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Using high-accuracy numerical relativity waveforms, we confirm the presence of numerous overtones of
the l ¼ 2, m ¼ 2 quasinormal mode early in the ringdown of binary black hole mergers. We do this by
demonstrating the stability of the mode amplitudes at different fit times, ruling out the possibility that a
linear superposition of modes unphysically fits a highly nonlinear part of the waveform. We also find a
number of previously unidentified subdominant second-order quasinormal modes in the (2, 2) mode. Even
though these modes are mathematically nonlinear, they nevertheless confirm the validity of perturbation
theory as a good approximation for describing much of the ringdown.
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I. INTRODUCTION

When two black holes orbit each other, they radiate
energy via gravitational waves and eventually merge to
form a single black hole. The gravitational waveform rises
to a maximum amplitude and then settles down in a
ringdown phase as the remnant black hole sheds its
distortions and evolves toward a final state of equilibrium.
Close enough to equilibrium, the final black hole can be
approximated by linear perturbation theory of the Kerr
metric [1]. In this approximation, the radiation is dominated
by a set of quasinormal modes (QNMs).
The QNMs are damped oscillations of the remnant black

hole, with characteristic frequencies determined by the
mass and the spin of the remnant. Each QNM frequency,
ωlmn, is complex valued, encoding the oscillation fre-
quency and damping time. Here l and m label the angular
harmonic of a particular mode. The final index n of ωlmn is
the overtone number. It labels the eigenvalues of the radial
equation for the perturbation. While the n ¼ 0 mode, or
fundamental mode, was typically of primary interest in
ringdown studies, the overtones, n > 0, were often
neglected and considered subdominant. Recent work [2]

challenged this notion, demonstrating that overtones are
important for modeling binary black hole ringdowns and
that the inclusion of overtones seems to allow for accurate
modeling of the (2, 2) component of the waveform as early
as its peak. This result turned out to be controversial and
was met with claims of overfitting and some doubts about
whether the overtones are in fact physical [3–9]. A more in-
depth discussion of the connection between this previous
work [2] and the current work can be found in Sec. II.
An important issue is how to distinguish a linear

superposition of modes that is physical from a super-
position that merely provides a good fit, that is, overfitting.
A good criterion is that if the modes are really there, their
amplitudes should remain constant as the start time of the
fit is varied, apart from the exponential decay of each mode
with its expected decay constant. Part of the reason for
skepticism in the papers cited above is that they could not
demonstrate that the amplitudes were constant, especially
at early times and for higher overtones. We do so here.
In this paper, we investigate the presence of linear QNMs,

including overtones, and second-order QNMs [10–13]
in the (2, 2) component of the ringdowns of high-accuracy
numerical relativity (NR) simulations. Our primary focus is
a theoretical understanding of the ringdown, with a goal of
determining the contributions of overtones and second-order*Contact author: mgiesler@tapir.caltech.edu
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QNMs to the ringdowns of binary black holes. We aim to
determine the physical picture of the ringdown and how
much of it is described by perturbation theory, either first or
second order. Whether the modes we identify in this work
can be detected in practice with a certain detector or
sensitivity is a separate question that should be addressed
in future work.
Throughout this work, we focus on two particular NR

simulations from the Simulating eXtreme Spacetimes
(SXS) collaboration. Both simulations are equal-mass
aligned-spin binaries and both are extremely accurate.
The high accuracy of these waveforms is due to improved
methods in extracting the waveforms from the numerical
evolutions. In particular, we use waveforms that have been
extracted using a Cauchy evolution via SpECTRE’s Cauchy-
characteristic evolution (CCE) module [14–16]. This
enables us to not only obtain much higher-accuracy wave-
forms, but because CCE also computes the Weyl scalars,
we can map the NR system to the superrest frame of the
remnant black hole [17,18] using Bondi-van der Burg-
Metzner-Sachs (BMS) frame fixing [18–20]. This last step
is important for removing mode-mixed QNMs that arise
from being in the wrong BMS frame. If these spurious
modes are not removed but left unaddressed, they effec-
tively increase the noise floor and make fitting highly
challenging. Additional details regarding the NR wave-
forms and preprocessing can be found in Sec. IVA.
Beyond this, an additional improvement over previous

fitting techniques is the use of a much more robust
nonlinear least squares algorithm called variable projection.
We make use of this algorithm to perform agnostic searches
for QNMs within the ringdown, identifying the best-fitting
complex frequencies of unknown QNMs. For a detailed
discussion of variable projection, see Sec. III B.
Identifying and extracting individual QNMs from the

ringdowns of NR waveforms is a challenging task. To
highlight some of the subtleties associated with fitting
many modes in the presence of noise, we first treat a
simplified analytic case and discuss the complications that
arise. In particular, we show how sensitive the highly
damped modes are to small amounts of simulated numeri-
cal noise. In Sec. IV B we introduce a technique for
handling the most sensitive modes and show how this
allows for better resolution of mode amplitudes as a
function of time. We use this same technique in Sec. V
to uncover the many QNMs in the ringdowns of our two
highly accurate NR waveforms. These analyses confirm
that the overtones are physical and that they can be stably
extracted from binary black hole ringdowns. Moreover, we
also show a number of previously unidentified second-
order QNMs present in the dominant ðl ¼ 2; m ¼ 2Þ
component of the ringdown. While the second-order modes
are generally subdominant, they are in principle detectable,
and could serve as unique probes of the nonlinear aspects of
binary black hole mergers. Lastly, we explore the accuracy

of using QNMs to predict remnant parameters and discuss
the connection between unmodeled nonlinearities and
biased estimation. A note on our conventions: we take
c ¼ G ¼ 1 and use the Moreschi-Boyle conventions of
Refs. [19–25].

II. PREVIOUS WORK

In previous work [2], we explored the contribution of
overtones to binary black hole ringdowns. There we
showed that the inclusion of overtones provides an accurate
estimate of the underlying remnant mass and spin as early
as the peak1 of the strain. Reference [2] also showed that a
model with overtones provides an excellent description for
the postpeak signal, with residuals comparable to the
numerical error in the waveforms used in that study.
Showing that amplitudes are constant up to the expected
decay rates, a much stricter requirement for proving the
presence of overtones, proved to be more difficult and
Ref. [2] could only reliably extract up to n ¼ 2 (with rough
evidence for n ¼ 3 and n ¼ 4).
In this work, we find that with improved high-accuracy

waveforms we can reliably extract the numerical decay of
overtones well beyond n ¼ 2. These improved waveforms,
along with improved fitting techniques, yield residuals at
the 10−8 level, whereas the prior work had numerical noise
at a significantly higher level of ∼10−5. This lower noise
floor allows us to identify previously unidentifiable modes
and improves our ability to numerically extract individual
modes over a much wider range of amplitudes and time.
However, under the stricter test of constant mode

amplitudes, while the model still provides accurate pre-
dictions for the remnant parameters and excellent residuals
at the peak, some of the modes cannot be consistently
extracted at times very close to the peak. An unmodeled,
unidentifiable contribution to the waveform in the imme-
diate postpeak region seems to spoil the stability of the
modes when attempting to extract them numerically. The
time at which we can show constant mode amplitudes
appears to depend on the remnant spin, as the higher spin
system requires a longer wait time. As can be seen in
Sec. V, stable amplitudes are not achievable until ∼4M after
the peak in a moderately spinning case and ∼8M postpeak
in a high-spin case.2

There are multiple factors that may contribute to our
inability to show constant mode amplitudes at early times
in the ringdown. These include the prompt response
[26,27], evolving QNM amplitudes [28,29], and effects
not describable as perturbations of a single remnant black

