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We investigate a class of quantum field theories with relativistic Luttinger fermions and local self-
interaction in scalar channels. For an understanding of possible low-energy phases, we first classify the set
of mass terms arising from scalar fermion bilinears. For large flavor numbers, we show that each of our
models features a coupling branch in which the theory is asymptotically free. In order to address the long-
range behavior, we use mean-field theory which is exact in the limit of large flavor numbers. We identify
two models which undergo dimensional transmutation, interconnecting the asymptotically free high-
energy regime with an ordered low-energy phase sustaining a vacuum condensate. We also study the
analytic structure of the Luttinger-fermionic propagator in the various possible gapped phases.
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I. INTRODUCTION

Luttinger fermions are effective degrees of freedom of
nonrelativistic solid state physics [1,2] used to describe,
e.g., materials with quadratic band touching/crossing points
involving general spin-orbit couplings [3–5]. These sys-
tems can feature a rich set of quantum critical phenomena
[6–16]. Inspired by the diverse set of structures emerging
from such long-range degrees of freedom, the generaliza-
tion of Luttinger fermions to fundamental degrees of
freedom of relativistic quantum field theories has recently
been studied [17].
Since the resulting relativistic Luttinger operator is

quadratic, the mass dimension of the field agrees with that
of standard scalar fields which allows for the construction
of a large number of perturbatively renormalizable quantum
field theories in 3þ 1 dimensional spacetime. Specifically,
self-interacting theories of Luttinger fermions are renor-
malizable and can also be asymptotically free [17]. As a
consequence, such quantum field theories can serve as a
novel building block for high-energy complete theories for
particle physics.
Another unorthodox feature of these theories becomes

visible in the pole structure of the propagator where

properties familiar from those of a higher-derivative theory
[18–21] can be found [17]. For a standard mass term, not
only the standard particle pole but also a tachyonic pole
appears. The latter comes with a negative residue, charac-
terizing a so-called ghost. Naively, this is often taken as an
indication of nonunitarity interpreted as a consequence
of Ostrogradsky’s theorem [22], even though many differ-
ent viewpoints on such ghost states exist in the literature,
see e.g., [19,21,23–34].
In the present work, we concentrate on a set of simple

example theories involving self-interacting relativistic
Luttinger fermions. More specifically, we concentrate on
massless classical actions with local scalar or pseudoscalar
interactions. In addition to an investigation of the high-
energy behavior characterized by the beta functions of the
couplings, we explore the long-range behavior of these
theories using the mean-field approximation as a simple
tool, being exact in the limit of large flavor number Nf.
We pay specific attention to the possible condensates and
the long-range phase diagrams. Specifically, we identify
two models that feature asymptotic freedom in the ultra-
violet (UV), undergo dimensional transmutation in the
sense of Coleman and Weinberg [35], and exhibit con-
densate formation in the long-range limit.
Since we expect the long-range phases to be charac-

terized by a massive spectrum we start our exploration
with a classification of possible mass terms for the
relativistic Luttinger fermions. As the relativistic
Abrikosov algebra needs to be spanned by a reducible
representation of the underlying Clifford algebra, there is
a larger set of possible mass terms. The latter is reminis-
cent to mass terms of relativistic 2þ 1 dimensional Dirac
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materials where several mass terms can describe different
patterns of gap formation [36–39].
Interestingly, the richer set of mass terms also goes along

with a more intricate analytic structure of the corresponding
propagators. We observe that the two asymptotically free
models with low-energy condensate formation at the mean-
field level do not feature tachyonic mass poles but a
complex pair of poles or a branch cut.
Our paper is organized as follows: We begin in Sec. II

with a short summary of relativistic Luttinger fermions
following [17]. In Sec. III, we present a set of different mass
terms for relativistic Luttinger fermions. Section IV intro-
duces the set of models discussed in the present work. Here,
we verify that each one features an asymptotically free
coupling branch by computing the perturbative one-loop
beta function. In Sec. V, we solve each model in a mean-
field approximation exploring their potential for condensate
formation. In Sec. VI, we study the analytic structure of the
gapped Luttinger propagators in the complex momentum
square plane. Conclusions are given in Sec. VII.

II. RELATIVISTIC LUTTINGER FERMIONS

We define field theories of relativistic Luttinger
fermions in terms of their classical action. Focusing on
four-dimensional spacetime, the action of the free theory
reads [17]

S ¼
Z

d4x½ψ̄Gμνði∂μÞði∂νÞψ �; ð1Þ

where ψ denotes a spinor with dγ components.
Correspondingly, Gμν represents a set of dγ × dγ matrices
labeled by the Lorentz indices μ; ν ¼ 0;…; 3. These
matrices satisfy the relativistic version of the Abrikosov
algebra [2,7,17]

fGμν; Gκλg ¼ −
2

3
gμνgκλ þ

4

3
ðgμκgνλ þ gμλgνκÞ; ð2Þ

where the right-hand side involves the Minkowski metric
g ¼ diagðþ;−;−;−Þ and is also implicitly understood
to be proportional to the identity 1dγ in spinor space.
With respect to the Lorentz indices, the matrices Gμν are
symmetric, Gμν ¼ Gνμ, and traceless, Gμ

μ ¼ gμνGμν ¼ 0,
implying that 9 linearly independent elements are needed
to span the Abrikosov algebra (2). With respect to the spin
indices, we can chooseG0i anti-hermitean whereasG00 and
Gij can be chosen hermitean for all i, j ¼ 1, 2, 3.
Finally, the conjugate spinor in Eq. (1) is defined by

ψ̄ ¼ ψ†h involving the spin metric h. Choosing h hermi-
tean h† ¼ h, the requirement that the classical action is real,
S∈R, imposes the conditions

fh;G0ig ¼ 0; ½h;Gij� ¼ 0; ½h;Gμ μ� ¼ 0; ð3Þ

where underscored indices are exempted from Einstein’s
sum convention.
Both sets of algebraic conditions (2) and (3) can be

spanned by a Euclidean Dirac algebra,

fγA; γBg ¼ 2δAB; ð4Þ

with de hermitean elements, A; B ¼ 1; 2;…; de. Whereas
the irreducible representation of the Abrikosov algebra
would, in principle, require only de ¼ 9, the additional
reality conditions (3) demands for de ¼ 11. The latter
implies that dγ ¼ 2bde=2c ¼ 32 characterizes the irreducible
representation of relativistic Luttinger fermions. An explicit
representation of the Gμν in terms of the Euclidean Dirac
matrices γA is given in Appendix A. Setting, for instance,

G0i ¼ i
ffiffi
2
3

q
γA¼i, all other Gμν are real linear combinations

of γA¼4;…;9, and the spin metric can be chosen as

h ¼ γ1γ2γ3γ10: ð5Þ

The free field equation for Luttinger fermions derived from
Eq. (1) reads

Gμν∂
μ
∂
νψ ¼ 0: ð6Þ

Using the Abrikosov algebra, it follows straightforwardly
that the Luttinger operator squares to (the square of)
the Klein-Gordon operator, ðGμν∂

μ
∂
νÞ2 ¼ ð∂2Þ2, implying

that each of the 32 components of ψ satisfies a relativistic
wave equation.

III. MASS TERMS

In order to classify different possibilities of gap for-
mation potentially occurring in self-interacting models
studied below, let us first investigate the different mass
terms that can be constructed for Luttinger fermions. As
basic requirements, we are interested in Lorentz invariant
bilinear and real terms that we can add to the action.
For this, let us first recall that the Abrikosov algebra is

separately invariant under Lorentz transformations

Gμν → GκλΛκ
μΛλ

ν; ð7Þ

where Λκ
μ is the transformation matrix of Lorentz tensors,

as well as spin-base transformations [40–43]

Gμν → SGμνS−1; S ∈SLð32;CÞ: ð8Þ

Analogous to the conventional way of defining Lorentz
transformations of, e.g., Dirac spinors (leaving the Dirac
matrices constant), we can identify the Lorentz trans-
formations SLor of Luttinger spinors as the subgroup of
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the spin-base group SLð32;CÞ which rotates the Lorentz
transformed Gμν matrices back to their original constant
forms. This implies the identity

S−1LorGμνSLor ¼ GκλΛκ
μΛλ

ν: ð9Þ

Correspondingly, ψ → SLorψ and ψ̄ → ψ̄S−1Lor denote the
Lorentz transformation of Luttinger spinors.
Let us start now with the standard form of the mass term

∼ψ̄ψ first discussed in [17], leading to a free Lagrangian of
the form

L ¼ −ψ̄Gμν∂
μ
∂
νψ −m2ψ̄ψ : ð10Þ

This mass term is invariant under spin-base and thus also
under Lorentz transformations and real as a consequence of
the spin metric being hermitean h ¼ h†.
The corresponding equation of motion for the field ψ

reads in momentum space

ðGμνpμpν −m2Þψ ¼ 0: ð11Þ

Multiplying by ðGκλpκpλ þm2Þ from the left yields

ðGκλpκpλ þm2ÞðGμνpμpν −m2Þψ
¼ ðp4 −m4Þψ ¼ ðp2 −m2Þðp2 þm2Þψ ¼ 0: ð12Þ

In addition to the expected massive relativistic dispersion
relation p2 ¼ m2, this mass term also gives rise to
tachyonic solutions with p2 ¼ −m2. An explicit check
confirms that both types of solutions occur with multiplic-
ity 16 [44].
A second possible local fermionic bilinear is given by

ψ̄γ10ψ . In order to add such a term in a way that the action
stays real, it is instructive to verify the hermiticity proper-
ties of this bilinear. We observe that

ðψ̄γ10ψÞ† ¼ ψ†γ†10ψ̄
† ¼ ψ†γ10hψ ¼ −ψ†hγ10ψ

¼ −ψ̄γ10ψ ; ð13Þ

where we have used the unitarity of γ10 and h as well as
the explicit form of our choice for h in Eq. (5). Therefore,
reality of the action implies to choose a Lagrangian of
the form

L ¼ −ψ̄Gμν∂
μ
∂
νψ − im2

10ψ̄γ10ψ : ð14Þ

The equation of motion in momentum space reads

ðGμνpμpν − im2
10γ10Þψ ¼ 0: ð15Þ

Since all Gμν anticommute with γ10, we multiply the
equation of motion by ðGκλpκpλ − im2

10γ10Þ and find

ðGκλpκpλ − im2
10γ10ÞðGμνpμpν − im2

10γ10Þψ
¼ ðp4 −m4

10Þψ ¼ ðp2 −m2
10Þðp2 þm2

10Þψ ¼ 0; ð16Þ

i.e., we again obtain solutions with both a regular massive
as well as a tachyonic dispersion relation; also the corre-
sponding multiplicities are 16 modes each, as for the
standard mass term above. In fact, this is not astonishing,
since both mass terms are connected by a discrete chiral/
axial transformation. For this we first note, that the kinetic
term (1) features a continuous Uð1Þ10 symmetry,

