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Stepping up superradiance constraints on axions
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Light feebly-coupled bosonic particles can efficiently extract the rotational energy of rapidly spinning
black holes on subastrophysical timescales via a phenomenon known as black hole superradiance. In the
case of light axions, the feeble self-interactions of these particles can lead to a nonlinear coupled evolution
of many superradiant quasibound states, dramatically altering the rate at which the black hole is spun down.
In this work, we extend the study of axion superradiance to higher order states, solving for the first time the
coupled evolution of all states with n < 5 in the fully relativistic limit (with n being the principal quantum
number). Using a Bayesian framework, we rederive constraints on axions using the inferred spins of solar
mass black holes, demonstrating that previously adopted limit-setting procedures have underestimated
current sensitivity to the axion decay constant f, by around 1 order of magnitude and that the inclusion to
higher order states allows one to reasonably capture the evolution of typical high-spin black holes across a
much wider range of parameter space, thereby allowing constraints to be extended to more massive axions.
We conclude with an extensive discussion on the systematics associated with spin inference from x-ray

observations.
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I. INTRODUCTION

It was shown more than half a century ago that low
energy bosonic waves can be amplified when scattered off
of a rotating dissipative body [1]. This phenomena, known
as rotational superradiance, occurs when

® < mQ, (1)

where @ and m are the energy and azimuthal number of the
incident radiation, and Q is the rotational frequency of the
body. Applied to the context of black holes, this process can
be interpreted as the wave analogue of the well-known
Penrose process [2], whereby particles can extract the black
hole’s rotational energy. The remarkable aspect of this
phenomenon, however, stems from the fact that the
gravitational potential of a Kerr black hole contains quasi-
bound states that serve to confine massive bosonic fields
near the black hole itself [3-5]. Consequently, confined
low-energy bosons satisfying Eq. (1) will iteratively scatter
off the black hole; at each scattering, the initial wave will be
amplified, leading to an instability that causes these bound

“Contact author: samuel.witte @physics.ox.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2025/111(8)/083044(39)

083044-1

states to grow at an exponential rate (see [6] for a general
review of black hole superradiance).

The importance of black hole superradiance as a probe of
new fundamental physics has been recognized for many
years (see, e.g., [7]). The general idea being that the mere
existence of a light boson with a characteristic mass
i~ 0(0.1)/(GM)" is sufficient to cause all rapidly rotating
black holes of mass M to lose an order one fraction of their
rotational energy on subastrophysical timescales (with the
effective “spin-down timescale” depending on the mass and
spin a of the black hole, and mass u and spin of the boson;
see, e.g., [8—14]), the observation of high-spin black holes
(as inferred e.g., using x-ray observations [15-17], gravi-
tational waves [18-22], or tidal disruption events [23-27])
thus serves as strong evidence against the existence of such
aboson [7,28,29]. The energy extracted from the black hole
is used to grow a high-density boson cloud, which itself can
give rise to a variety of observational signatures, including,
e.g., narrow-bandwidth gravitational waves and modifica-
tions to binary inspirals [28,30-52].

Black hole superradiance is often discussed as a gen-
eral phenomenon that can broadly be used to search for light
bosons with masses 107! eV <y < 107! eV [where the
upper and lower boundaries should be treated as ball-park
estimates that are obtained by requiring a = GMu ~ O(0.1),

'We work in units with ¢ = 2 = 1 and will frequently work
with quantities that have been normalized via appropriate powers
of (GM).
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with M taken to be the mass of the heaviest and lightest
known black holes].? However, this statement is not entirely
true; even the existence of small self-interactions or feeble
couplings to ambient particles can dramatically alter
the expected evolution of these systems, in some cases
killing any hope of a potential measurement (see, e.g.,
[7,28,44,53-62]). A prime example of this arises in the con-
text of axions, where the quartic self-interactions L o Aa*
can quench the growth of axion-bound states, thereby
dramatically elongating the time required for the axion field
to extract a sizable fraction of the black hole spin.