1In this paper, the peak always refers to the peak amplitude of
the (2, 2) mode of the strain. The time of this peak can differ
significantly from that of other mode amplitudes, or of energy
fluxes, or of quantities like Ψ4.2We note that these times correspond roughly to the times of
the peak luminosity, over all ðl; mÞ, for each system.
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hole. In addition, recent works [30,31] showed that changes
in the mass and spin of a perturbed black hole generate a
nonlinear response in the QNMs early in the ringdown.
Interestingly, Refs. [30,31] showed that despite this non-
linear response, the resulting waveform is still well-
modeled by a linear superposition of QNMs, which settle
into constant amplitudes very early on. While Refs. [30,31]
considered a perturbed single black hole, it is plausible that
this effect also exists in binary mergers and that it might
contribute to some of the unmodeled content in the early
ringdown. Nevertheless, one of the main conclusions of this
paper is that empirically all of these possible effects make
small contributions to the strain observed at infinity.
It is worth emphasizing that the times referenced above

refer specifically to the time at which we can show all mode
amplitudes to be relatively stable. While the stability of
many modes is influenced by the unmodeled content at
earlier times, the n ≤ 2 overtone amplitudes measured at
the peak agree with the amplitudes recovered at the
abovementioned times for each system. This suggests that
these modes may still be identifiable in an analysis carried
out at the peak. In Ref. [2], a Bayesian analysis exploring
overtones in a LIGO-like detector showed that for realistic
signal-to-noise ratios, a model with just the first few
overtones at the peak is sufficient to accurately recover
the remnant mass and spin. This is because the first few
overtones can be resolved at higher levels of noise than the
higher overtones. Determining the optimal time and the set
of modes necessary for properly analyzing ringdown data
for different systems and noise levels is left to future work.
We discuss the issue of start time and the effect of early
unmodeled contributions on the accuracy of our QNM
model more in Sec. V D.

III. QUASINORMAL MODES

Linear perturbations of the Kerr metric describing a
rotating black hole can be readily determined by solving a
wave-type equation for a complex scalarΨ by separation of
variables [1,32]. The solution from doing so can be
decomposed into multipoles Ψlm by using spin-weighted
spheroidal harmonics [1,32,33]

Ψlm ∼
Z

dωe−iωt
X
lm

Rlmðr;ωÞ: ð1Þ

Here the modes Rlm are a solution of a radial equation
analogous to a quantum mechanical radial equation with
some effective potential. At large r, Ψ encodes the two
independent polarizations of the gravitational wave h. The
ringdown solution we seek for Rlm describes radiation
leaving the domain both at infinity and at the surface of the
black hole—an eigenvalue problem for frequency ω. Since
energy is being dissipated, the eigenfrequencies ωlmn are
complex. The index n labels the radial eigenvalues, with
n ¼ 0 corresponding to the least-damped mode, n ¼ 1 the

next least damped, and so on. Modes for n > 0 are called
overtones, although they have very different behavior than
overtones in other physical systems. At late times, the 1=r
piece of Eq. (1) at large r becomes an outgoing wave

Ψlm ¼
X
lmn

Clmne−iωlmnðt−r�Þ; ð2Þ

where r� is a radial “tortoise” coordinate.
The gravitational wave strain h measured by a detector

consists of two polarization states. These are usually
combined into a single complex strain that is decomposed
into modes using spin-weighted spherical harmonics. We
will initially ignore the distinction between spherical and
spheroidal harmonics, so the strain modes at a fixed large r�
are

hlm ¼
X∞
n¼0

Clmne−iωlmnt: ð3Þ

In Eq. (3) we have renormalized the amplitudes Clmn in
going from Ψ to h. Each term in this sum represents a
damped sinusoid and gives the mathematical description of
a single QNM with indices ðl; m; nÞ. Note that Clmn refers
specifically to the complex-valued amplitudes associated
with each mode and that we use Almn ≡ jClmnj to denote
the absolute value of the mode amplitudes.

A. QNM notation

The Schwarzschild metric is symmetric under the trans-
formation t → −t. Accordingly, the QNMs for a given
ðl; mÞ come in pairs with positive and negative oscillation
frequencies: ωlmn ¼ −ω�

lmn. The negative-frequency mode
is called a mirror mode, since it is a reflection across the
imaginary frequency axis of the positive-frequency mode.
For the Kerr metric, the symmetry transformation is
t → −t;ϕ → −ϕ. The QNMs still come in pairs, but the
symmetry relation is now ωlmn ¼ −ω�

l−mn. Thus it is the
positive-frequency mode for −m that generates the neg-
ative-frequency partner for the original mode. Note that
because of these relations, tables of QNM frequencies
typically only give the positive-frequency values.
QNMs can also be described as prograde or retrograde.

A prograde mode hasm and the real part of ωwith the same
sign, so with the dependence expð−iωtþ imϕÞ the pattern
speed is in the direction of increasing ϕ.
The amplitudes of the QNMs depend on how the modes

are excited. For typical binary black hole mergers, such as
those considered in this paper, the angular momentum in
the system ensures that the prograde modes are excited
more strongly than the corresponding retrograde modes.
In this paper, we will use the notation ðl; m; nÞ to denote

a QNM, adhering to the convention that its real part is
always positive. For example, (2, 2, 0) corresponds to the
prograde fundamental mode e−iω220t, while −ð2;−2; 0Þ�
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represents a retrograde mode eiω
�
2;−2;0t. The values of ω220

and ω2;−2;0 are taken from the typical tables of QNM
frequencies. Appendix A gives additional details about
QNM notation.

B. Fitting damped sinusoids

A key feature of the work reported here is that we do not
use standard nonlinear least-squares algorithms to fit
QNMs to our numerical waveforms. Fitting a sum of
damped sinusoids to data is a tricky problem. Note that
a single damped exponential can be written in several
equivalent forms:

Ae−iðωtþϕÞ ¼ Ae−iϕe−iωt ¼ Ze−iωt; ð4Þ

Z ¼ Ae−iϕ ≡ xþ iy: ð5Þ

Here A and ϕ are real, while ω can be complex. If ω is
known, then using the first expression in Eq. (4) requires
nonlinear least squares to fit for the phase ϕ, whereas the
last expression in that equation makes clear that the
problem actually requires only linear least squares fitting.
However, fitting for the frequencies, whether real or
complex, is inherently a nonlinear least squares problem
and generally much more difficult.
The next important point is that fitting a sum of

exponentials with unknown frequencies or decay con-
stants is numerically ill-conditioned. This fact has been
known for a long time (see, e.g., the 1956 book by
Lanczos [34]), and is continually rediscovered by phys-
icists. In practice, this means that fitting with the wrong
number of exponentials or with the correct number but
noisy data, can lead to results with large errors. This
sensitivity implies that one needs to use as robust a
method as possible to do the fitting.
The “best” algorithm known has also been known for a

long time, since 1973 [35]. It takes advantage of the fact
that some of the parameters in the fit enter the model
linearly while others are nonlinear. Such problems are
called separable least squares, and the algorithm is called
Variable Projection, implemented originally in a Fortran
code called VARPRO [36]. The idea is to start with initial
guesses only for the nonlinear parameters. Then standard
linear least squares solves for the linear parameters by the
usual analytic process. Next, an iterative nonlinear fitting
routine updates the nonlinear parameters with the linear
parameters held fixed. The whole procedure is then iterated
until a suitable tolerance is achieved. The clever part of the
algorithm deals with the Jacobian of the cost function with
respect to the nonlinear parameters that is used in the
nonlinear fitting. This Jacobian has a dependence on the
linear parameters because the nonlinear parameters depend
implicitly on the linear ones. Reference [35] worked out
this contribution to the Jacobian—it can be computed
explicitly from the analytic solution of the linear least-

squares problem using linear algebra techniques. In gen-
eral, this algorithm is never worse than brute-force non-
linear least squares fitting, and often succeeds when brute
force fails.
Although most of the main results we present in Sec. V

are obtained from simple linear least-squares fits, VARPRO is
crucial in arriving at these results. The ringdowns we
analyze are composed of an initially unknown number of
overlapping individual quasinormal modes with unknown
frequencies and damping times. While VARPRO is the best
algorithm we know of to tackle this problem, it is still
challenging to simultaneously identify many modes in the
presence of numerical noise when the number of modes and
their frequencies are unknown. To simplify the problem, we
rely on the fact that many modes decay at different rates and
that the majority of the modes will have decayed below the
noise floor at late times. Given this, we initially employ
VARPRO at very late times where only one or two long-lived
modes are still present and allow VARPRO to identify modes
agnostically, determining the complex frequencies and
complex amplitudes of the slowest decaying modes.3