ψ → eiϑγ10ψ ; ψ̄ → ψ̄eiϑγ10 ; ð17Þ

which is broken by each of the mass terms discussed above.
However, starting from the massive theory (10) and
performing a Uð1Þ10 transformation (17) with the choice
ϑ ¼ π

4
, we obtain the Lagrangian (14) upon the identifica-

tionm2 → m2
10. This also explains, why the solution spectra

and multiplicities match upon this identification.
The situation is somewhat analogous to conventional

Dirac theory, where mass terms of the form −mψ̄ψ and
−mψ̄γ5ψ are connected by an analogous discrete axial
transformation.
Next, we can also use the eleventh Euclidean Dirac

matrix γ11 in order to form a bilinear mass term. Using the
fact that ½h; γ11� ¼ 0, we can verify the reality property

ðψ̄γ11ψÞ† ¼ ψ†γ11hψ ¼ ψ†hγ11ψ ¼ ψ̄γ11ψ : ð18Þ

The corresponding free Lagrangian now reads

L ¼ −ψ̄Gμν∂
μ
∂
νψ −m2

11ψ̄γ11ψ ; ð19Þ

giving rise to the equation of motion

ðGμνpμpν −m2
11γ11Þψ ¼ 0: ð20Þ

Since Gμν anticommutes with γ11, we multiply by
ðGκλpκpλ −m2

11γ11Þ, yielding this time

ðGκλpκpλ −m2
11γ11ÞðGμνpμpν −m2

11γ11Þψ
¼ ðp4 þm4

11Þψ ¼ 0: ð21Þ

In contrast to the previous cases, the dispersion relation
is now solved by two complex zeros p2 ¼ �im2

11. Both
types occur with multiplicity 16. Neither a standard
massive nor a tachyonic mode are present. It is interesting
to note that the Lagrangian (19) is invariant under Uð1Þ10
transformations (17) as well.
Finally, we can use a product of the matrices γ10 and γ11

to construct another independent bilinear, for which we also
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check its reality properties based on the identities used
above,

ðψ̄γ10γ11ψÞ† ¼ ψ†γ11γ10hψ ¼ −ψ†γ10γ11hψ

¼ ψ†hγ10γ11ψ ¼ ψ̄γ10γ11ψ : ð22Þ

For convenience, let us introduce the hermitean product

γ01 ≔ −iγ10γ11; γ†01 ¼ γ01; ð23Þ

which satisfies

½Gμν;γ01�¼0; fh;γ01g¼fγ10;γ01g¼fγ11;γ01g¼0: ð24Þ

Correspondingly, the free real Lagrangian containing the
new bilinear can be written as

L ¼ −ψ̄Gμν∂
μ
∂
νψ − im2

01ψ̄γ01ψ ; ð25Þ

yielding the equation of motion

ðGμνpμpν − im2
01γ01Þψ ¼ 0: ð26Þ

As Gμν commutes with γ01, we multiply by (Gκλpκpλþ
im2

01γ01) and obtain

ðGκλpκpλ þ im2
01γ01ÞðGμνpμpν − im2

01γ01Þψ
¼ ðp4 þm4

01γ
2
01Þψ ¼ ðp4 þm4

01Þψ ¼ 0; ð27Þ

since γ01 squares to one. As in the preceding case,
we observe complex conjugate zeros in the momentum
plane p2, implying solutions with a dispersion relation
p2 ¼ �im2

01. Each type of solution has again multiplicity
16. Also, the Lagrangian (25) is invariant under the Uð1Þ10
symmetry.
It is tempting to expect that each of the dispersion

relations found for the different free massive theories
corresponds to a generic analytic pole structure in the
complex p2 plane. Whether or not this is the case is
discussed in Sec. VI.
It is suggestive to introduce two further U(1) trans-

formations, namely,

Uð1Þ11∶ ψ → eiϑγ11ψ ; ψ̄ → ψ̄e−iϑγ11 ; ð28Þ

Uð1Þ01∶ ψ → eiϑγ01ψ ; ψ̄ → ψ̄eiϑγ01 : ð29Þ

We observe that the four mass terms can be connected via
discrete versions of these transformations: e.g., the m01

mass is connected to the m10 mass via a Uð1Þ11 trans-
formation with ϑ ¼ π

4
.

However, it is important to emphasize that the trans-
formations (28) and (29) do not represent symmetries of the
kinetic term and thus are no symmetries of the Lagrangians

if taken at face value. Some of these transformations may,
nevertheless, be uplifted to a symmetry, if combined with a
simultaneous transformation of the spin metric. E.g., we
observe that a discrete Uð1Þ01 transformation with ϑ ¼ π

4

transforms the kinetic term into an analogous kinetic term
with the spin metric being replaced by h → γ1γ2γ3γ11. The
latter is also a valid choice for the spin metric satisfying all
necessary conditions of Eq. (3).
The existence of a set of different masslike terms is

similar to that for Dirac fermions in reducible representa-
tion, with the d ¼ 3 case with dγ ¼ 4 being the most well-
studied case [36–39]. In contrast to this, the present case
of Luttinger fermions is not a reducible representation:
though the Abrikosov algebra (2) could be represented by
16-dimensional matrices in d ¼ 4, the spin metric cannot
and thus requires a 32-dimensional representation. From a
technical viewpoint the properties of the spin metric are
also responsible for the fact that the transformations (28)
and (29) do not correspond to symmetries of the action.
Hence, there is also no extended flavor symmetry such as
Uð2NfÞ as in the case of d ¼ 3 reducible Dirac fermions.
Let us finally remark that the existence of further mass

terms is conceivable; e.g, if the fermionic field satisfies
additional reality constraints, mass terms analogous to
Majorana masses in the Dirac case may be allowed.

IV. SELF-INTERACTING FERMIONIC MODELS

Let us introduce a set of massless theories of self-
interacting relativistic Luttinger fermions with interactions
defined in terms of the above-mentioned spinor bilinears.
For a first glance at the quantum theory, we perform a one-
loop analysis of their renormalization group (RG) flow
concentrating on the large-Nf limit for simplicity.
In the present section, we work in the Euclidean domain

in order to use Wilsonian RG techniques. Note that the
definition of the following models in the Euclidean differs
by a minus sign in the interaction terms from the formu-
lation in Minkowskian spacetime, cf. Appendix B.
We start with the simplest interaction term which is

reminiscent to that of the standard Gross-Neveu [45]
model, cf. [17]

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ λ̄

2
ðψ̄ψÞ2

�
: ð30Þ

Flavor indices are suppressed for simplicity here and in the
following; all bilinears written in terms of parentheses are
assumed to be flavor singlets, i.e., ðψ̄ψÞ ¼ ψ̄aψa, where
a ¼ 1;…; Nf. This, as well as all subsequent models,
therefore features a global UðNfÞ symmetry which will
remain trivially present in all of the subsequent discussion.
The Luttinger-Gross-Neveu (LGN) model additionally

exhibits a discrete axial symmetry of the type of Eq. (17)
with the choice ϑ ¼ π

2
. Under such a transformation, the
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kinetic term is invariant. The scalar bilinear transforms
as ðψ̄ψÞ → −ðψ̄ψÞ which leaves the interaction term in
Eq. (30) invariant, but forbids the occurrence of a mass
term. In analogy to the standard Gross-Neveu model, it is
tempting to speculate that this discrete symmetry might be
broken depending on the sign and the strength of the initial
value for the coupling λ̄.
Another rather similar model is given by a scalar

interaction involving the γ10 matrix,

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ −

λ̄

2
ðψ̄γ10ψÞ2

�
: ð31Þ

Here and in the following, the sign in front of the coupling
is chosen such that the one-loop beta functions computed
below have the same form. Also, we use the same letter λ̄
for the coupling for simplicity, even though the couplings in
all the models considered here are unrelated. Also this γ10
model has the same discrete axial symmetry as the
Luttinger-Gross-Neveu model: under the transformation
(17) with the choice ϑ ¼ π

2
, the Lagrangian in Eq. (31)

remains invariant, whereas a mass term of them10 type as in
Eq. (14) would change sign and thus break the symmetry.
Next, we introduce the γ11 model in terms of the action

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ −

λ̄

2
ðψ̄γ11ψÞ2

�
: ð32Þ

This γ11 model is invariant under the full continuous Uð1Þ10
symmetry (17). However, already the m11 mass term
in Eq. (19) is invariant under this symmetry, hence the
realization of this symmetry does not serve as an indicator
for gap formation. Instead, this role is played by a
combined discrete symmetry involving both a discrete
Uð1Þ11 transformation (28) with ϑ ¼ π

2
and the replacement

ψ → −ψ and ψ̄ → ψ̄ (treating ψ and ψ̄ as independent
variables in the quantum theory). The γ11 model (32) is
invariant under this discrete transformation while an m11

mass term is not. This discrete symmetry is somewhat
similar to the discrete symmetry of the 3d Gross-Neveu
model with irreducible Dirac fermions [46].
As a fourth action, we consider the γ01 model:

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ λ̄

2
ðψ̄γ01ψÞ2

�
: ð33Þ

Also the γ01 model is invariant under the full continuous
Uð1Þ10 symmetry (17), as we observed already for the m01

mass term in Eq. (25). Hence, the status of this symmetry is
not indicative for mass generation. In fact, none of the
transformations discussed in the previous sections is a
suitable ingredient for constructing an indicator symmetry
for mass gap formation as each of them acts similarly on the
kinetic and the mass term. Still, we have checked explicitly
that the interaction does not generate an m01 mass term at

one-loop order. This implies that either a mass-protecting
symmetry exists or an m01 mass term may be generated at
higher-loop order.
Finally, we note that the models can, of course, also be

combined such that continuous symmetries emerge. An
example is given by a Luttinger-fermionic analog of the
Nambu-Jona-Lasinio (NJL) model [47], which features a full
continuous Uð1Þ10 symmetry (17), as first discussed in [17],

S¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψþ λ̄

2
½ðψ̄ψÞ2−ðψ̄γ10ψÞ2�

�
: ð34Þ

In this model, the Uð1Þ10 symmetry forbids corresponding
mass terms such that the status of the symmetry can be
expected to be indicative of gap formation.
For each of these theories, we compute the one-loop beta

function. While this can straightforwardly be done with
any conventional quantum field theory method, we use the
functional renormalization group here, as it can be gener-
alized straightforwardly to future nonperturbative studies.
Specifically for fermionic theories, the computational
techniques based on the Wetterich equation [48] are well
developed [49–51] and have found manifold nonperturba-
tive applications [46,52–61]. Starting from the Wetterich
equation for the effective average action Γk,