The role of axion self-interactions in black hole super-
radiance was first studied in [28]; here, it was pointed out
that these interactions could induce a number of distinct
effects, including: (i) the emission of relativistic axions,
(ii) an effective mixing, or energy transfer, between various
quasibound states, and (iii) a bosenova (a rapid collapse of
the ambient axion cloud driven by attractive axion self-
interactions, leading to a potentially violent disruption of
the system—see, e.g., [63—65] for numerical studies of this
process). It has often been assumed that the primary role of
self-interactions in superradiant systems was to establish a
maximal occupation number of the axion quasibound
states, with the scale set by the density at which self-
interactions are expected to induce a bosenova. Recent
work [44,66,67], however, has argued that bosanovae
are unlikely to occur across most of the axion parameter
space—this conclusion stemmed from the fact that self-
interactions drive energy transfer between different super-
radiant levels (i.e., they mix superradiant levels), and this
energy transfer tends to push the system to quasiequilibrium
configurations with occupation numbers below the bosenova
threshold. Since the rate of spin extraction scales with the
axion occupation number, the existence of such quasiequili-
brium configurations unavoidably weakens superradiance
constraints. More specifically, Ref. [44] studied how the
coupled evolution of the two fastest growing superradiant
states spin down black holes® and concluded that previously
derived limits on the axion decay constant f,, which had
been derived using x-ray observations of solar-mass-scale
black holes, were overestimated by nearly ~2 orders of
magnitude (see, e.g., [68—71] for limits that were instead
derived by applying a “bosenova” threshold on the relative
occupation numbers of each bound state).

The presence of a minimum mass scale comes from requiring
that the growth of the instability takes place on astrophysical
timescales. If the boson acquires mass corrections near the black
hole, or if there exists an alternative confinement mechanism,
then this characteristic mass range may be notably different.

3Reference [44] also includes a discussion on how the two-
state equilibrium can be disrupted at low masses by the next
fastest growing superradiant level, alongside a discussion on the
potential impact of higher order states appearing on longer
timescales; the direct impact of these states on the spin-down,
however, is not performed.

Given the nontrivial evolution that can be induced by the
presence of even small self-interactions, it is natural to ask
whether the precise signatures being induced by axion
superradiance are, in fact, well understood (in the sense that
one can make precision predictions about spin-down or the
gravitational wave emission produced by these objects),
and whether as a community we are prepared to interpret
the forthcoming data that will allow for the detection, or
exclusion, of light axions. We would argue that the answer
to both questions is no. Ignoring momentarily all of the
potential issues associated with the fact that black holes are
not isolated “clean” systems, let us emphasize that the
description of the superradiant evolution in terms of a
coupled two-level system is only adequate for sufficiently
light axions (o < 0.1) and at early times, and a complete
description (characterized by the time evolution of all
quasibound states, as well as the temporal evolution of
all radiated energy, over the lifetime of the black hole)
requires understanding the evolution of tens, hundreds, or
potentially even thousands of coupled quasibound states. In
this work, we make a step toward understanding the role
and importance of higher order states in the superradiant
evolution,* focusing in particular on the impact of self-
interactions on the evolution of, and the spin-down induced
by, the n <5 superradiant levels (with n labeling the
principal quantum number of each bound state); the impact
of higher order states on the gravitational wave spectrum
will be studied in future work. One of the main results of
this paper is a novel derivation of the superradiance limits
on axions from the observation of highly spinning solar
mass black holes. This limit is derived within a Bayesian
framework and includes fully relativistic scattering rates for
all relevant processes up to n = 5 (whereas previous work
had focused primarily on n < 3)—the resulting 2¢ limit
from the two most constraining black holes is provided in
Fig. 1 (dark and light blue) and is shown alongside various
theory-motivated benchmarks, including the QCD axion
(red), the parameter space in which axionlike particles can
explain the baryon asymmetry of the Universe (“ALP
Cogenesis,” yellow) [73], and the parameter space in which
the misalignment mechanism allows for axions to account
for the entirety of dark matter without any fine-tuning of the
initial conditions (“ALP Misalignment,” green); see, e.g.,
[74]. We argue in the following sections that the constraints
highlighted in dark blue should be largely stable to the
inclusion of states with n =6, 7. For the sake of