Once we are confident in the presence and stability of
these modes, we move to a slightly earlier time and look for
the next slowest decaying modes. To further simplify the
fitting, as we step back to an earlier time and agnostically
search for additional modes, we no longer allow the
frequencies of previously found modes to vary. Instead,
we keep them fixed at the analytic values corresponding to
the remnant mass and spin. This reduces the complexity of
the fit to one or two nonlinear searches at a time, while
previously found modes enter into the fit linearly. We repeat
this process of adding found modes and nonlinearly
searching for new modes until VARPRO can no longer find
any stable modes.
Finally, in regards to initial guesses, when the number of

modes is reasonable and VARPRO is well-behaved, it is
insensitive to the initial guess when searching for new
modes. Given this, we set the initial guess for the real part
randomly from the interval [0, 1) and the imaginary part
from an interval of ð−1; 0�, which are practical values for
the ringdown frequencies of the waveforms considered in
this work. While VARPRO is capable of imposing bounds,
we set the bounds for the real and imaginary components to
be ð−∞;∞Þ, effectively allowing the search to be
unbounded.
In this work, we have relied on a modern implementation

of VARPRO [37] in Matlab. We have translated this code into
Python so that it can use the nonlinear solvers available in
Scipy. This Python version is publicly available at [38].

3Note that we use varying time intervals to identify stable new
modes that show up as we go back in time. These intervals are
longer at later times and shorter at earlier times, when multiple
new modes with rapid decay times appear.
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IV. METHODS

A. Waveform data

For our comprehensive ringdown analyses, we use two
binary black hole simulations [39], whose inspiral and
remnant parameters can be found in Table I. The Cauchy
evolution of these simulations is performed using the
SpEC code [40], while the waveform and the Weyl scalars
are computed at future null infinity by running the
SpECTRE code’s Cauchy-characteristic evolution (CCE)
code [14–16]. We then map the waveform data at future
null infinity to the superrest frame of the remnant black hole
250M past the luminosity peak using the package
SCRI [17,19,20,41–43]. We stress that this component of
the postprocessing that fixes the BMS frame is absolutely
crucial for performing robust and accurate ringdown analy-
ses. By mapping the asymptotic data to the superrest frame
of the remnant black hole, one ensures that the remnant
is at the origin, at rest, has its spin aligned with
the ẑ-axis, and is not supertranslated relative to the usual
Kerr metric. Thus, there can be no unexpected mode mixing
between the spherical harmonic modes, which would
complicate the QNM fits, as was found in, e.g., Refs. [7,13].
Once the strain and the Weyl scalars are obtained at

future null infinity in the superrest frame of the remnant
black hole, we utilize SCRI to perform one more post-
processing step that simplifies the ringdown analyses. As
outlined in Eq. (12) of Ref. [44] as well as elsewhere in
Refs. [45–47], because of the supertranslation symmetry at
future null infinity, the strain obeys the supermomentum
balance law

h ¼ 1

2
ð̄2D−1

�
−
�
Ψ2 þ

1

4
ḣ h̄

�
þ 1

4

Z
u

−∞
jḣj2du

�
: ð6Þ

The notation here is that of Ref. [44] and is not important
for this paper, other than to note that h is the strain. The first
term in Eq. (6) is related to the Bondi mass aspect and is
effectively a combination of the mass and the current
multipole moments. The second term in Eq. (6) corre-
sponds to an energy flux and is often interpreted as the
source of the null memory [44,48–56]. It is a purely
nonlinear contribution in the sense that it depends on the
strain quadratically. Consequently, when fitting the strain

with linear QNMs, this term raises the effective noise floor,
as it can only be modeled with second-order QNMs.4

Because of this, rather than fitting the full strain, which
includes this nonlinear contribution, we instead only fit the
contribution to the strain coming from the first term in
Eq. (6). Although this term will still have nonlinear QNM
contributions that we will have to fit, by neglecting the
contribution from the null memory the fits should be more
straightforward to carry out. Finally, because of residual
supertranslations that may exist from the BMS frame fixing
being imperfect, instead of fitting the strain (which can be
shifted by a constant), we fit the news, i.e., the first time
derivative of the strain.
To help clarify this point regarding the nonlinear term, in

Fig. 1 we show the (2, 2) mode of the news as well as the
contributions from the multipole moments and the non-
linear term in Eq. (6). As is clearly illustrated, the nonlinear
term in Eq. (6) is three orders of magnitude smaller than the
full news. Consequently, since this term would simply
detract from our ability to resolve overtones by including
certain extra, nonlinear contributions, we do not include it
in the waveforms that we fit in this work.
Finally, the last step in preparing the waveforms to be fit

with QNMs is to adjust the scale of the time coordinate (and
hence the derived frequencies) to match the convention in
tabulated values. This step is unfortunately often ignored in
the literature, but is key for performing robust and accurate
black hole spectroscopy. In particular, SpEC uses the total
Christodoulou mass of the binary as the mass unit, whereas
tables set the mass unit to unity. Thus the time coordinate of

TABLE I. Inspiral and remnant parameters for the two binary
black hole simulations used in our ringdown analyses. Here q is
the mass ratio and χz is the z-component of the BH spin. In both
simulations, the binaries are of equal mass and the BH spins are
aligned with the orbital angular momentum. The remnant
parameters are the final mass Mf and the final BH spin χf .

SXS ID q χ1z χ2z Mf χf

BBH:2420 1.0 0.2 0.2 0.95 0.75
BBH:2423 1.0 0.85 0.85 0.91 0.92

FIG. 1. The (2, 2) component of the news and the two terms of
Eq. (6) that contribute to the news for SXS:BBH:2423. The news
and the contribution from the multipole moment, the first term in
Eq. (6), overlap and are effectively indistinguishable. The non-
linear contribution, which is a few orders of magnitude smaller
than the news, is also shown. This nonlinear contribution refers to
the energy flux described in Sec. IVA and corresponds to the
second term in Eq. (6).

4In particular, this term measures the null memory sourced by
QNMs and should be dominated by the second-order QNM
ð2; 2; 0Þ − ð2; 2; 0Þ� for typical binary black hole mergers.
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SpEC waveforms must be multiplied by the total
Christodoulou mass. Even though this mass is typically
within 10−4 of unity, failing to make this correction can
strongly bias QNM fits.

B. Fitting

Identifying the modes present in the ringdown of an
arbitrary numerical waveform comes with a number of
challenges. To illustrate these challenges, we first consider
an idealized analytic ringdown model. We construct an
analytic waveform modeled after the ringdown of SXS:
BBH:2423 and its remnant parameters. The analytic model
is a superposition of modes, as in Eq. (3), including the
ð2; 2; nÞmodes with n ¼ f0…9g, the (3, 2, 0) mode and its
first overtone, the (3, 2, 1) mode. In addition to these
damped sinusoids, we also add a constant term to help
stabilize our fits, since such a term seems to be present in
our numerical relativity waveforms for reasons that are not
clear. The constant we fit tends to be three orders of
magnitude smaller than the smallest damped sinusoid,
which emphasizes the ill-conditioned nature of the fitting.
The frequencies, ωlmn, are determined by the remnant of
SXS:BBH:2423 and the complex amplitudes, Clmn, are
consistent with those we find below in SXS:BBH:2423.
In such a purely analytic model, we can use linear least

squares with varying start times to fit for the modes we have
included. We recover the expected amplitudes as they
decay over time until they eventually reach roundoff.
However, in realistic numerical waveforms, numerical
noise interferes with the ability to resolve the individual

modes below some level. In order to better understand the
role of numerical noise, we add a small amount of Gaussian
noise to the analytic model. In this particular example,
we add Gaussian noise with an average amplitude of
∼2 × 10−8. For context, the numerical noise often present
in SXS extrapolated waveforms is closer to 10−4–10−5, so
the amount of noise added in this example is orders of
magnitude smaller than that present in publicly available
waveforms.
The results of this procedure are shown in Fig. 2. Notice

that while the least damped modes are well resolved across
a wide range of times, the highest damped modes are most
sensitive to the tiny amount of noise we have added. In
Fig. 2, the n ¼ 9 and n ¼ 8 modes are the first to be
affected by the added noise, deviating from their expected
decays at around 12–13M. Although the noise is only
around 10−8, these modes become unresolvable at much
larger amplitudes, ∼10−3 for n ¼ 9 and ∼10−2 for n ¼ 8.
Once the higher damped modes begin to deviate, the next
highest damped modes are eventually affected and the
deviations cascade through the lower n, yielding inaccurate
amplitudes for many of the modes. This high sensitivity to
low noise levels even in analytic models means that highly
damped modes are likely to be very difficult to resolve in
even the best numerical waveforms publicly available, and
even when they are really present.
The early deviation from the expected decay that occurs

for some of the mid-range n, say n ¼ 5, is in part due to the
higher modes, n > 5, becoming unresolvable yet remaining
in the set of modes we use to fit to the data. For example,