∂tΓk ¼
1

2
STr½∂tRkðΓð2Þ

k þ RkÞ−1�; ð35Þ

the regulator function Rk implements the regularization
in the Euclidean momentum domain at a regularization
scale k; here ∂t ¼ k d

dk. Provided Γk is fixed in terms of the
bare microscopic action S for k → Λ as a UV boundary
condition, the full quantum effective action Γ is approached
for k → 0 in the IR. Importantly, it can be chosen in such a
way that the symmetries of the kinetic term are respected by
the regularization procedure. Using this as well as standard
methods as detailed in [17], we project the Wetterich
equation for each of the models onto a theory space defined
by the ansatz

Γk ¼
Z
x
½−Zψ ψ̄Gμν∂

μ
∂
νψ þ Lint�; ð36Þ

where Lint denotes the interaction term of the correspond-
ing model including the scale-dependent coupling λ̄ and a
wave function renormalization Zψ . Introducing the renor-
malized coupling

λ ¼ λ̄

Z2
ψ
; ð37Þ

we find for each of the five models the beta function

∂tλ ¼ −
4Nf

π2
λ2 ð38Þ
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in the large-Nf limit. [To one-loop order, the anomalous
dimension ηψ ¼ −∂t lnZψ vanishes ηψ ¼ 0, which
completes the flow in the theory space spanned by the
ansatz (36).] Equation (38) demonstrates that each of these
models is asymptotically free for positive λ > 0, approach-
ing the Gaussian fixed point towards the ultraviolet as a
high-energy fixed point. Asymptotic freedom guarantees
that the models can be extended to arbitrarily high energy
scales. Towards low energies, the coupling λ grows larger
and the true behavior of the models has to be analyzed by
nonperturbative means.
By contrast, the Gaussian fixed point is infrared attrac-

tive for negative couplings, λ < 0. Correspondingly, the
couplings diverge to negative infinity towards high energies
(Landau poles); thus, a nonperturbative analysis is neces-
sary to search for a possible UV completion or to prove
triviality of the models in this coupling branch.
Of course, the present analysis can straightforwardly

be generalized to finite Nf values. However, a consistent
treatment in this regime requires one to include a Fierz-
complete set of interaction channels. This has, e.g., been
done for the Luttinger-Gross-Neveu model in [17,62]
which required the inclusion of a tensor channel
∼ðψ̄GμνψÞ2. The property of coupling branches where
the theory is asymptotically safe then generalizes to higher
dimensional regions in the space of all couplings. We
expect similar properties to hold for each of the models
studied here.

V. MEAN-FIELD THEORY

In order to investigate the possible occurrence of gap
formation in the models defined in the previous section, we
use mean-field theory which becomes exact in the large-Nf
limit. For this, we bilinearize the fermionic actions given
above using auxiliary scalar fields with a Gaussian action
and a Yukawa coupling to the fermionic fields. In the large-
Nf limit, the auxiliary scalar field integral is dominated by
the classical configurations, i.e., the extrema of the action
which in turn is governed by the fermion determinant.
Since the true expansion parameter of the large-Nf limit
also involves the dimensionality of the Clifford algebra
[56], the expansion is in powers of 1

dγNf
¼ 1

32Nf
which is

already a small parameter for Nf ¼ 1.
In view of various forms of possible mass terms

discussed in Sec. III, we expect radiatively generated gaps
to occur in the complex momentum plane. Therefore, we
perform the mean-field analysis in Minkowski space, using
propertime methods for the regularization. Of course, for all
models, the sign change of the interaction term when
comparing the Euclidean description used in Sec. IV with
the present Minkowskian analysis has to be accounted for,
cf. Appendix B.

A. Luttinger-Gross-Neveu model

Let us start with the Luttinger-Gross-Neveu model, the
action of which in Minkowski spacetime reads

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ −

λ̄

2
ðψ̄ψÞ2

�
: ð39Þ

We bilinearize the interaction term using a Hubbard-
Stratonovich (HS) transformation introducing an auxiliary
real scalar field, such that the action reads

SFB ¼
Z

d4x

�
−Zψ ψ̄Gμν∂

μ
∂
νψ þ h̄ϕψ̄ψ −

1

2
m̄2ϕ2

�
: ð40Þ

First, we note that the action (40) is manifestly real if the
coupling h̄ is real, since both ϕ and ψ̄ψ are real. Also, the
sign of the scalar mass term is such that it corresponds to a
positive mass term and thus a stable potential in Minkowski
space. The discrete axial symmetry of the fermionic
description is also preserved by the action (40) if the scalar
field transforms as ϕ → −ϕ. The theories defined by
Eq. (39) and Eq. (40) are identical both on the classical
as well as on the quantum level, provided the coupling
constants satisfy a matching condition. The matching
condition can, e.g., be derived from the classical equation
of motion for the scalar field (corresponding to a Gaussian
integration on the quantum level) which reads

δS
δϕ

¼ h̄ ψ̄ ψ − m̄2ϕ ¼ 0: ð41Þ

Inserting the solution for ϕ into Eq. (40) leads us back to
Eq. (39) provided the matching condition

λ̄ ¼ −
h̄2

m̄2
ð42Þ

is satisfied. Incidentally, the Yukawa coupling could be set
to a unit scale by rescaling the scalar field; we keep it for
reasons of generality. The minus sign in (42) implies that
the HS transformation can be meaningfully performed
in the standard fashion only for negative values of the
coupling λ̄. This confines the following analysis to the
nonasymptotically free branch λ̄ < 0 of the Luttinger-
Gross-Neveu model. While this corresponds to the branch
where the Gaussian fixed point is IR attractive, we are still
free to assume that the initial value of the coupling λ̄ is
sufficiently large to potentially introduce a nontrivial long-
range behavior.
For this, we investigate the effective action of the scalar

field upon integrating out the fermions. This functional
integral yields the one-loop contribution Γ1l to the effective
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action in terms of the fermion determinant. We evaluate the
latter for a constant scalar field, ϕ ¼ ϕ0 ¼ constant:

Γ1l ¼ −i ln det½−Gμν∂
μ
∂
ν þ h̄ϕ0�

¼ −
i
2
ln det½−ð∂2Þ2 þ ðh̄ϕ0Þ2�; ð43Þ

where in the last step we have used the γ10 hermiticity of the
kinetic term, γ10Gμν∂

μ
∂
νγ10 ¼ −Gμν∂

μ
∂
ν. Now, we employ

ln det ¼ Tr ln and perform a trivial vacuum subtraction
such that Γ1l½ϕ0 ¼ 0� ¼ 0. Going to Fourier space and
evaluating the functional trace we arrive at

Γ1l ¼ −
i
2
NfdγΩ

Z
d4p
ð2πÞ4 ln

�
p4 − ðh̄ϕ0Þ2

p4

�

¼ NfdγΩ
26π2

Z
dt
t2
ð1 − eðh̄ϕ0Þ2tÞ: ð44Þ

For the last step, we have rotated the momentum integral to
the Euclidean and used the Schwinger propertime repre-
sentation of the logarithm. This representation is both
infrared and ultraviolet divergent. We can cure the UV
divergence with the introduction of a UV cutoff scale Λ,
i.e., introduce a lower bound of the integral at 1=Λ4. Of
course, the UV divergence is indicative for the renormal-
ization of the couplings.
The IR divergence signals the existence of tachyonic

modes. This is already obvious from the first line of
Eq. (44) where the argument of the logarithm becomes
negative for momenta with p4 < ðh̄ϕ0Þ2. We deal with the
IR divergence by studying the integral in the complex
ðh̄ϕ0Þ2 plane where it exists for all Reðh̄ϕ0Þ2 < 0; we then
continue the result analytically back to real values of ϕ0. As
a result, the effective action picks up an imaginary part
indicating that the assumption of a finite scalar mean field
jϕ0j > 0 would correspond to an unstable vacuum state.
Expanding the resulting expression in inverse powers of the
UV cutoff Λ, we obtain

Γ1l ¼ −
NfdγΩ
26π2

ðh̄ϕ0Þ2
�
1 − γ − ln

�ðh̄ϕ0Þ2
Λ4

�
− iπ

�
þOððh̄ϕ0Þ2=Λ4Þ; ð45Þ

where Ω denotes the spacetime volume. Following
Schwinger [63], the imaginary part of the effective action
is a measure for the decay rate of a state with finite ϕ0 with
expð−2 ImΓÞ quantifying the probability for the state to
persist. This tells us already that within our assumptions
only the ϕ0 ¼ 0 state can be an equilibrium state.
In order to further study the stability of this state, we

consider the (real part of the) effective mean-field potential
including the classical scalar mass term but ignoring all
terms that vanish in the limit Λ → ∞,

Veffðϕ0Þ ¼
1

2
ϕ2
0

�
m̄2 þ Nfdγ

25π2
h̄2
�
1 − γ − ln

�ðh̄ϕ0Þ2
Λ4

���
;

ð46Þ

where γ ≃ 0.5772… denotes the Euler-Mascheroni con-
stant. With Λ being the largest scale (to be sent to infinity),
we observe already in this unrenormalized expression that
the term dominating the effective potential at large fields is
positive, Veffðϕ0Þ ∼ −ϕ2

0 ln½ðh̄ϕ0Þ2=Λ4� > 0. Also, all other
terms are positive for finite ϕ0 and vanish only for ϕ0 ¼ 0

in the validity regime of Eq. (46) with Λ2 ≫ ðh̄ϕ0Þ.
Therefore, the zero-field mean-field state ϕ0 ¼ 0 is the
minimum of the (real part of the) effective potential.
Of course, we can also introduce renormalized quantities

by defining a renormalized mass at some renormalization
scale μ,

m2ðμÞ ≔ m̄2 −
Nfdγ
25π2

h̄2 ln
μ4

Λ4
: ð47Þ

We emphasize that both terms on the right-hand side are
strictly positive, since μ ≪ Λ for a meaningful renormal-
ization scale well below the UV cutoff. The correspond-
ingly renormalized effective potential reads

Veffðϕ0Þ ¼
ϕ2
0

2

�
m2ðμÞ þ Nfdγ

25π2
h̄2
�
1 − γ − ln

ðh̄ϕ0Þ2
μ4

��
:

ð48Þ

For small fields ðh̄ϕ0Þ2 < μ4, we again observe that the
term in curly brackets remains positive, hence ϕ0 ¼ 0 is a
local minimum of the effective potential. On the other hand,
for large fields ðh̄ϕ0Þ2 ≫ μ4, it naively seems that the
effective potential is not bounded from below, since the
logarithm can become arbitrarily large. However, this is
an artifact of this representation. As discussed above, the
mean-field potential in the representation (46) stays pos-
itive for all m̄2 > 0, since Λ is the largest scale in the game
and eventually goes to infinity. Indeed, for m̄2 > 0, m2ðμÞ
grows logarithmically for decreasing μ, which compensates

the logarithmic increase of lnððh̄ϕ0Þ2
μ4

Þ, keeping (48) positive.
A plot of the effective potential Veff is depicted in Fig. 1,
confirming that the trivial vacuum ϕ0 ¼ 0 is the global
minimum in the validity range of the computation
(solid line).
The present discussion is very similar to that of mean-

field or Coleman-Weinberg-type effective potentials in
Dirac-Yukawa theories [64–66], where a naive look at
the renormalized form can be misleading if the ultimate
existence of a UV cutoff is ignored.
In summary, we conclude that ϕ0 ¼ 0 is not only a local,

but the global minimum of Veff in the mean-field approxi-
mation for the λ̄ < 0 branch of the Luttinger-Gross-Neveu
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model. At mean field level, the fermions develop neither a
mass nor a tachyonic mode in this branch of the model even
if the initial value of the bare coupling λ̄ < 0 has a large
absolute value at the UV scale Λ. Since the standard HS
transformation cannot be applied to the positive coupling
branch, we obtain no information about the status of the
model in the asymptotically free branch where the cou-
plings grows towards the IR.
As a consistency check, we can compute the β function

at mean-field level by introducing the scale-dependent
coupling λðμÞ ¼ −h̄2=m2ðμÞ, which for dγ ¼ 32 results in

μ
∂

∂μ
λðμÞ ¼ −

4Nf

π2
λ2ðμÞ: ð49Þ

Strictly speaking, we have derived this result for negative
values of λ only. But it agrees with the result (49) of the
preceding section for all values of λ, thereby reproducing
the one-loop RG flow in the large-Nf limit including
asymptotic freedom in the positive coupling branch.

B. γ10 model

Let us now study the second model discussed above,
with Minkowskian action

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ λ̄

2
ðψ̄γ10ψÞ2

�
: ð50Þ

As before, we aim at the mean-field potential in order to
explore the possibility of gap formation. This time, the HS
transformation leads us to

SFB¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψþ ih̄ϕψ̄γ10ψ −

1

2
m̄2ϕ2

�
; ð51Þ

for the partially bosonized version of the model. The factor
of i in front of the Yukawa interaction guarantees that
the action is real, cf. Eq. (14). The discrete axial symmetry
of Eq. (50) again induces a Z2 symmetry for the scalar
ϕ → −ϕ.
It turns out that the equivalence of the two actions

requires the same matching condition (42). Again, only the
negative coupling branch λ̄ < 0 can be studied in mean-
field theory.
It is also straightforward to verify that the mean-field

analysis leads to the same one-loop effective action
including the imaginary part for finite ϕ0 as well as the
same effective potential as in the Luttinger-Gross-Neveu
model (46), with a global minimum at ϕ0 ¼ 0. Also in
this case, the Luttinger fermions remain ungapped and do
not exhibit a tachyonic mode in the negative coupling
branch. While we again cannot address the long-range
physics in the positive coupling branch, the mean-field
analysis yields the correct β function (49) for all values of
the coupling.
With hindsight, the fact that the two models behave

identically is not too surprising, since the discrete Uð1Þ10
transformation with ϑ ¼ π

4
discussed below Eq. (17) trans-

forms the Luttinger-Gross-Neveu model into the γ10 model
at each stage of the analysis.

C. γ11 model

Now, the γ11 model turns out to behave rather differently.
We start with the corresponding action in Minkowski
spacetime

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ λ̄

2
ðψ̄γ11ψÞ2

�
: ð52Þ

This time, the HS transformation leads us to the partially
bosonized action

SFB ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ h̄ϕψ̄γ11ψ −

1

2
m̄2ϕ2

�
ð53Þ

which is equivalent to (52), provided the matching
condition

λ̄ ¼ h̄2

m̄2
ð54Þ

FIG. 1. Renormalized effective potential Veff of the Luttinger-
Gross-Neveu model for Nf ¼ 1 and dγ ¼ 32. The plot is obtained
by setting the renormalization scale to a small value, namely
μ ¼ 0.5 and the ratio m2ðμÞ=h̄2 is set to 1. Moreover, since the
mean-field analysis is done for (possibly large) negative values of
the bare coupling λ̄, we set the bare mass parameter to its lower
bound, i.e. m̄ ¼ 0 (larger values would correspond to couplings
closer to zero). Choosing h̄ϕ0 < 0.5Λ2 as an ad hoc criterion for
the validity regime of our analysis requiring, in principle,
jh̄ϕ0j ≪ Λ2, the effective potential is depicted with a solid line
in the validity region, and with a dashed line where the
assumptions are violated.
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is satisfied. We observe that the HS transformation is now
tied to the positive asymptotically free λ̄ branch. Again, the
discrete symmetry of the fermionic formulation inhibiting a
bare mass term induces a Z2 symmetry for the scalar
field such that SFB is invariant under the combined trans-
formation. Choosing the scalar field to be constant
ϕ ¼ ϕ0 ¼ const, the fermion determinant yielding the
one-loop contribution to the effective action reads

Γ1l ¼ −i ln det½−Gμν∂
μ
∂
ν þ h̄ϕ0γ11�

¼ −
i
2
ln det½−ð∂2Þ2 − ðh̄ϕ0Þ2�: ð55Þ

In the last step, we have used the γ10-hermiticity of the
kinetic term, as well as the anticommutator properties
fGμν; γ11g ¼ fγ10; γ11g ¼ 0. Evaluating the resulting trace
in Fourier space, performing the vacuum subtraction, and
using the propertime representation, we arrive at

Γ1l ¼ −
i
2
NfdγΩ

Z
d4p
ð2πÞ4 ln

�
p4 þ ðh̄ϕ0Þ2

p4

�

¼ NfdγΩ
26π2

Z
dt
t2
ð1 − e−ðh̄ϕ0Þ2tÞ: ð56Þ

In the first line, it is already obvious that a finite value of ϕ0

does neither induce tachyonic modes nor an imaginary part
of the action. Consequently, the propertime representation
(second line) requires only a UV cutoff, implemented
by a 1=Λ4 lower bound at the t integral, whereas the
action is IR finite. Correspondingly, the unrenormalized
effective potential including the classical scalar mass term
can straightforwardly be computed. Ignoring the terms that
vanish in the large-Λ limit, we find

Veffðϕ0Þ ¼ ϕ2
0

�
m̄2

2
−
Nfdγ
26π2

h̄2
�
1 − γ − ln

�ðh̄ϕ0Þ2
Λ4

���
:

ð57Þ

In order to renormalize the effective potential, we first
introduce a renormalized mass parameter at some renorm-
alization scale μ,

m2ðμÞ ≔ m̄2 þ Nfdγ
25π2

h̄2 ln
μ4

Λ4
: ð58Þ

Note that m2ðμÞ can take values with either sign in contrast
to the renormalized mass in the previously discussed
models, cf. Eq. (47). The effective potential can then be
written as

Veff ¼
1

2
ϕ2
0

�
m2ðμÞ − Nfdγ

25π2
h̄2
�
1 − γ − ln

�ðh̄ϕ0Þ2
μ4

���
:

ð59Þ

The latter displays a nontrivial minimum satisfying
V 0
effðϕ0 ¼ vÞ ¼ 0 at

ðh̄vÞ2 ¼ μ4e
−25π2

Nfdγ
m2ðμÞ
h̄2

−γ
: ð60Þ

Using Eq. (58), it is straightforward to verify that this
minimum is RG invariant,

μ
d
dμ

v2 ¼ 0: ð61Þ

In terms of the minimum, the renormalized potential can
also be brought into an RG invariant form

Veff ¼
Nfdγ
26π2

ðh̄ϕ0Þ2 ln
ðh̄ϕ0Þ2
eðh̄vÞ2 ; ð62Þ

where e denotes the Euler number.
The effective potential is plotted in Fig. 2; it is bounded

from below and exhibits the nontrivial minimum at ϕ0 ¼ v.
In this quantum-induced ground state, the discrete Z2

symmetry is spontaneously broken, giving rise to a fer-
mionic m11 mass term. We can read off from Eq. (53) that

m2
11 ¼ h̄v: ð63Þ

In fact, the product h̄v sets the scale for all dimensionful
quantities occurring in Eqs. (62), (63). Since the original
theory, the γ11 model, has no intrinsic scale on the classical
level, this is a textbook example for dimensional trans-
mutation. As discussed in Sec. III, the quantitym2

11 gaps the
fermionic spectrum by a complex conjugate pair of offsets
from zero p2 ¼ �im2

11.

FIG. 2. Renormalized effective potential of the γ11 model for
Nf ¼ 1 and dγ ¼ 32. The position of the minimum has been set
to 1, namely h̄v ¼ 1, in units of the square of an arbitrary
dimensionful scale. The presence of a minimum at ϕ0 ¼ v
indicates the formation of a mass gap in the fermionic spectrum.
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In principle, the mean-field analysis also gives access to
the curvature of the effective potential at the minimum.
From Eq. (62), we obtain

V 00ðϕ0 ¼ vÞ ¼ 2Nf

π2
h̄2; ð64Þ

where the scale is set purely in terms of the (dimensionful)
Yukawa coupling. In the present setting, this result does not
acquire an independent meaning. In order to interpret
Eq. (64) as a mass of a scalar σ-type excitation on top
of the condensate v, we would also need the correspond-
ingly induced kinetic term for this excitation. For instance,
if the fluctuation induced kinetic term read S½σ� ¼R

1
2
Zσ∂μσ∂

μσ with a wave function renormalization Zσ,

the result for the scalar excitation would be m2
σ ¼ 2Nf

π2
h̄2
Zσ
.

Finally, as a self-consistency check, we can derive
the β function for the scale-dependent coupling λðμÞ ¼
h̄2=m2ðμÞwithin mean-field theory using Eq. (58), yielding

μ
∂

∂μ
λðμÞ ¼ −

4Nf

π2
λ2ðμÞ; ð65Þ

in agreement with previous results. For the γ11 model, the
mean-field computation proceeds fully in the asymptoti-
cally free λ > 0 branch of the model.