“It is worth highlighting that Ref. [72] recently studied the
gravitational wave signature produced from the coupled evolu-
tion of the |211), |322), |[433), and |544) states, focusing
primarily on the @ < 0.5 regime. This work had neglected higher
order overtones based a conclusion drawn in [65]. As we show
below, these states cannot be neglected (something that had
already been highlighted in Ref. [44]) and can play a nontrivial
role in both the evolution of spin-down and the emission of
gravitational waves.
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FIG. 1. Superradiance limits, derived at the 2¢ level, using a
combination of Cyg X-1 and GRS 1915 + 105 (see Table III; in
the case of Cyg X-1 we use the “conservative” inference of the
spin). Our fiducial limit (dark blue) covers only the m < 2 spin-
down region, as higher order levels may alter the spin-down for
m > 2 (shaded blue). Constraints are derived using n < 5 super-
radiant levels and are compared with various benchmarks,
including the QCD axion (red), the parameter space in which
an axionlike particle can explain the origin of the baryon
asymmetry (“ALP Cogenesis”; yellow) [73], and the axion
parameter space in which the misalignment mechanism generates
the dark matter relic abundance without invoking a fine-tuning of
the initial field value. We also show for comparison previous
constraints derived in [44] (white dashed).

completeness, we also include an extensive discussion on
the potential systematics associated with inferring black
hole spins from x-ray observations.

The rest of this paper is organized as follows. Section II
provides a detailed overview of black hole superradiance,
focusing on the derivation of the spectrum and growth rates
for a free particle in the hydrogenlike limit (Sec. Il A), the
derivation of the spectrum and the growth rates for a free
particle in the relativistic limit (Sec. II B), the role of energy
dissipation and energy transfer (at a conceptual and
mathematical level) of ¢* self-interactions in the hydro-
genlike and relativistic limits (Sec. II C), and an analysis of
how the inclusion of self-interaction induced scattering
between different bound states influences the evolution of
the bound state occupation numbers and black hole spin for
a range of different parameters (Sec. II D). Having devel-
oped the full machinery in Sec. II required to compute the
superradiant evolution around an arbitrary black hole with
the inclusion of self-interactions, we develop in Sec. III the
statistical analysis and limit setting procedure used to

produce the limits shown in Fig. 1. We include a discussion
on systematics and supermassive black holes in Secs. IV
and V, and conclude in Sec. VI.

II. BLACK HOLE SUPERRADIANCE

The goal of this section is develop from general formalism
required to compute the superradiant evolution of scalar
fields around rotating black holes. In that light, we begin by
reviewing black hole superradiance in the context of non-
interacting spin-0 fields; in particular, we first focus on
deriving the growth rate and eigenstates of the various
quasibound states in the hydrogenlike limit (where the
calculations are dramatically simplified, and intuition can
easily be gained by mapping the problem into electromag-
netic equivalent scenario), before generalizing the result to
the relativistic limit. We then demonstrate how self-inter-
actions modify this picture, once again both computing the
results first in the hydrogenlike limit and then with a fully
relativistic treatment based on Greens functions. Having
developed the formalism required to compute the growth and
evolution of quasibound states (as well as radiative emission
processes), we provide an extensive array of examples
illustrating the role and impact on self-interactions on black
hole spin-down and occupation numbers of various states.

Let us begin with the case of a noninteracting scalar field.
The growth rate of the superradiant instability for a generic
scalar field @ with mass y can be derived by studying the
quasibound state spectrum of the Klein-Gordon equation in
a Kerr background (see, e.g., [5,8,9,75—77]).5 Let us start
from the generalized Klein-Gordon equation in the pres-
ence of a source 7(t,r,0,¢),

(O-p)@=T. (2)

In Boyer-Lindquist coordinates, this reduces to

a? 4GMra r* 4 a*)?
0,(80,)®~ > -"=E%0,00 —%@%@
1 ) 1 .
— 1 d + ﬁdg(sm 00,®) + maécb + a?sin® 007 ®
—u?a? cos? 00 = p°T, (3)

where A = 1> —2GMr + a?, p* = > + a® cos? 0, and a is
the black hole spin [for convenience, we often work with
the dimensionless quantities normalized by appropriate
factors of GM; e.g., the dimensionless spin is defined as
a = a/(GM)]. Equation (3) has been written in a way such
that the separability is immediately apparent; adopting a
separable ansatz [87,88]

