel)az(k)ay (K)e T 1 (el — efe)ay (k)ay (K e~k

— (e]'e} —efre))aj(k)ay (K)e "= — (e] el — efre)) ) (k)ay (K)e 1)), (E9)
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The contribution to the matrix element from this operator is also purely diagonal,

5 (2.0 = (0 AL)AL + (97 A)AL|2, 0)

2p
=5 Z /dxd2 J-gb/1 /1,( )[(ef1 615,* — e eﬁ) - (eﬁ, €, — k*ej g o (e Kb). (E10)
A
Substituting this matrix element in the Eq. (E7), we get
d2AJ— —ibt.AL dx

x=2)(x = 1)2A* +2m?x*((3x —4)A? — (x = 2)A?)) lo A2
(== (32 =482 = (=28 toaCigh) e

(x =17 m?x?

3. Spatial distribution of the superpotential for gluon

Using the expression given in Eq. (33) with x = 1 for gluon superpotential and the form of canonical spin angular
momentum operator given in the previous subsection, we get

N (pL) — 3k dPAT Ak
R e 9 (GHiaky
LA L 0 0 0 0
— —ibt- (1) +1A(2)\ _ +14(1) (2) +2A02)\ _ +2 4 (1)
/(zﬂ)ze {A <a S(GHAR) -2 (G ))+A <aA<1> (GAP) -2 (G724 >>]
_ it [ A1) 40 _ A®) 240
/(2”)2e {A (()A (G >> A (aA()«; A >>] (E12)

LAk
where (G/A%) = Wg}w. The structure of the corresponding operator,

G+1Ak — (a+Al)Ak
/ dk'* d’ k' dkt d k-
wa

(162720 [—eleba;(k)ay (k)e Ky — eletka, (k)al, (k)e (k=K
Vs

+ elekal (k)ay (k)e K=y 4 etlerkal (k)al, (k) e Kk, (E13)
and the matrix element of this operator is given by

(p'.6|G*'AN0)|p.o) _ "
T dxd’x* pAcs KH)[=€, 6/1' + 6/1,161,{ 5, ., (. K5). (E14)
2,0 /1'

We now evaluate the individual components by substituting the LFWF and then doing the x integrations,

(p'.6|G™'A%|p,6)
2p*

—(x=2)(x— mex —3x X — 1+o
=92Cf/16j;A4 {( SN zi(:;w),ﬁ . 2)A2>)log< Hm) (x—2)A41og<A2—22)]

(E15)
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1672 A%

(p.6|G"?A|p.o) _ f/ dx [((x—Z)(x—1)2A4+2m2x2((3x—4)A2—(x—Z)AZ))log<_1;r+‘”u;,>

2p*

et )]

(x=1)%

(E16)

Substituting these in Eq. (E12), we get the impact-parameter distribution of the correction term

dZA_L _ibt AL d.x
06)b4) = 20y [ e [

(271.)2 _ x)3A4w/3
l /
X {2m2x3(4m2x + (x = 1)A?)log (1—’——_:0

/) — A0/ (x = 1)*(4m>x* + (x = 2)(x — 1)A?)]. (E17)
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