D. γ01 model

Let us now study the fourth model with a scalar self-
interaction channel on the mean-field level. The computa-
tion is interesting, since it requires slightly different
techniques. The action reads in the Minkowskian domain

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ −

λ̄

2
ðψ̄γ01ψÞ2

�
: ð66Þ

Bilinearizing this action by an HS transformation, we
arrive at

SFB¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψþ ih̄ϕψ̄γ01ψ −

1

2
m̄2ϕ2

�
; ð67Þ

where the i in front of the Yukawa term renders the action
real as in Eq. (51), cf. also Eq. (25). The two actions are
equivalent if the matching condition (54) is satisfied. The
mean-field approximation thus gives us information about
the asymptotically free λ > 0 branch.
As before, we write the mean-field quantum contribution

to the effective action in terms of the fermion determinant,

Γ1l ¼ −i ln det½−Gμν∂
μ
∂
ν þ ih̄ϕ0γ01�: ð68Þ

We have not found a way to rewrite the determinant in
terms of scalar squares of the involved operators as no
obvious γA-hermiticity property for a suitable value of A

appears to be available. Hence, we keep the nontrivial spin
structure for the propertime representation of the ln det.
Assuming ϕ0 ¼ const, and using that ð−Gμν∂

μ
∂
νÞ−1 ¼

−Gμν∂
μ
∂
ν

ð−∂2Þ2 , we can write the vacuum-subtracted expression as

Γ1l ¼ −iTr ln
�
1þ i

h̄ϕ0

ð−∂2Þ
ð−Gμν∂

μ
∂
νÞ

ð−∂2Þ γ01

�
; ð69Þ

where ln det ¼ Tr ln has been used. Having in mind that the
coordinate/momentum trace will ultimately be performed
in Euclidean momentum space, we note that the involved
operators possess simple hermiticity properties. The latter
imply that the eigenvalues of the total operator in paren-
theses in the Euclidean must be of the form 1þ ix with
x∈R. Hence, we can use the standard propertime repre-
sentation of the logarithm such that we obtain in momen-
tum space

Γ1l ¼ −iTr
Z

dt
t
e−t

�
1 − e

−ih̄ϕ0
p2

Gμνpμpν

p2
γ01t

�
ð70Þ

Since ðGμνpμpν

p2 γ01Þ2 ¼ 1, the last exponential in Eq. (70) can

be decomposed as

e
−ih̄ϕ0

p2
Gμνpμpν

p2
γ01t¼1cos

h̄ϕ0

p2
t− i

Gμνpμpν

p2
γ01 sin

h̄ϕ0

p2
t: ð71Þ

The contribution proportional to Gμνpμpν

p2 vanishes, since the

functional trace, i.e., the momentum integral requires the
Lorentz tensor structure to be proportional to the metricR
p p

μpνfðp2Þ ∼ gμν; however, the Lorentz trace of the Gμν

vanishes, Gμ
μ ¼ 0. The trace in spinor and flavor space

thus becomes trivial. Next, we can Wick rotate the
momentum-space variables to the Euclidean domain,
rescale the propertime t → p2t, perform the momentum
integral, and arrive at

Γ1l ¼ Nfdγ
16π2

Ω
Z

∞

1=Λ2

dt
t3
ð1 − cos h̄ϕ0tÞ; ð72Þ

where we have introduced a UV cutoff at the lower
bound of the propertime integral. The integral can be
evaluated analytically in terms of cosine integral functions.
Expanding the result for large UV cutoff Λ and dropping
the terms that vanish in the limit of Λ → ∞, we obtain for
the effective potential

Veffðϕ0Þ¼ϕ2
0

�
m̄2

2
−
Nfdγ
26π2

h̄2
�
3−2γ− ln

�ðh̄ϕ0Þ2
Λ4

���

¼ϕ2
0

2

�
m2ðμÞ−Nfdγ

25π2
h̄2
�
3−2γ− ln

�ðh̄ϕ0Þ2
μ4

���
;

ð73Þ
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where we have introduced the renormalized mass mðμÞ
using the same definition as in Eq. (58) for the γ11 model.
As in this previous model, the effective potential features a
nontrivial minimum at

ðh̄vÞ2 ¼ μ4e
−25π2

Nfdγ
m2ðμÞ
h̄2

þ2−2γ
; ð74Þ

which is RG invariant, since μ d
dμ v ¼ 0. In terms of this

minimum, the effective potential for the present γ01 model
can be written in the identical form of Eq. (62) as for the γ11
model. Accordingly, its graph is identical to that shown
in Fig. 2. If the absence of the fermionic mass term is
protected by a suitable symmetry, it is broken by the ground
state ϕ0 ¼ v at the mean-field quantum level, inducing a
fermion mass

m2
01 ¼ h̄v: ð75Þ

Similar to the γ11 model, the model exhibits dimensional
transmutation and induces a gap in the fermion spectrum in
terms of a complex conjugate pair of offsets from zero
p2 ¼ �im2

01, as below Eq. (27). Analogously, the model
allows for massive σ-type scalar excitations on top of the
ground state as is indicated by the curvature of the effective
potential, cf. Eq. (64). Of course, the present mean-field
analysis also passes the self-consistency check in terms
of the β function for the scale-dependent coupling λðμÞ ¼
h̄2=m2ðμÞ also yielding Eq. (65) as in all other cases.

E. LNJL model

Let us finally take a look at the mean-field result for the
Luttinger-fermionic version of the NJL model, featuring a
continuous axial Uð1Þ10 symmetry. The action in Minkoski
space reads

S ¼
Z

d4x

�
−Zψ ψ̄Gμν∂

μ
∂
νψ −

λ̄

2
½ðψ̄ψÞ2 − ðψ̄γ10ψÞ2�

�
:

ð76Þ

Both interaction channels can be bilinearized by an HS
transformation involving this time a complex massive
scalar field, yielding the partially bosonized version of
action

SFB ¼
Z

d4x

�
−Zψ ψ̄Gμν∂

μ
∂
νψ þ h̄ϕψ̄

�
1 − γ10

2

�
ψ

þ h̄�ϕ�ψ̄
�
1þ γ10

2

�
ψ − m̄2ϕ�ϕ

�
: ð77Þ

Here we allow for a complex Yukawa-like coupling h̄ for
generality. Reality of the action (77) is again manifest, since

the two fermion-boson interaction terms are complex
conjugate to one another. The matching condition for the
two models to be identical now reads

λ̄ ¼ −
jh̄j2
2m̄2

; ð78Þ

where the additional factor of two in the denominator, e.g.,
in comparison to Eq. (42), is a consequence of the complex-
field normalization. As for the LGN or the γ10 model, the
HS transformation can be meaningfully performed only for
negative values of the coupling λ̄. Incidentally, we observe
from Eq. (78) that h̄ could have been chosen real from the
outset. Also, any complex phase of h̄ can be compensated
by a global phase rotation of the field ϕ.
For the choice of the ground state in a mean-field

computation, we also have a free phase parameter to
choose. Therefore, we assume h̄ as well as ϕ ¼ ϕ0 ∈R
as real without loss of generality, and compute the one-loop
contribution Γ1l to the effective action for ϕ0 ¼ const. In
fact, we again arrive at the same result as for the LGN
model in Eq. (43).
Also, all other conclusions such as the occurrence of an

imaginary part of the effective action for finite ϕ0 as a result
of the tachyonic quantum modes, and ϕ0 ¼ 0 being the
only equilibrium state of the effective action are essentially
the same as for the LGN or the γ10 model. For complete-
ness, we state the resulting renormalized effective potential
accounting for the factor of two difference of the field
normalization

Veff ¼ jϕ0j2
�
m2ðμÞ þ Nfdγ

26π2
jh̄j2

�
1 − γ − ln

�jh̄ϕ0j2
μ4

���
;

ð79Þ

where the renormalized mass m2ðμÞ has been defined as in
Eq. (47). We also have written the effective potential such
that it is valid for any constant complex field value ϕ0 ∈C.
We conclude that the LNJL model does not exhibit a gap
formation on the negative λ̄ branch that is accessible by the
standard HS transformation.
We conclude this section by mentioning that the

mean-field computation also gives access to the running
of the renormalized LNJL coupling defined by λðμÞ ¼
−jh̄j2=ð2m2ðμÞÞ, yielding the large-Nf beta function
Eq. (38) as expected.

F. Summary of mean-field results

Let us summarize our findings for all the scalar self-
interacting models at mean-field level in Table I. All
models that we considered exhibit asymptotic freedom
for positive values of the coupling λ; in fact, the sign
conventions of the interaction terms have deliberately
been chosen such that the one-loop RG flows exhibit the
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same sign. The mean-field analysis has been performed
with the aid of the Hubbard-Stratonovich transformation
in the positive (asymptotically free) branch of the cou-
pling λ for the γ11 and γ01 models, and in the negative
(nonasymptotically free) branch for the LGN, γ10 and
LNJL models.
In the mean-field approximation, only the γ11 and γ01

models feature the formation of a nonzero condensate in the
effective potential and thereby gap formation in the fermion
spectrum on the coupling branch accessible by the HS
transformation. The corresponding gaps, however, do not
correspond to a conventional real mass term, but to a
complex pair of offsets in imaginary direction in the
complex p2 plane.
The other models do not undergo gap formation in the

mean-field approximation, i.e. the fermions remain mass-
less and the effective potential exhibits a global minimum at
ϕ0 ¼ 0. While the HS transformation gives access only to
the branch which is not asymptotically free, condensation or
gap formation is not observed at all even for arbitrarily large
(negative) bare coupling values. In a sense, this result can be
interpreted as a self-consistent behavior of these models: if
gap formation had occurred, the fermionic spectrum would
have featured tachyonic modes. At the same time, the
effective action would have acquired imaginary parts indi-
cating the instability of such a ground state.

VI. ANALYTIC STRUCTURE OF GAPPED
PROPAGATORS

As discussed in Sec. III, the classical equations of motion
of the free theory admits tachyonic solutions for the case of
the standard mass term and the m10 mass. In the interacting
cases of the LGN, the γ10, and the LNJL model, these
modes have the potential to trigger an instability associated
with an imaginary part of the effective action, if the ground
state developed a fermionic condensate. At mean-field level

and for the negative coupling branch, this, however, did not
happen, since the ground state remains trivial.
Nevertheless, the potential presence of an instability may

be viewed as a manifestation of Ostrogradsky’s theorem
stating that Hamiltonians of higher-derivative theories are
unbounded from below [22]. On the quantum level, higher-
derivative theories generically go along with ghosts, i.e.,
states manifesting as poles in the propagator with negative
spectral weight [18–21,67]. In the sense of the Lehmann-
Källen spectral representation, such states do not allow for
a probability interpretation potentially invalidating the
existence of an S matrix and thus the validity of such
theories as quantum field theories. Despite these serious
issues at least for a perturbative construction, many con-
crete proposals have been made to deal with ghosts in a
quantized fundamental theory [19,21,23–33]; moreover,
theories with ghosts can be meaningfully discussed within
effective field theory, e.g., in cases where the timescale of
the instability is large compared to other timescales of
interest; see [68–71] for applications in cosmology.
In order to study the possible occurrence of ghosts, let us

determine the analytic structure of the propagators of the
various free theories in the complex p2 momentum plane.
We start with the free theory with a standard mass term
Eq. (10). The Minkowski space propagator SðpÞ is related
to the inverse Hessian of the action by

−iSðpÞ¼ 1

Gμνpμpν−m2
¼ 1

p4−m4
ðGμνpμpνþm2Þ; ð80Þ

which is, of course, matrix valued in spinor space. Using,
for instance, the explicit representation of the Abrikosov

FIG. 3. Analytic structure of the propagators for the free theory
with (a) a standard mass m, (b) an m10 mass, (c) an m11 mass,
(d) an m01 mass depicted in the complex p2 momentum plane.
Black dots represent the position of simple poles in the eigen-
values of the propagator, and zigzag lines denote a branch cut.