FIG. 2. Mode amplitudes as a function of time, recovered from a linear least-squares fit to an analytic waveform in the presence of
Gaussian noise at a level of ∼10−8. The modes included are various ð2; 2; nÞ and ð3; 2; nÞ modes with amplitudes and phases modeled
from SXS:BBH:2423, as well as a constant term with an amplitude of ∼5 × 10−7. The recovered amplitudes are the solid colored lines,
while the black dotted lines represent the analytic expectations for each mode. Notice that once the (2, 2, 9) mode begins to deviate from
its analytic value because of the small amount of added noise, other highly damped modes eventually follow suit. This extreme
sensitivity to low-level noise is one of the primary challenges to stably resolving highly damped QNMs.
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consider Fig. 2, where we are fitting up to N ¼ 9, where N
denotes the maximum overtone number n used in a fit. We
see how the n ¼ 5mode begins to deviate from its expected
decay at around 16M, when its amplitude is still 10−2. This
is well above the amplitude for which we are able to resolve
the highest damped mode, n ¼ 9. One remedy for this issue
is to discard the highest modes once they are affected by the
noise, which in turns extends our ability to resolve some of
the lower modes. In practice, this means that once we reach
a time where the n ¼ 9 mode can no longer be resolved for
a given noise level, the set of (2, 2) modes that we include
in the fit is limited to N ¼ 8 rather than N ¼ 9. Similarly,
once we reach a time where the n ¼ 8mode has reached its
limit, we drop that mode and limit the set to N ¼ 7.
In Fig. 3, we show how this process of dropping higher

modes leads to better resolvability of lower modes, and in
this particular case, the n ¼ 5mode. There are five different
curves in Fig. 3, each corresponding to the amplitude of the
n ¼ 5 mode when the fit is limited to just N overtones of
the (2, 2) mode. The N ¼ 9 curve is identical to the n ¼ 5
curve of Fig. 2, as that fit includes up to N ¼ 9 overtones.
Notice in Fig. 3 that each time N is reduced, the n ¼ 5
mode can be resolved at a lower amplitude than the
previous N. To distinguish the regions where certain N
are valid, each dashed curve is overdrawn with a solid gray
curve when it is the preferred set. Once the fitting process
with mode dropping is complete, we are left with a
composite n ¼ 5 amplitude that now extends down to
roughly 10−5 and out to about 29M. So, through the

process of dropping modes, we extend our ability to
resolve this particular mode by three orders of magnitude
in the amplitude and increase the time over which it is
resolved by ∼10M. A direct comparison can be made by
comparing the gray composite amplitude with the dashed
N ¼ 9 curve, which corresponds to the best resolvability of
n ¼ 5 in the absence of mode dropping.
Although we focused here on the n ¼ 5 mode of the

analytic example, the process of dropping modes leads to
better resolvability of all modes. This is because including
modes in the fit that are no longer present in the data spoils
the resolvability of those modes still present. We find
through this analytic example that the process of dropping
modes is critical to properly resolving modes. This example
also emphasizes the ill-conditioned nature of fitting
damped sinusoids to data. In the next section, we use this
same technique to properly resolve the modes of numerical
relativity waveforms.

V. RESULTS

Having described our methods for identifying modes
with VARPRO in Sec. III B and our mode-dropping tech-
nique in the previous section, we now turn to identifying
and fitting the QNMs of two high-accuracy numerical
relativity waveforms. In particular, we study one highly
spinning remnant, SXS:BBH:2423, and one more moder-
ately spinning remnant, SXS:BBH:2420. The binary and
remnant parameters for each simulation are listed in Table I.
For each waveform, we use VARPRO to identify the QNMs
present in the ringdowns. We do this by starting at late
times and working our way backward, letting VARPRO

identify the best-fitting frequency and damping times at
each point in time. Each time we find a stable frequency
and damping time that corresponds to a QNM associated
with the asymptotic remnant parameters, that QNM is
permanently added to the fitting set. Previously found
modes then enter into the fit linearly alongside a nonlinear
search for additional modes through VARPRO. We continue
this process until no additional stable modes are found.
With this procedure, we are able to identify a large set of
stable QNMs in both simulations. These modes include
a large number of overtones, multiple modes from
spherical-spheroidal mixing, and a number of second-order
QNMs.
Note that there are two distinct fitting procedures used to

obtain the following results. The first procedure involves
nonlinear fitting using VARPRO to identify the QNMs in a
particular waveform, as described above. The second fitting
procedure is a linear least squares method coupled with a
mode-dropping technique to show the stability of the
QNMs identified through VARPRO in the first step. This
second procedure is critical to show the stability of QNM
amplitudes in the presence of numerical noise as high-
lighted in the simplified analytic case within Sec. IV B.

FIG. 3. The (2, 2, 5) mode amplitude recovered from a linear
least-squares fit to the same analytic waveform shown in Fig. 2.
The solid gray line is a composite amplitude of the n ¼ 5 mode
obtained through the process of dropping higher modes once they
become unstable due to noise. Each dashed curve shows the
n ¼ 5 amplitude recovered from a fit including up to N overtones
of the ð2; 2; nÞ QNMs. Notice that the curve associated with N ¼
9 is the first to deviate from the expected decay and that models
with a lower N at later times are in better agreement with the
analytic expectation. This dropping of modes results in improved
mode amplitude extraction, extending the amplitude down a few
orders of magnitude and out an additional ∼10M compared to
just fitting with N ¼ 9.
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A. High-spin NR ringdown

The first case we consider is SXS:BBH:2423, in which
the QNMs decay more slowly because of its more rapidly
spinning remnant. This property of high-spin remnants
means that the more rapidly decaying overtones are longer
lived and therefore more easily resolvable. We show a
numerical decomposition of the ringdown of SXS:
BBH:2423 into its individual modes in Fig. 4. We see
that the ringdown contains a multitude of QNMs, including
the fundamental (2, 2, 0) mode and nine of its overtones,
the (3, 2, 0) mode and one of its overtones, and four second-
order QNMs. For each mode, we include a dotted line
indicating the expected analytic decay, which is the path a
stable well-resolved mode should follow. The discontinu-
ities in the amplitudes of the individual modes are a
consequence of the mode dropping technique we employ,
which is necessary because of the numerical noise present
and was discussed in more detail in Sec. IV B.
A surprising aspect of this result is the presence of four

previously unidentified second-order QNMs, which are all
exceptionally stable. A second-order QNM, or quadratic
QNM, is generated from the product of two linear QNMs.
So its frequency is a sum or difference:

ω ¼ ωl1m1n1 þ ωl2m2n2 or ω ¼ ωl1m1n1 − ω�
l2m2n2

:

These would lead to modes with m ¼ m1 þm2 and
m ¼ m1 −m2. The modes we find that satisfy m ¼ 2 in

this ringdown are ω440 − ω�
220, ω440 − ω�

320, ω220 þ ω200,
and ω220 − ω�

200. All of these modes are denoted by dashed
lines in Fig. 4. While the real part of the second-order QNM
frequency is the sum or difference of the real parts of the
linear QNMs, in both of the above cases, the imaginary part
of the second-order QNM is always the sum of the
imaginary components of the linear QNMs. Thus, sec-
ond-order QNMs decay more quickly than the linear
QNMs they are generated from. Consequently, as can be
seen in Fig. 4, the second-order QNMs decay more quickly
than the fundamental mode, but more slowly than the
overtones. This property of quadratic QNMs means that
they occupy regions of the complex plane that make them
reasonably easy to identify when relying on VARPRO to find
modes. Moreover, while the second-order QNMs are
subdominant to the overtones at early times, some of these
modes remain measurable in the ringdown after most of the
overtones have decayed away. This means that even at
fairly late times in the ringdown, for a system like SXS:
BBH:2423, the fundamental remains accompanied by the
(2, 2, 1), the (3, 2, 0), and the ω440 − ω�

220 second-order
QNM. This means that, even at late times, a multimodal
analyses of the ringdown may well be required with future
high-accuracy detectors.
It is important to note that the data in Fig. 4 begins at

t ¼ tpeak þ 8M. This is because, before this time, VARPRO
can no longer reliably identify any additional stable
complex frequencies. There appears to be some additional

FIG. 4. QNM amplitudes as a function of time from linear least-squares fits of the (2, 2) component of SXS:BBH:2423. The linear
QNMs are denoted by solid lines while the second-order QNMs are indicated by dashed lines. Here again, the dotted black lines
represent the expected analytic decay of each mode. The discontinuities in the amplitudes are due to the mode-dropping technique that
was shown to improve mode extraction in the analytic model considered in Sec. IV B. At each point where a QNM’s amplitude ends
discontinuously, this means that mode has been dropped from the set of modes in the fit. This is the case for the highest-damped modes,
which are more easily affected by the numerical noise present in the NR waveforms. Aside from these modes, which eventually get
dropped, the remaining QNMs are well resolved over a significant window of time. The majority of the second-order QNMs are
subdominant to all linear contributions, except for the ω440 − ω�

220 QNM. This particular QNM, with its larger amplitude and relatively
slow decay, is a good candidate for probing nonlinear contributions to ringdowns in future gravitational wave observations.
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content in this region of the ringdown, but it is apparently
not well-modeled by a damped sinusoid with a fixed
frequency. Consequently, performing a decomposition
before this time results in unstable mode amplitudes,
especially for the highest-damped modes, which are
extremely sensitive to small amounts of noise or unmod-
eled data. One possible issue related to stably decomposing
modes earlier than 8M is that some of the ðl; mÞ’s
contributing to second-order QNMs do not peak until after
the peak of the (2, 2). For instance, the ω440 − ω�

220 QNM is
sourced by the (4, 4, 0) mode, yet the (4, 4) contribution to
the strain does not peak until ∼7.5M after tpeak. In fact, the
average peak flux over the two-sphere occurs ∼10.5M after
the peak of the (2, 2), which indicates some second-order
contributions are likely still being sourced and are not well
modeled by a constant exponential decay.
Finally, one additional check on the stability of modes is

to check the phases of each QNM, as these should remain
constant over time. In Fig. 5, we show the phase of each
mode over a window of 10M, where it is apparent that the
most stable modes have constant phases throughout. As was
the case with the amplitudes, the most quickly decaying
overtones are the first to become unstable, which can be seen
in the deviation of the phases from their initial values.

B. High-spin n= 5 QNM

In Fig. 6 we show the stability of the n ¼ 5 mode in the
ringdown of SXS:BBH:2423, a particularly challenging
mode, which we can resolve over nearly 20M and across
more than five orders of magnitude in the amplitude,
showing consistency with the expected decay for a remnant
with χ ¼ 0.92. We highlight this mode because of its high

overtone number and its anomalous behavior in the set of
(2, 2) QNMs. This particular mode exhibits peculiar
behavior with respect to the other n in its frequency and
excitation factors for very high spins. In Appendix B, we
discuss this mode further and explore the relationship
between mode amplitudes and excitation factors.

C. Moderate-spin NR ringdown

Next, we consider SXS:BBH:2420, a system with a
more moderately spinning remnant, specifically χ ¼ 0.75.
This remnant spin is more representative of typical binary
mergers and is closer to the remnant spin of a GW150914-
like merger. Since the spin is lower, the QNMs decay
more quickly than those of the system we considered in
Sec. VA.
Employing the same methods used in Sec. VA, includ-

ing the mode dropping method of Sec. IV B, we present a
numerical decomposition of the QNMs in the ringdown of
SXS:BBH:2420 in Fig. 7. What immediately stands out
here in comparison to Fig. 4 is a significant increase in the
number of modes present. As these simulations have
different binary configurations, the initial conditions at
the onset of the ringdown result in a different excitation
of modes.
As Fig. 7 shows, we find many of the same modes

present in SXS:BBH:2423, namely the (2, 2, 0) mode and
many overtones, the (3, 2, 0) QNM and its first overtone,
and the same second-order QNMs. However, we also find
additional modes that do not appear in the ringdown of
SXS:BBH:2423. These include a second overtone

FIG. 5. QNM phases as a function of time from linear least-
squares fits of the (2, 2) component of SXS:BBH:2423. The
phases are obtained from the fits shown in Fig. 4 and the line
styles here are consistent with that caption. The discontinuities in
the phases of the higher damped QNMs are caused by the mode
dropping described in the caption of Fig. 4. The phases are
generally constant, with the higher overtones deviating first
because of their sensitivity to numerical noise. We have not
mapped the phases back to a conventional 2π range to improve
distinguishability.

FIG. 6. The (2, 2, 5) mode amplitude recovered from linear
least-squares fits to the (2, 2) mode of SXS:BBH:2423. The solid
gray line is a composite amplitude of the n ¼ 5 mode obtained
through the mode dropping process. Each dashed curve shows the
n ¼ 5 amplitude recovered from a fit including up to N overtones
of the ð2; 2; nÞ QNMs. This result is consistent with the example
of extracting higher n from an analytic ringdown shown in Fig. 3
and described in Sec. IV B. The recovered amplitude is in good
agreement with the expected analytic decay (black dotted line),
spanning roughly five orders of magnitude in the amplitude over
a range of 15M.
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associated with the (3, 2, 0) mode, the (3, 2, 2), and some
additional QNMs from spherical-spheroidal mixing, the
(4, 2, 0) and (5, 2, 0). Interestingly, we also find four
additional second-order QNMs, in particular: ω220 þ ω300,
ω220 − ω�

300, ω220 þ ω400, and ω220 − ω�
400. The final

two additional modes present here are the retrograde
QNM − ω�

2;−2;0 and its first overtone −ω�
2;−2;1.

As was the case for SXS:BBH:2420, many of the (2, 2)
overtones are well resolved, aside from the quickest
decaying modes such as the n ≥ 7 QNMs, which are highly
susceptible to small amounts of noise. These QNMs are also
more sensitive to the dropping of the next highest mode,
leading to larger discrepancies in the amplitudes measured
before and after the drop. The ð3; 2; nÞ modes are all very
well resolved, including the (3, 2, 2), which is the first time
this mode has been found in the (2, 2) harmonic. While the
(4, 2, 0) QNM is easily measurable, the (5, 2, 0) mode has a
very small amplitude, making it challenging to cleanly
extract. The two retrograde modes, which are apparently
swallowed up in the higher-spin case, are both relatively
stable. A Fourier transform of the ringdown signal confirms
that thesemodes reside on the opposite side of the frequency
axis relative to the ð2; 2; nÞ QNMs.
As for the second-order QNMs, the highest amplitude

modes are as stable as many of the first order QNMs, but
the lower amplitude modes are somewhat susceptible to
noise. Notice in Fig. 7, that the ω440 − ω�

220 QNM is again
the highest amplitude quadratic mode and of sufficient
amplitude that it will survive until late in the ringdown,

subdominant only to the (2, 2, 0), (2, 2, 1), and (3, 2, 0). The
three other second-order QNMs, ω440 − ω�

320, ω220 þ ω200,
and ω220 − ω�

200 that were also present in SXS:BBH:2423,
have moderate amplitudes that remain stable throughout.
Notice though that while the ω440 − ω�

320 QNM was
larger than the ω220 þ ω200 QNM in the higher spin case,
the order of these two modes is flipped in this ringdown.
The remaining four second-order QNMs, ordered by
amplitude are ω220 − ω�

300, ω220 − ω�
400. ω220 þ ω300, and

ω220 þ ω400. While the first two are relatively stable
throughout, the two at lower amplitude become noisy as
they decay further into the noise.
The data in Fig. 7 does not start at tpeak, but instead at

t ¼ tpeak þ 4M. As was the case with SXS:BBH:2423,
VARPRO cannot identify a stable frequency before this time.
We suspect this is likely for the same reasons discussed in
Sec. VA, namely unmodeled content and sourcing of the
second-order modes. Here, the (4, 4) does not peak until
∼4.5M after tpeak and its average peak flux over the two-
sphere is ∼7M after the (2, 2) peak. Once again, stable
amplitudes are achievable roughly around the time the
(4, 4) peaks. Although we suspect this contributes to the
instability of amplitudes early on, additional nonlinearities
may also play a role here. In the two cases, the time until
stable amplitudes are achieved appears to follow the usual
relationship between remnant spin and decay rates, mean-
ing that any nonlinearities should decay away more slowly
in the higher-spin case and more quickly in the lower-spin
case, as we see here.

FIG. 7. QNM amplitudes as a function of time from linear least-squares fits of the (2, 2) component of SXS:BBH:2420. The linear
QNMs are denoted by solid lines while the second-order QNMs are indicated by dashed lines. The dotted black lines again represent the
expected analytic decay of each mode. As detailed in the caption of Fig. 4, the high-spin case, the discontinuities in the amplitudes are
caused by dropping certain fast-decaying QNMs. The amplitudes of the highest overtones are more difficult to resolve in this lower-spin
case because of the increased number of modes and the increased damping that comes with lower spins. Additionally, the lowest-
amplitude modes are also more challenging to resolve, especially as they decay further into the numerical noise. Aside from this, the
majority of the first- and second-order QNMs are well resolved. Note that there are a number of additional modes present in this
simulation as compared to the higher-spin case, including some retrograde modes, higher overtones of the (3, 2), and four additional
second-order QNMs. Here again, the ω440 − ω�

220 QNM is the dominant second-order mode, indicating that this mode in particular may
be an ideal candidate for future gravitational wave observations.
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D. Remnant parameters

So far, we have used the NR asymptotic remnant mass
and spin, Mf and χf, to determine the QNM frequencies,
ωðMf; χfÞ, used in our fits. To test whether this is indeed
the best-fitting M and χ, we repeat the fits while allowing
these parameters to vary and inform the QNM frequencies
through ωðM; χÞ. In the end, the best-fitting M and χ is the
set that produces the smallest residual—keeping in mind
that the underlying mass and spin as measured in the NR
simulation are unknowns in this process. To see how the
best-fitting M and χ compare to the NR quantities, Mf and
χf, we use

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδMf=MÞ2 þ ðδχfÞ2

q
ð7Þ

as our measure of error, where δMf and δχf are the
differences between the best-fit values and the NR mea-
sured quantities. This allows us to quantify how well the
model predicts the true underlying asymptotic remnant
quantities and to explore the performance of the model at
different times in the ringdown.
We begin with a focus on the ringdown of the high-

spinning remnant of SXS:BBH:2423. At each point in time,
we fit a set of QNMs to the data and find the best
combination of M and χ that minimizes the residual. We
then compute the corresponding ϵ from Eq. (7). In Fig. 8,
we show ϵ for a range of models over a range of 30M
starting from tpeak. All of the modes used in the fits of Fig. 4

are again used here, but we limit the set of ð2; 2; nÞ modes
to n ¼ f0;…; Ng, where N is the maximum n included in
the fit. In Fig. 8, we find that when the appropriate N is
used, the model predicts the remnant quantities remarkably
well, with ϵ < 10−5. This small deviation from the NR
remnant quantities indicates how well the QNM model fits
the data and reflects the predictive power of accurate fitting.
Fig. 8 also allows us to explore the shortcomings of a given
model by observing when ϵ deviates from the minimum
achievable values. For instance, considering N ¼ 3, we see
that ϵ is as large as ∼10−2 at early times and does not
achieve 10−5 until ∼25M. This is because many overtones
present in the data earlier on are not included in the set used
for fitting and it is not until those modes have decayed away
does N ¼ 3 become the appropriate model. The results and
reasoning are similar for the other N.
While the deviations in ϵ for N ¼ f3; 5; 7g in this

example are understood to be caused by ignoring overtones
present in the data, the case of N ¼ 9 is less well under-
stood. In Fig. 8, we see that for N ¼ 9, ϵ stabilizes around
10−5 about 8–9M after the peak. This is consistent with our
ability to show stable amplitudes after this time in Fig. 4.
However, before this time, we see ϵ deviates from this
minimum value and rises to 10−4 by tpeak. This again tells us
that there is unmodeled content in this region that we are
not currently including in the fit. This is consistent with the
discussions in the two previous sections on unstable
amplitudes at early times, where we speculate this is caused

FIG. 8. Measure of error ϵ, defined in Eq. (7), as a function of
time for different N. This measure of error quantifies the
difference between the best-fit mass and spin versus the NR
asymptotic remnant mass and spin for SXS:BBH:2423. Each fit
includes the set of QNMs shown in Fig. 4, but with the ð2; 2; nÞ
modes limited to a maximum N overtones. There is a floor near
10−5 that each N reaches once that model is preferred. The N ¼ 9

set accurately predicts the remnant quantities at a level of 10−4 at
tpeak and eventually reaches the 10−5 floor near the time at which
we can show stable amplitudes in Fig. 4. The other N eventually
reach similar values once the higher overtones excluded from
those sets have sufficiently decayed away.

FIG. 9. Measure of error ϵ, as defined in Eq. (7), for SXS:
BBH:2420. As detailed in the caption of Fig. 8, this quantity
measures the error in the mass and spin preferred by each set of
QNMs compared to the true NR asymptotic remnant mass and
spin. Here, as in Fig. 8, each N reaches a floor below 10−5 once
that model is optimal. In this case, each N produce smaller values
of ϵ at tpeak compared to those in Fig. 8, which is consistent with
finding stable amplitudes at an earlier time compared to the
higher spin case. Similarly, each N reaches the 10−5 floor earlier,
since the QNMs for this case are more highly damped. Although
N ¼ 9 does not reach a minimum until ∼4M, it is worth noting
that this set of QNMs accurately predicts the remnant quantities
with an error of ∼10−5 as early as tpeak.
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either by extended sourcing of second-order QNMs beyond
tpeak or by additional unknown nonlinearities. Still, it is
reassuring that even without including this unknown
content, the set of modes we are fitting with remain an
excellent model capable of accurately predicting the
remnant quantities at the level of 10−4 as early as tpeak.
We repeat this same procedure for the case of SXS:

BBH:2420, with the results shown in Fig. 9. Here we have
included all of the QNMs shown in Fig. 7 while limiting the
set of ð2; 2; nÞ modes to n ¼ f0;…; Ng. The values of ϵ at
tpeak for allN are all smaller than those of SXS:BBH:2423 in
Fig. 8. While the floor for ϵ is generally the same for both
cases, the ϵ’s are smaller at tpeak in this case since ourmodel is
stable much closer to tpeak. The ϵ forN ¼ 9 is slightly biased
at early times, but reaches its minimum at ∼4M once the
unmodeled content has decayed away. This too is consistent
with the time at whichwe observe stable amplitudes in Fig. 7.
So, while we cannot show stable amplitudes for all QNMs
before t ¼ tpeak þ 4M, the model captures themajority of the
ringdown signal, precisely predicting the remnant parameters
down to a few times 10−5 as early as tpeak. This is consistent
with the result found previously in Ref. [2] for a waveform
with similar parameters.