®(7,t) = R(r)S(0)e~'eim?, (4)

See also, e.g., [6,10,11,13,78-86] for discussions of quasi-
bound states arising for spin-1 and spin-2 fields.
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and momentarily setting the source term to zero 7 = 0, one
finds that Eq. (3) reduces to the following differential
equations for the radial and angular functions:

1 d ds m?
4 (ine® 2(0? — 12)cos20 — A
sin6 do (Sm d9> * {“ (@ —pJeos’d ~ 2o+ ”"]
x §(6) = 0, (5)

d A dR N @?(r* + a*)* — 4AGMamar + m*a?
dr dr A

(@ 1P Almﬂ Rin(r) = 0. (6)

The angular solutions are the oblate spheroidal harmonics
(reducing to the spherical harmonics in the limit a — 0),
with eigenvalues A;,, while the eigenvalues of the radial
solution @ characterize the energies of the quasibound
states.

It is often convenient to redefine the radial wave function

as R(r) = u(r)/Vr* + a* and pass to tortoise coordinates,

o))
(7)

where r. = GM(1+ V1 —a&?) are the inner and outer
horizons. In this limit, Eq. (6) reduces to

rf=r+

with the potential

A2 ABr—4GMr+d?)

Viw.r) = r’+a? (r* +a?)?
AGMramw — a*>m?* + A(Ny,, + a*(0® — p?))
(r* +a*)?
3A2p2
) 2\4° (9)
(r*+a%)

where r is understood to be a function of r*. Below we
discuss techniques for solving for the eigenvalues and wave
functions of the system and then return to the question of
how a nontrivial source term (which in the case of axions is
provided by quartic self-interactions) modifies the evolu-
tion of the system.

A. The hydrogenlike limit

In general, closed form solutions characterizing the
quasibound states and their eigenvalues do not exist.
Analytic expressions, however, can be derived perturba-
tively in the limit @« < 1 and a < 1; below, we briefly
review this calculation but refer the reader to, e.g., [8,12]

for additional details. In the aforementioned limit, the
angular solutions of Eq. (5) become spherical harmonics
Y7(0,¢) with Ay, = £(¢ + 1), while the radial equation
[Eq. (6)] reduces to
ld(,d 2au (€ +1) s o
——|r—)-——4—— - R;,, =0.
{ r*dr <r dr) P r? - @%) | Rem

(10)

This is equivalent to the time-independent Schrodinger
equation for the hydrogen atom (hence why this is often
referred to as the “hydrogenlike” limit), with a playing the
gravitationally equivalent role of the fine structure constant.

Imposing boundary conditions such that the bound states
vanish at large r and are well behaved at the origin6 dis-
cretizes the energy spectrum; the collection of discrete bound
states can be characterized by quantum numbers |nlm)
(n being the principal quantum number, rather than the
overtone number), with the quantum numbers obeying the
conventional selection rules: n > [ + 1 and |m| < [. These
states will have an energy given by E, = u(1 — a?/(2n?)),
and the radial wave function in this limit will be Bohr-like,
given by

2r\! 2
g = oo (20) 121, (20),
nag

nag

where ag = (ap)™!, L' (x) is the generalized Laguerre
polynomial, and Cgar is a normalization coefficient.
Throughout this work, we will normalize the wave function
such that [dV|®|* = 1, implying

3(p—]— 1/2
(@ s e
nay) 2n(n+1)!

The eigenvalues in the hydrogenlike limit are real;
however, it is known that the true eigenvalues of the
system [i.e., the eigenvalues of Eq. (8)] are, in general,
complex ®,;,, = E,;u + il,,,- In order to solve for the
complex eigenvalues of the system, one can independently

solve for the radial solution at large r [i.e., Eq. (10)] and at
r — r, with the latter being governed by [12]

L (1 1 \d ¢+1)

Ll_z2 <E+Z+1>d_Z_Z(Z+1)
a*(amp — 27, w)?