TABLE I. Summary of mean-field level results for all fermionic
models studied in this work. While all models feature an
asymptotically free branch for λ > 0, the matching condition
required by the standard Hubbard-Stratonovich transformation
gives access to the mean-field analysis only for a specific branch.
For the two models (γ11 and γ01) for which we can analyze the
long-range behavior of the asymptotically free branch, we find
condensate and gap formation at mean-field level and a gap in the
complexified fermion spectrum.

Model
Asymptotic
freedom

Mean-field
analysis

Gap formation
in mean field

Fermionic
spectrum

LGN λ > 0 λ < 0 no massless
γ10 λ > 0 λ < 0 no massless
γ11 λ > 0 λ > 0 yes complex gap
γ01 λ > 0 λ > 0 yes complex gap
LNJL λ > 0 λ < 0 no massless

HOLGER GIES and MARTA PICCIAU PHYS. REV. D 111, 085001 (2025)

085001-12



algebra given in Appendix A, we can determine the
eigenvalues of the propagator:

eigð−iSðpÞÞ ¼
�

1

p2 −m2
½deg :16�; −1

p2 þm2
½deg :16�

�
;

ð81Þ

where we find that the two different eigenvalues occur with
a degree of degeneracy of 16 each. From Eq. (81), we can
read off that the propagator features 16 poles in the
complex p2 plane that correspond to a standard massive
dispersion relation p2 ¼ m2, and 16 poles corresponding to
tachyonic states with p2 ¼ −m2, cf. Fig. 3(a). Moreover,
the latter are, in fact, ghost poles as their residue is negative.
Of course, causality requirements for the propagator may
be implemented by suitable iϵ prescriptions; however, the
details are not relevant for the present discussion.
We conclude that the free theory with a standard mass

term indeed exhibits the properties that are generically
expected from a higher-derivative theory: it features tachy-
ons and ghosts. For the present case, the tachyonic and the
ghost states are identical; these properties are not neces-
sarily linked, a counterexample is, e.g., given by certain
versions of quadratic gravity [20,72].
As a second example, let us consider the free theory

with a γ10 mass term of Eq. (14). Here, the propagator is
given by

−iSðpÞ ¼ 1

Gμνpμpν − im2
10γ10

¼ 1

p4 −m4
10

ðGμνpμpν − im2
10γ10Þ; ð82Þ

with eigenvalue spectrum

eigð−iSðpÞÞ ¼
(

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 −m2

10Þðp2 þm2
10Þ

p ½deg :16�;

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2 −m2
10Þðp2 þm2

10Þ
p ½deg :16�

)
:

ð83Þ

We observe that the propagator has square root singularities
at p2 ¼ �m2

10 instead of simple poles. This implies that
there is a branch cut in the complex p2 plane. Choosing the
cut to lie at negative values of the radicand, the branch cut
extends from p2 ¼ −m2

10 to p2 ¼ m2
10 along the real axis,

see Fig. 3(b). Half of the modes come with a minus sign
such that we rediscover the ghost modes in the massless
limit m2

10 → 0 as expected. However, there is no straight-
forward Lehmann-Källen spectral representation of the
propagator for finitem2

10 and thus no immediate probability
interpretation in terms of asymptotic states.

Let us also study the propagator for the free theory
including a γ11 mass term, cf. Eq. (19),

−iSðpÞ ¼ 1

Gμνpμpν −m2
11γ11

¼ 1

p4 þm4
11

ðGμνpμpν −m2
11γ11Þ: ð84Þ

Now, the eigenvalue spectrum reads

eigð−iSðpÞÞ ¼
(

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − im2

11Þðp2 þ im2
11Þ

p ½deg :16�;

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2 − im2
11Þðp2 þ im2

10Þ
p ½deg :16�

)
:

ð85Þ

The propagator again supports a square-root type branch
cut in the complex p2 plane, this time ranging from
p2 ¼ −im2

11 to p2 ¼ im2
11 along the imaginary p2 axis,

cf. Fig. 3(c). Also in this case, we observe the absence of a
conventional spectral representation thus losing the inter-
pretation of some of the modes as ghosts.
A fourth interesting example is given by the free theory

with a γ01 mass, cf. Eq. (25) with the propagator

−iSðpÞ ¼ 1

p4 þm4
01

ðGμνpμpν þ im2
01γ01Þ; ð86Þ

yielding a slightly more intricate eigenvalue spectrum

eigð−iSðpÞÞ¼
�

1

p2− im2
01

½deg:8�; 1

p2þ im2
01

½deg:8�;

−1
p2− im2

01

½deg :8�; −1
p2þ im2

01

½deg:8�
�
: ð87Þ

For this mass term, we observe the naively expected simple
poles on the imaginary axis at p2 ¼ �im2

01. Half of the
modes seems to have a ghost-type residue. However, since
the poles are off the real axis, there is no conventional
spectral representation and thus no straightforward prob-
ability interpretation.
At this point, we conclude that a naively expected link

between a higher-derivative theory, the occurrence of
ghosts, and an inferred breakdown of a consistent quan-
tum field theory does not hold in general in theories with
relativistic Luttinger fermions. While this link appears to
be present in the case of theories with a standard mass
term, where we do find tachyonic ghosts, all other mass
terms do not give rise to a spectral representation.
Therefore, we have no reason to infer that these theories
feature ghost states.
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Based on these observations read together with the
findings of the previous sections, our interpretation at
present is as follows:
(a) The tachyonic ghost states of relativistic Luttinger

fermions with a standard mass term inhibit a straight-
forward perturbative construction of observables
such as those derived from an S matrix. This is also
reflected in our mean-field approach for the LGN or
LNJL model by the potential occurrence of an imagi-
nary part of the effective action as a consequence of
tachyonic instabilites. Of course, this does not exclude
the possibility that a successful quantization may be
possible along the lines suggested for other higher-
derivative theories.

(b) While we cannot make a statement about the possible
(in-)existence of perturbative S-matrix based observ-
ables for Luttinger fermions with m2

10 masses due to
the lack of a spectral representation, the occurrence of
tachyonic modes in the mean-field approach to the γ10
model suggests that such degrees of freedom lead to
similar problems as those with the standard mass terms
and tachyonic ghosts.

(c) For the models with m2
11 or m

2
01 mass terms, we have

observed a perfectly stable and consistent mean-field
description for the corresponding γ11 and γ01 models
going along with the absence of tachyonic mass poles.
Also, we do not find ghost states in the sense of
conventional mass poles with negative residue. From
this perspective, we do not see any reason based on our
analysis why such theories should not be consistent.

On the other hand, our results suggest that relativistic
Luttinger fermions withm2

11 orm
2
01 mass terms do not have a

conventional Lehmann-Källen spectral representation and
thus no conventional Lehmann-Symanzik-Zimmermann
(LSZ) construction of the S matrix. Our preliminary inter-
pretation of this finding is that such relativistic Luttinger
fermions do not exist in the sense of asymptotic states. In
fact, propagators with complex poles have been intensely
discussed in the literature of the strong interactions where the
fundamental variables of the QCD action, quarks and gluons,
are not expected to exist as asymptotic states [73–89].
Nevertheless, the long-range physics can be described by
asymptotic (bound) states such as hadrons in strong-
interaction physics or a composite σ-type excitation in the
present case of the γ11 or γ01 model.

VII. CONCLUSIONS

We have introduced and investigated a number of
self-interacting quantum field theories with relativistic
Luttinger fermions as fundamental degrees of freedom.
Concentrating on models with scalar interaction channels,
we find that each one features a coupling branch which is
asymptotically free in four-dimensional spacetime. While
we have worked at a large number of flavors where the
restriction to the single scalar interaction channels is

justified and quantitatively controlled, we expect our results
on asymptotic freedom to generalize to full Fierz-complete
local interaction bases, as has been shown in [17] for the
LGN model.
We provide large-Nf exact results for the mean-field

effective potential for each model, identifying two models
that are high-energy complete and undergo dimensional
transmutation with a corresponding condensate and gap
formation at low energies. Both models, the γ11 and γ01
model, do not exhibit any sign of instability at the present
level of investigation, as might naively be expected for a
higher-derivative theory. The reason for this lies in the fact
that the generated mass term does not induce a tachyonic
mass pole. This is corroborated by our study of the analytic
structure of the propagators for the various versions of the
massive theories.
It is interesting to observe that mass generation and gap

formation does not happen at mean-field level for those
theories where these masses would lead to tachyonic
instabilities. However, since the mean-field analysis is
confined to a specific coupling branch, other methods
are needed to analyze the more interesting asymptotically
free branch for those models. This should be possible with
suitable techniques that allow for the inclusion of a more
general bare potential of the scalar field such as the
functional RG, see [50,50,59–61,90], or methods based
on the gap equation.
These methods could also provide access to the spec-

trum of excitations above the nontrivial ground state in the
stable and high-energy complete models. In the present
cases of the γ11 and γ01 models, we expect the existence
of a light σ mode. This would constitute an example of a
UV-complete model with only marginal couplings that
entails naturally light scalar long-range degrees of free-
dom in four-dimensional spacetime. Corresponding inves-
tigations are underway.
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APPENDIX A: RELATIVISTIC ABRIKOSOV
ALGEBRA

In order to make the paper self-contained, let us
summarize a few aspects of the relativistic version of the
Abrikosov algebra [2] in Eq. (2) as derived in [17].
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Whenever needed, we work with the explicit represen-
tation of the Gμν matrices in terms of elements of a
Euclidean Dirac algebra fγA; γBg ¼ 2δAB,

G0i ¼ i

ffiffiffi
2

3

r
γA¼i; i ¼ 1; 2; 3;

G12 ¼
ffiffiffi
2

3

r
γ4; G23 ¼

ffiffiffi
2

3

r
γ5; G31 ¼

ffiffiffi
2

3

r
γ6;

G00 ¼ γ7; G11 ¼
1

3
γ7 þ

2
ffiffiffi
2

p

3
γ8;

G22 ¼
1

3
γ7 −

ffiffiffi
2

p

3
γ8 þ

ffiffiffi
2

3

r
γ9;

G33 ¼
1

3
γ7 −

ffiffiffi
2

p

3
γ8 −

ffiffiffi
2

3

r
γ9: ðA1Þ

This representation can be viewed as an appropriate Wick
rotation of the one constructed for d ¼ 4 Euclidean
dimensions in [7]. It is straightforward to check that this
representation satisfies Eq. (2). Whereas 9 elements γ1;…;9

were sufficient to satisfy the relativistic Abrikosov algebra,
the reality conditions of the action demand for another
anticommuting element for the construction of a spin
metric h. This requires a dγ ¼ 32 dimensional representa-
tion for the Euclidean Dirac algebra (and correspondingly
of the Abrikosov algebra) and thus in total with de ¼ 11
anticommuting elements γA, with A ¼ 1;…; 11.
While we use γ10 for the construction of the spin metric,

cf. Eq. (5), both additional elements γ10 and γ11 can serve
for the construction of additional scalar bilinears and
interactions. Alternatively, we could choose a different
spin metric, e.g.,

h̃ ¼ γ1γ2γ3γ11; ðA2Þ

or, more generally, a linear combination h0 ¼ αhþ βh̃
with α2 þ β2 ¼ 1 and α; β∈R as the spin metric. This
would induce a corresponding rotation of the interaction
channels discussed in the main text, but the overall
structure of different mass terms, interaction channels,
and the existence of an axial symmetry of the kinetic term
would remain the same.