VI. DISCUSSION AND CONCLUSIONS

Understanding the nature of binary black hole ringdowns
is critical to future endeavors probing Einstein’s general
theory of relativity. Whether it is black hole spectroscopy or
searching for black hole mimickers, it is essential to
understand the physical aspects of ringdown signals.
Using some of the highest-accuracy ringdown waveforms
available from numerical relativity coupled with a robust
nonlinear fitting scheme, we reveal details of the ringdown
that were previously unachievable. Through advances in
numerical relativity waveform extraction, namely CCE,
BMS frame fixing, and removing contributions from the
memory, the noise floor in the ringdown of these wave-
forms is orders of magnitude smaller than those previously
available. This, along with the use of variable projection
(VARPRO), unveils a number of QNMs in the dominant
quadrupolar (2, 2) component of the ringdown that were
previously undiscovered. This includes a number of sec-
ond-order QNMs and overtones of modes present through
spherical-spheroidal mixing. In addition to these newly
observed modes, we also improve on our ability to numeri-
cally extract the many overtones associated with the (2, 2)
QNM. Through simplified analytic explorations, we show
the high sensitivity of overtones to small amounts of noise
and provide an improved method for extending our ability
to show stable amplitudes across time.
In the ringdown of a highly spinning remnant, SXS:

BBH:2423, we find that the overtones have stable amplitudes
over at least 10M up to the n ¼ 7 overtone, and the next
highest two to a lesser extent. Beyond this, we also find four

second-orderQNMs, themuch sought after nonlinearities that
have remained elusive in binary black hole ringdowns. These
four QNMs—ω440 − ω�

220, ω440 − ω�
320, ω220 þ ω200, and

ω220 − ω�
200—turn out to be remarkably stable alongside the

many first-order QNMs.While these second-order modes are
generally subdominant in amplitude, the loudest of these,
ω440 − ω�

220, is likely the best candidate for future observation
andmay serve as an excellent probe of the nonlinear nature of
binary black hole mergers.
In the case of a more typical moderately spinning

remnant, SXS:BBH:2420, we find an even greater abun-
dance of modes. Because of the short-lived nature of
overtones at lower spins, the highest overtones are shown
to be stable over a smaller window of time, while the lower n
remain more easily resolvable. In addition to finding more
modes from spherical-spheroidal mixing, we find up to the
second overtone of the (3, 2) QNM and four more second-
order QNMs. These additional second-order QNMs are
subdominant to the four found in SXS:BBH:2420, coming
from interactions with the (2, 2, 0) and lower amplitude
(3, 0, 0) and (4, 0, 0) QNMs. Theω440 − ω�

220 QNM is again
the largest amplitude quadratic mode, indicating that this
mode likely dominates the second-order QNMs in aligned-
spin binary black hole mergers like those considered in this
work. Future explorations of more generic systems are
necessary to reveal more about the spectrum and excitability
of second-order modes in binary ringdowns.
Through this work, we show that with the proper fitting

techniques and high-accuracy waveforms we can confi-
dently identify and extract the individual QNMs of the
ringdown spectrum. We also confirm the importance of
overtones and their physical contribution to binary ring-
downs. Further, we show there are indeed nonlinearities in
binary black hole ringdowns. One kind of nonlinearity is
identifiable second-order QNMs. It is worth emphasizing
that, while mathematically these count as a nonlinearity,
they are computable by applying linear perturbation theory
to second order. In addition, there may perhaps be some
still unknown contributions in the early ringdown, with
relatively small amplitude.
The second-order QNMs in binary ringdowns will

undoubtedly be targets of future detectors probing general
relativity. Further studies are necessary to determine the
detectability of these modes in future detectors.
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APPENDIX A: ALTERNATIVE QNM NOTATIONS

In this paper, we use the notation ðl; m; nÞ to label a
QNM, with the convention that the real part of the
frequency is always positive. This makes it easy to find
numerical values for the QNMs in tables, which typically
use this convention. Alternatively, a QNM can be labeled
using four indices ðl; m; n; pÞ, where its temporal and
azimuthal components are explicitly given by

e−iω
p
lmnteimϕ: ðA1Þ

The fourth index p can be defined in two different ways:

1. Convention 1

We follow [57] and define p ¼ sgnðReðωÞÞ × sgnðmÞ.
As an example, Fig. 10 shows the real and imaginary parts
of QNMs ðl ¼ 2; m ¼ �2; n ¼ 0; p ¼ �Þ for Kerr
BHs parametrized by χ. The four branches correspond to
different signs of m and p. The two branches on the left
ðp × sgnðmÞ < 0Þ are mirrors of the branches on the right
ðp × sgnðmÞ > 0Þ. Additionally, a positive p corresponds
to a prograde mode while negative p indicates a retrograde
mode. The Kerr symmetry yields

ωp
lmn ¼ −ðωp

l−mnÞ�: ðA2Þ

This notation is related to ours via

ðl; m; nÞ → ωþ
lmn; −ðl; m; nÞ� → ωsgnm

l;−m;n: ðA3Þ

For example, in Fig. 7, the retrograde mode −ð2;−2; 0Þ�
corresponds to ω−

2;2;0. The negative p specifies that it is a
retrograde mode, while p ×m < 0 indicates that it appears
in the negative frequency band. The second order mode
ð4; 4; 0Þ − ð2; 2; 0Þ� represents ωþ

440 × ωþ
2;−2;0, which is

generated by two prograde modes. As shown in Fig. 10,
ωþ
2;−2;0 and ωþ

220 are symmetric about the imaginary axis,
indicating they are mirrors of each other.

2. Convention 2

Convention 1 has a caveat, as it becomes ambiguous
whenm ¼ 0. One can instead define p ¼ sgnðReðωÞÞ [17].
In Fig. 11, we explicitly label the four branches of
ðl ¼ 2; m ¼ �2; n ¼ 0; p ¼ �Þ for Kerr BHs, which are
again parametrized by χ. In this case, positive p refers to a
standard mode and negative p refers to a mirror mode. In
this notation, prograde modes satisfy p × sgnðmÞ > 0 and
retrograde modes have p × sgnðmÞ < 0. The Kerr sym-
metry now yields

FIG. 10. Four branches of QNMs for Kerr BHs under Con-
vention 1, where p ¼ sgnðReðωÞÞ × sgnðmÞ. Each curve is
parametrized by χ from 0 to 1, with χ ¼ 0 corresponding to
the point where the solid and dashed lines meet. The x-axis
corresponds to ReðωÞ and the y-axis to ImðωÞ. Note that pairs of
mirror modes are symmetric about the imaginary axis. The
prograde modes are denoted by solid lines while the retrograde
modes are dashed.

FIG. 11. The four branches of QNMs for Kerr BHs under
Convention 2. This is the same as Fig. 10, but with
p ¼ sgnðReðωÞÞ.
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ωp
lmn ¼ −ðω−p

l−mnÞ�: ðA4Þ

This second notation is related to ours via

ðl; m; nÞ → ωþ
lmn; −ðl; m; nÞ� → ω−

l;−m;n: ðA5Þ

For example, in Fig. 7, the second order mode ð2; 2; 0Þ −
ð2; 0; 0Þ� refers to ωþ

2;2;0 × ω−
2;0;0, whereas ð2; 2; 0Þ þ

ð3; 0; 0Þ refers to ωþ
2;2;0 × ωþ

3;0;0.