(Fo =7 )2 (1 + 2%

}Rﬁ?f: . (13)

where we have introduced the variable z = (r — a?,)/
(a(Fy—7_.)), and 7L =r./(GM) is the normalized

®Recall that the Schrodinger equation for the hydrogen atom
also contains an unphysical solution that scales as R ~ r~! as
r — 0. This solution is discarded as it is divergent at the origin
(and thus un-normalizable).
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outer/inner horizon radius. The solution to Eq. (13) is given
by [12]

Z
Rnear — (near
nt 0 <Z +1

i

) JF (=66 +1,1=-2if,1+2),
(14)

with C§®™" the normalization, ,F; the hypergeometric

function, and ¢ = (uam — 2a7 @)/ (u(F. —7_)).

The energy spectrum of a given quasibound state can be
directly obtained by perturbatively matching the near- and
far-field solutions in an intermediate regime (see, e.g.,
[12,41,89]); keeping corrections beyond the hydrogenlike
limit, the real part of the energy is given by

) (15)

o? { 1 6 2] at
Fnlm = 2?+Cnlglm (mQH - a)nlm)a4l+5 + (16)

E,. ~ull-
b ”( 8n 20+1 n

T PER

and the imaginary part by

where we have introduced the following factors:

2 (4 0) I 2
T A (= 1= 1) [(21)!(21+1)J - {17)
1

gm =[] (R(1 = @) + (am - 27,a)?),  (18)
k=1

Cc

with Qy = a/(2r,). Note that the prefactor of Eq. (16)
directly contains the condition for superradiance highlighted
in the introduction [see Eq. (1)]—namely, the I',;,, is only
positive, corresponding to growing states, when mQy > @,,,,-

B. The relativistic solution

The approximation outlined above provides a good
estimate of the energies and bound state wave functions at
small a but can have non-negligible deviations from the true
solution at @ = 0.1 (see, e.g., Fig. 9 of [12]). In order to
improve upon these approximations, we adopt the continued
fraction method, which was originally developed in [90], and
later refined in [9,91,92]. Here, one begins by expanding the
radial equation in a well-chosen basis that respects the
requirement of purely ingoing waves at the horizon, [9]

R(r)=(r—r.)7(r- r_)iﬂJr)(—leqria” <r - r+)",

n=0

where

2 2
v = oM (22)
q

The sign of g determines the asymptotic behavior at large r,
with Real(g) > 0 yielding a divergent wave function
(corresponding to the quasinormal mode spectrum) and
Real(q) < 0 yielding a vanishing wave function at large r
(corresponding to quasibound state spectrum). Here, we
focus on quasibound states (as these correspond to the
growing superradiant modes) and defer a discussion of
quasinormal modes to the following section.

Plugging Eq. (19) into Eq. (6), one can derive a three-
term recurrence relation for the coefficients a,, [9]

apa; + Poag = 0, (23)
ApQpiq +ﬂnan + Ynlp-1 = 0 n> O’ (24)
where
a, = n*+ (co+ )n + ¢, (25)
Bu= =207+ (c1 +2)n +c3, (26)
Ya=n"+(c2=3)n+cy. (27)
Here, the constants ¢; are given by
2i am
=1-2i0——|—— 2
o i~ <a) 2) (28)
s 4i (. am
cy = -4+ 4i(@o—ig(l —|—b))—|—g D =
2 2 2
q
2_~2 o ~
. g —a@ 2i(_. am
=3-2i-2 ——&o-— 30
Cy i@ p 5 (a) > > (30)
2. ~ g 3
3= 2i(@—iq) +2(& — iq)*b + q*a* + 2igam
q
~ N2
A, -1 @i,
2i (@ —iq)* . am
——+1 -— 31
5 < p + b=~ (31)
oo 4 2.,. ~ 2
- (@ 2lq) N io(@—iq)
q q
2i(@—iq)? (. am
- ——, 32
b ¢ \""72 (32)

where b = V1 — a2 (and, as before, the “X” implies X has
been normalized by the appropriate factors of GM).
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The complex eigenstates of the system are then obtained
by solving

Po _ 7 —0, (33)
Q 72
¢ b [/zz—az[,,;z_ﬂ

where the recursion is run to some large integer N. In
practice, obtaining convergence requires one to evaluate at
a sufficiently large value of N (for the calculations here, a
value of N ~ 10°-10% is typically sufficient), and one needs
to ensure high floating point precision in order to avoid the
accumulation of rounding errors’ Using this approach, our
determination of the energy eigenvalues are in good
agreement with those of [9,12,81].