APPENDIX B: EUCLIDEAN CONVENTIONS

For the Wilsonian renormalization group analysis in
the main text, it is useful to have a manifestly Euclidean
formulation of the models studied in the present work. For
this, we need a Euclidean version of the Abrikosov algebra,

fGμν; Gκλg
		
E ¼ −

2

d − 1
δμνδκλ þ

d
d − 1

ðδμκδνλ þ δμλδνκÞ;
ðB1Þ

where Minkowski metric factors on the right-hand side are
replaced by Kronecker symbols. For generality, we work in
d-dimensional spacetime here. We also introduce τ as
Euclidean time direction, related to the Minkowskian time
t by a Wick rotation τ ¼ it. The reality condition of the
Minkowskian action can then be rephrased for the
Euclidean Lagrangian in terms of Osterwalder-Schrader
(OS) reflection positivity [91],

L�
E ¼ L̂E; ðB2Þ

where L̂E arises from LE by replacing the coordinates
x ¼ ðτ; x⃗Þ with x̂ ¼ ð−τ; x⃗Þ. In other words, in addition to
complex conjugating the operator building blocks, we also
need to flip the sign of the Euclidean time. Let us first check
OS reflection positivity for the simple mass term. We
extend the fields to the Euclidean domain ψ ¼ ψðτ; x⃗Þ and
look at the complex conjugate of the spinor bilinear

½ðψ̄ψÞðxÞ�� ¼ ðψ†h†ψÞðx̂Þ: ðB3Þ

A simple choice to implement reflection positivity here is to
define the Euclidean spin metric to be equivalent to the
hermitean Minkowskian one, hE ¼ h≡ h†, also preserving
the definition ψ̄ ¼ ψ†h.
Prior to looking at the kinetic term, let us establish the

connection between the Euclidean Gμν matrices, satisfying
Eq. (B1), and their Minkowskian counterpart. From
the algebra (B1), all the Gμν;E matrices can be chosen
hermitean in the Euclidean domain. Furthermore, by
comparing (2) and (B1), we can find the explicit relation
of the matrices in the Euclidean and Minkowskian domain.
For example, by looking at the anticommutator

fG00; G00gjM ¼ 2 ¼ fG00; G00gjE; ðB4Þ

we infer that the choice G00;E ≡G00;M is a valid option.
Next, since

fG00; Gi ig
		
M
¼ 2=ðd − 1Þ ¼ −fG00; Gi igjE; ðB5Þ

we can take Gii;E ≡ −Gii;M. Another nontrivial anticom-
mutator is

fG0i; G0ig
		
M
¼ −d=ðd − 1Þ ¼ −fG0i; G0ig

		
E
; ðB6Þ

from which we read off the two possibilities
�iG0i;E ≡G0i;M. Lastly, noticing that

fGij; Gi jg
		
M
¼ d=ðd − 1Þ ¼ fGij; Gi jg

		
E
; ðB7Þ
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we get �Gij;E ≡Gij;M. The last two ambiguities can be
resolved by looking at the Luttinger kinetic operator
Gμν∂

μ
∂
ν. For the 00 and ii components, we have

G00∂
0
∂
0jM ¼ G00jE

1

ð−iÞ2
∂

∂τ

∂

∂τ
¼ −G00∂

0
∂
0jE;

Gi i∂
i
∂
ij
M
¼ −Gi ijEð−1Þ2

∂

∂xi
∂

∂xi

				
M
¼ −Gi i∂

i
∂
ij
E
: ðB8Þ

Thus, for consistency with equation (B8), the choice of
the minus sign also for the ij and 0i components fixes the
signs of the remaining Gμν matrices by G0i;E ≡ iG0i;M and
Gij;E ≡ −Gij;M. Ultimately, we obtain for the Luttinger
kinetic term

ψ̄Gμνi∂μi∂νψ jM ¼ −ψ̄Gμνi∂μi∂νψ jE: ðB9Þ

It is straightforward to check that the kinetic term (B9) is
OS reflection positive in the Euclidean domain. In order for

the weight functions of the functional integrals to undergo
the transition eiSM to e−SE , we observe that

iSM ¼ i
Z

d4xðψ̄Gμνi∂μi∂νψ þ LintÞ

¼
Z

d4xjEð−ψ̄Gμνi∂μi∂νψ jE þ LintÞ ≔ −SE ðB10Þ

holds for any local nonderivative interaction (or mass) term
Lint. We conclude that the Euclidean and Minkowskian
actions differ by a minus sign with respect to the local
nonderivative terms Lint,

SE ¼
Z

d4xðψ̄Gμνi∂μi∂νψ − LintÞ: ðB11Þ

This sign change applies to all interacting models inves-
tigated in the present work, e.g., involving interaction
terms such as ðψ̄ψÞ2, ðψ̄γ10ψÞ2, ðψ̄γ11ψÞ2, ðψ̄γ01ψÞ2,
ðψ̄GμνψÞ2, ….

[1] J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
[2] A. A. Abrikosov, Sov. Phys. JETP 39, 709 (1974).
[3] S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. B

69, 235206 (2004).
[4] E.-G. Moon, C. Xu, Y. B. Kim, and L. Balents, Phys. Rev.

Lett. 111, 206401 (2013).
[5] L. Savary, E.-G. Moon, and L. Balents, Phys. Rev. X 4,

041027 (2014).
[6] I. F. Herbut and L. Janssen, Phys. Rev. Lett. 113, 106401

(2014).
[7] L. Janssen and I. F. Herbut, Phys. Rev. B 92, 045117 (2015).
[8] L. Janssen and I. F. Herbut, Phys. Rev. B 93, 165109 (2016).
[9] I. Boettcher and I. F. Herbut, Phys. Rev. B 93, 205138

(2016).
[10] L. Janssen and I. F. Herbut, Phys. Rev. B 95, 075101 (2017).
[11] I. Boettcher and I. F. Herbut, Phys. Rev. B 95, 075149

(2017).
[12] S. Ray, M. Vojta, and L. Janssen, Phys. Rev. B 98, 245128

(2018).
[13] S. Ray, M. Vojta, and L. Janssen, Phys. Rev. B 102, 081112

(2020).
[14] S. Ray and L. Janssen, Phys. Rev. B 104, 045101 (2021).
[15] S. Ray, Ph. D. thesis, TU Dresden, 2022.
[16] S. Dey and J. Maciejko, Phys. Rev. B 106, 035140 (2022).
[17] H. Gies, P. Heinzel, J. Laufkötter, and M. Picciau, Phys.

Rev. D 110, 065001 (2024).
[18] A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).
[19] T. D. Lee and G. C. Wick, Phys. Rev. D 2, 1033 (1970).
[20] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[21] B. Grinstein, D. O’Connell, and M. B. Wise, Phys. Rev. D

77, 025012 (2008).

[22] M. Ostrogradsky, Mem. Acad. St. Petersbourg 6, 385
(1850).

[23] H. Narnhofer and W. E. Thirring, Phys. Lett. 76B, 428
(1978).

[24] S. W. Hawking and T. Hertog, Phys. Rev. D 65, 103515
(2002).

[25] C. M. Bender and P. D. Mannheim, Phys. Rev. Lett. 100,
110402 (2008).

[26] J. Garriga and A. Vilenkin, J. Cosmol. Astropart. Phys. 01
(2013) 036.

[27] A. Salvio and A. Strumia, J. High Energy Phys. 06 (2014)
080.

[28] A. Smilga, Int. J. Mod. Phys. A 32, 1730025 (2017).
[29] D. Becker, C. Ripken, and F. Saueressig, J. High Energy

Phys. 12 (2017) 121.
[30] D. Anselmi, J. High Energy Phys. 02 (2018) 141.
[31] C. Gross, A. Strumia, D. Teresi, and M. Zirilli, Phys. Rev. D

103, 115025 (2021).
[32] J. F. Donoghue and G. Menezes, Phys. Rev. D 104, 045010

(2021).
[33] A. Platania, Universe 5, 189 (2019).
[34] C. Deffayet, A. Held, S. Mukohyama, and A. Vikman, J.

Cosmol. Astropart. Phys. 11 (2023) 031.
[35] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888

(1973).
[36] G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[37] T. W. Appelquist, M. J. Bowick, D. Karabali, and L. C. R.

Wijewardhana, Phys. Rev. D 33, 3704 (1986).
[38] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[39] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).