APPENDIX B: EXCITATION FACTORS

The formalism for extracting the QNM contribution to a
waveform was first studied in detail by Leaver [26]. Since
we are dealing with a linear wave-type equation, the
Fourier transform of the solution can be written with a
Green’s function5

Ψlmðω; rÞ ∼
Z

Gðr; r0;ωÞTðr0;ωÞdr0: ðB1Þ

In Eq. (B1) T represents the source term. This could be, for
example, the stress-energy from a small particle falling into
the black hole. In our case, it is the initial condition for the
problem, i.e., the gravitational field outside the black hole
at the time we decide to use perturbation theory. The
Green’s function G can be constructed from the two
linearly independent solutions to the homogeneous radial
equation.
The solution Ψlmðt; rÞ in the time domain requires an

inverse Fourier transform of Eq. (B1) along a contour in the
complex plane (essentially a Laplace transform). The QNM
frequencies correspond to the poles of G in the complex
plane, with n labeling the poles in order of increasing
imaginary part. The contribution of G to the solution (B1)
will include a sum over the residues Elmn at these poles. So
the mode amplitudes Clmn will be a product of two factors,

Clmn ¼ ElmnTlmn; ðB2Þ

where the Tlmn come from the radial integral in Eq. (B1)
and depend explicitly on the source of the perturbation.
Now comes a key point: If the source factors Tlmn are

slowly varying with n, then the mode amplitudes Clmn will
be nearly proportional to Elmn. Since the Elmn come from
the homogeneous solutions to the perturbation equation,
they are universal constants that depend only on M and
χ—the mass and dimensionless spin of the remnant black
hole—and are called excitation factors.
There have been several advances in the calculation of

excitation factors since the work of Leaver [26,59–62].
Most relevant for us is the work of Oshita [62], who showed

that the assumption that the Tlmn do not vary much does
appear to be valid for black hole mergers, at least for the
low values of n that we are interested in.
In light of this, along with the difficulties in individually

resolving the n ¼ 5 mode in previous work, one proposed
method to determine the presence of this mode is to fit for
the amplitudes of all n and compare the structure of the
measured amplitudes to the structure of the excitation
factors. In the work of Oshita [62], the n ¼ 5 excitation
factor begins rapidly decreasing with respect to the other n
beyond χ ∼ 0.9. This peculiar feature in the excitability of
the modes suggests that the n ¼ 5 mode should have a
reduced amplitude at higher spins, creating a unique
signature in the structure of the mode amplitudes. So, if
we look at the amplitudes of the modes as a function of n, a
dip should be expected in the amplitude of the n ¼ 5 mode
once the remnant spin is sufficiently high. If the measured
C22n agree well with the known E22n, this indicates that the
fit is sensitive to each n within the ringdown.
But, before we consider this unique feature of highly

spinning remnants, it is useful to first consider how well the
excitation factors E22n agree with the measured NR
amplitudes C22n in the moderate-spin case considered in
this work. The excitation factors described in Oshita [62]
are defined and computed with respect to the strain. Since
the NR amplitudes are obtained from fits to the news, the
first derivative of the strain, we instead compare the
measured C22n to ω22nE22n. Another important aspect in
comparing the NR amplitudes to the excitation factors of
Oshita [62] is a quantity t0 that defines the start of the
ringdown and appears in the equations for the excitation
factors. Since the connection between this t0 and the NR
time coordinate is not well understood, we simply choose a
value of t0 that produces reasonable agreement between the
amplitudes and the excitation factors. The final freedom in
comparing the excitation factors to measured amplitudes is
an overall scale factor, since the measured amplitudes are a
product of the excitation factors and a source term,
E22nT22n. Although the source contribution is n-dependent,
for simplicity, we apply the same scale factor across all n by
normalizing both the measured amplitudes and the excita-
tion factors such that C220 ¼ ω220E220 ¼ 1. In Fig. 12, we
show a comparison between the NR amplitudes C22n
measured in the ringdown of SXS:BBH:2420 from
Sec. V C and the ω22nE22n associated with χ ¼ 0.75, the
spin of the SXS:BBH:2420 remnant. In Fig. 12, the
excitation factors are computed using a value of
t0 ¼ 2.5M, while the NR values correspond to those
measured at 4M after the peak of the (2, 2) component
of the strain. Overall, Fig. 12, shows that the measured NR
amplitudes and the excitation factors associated with the
NR remnant are in good agreement across all n.
Returning to the case of a highly spinning remnant, we

now consider how well the excitation factors agree with the
measured NR amplitudes in the domain where n ¼ 5

5See Sec.§7.3 in Ref. [58]. A pedagogical example is in
Ref. [59].
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begins to behave peculiarly. In Fig. 13, we compare the NR
amplitudes C22n measured in the ringdown of SXS:
BBH:2423 from Sec. VA and the ω22nE22n associated
with χ ¼ 0.92, the spin of the SXS:BBH:2423 remnant.
The excitation factors and measured amplitudes are, again,
both normalized. The NR amplitudes correspond to those
measured at 8M after the peak of the (2, 2) component of
the strain and a value of t0 ¼ 0.9 is used to compute the
excitation factors. In this case, Fig. 13 shows excellent
agreement for n < 5, good structural agreement for n > 5,
while n ¼ 5 noticeably differs. While the structure of the
amplitudes in this case shows the characteristic dip in the
n ¼ 5 amplitude, the excitation factors do not predict a dip
of this magnitude until χ is a bit larger. So in this particular
case, there is apparent disagreement between the n ¼ 5
excitation factor and the NR amplitude. In the case of SXS:

BBH:2423, with a remnant spin of χ ¼ 0.92, the behavior,
in particular the frequency, of the n ¼ 5 mode has already
deviated from the general trend that the other n follow as a
function of χ. As can be seen in Fig. 14, whereas all n ≠ 5
modes generally converge in the real part of the frequency
as χ → 1, n ¼ 5 becomes an outlier and remains at a much
lower frequency than the other n. Given that the source
terms are effectively overlap integrals with the QNM
eigenfunctions, we speculate that the anomalous behavior
of the n ¼ 5 mode leads to anomalous sourcing.
Consequently, the n ¼ 5 is sourced to a lesser extent than
the other n.
Note that it is possible to choose to normalize the

excitation factors by an arbitrary constant scale factor,
rather than by the value for n ¼ 0. This normalization factor
can be used to improve the agreement with the n ¼ 5 dip in
Fig. 13 somewhat. However, the agreement with the other
values of n becomes worse.
Overall, we find that the amplitudes measured in the

ringdowns of NR waveforms are generally in good agree-
ment with the excitation factors determined purely by M
and χ. Although the proposal of comparing amplitudes to
excitation factors as proof of a particular mode measure-
ment is interesting in theory, more work is necessary to
better understand the source factor contributions to mode
amplitudes. Given this, we leave a more rigorous inves-
tigation of the relation between excitation factors and QNM
amplitudes to future work and instead rely on our time-
dependent measurement in Fig. 6 of Sec. V B as evidence
for the presence of the anomalous n ¼ 5 mode.

FIG. 12. The ð2; 2; nÞ NR amplitudes as measured in the
moderate-spin case of SXS:BBH:2420 and the excitation factors
ω22nE22n for χ ¼ 0.75. The excitation factors are computed using
t0 ¼ 2.5 and both curves are normalized such that
C220 ¼ ω220E220 ¼ 1.

FIG. 13. The ð2; 2; nÞ NR amplitudes as measured in the high-
spin case of SXS:BBH:2423 and the excitation factors ω22nE22n
for χ ¼ 0.92. The excitation factors are computed using t0 ¼ 0.9
and both curves are normalized such that C220 ¼ ω220E220 ¼ 1.

FIG. 14. The ð2; 2; nÞ frequencies up to n ¼ 7 parametrized by
χ from 0 to 1, with χ ¼ 0 corresponding to the leftmost point of
each curve. Notice that all the curves, except for n ¼ 5, converge
toward the same point as χ → 1. This divergence from the trend
for n ¼ 5, with a peculiar turnaround at χ ∼ 0.9, is why the n ¼ 5
mode is often deemed anomalous. The blue dots are the QNMs
associated with χ ¼ 0.76, the remnant spin in SXS:BBH:2420,
and the red dots are those for χ ¼ 0.92, the remnant spin in SXS:
BBH:2423. Notice that in the higher spin case the n ¼ 5 mode
becomes an outlier, remaining at a much lower frequency than the
other n, whereas in the lower spin case the mode frequencies are
more generally aligned.

OVERTONES AND NONLINEARITIES IN BINARY BLACK HOLE … PHYS. REV. D 111, 084041 (2025)

084041-15



[1] S. A. Teukolsky, Perturbations of a rotating black hole. 1.
Fundamental equations for gravitational electromagnetic
and neutrino field perturbations, Astrophys. J. 185, 635
(1973).

[2] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, Black
hole ringdown: The importance of overtones, Phys. Rev. X
9, 041060 (2019).
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