HOLGER GIES and MARTA PICCIAU PHYS. REV. D 111, 085001 (2025)

085001-16

https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRevB.69.235206
https://doi.org/10.1103/PhysRevB.69.235206
https://doi.org/10.1103/PhysRevLett.111.206401
https://doi.org/10.1103/PhysRevLett.111.206401
https://doi.org/10.1103/PhysRevX.4.041027
https://doi.org/10.1103/PhysRevX.4.041027
https://doi.org/10.1103/PhysRevLett.113.106401
https://doi.org/10.1103/PhysRevLett.113.106401
https://doi.org/10.1103/PhysRevB.92.045117
https://doi.org/10.1103/PhysRevB.93.165109
https://doi.org/10.1103/PhysRevB.93.205138
https://doi.org/10.1103/PhysRevB.93.205138
https://doi.org/10.1103/PhysRevB.95.075101
https://doi.org/10.1103/PhysRevB.95.075149
https://doi.org/10.1103/PhysRevB.95.075149
https://doi.org/10.1103/PhysRevB.98.245128
https://doi.org/10.1103/PhysRevB.98.245128
https://doi.org/10.1103/PhysRevB.102.081112
https://doi.org/10.1103/PhysRevB.102.081112
https://doi.org/10.1103/PhysRevB.104.045101
https://doi.org/10.1103/PhysRevB.106.035140
https://doi.org/10.1103/PhysRevD.110.065001
https://doi.org/10.1103/PhysRevD.110.065001
https://doi.org/10.1103/PhysRev.79.145
https://doi.org/10.1103/PhysRevD.2.1033
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.77.025012
https://doi.org/10.1103/PhysRevD.77.025012
https://doi.org/10.1016/0370-2693(78)90898-5
https://doi.org/10.1016/0370-2693(78)90898-5
https://doi.org/10.1103/PhysRevD.65.103515
https://doi.org/10.1103/PhysRevD.65.103515
https://doi.org/10.1103/PhysRevLett.100.110402
https://doi.org/10.1103/PhysRevLett.100.110402
https://doi.org/10.1088/1475-7516/2013/01/036
https://doi.org/10.1088/1475-7516/2013/01/036
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1142/S0217751X17300253
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1007/JHEP02(2018)141
https://doi.org/10.1103/PhysRevD.103.115025
https://doi.org/10.1103/PhysRevD.103.115025
https://doi.org/10.1103/PhysRevD.104.045010
https://doi.org/10.1103/PhysRevD.104.045010
https://doi.org/10.3390/universe5080189
https://doi.org/10.1088/1475-7516/2023/11/031
https://doi.org/10.1088/1475-7516/2023/11/031
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevD.33.3704
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801


[40] E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. (Berlin),
Phys.-Math. Kl. 105 (1932).

[41] V. Bargmann, Sitzungsber Preuss. Akad. Wiss. (Berlin),
Phys.-Math. Kl. 346 (1932).

[42] H. A. Weldon, Phys. Rev. D 63, 104010 (2001).
[43] H. Gies and S. Lippoldt, Phys. Rev. D 89, 064040 (2014).
[44] L. Schiffhorst, Bachelor thesis, Jena, 2024.
[45] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[46] F. Hofling, C. Nowak, and C. Wetterich, Phys. Rev. B 66,

205111 (2002).
[47] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[48] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[49] H. Gies and C. Wetterich, Phys. Rev. D 65, 065001 (2002).
[50] J. Braun, J. Phys. G 39, 033001 (2012).
[51] F. Gehring, H. Gies, and L. Janssen, Phys. Rev. D 92,

085046 (2015).
[52] J. Braun, H. Gies, and D. D. Scherer, Phys. Rev. D 83,

085012 (2011).
[53] D. Mesterhazy, J. Berges, and L. von Smekal, Phys. Rev. B

86, 245431 (2012).
[54] A. Jakovác, A. Patkós, and P. Pósfay, Eur. Phys. J. C 75, 2

(2015).
[55] L. Janssen and I. F. Herbut, Phys. Rev. B 89, 205403 (2014).
[56] G. P. Vacca and L. Zambelli, Phys. Rev. D 91, 125003

(2015).
[57] L. Classen, I. F. Herbut, L. Janssen, and M.M. Scherer,

Phys. Rev. B 93, 125119 (2016).
[58] B. Knorr, Phys. Rev. B 94, 245102 (2016).
[59] C. Cresswell-Hogg and D. F. Litim, Phys. Rev. Lett. 130,

201602 (2023).
[60] C. Cresswell-Hogg and D. F. Litim, Phys. Rev. D 107,

L101701 (2023).
[61] C. Cresswell-Hogg and D. F. Litim, J. High Energy Phys. 07

(2024) 066.
[62] P. Heinzel, Master thesis, Jena, 2023.
[63] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[64] K. Holland, Nucl. Phys. B, Proc. Suppl. 140, 155 (2005).
[65] H. Gies, C. Gneiting, and R. Sondenheimer, Phys. Rev. D

89, 045012 (2014).
[66] H. Gies and R. Sondenheimer, Eur. Phys. J. C 75, 68 (2015).
[67] R. P. Woodard, Scholarpedia 10, 32243 (2015).
[68] R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

[69] J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D 70,
043543 (2004).

[70] J. M. Cline, M. Puel, and T. Toma, Phys. Lett. B 848,
138377 (2024).

[71] J. M. Cline, arXiv:2401.02958.
[72] D. Buccio, J. F. Donoghue, G. Menezes, and R. Percacci,

Phys. Rev. Lett. 133, 021604 (2024).
[73] M. Stingl, Phys. Rev. D 34, 3863 (1986); 36, 651(E) (1987).
[74] M. Stingl, Z. Phys. A 353, 423 (1996).
[75] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281

(2001).
[76] C. S. Fischer and R. Alkofer, Phys. Rev. D 67, 094020

(2003).
[77] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys.

Rev. D 70, 014014 (2004).
[78] A. Cucchieri, T. Mendes, and A. R. Taurines, Phys. Rev. D

71, 051902 (2005).
[79] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and

H. Verschelde, Phys. Rev. D 78, 065047 (2008).
[80] A. Cucchieri, D. Dudal, T. Mendes, and N. Vandersickel,

Phys. Rev. D 85, 094513 (2012).
[81] Y. Hayashi and K.-I. Kondo, Phys. Rev. D 99, 074001

(2019).
[82] D. Binosi and R.-A. Tripolt, Phys. Lett. B 801, 135171

(2020).
[83] S. W. Li, P. Lowdon, O. Oliveira, and P. J. Silva, Phys. Lett.

B 803, 135329 (2020).
[84] C. S. Fischer and M. Q. Huber, Phys. Rev. D 102, 094005

(2020).
[85] M. Q. Huber, Phys. Rev. D 101, 114009 (2020).
[86] J. Horak, J. M. Pawlowski, and N. Wink, arXiv:2202.09333.
[87] J. Braun et al., SciPost Phys. Core 6, 061 (2023).
[88] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J.

Turnwald, J. M. Urban, N. Wink, and S. Zafeiropoulos,
Phys. Rev. D 105, 036014 (2022).

[89] J. Horak, J. M. Pawlowski, J. Turnwald, J. M. Urban, N.
Wink, and S. Zafeiropoulos, Phys. Rev. D 107, 076019
(2023).

[90] A. Jakovac, I. Kaposvari, and A. Patkos, Int. J. Mod. Phys.
A 31, 1645042 (2016).

[91] K. Osterwalder and R. Schrader, Commun. Math. Phys. 31,
83 (1973).

MEAN-FIELD THEORY FOR SELF-INTERACTING … PHYS. REV. D 111, 085001 (2025)

085001-17

https://doi.org/10.34663/9783945561317-15
https://doi.org/10.34663/9783945561317-15
https://doi.org/10.1103/PhysRevD.63.104010
https://doi.org/10.1103/PhysRevD.89.064040
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1103/PhysRevB.66.205111
https://doi.org/10.1103/PhysRevB.66.205111
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1103/PhysRevD.65.065001
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1103/PhysRevD.92.085046
https://doi.org/10.1103/PhysRevD.92.085046
https://doi.org/10.1103/PhysRevD.83.085012
https://doi.org/10.1103/PhysRevD.83.085012
https://doi.org/10.1103/PhysRevB.86.245431
https://doi.org/10.1103/PhysRevB.86.245431
https://doi.org/10.1140/epjc/s10052-014-3228-1
https://doi.org/10.1140/epjc/s10052-014-3228-1
https://doi.org/10.1103/PhysRevB.89.205403
https://doi.org/10.1103/PhysRevD.91.125003
https://doi.org/10.1103/PhysRevD.91.125003
https://doi.org/10.1103/PhysRevB.93.125119
https://doi.org/10.1103/PhysRevB.94.245102
https://doi.org/10.1103/PhysRevLett.130.201602
https://doi.org/10.1103/PhysRevLett.130.201602
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1007/JHEP07(2024)066
https://doi.org/10.1007/JHEP07(2024)066
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/j.nuclphysbps.2004.11.293
https://doi.org/10.1103/PhysRevD.89.045012
https://doi.org/10.1103/PhysRevD.89.045012
https://doi.org/10.1140/epjc/s10052-015-3284-1
https://doi.org/10.4249/scholarpedia.32243
https://doi.org/10.1016/S0370-2693(02)02589-3
https://doi.org/10.1103/PhysRevD.70.043543
https://doi.org/10.1103/PhysRevD.70.043543
https://doi.org/10.1016/j.physletb.2023.138377
https://doi.org/10.1016/j.physletb.2023.138377
https://arXiv.org/abs/2401.02958
https://doi.org/10.1103/PhysRevLett.133.021604
https://doi.org/10.1103/PhysRevD.34.3863
https://doi.org/10.1103/PhysRevD.36.651
https://doi.org/10.1007/BF01285154
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1103/PhysRevD.78.065047
https://doi.org/10.1103/PhysRevD.85.094513
https://doi.org/10.1103/PhysRevD.99.074001
https://doi.org/10.1103/PhysRevD.99.074001
https://doi.org/10.1016/j.physletb.2019.135171
https://doi.org/10.1016/j.physletb.2019.135171
https://doi.org/10.1016/j.physletb.2020.135329
https://doi.org/10.1016/j.physletb.2020.135329
https://doi.org/10.1103/PhysRevD.102.094005
https://doi.org/10.1103/PhysRevD.102.094005
https://doi.org/10.1103/PhysRevD.101.114009
https://arXiv.org/abs/2202.09333
https://doi.org/10.21468/SciPostPhysCore.6.3.061
https://doi.org/10.1103/PhysRevD.105.036014
https://doi.org/10.1103/PhysRevD.107.076019
https://doi.org/10.1103/PhysRevD.107.076019
https://doi.org/10.1142/S0217751X16450421
https://doi.org/10.1142/S0217751X16450421
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738

	Mean-field theory for self-interacting relativistic Luttinger fermions
	I. INTRODUCTION
	II. RELATIVISTIC LUTTINGER FERMIONS
	III. MASS TERMS
	IV. SELF-INTERACTING FERMIONIC MODELS
	V. MEAN-FIELD THEORY
	A. Luttinger-Gross-Neveu model
	B. &gamma;10 model
	C. &gamma;11 model
	D. &gamma;01 model
	E. LNJL model
	F. Summary of mean-field results

	VI. ANALYTIC STRUCTURE OF GAPPED PROPAGATORS
	VII. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: RELATIVISTIC ABRIKOSOV ALGEBRA
	APPENDIX B: EUCLIDEAN CONVENTIONS
	References