Having computed the complex energies of each quasi-
bound state, one can return the recursion relations above
and use these energies to directly solve for each coefficient
a,, which then allows for the computation of the full
relativistic wave function as expressed in Eq. (19). An
alternative approach is to directly plug the eigenvalues into
the radial differential equation and integrate from large r to
r — r,, adopting initial conditions at large r consistent
with R — 0. We have verified that both approaches yield
identical wave functions. Examples illustrating the behav-
ior of the magnitude of the nonrelativistic radial wave
function [Eq. (11)] and the relativistic wave function are
shown in the middle and top panels of Fig. 2 for various
values of a. Here, one can see the convergence of the two in
the limit @ — 0, whereas deviations spanning many orders
of magnitude appear for a = 0.2.

C. The effect of self-interactions

The discussion above has been framed in the context that
axions can be treated as free noninteracting particles. Axions,
however, generically have self-interactions, which can drive
scattering processes that significantly alter the evolution of
superradiant states.® The effect of self-interactions on the
growth of superradiant clouds has been studied in a variety of
contexts (see, e.g., [28,44,63—66,72]9), with one of the
most recent works [44] concluding that the dominant role
of self-interactions (at least for a <0.3) is to dissipate
energy from the growing superradiant levels, eventually
driving the system toward quasistable equilibria with

"In practice, we use the default “BigFloat” type in Julialang,
which uses 256 bits of precision (approximately corresponding to
around 77 decimal digits).

*One may ask whether interactions between axions and
Standard Model particles could also lead to a suppression of
the superradiant growth. While this may be possible in certain
contexts, the role of self-interactions are generally expected to
provide the dominant effect. This conclusion simply follows from
the fact that the axion occupation numbers N, of a growing
superradiant bound state are sufficiently large to compensate for
the suppression in the interaction strength.

See also [93] for a recent study on the role of axion self-
interactions around astroid scale primordial black holes.
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FIG. 2. Top and center: Relativistic (solid) and nonrelativistic
(dashed) radial wave functions for various bound states and
values of a, with the tilde notation denoting normalized quan-
tities. Bottom: Integrand entering the projection of the source
term associated to the |[411) x [411) — [322) x |n00) rate for
various choices of n and a [see Eq. (53)]. Results are shown using
the relativistic (solid) and nonrelativistic (dashed) wave func-
tions. All results are computed using @ = 0.99.

bound state occupation numbers well below what one
would predict for the case of a free particle—the net result
being a suppression in the rate of spin extraction and thus
a weakening of superradiant limits. Below, we begin by
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reviewing the state-of-the-art treatment of self-interactions,
which has often focused on deriving the rate of energy
exchange/loss in the hydrogenlike limit.'"” We then use a
Green’s function approach to derive the fully relativistic
wave function induced by leading order self-interactions
for all relevant scattering processes at n < 5. We study the
evolution of superradiant systems with these states and
demonstrate how self-interactions between these states
alter the spin-down evolution of solar mass black holes.
We will focus here on a generic quartic axion self-
interaction, £ D — —<I)4 In the case of the QCD axion, this
arises as the leadlng order contribution in the ®/f, < 1
limit from the potential V(®) = p?f2[1 — cos(®/f,)],
where f, is the axion decay constant. In what follows,
we will use the definition A = y”/f2 to make connection
with the QCD axion, but this can be generically rescaled for
more general potentials. In general, cubic self-interactions
could also be present; however, these are not expected in
most cases to be contribute significantly [44]. Higher order
terms may also contribute as ®/f, — O(1); this corre-
sponds to the highly nonlinear regime (where previous
works have predicted the appearance of a bosenova—an
explosive event expelling an order one fraction of the
bound axions); while this is an interesting direction of
research, it remains unclear whether these systems can
reach the critical occupation numbers for these events to
occur [44] (and, in fact, the results of this work are in
|

A
—Z(0))3 =
6( ) 6 2u

iy > (M

nfm (n¢m)’

—iw

+ 61//nfml//;me(nfm)’ e

3/2 ) Bwnfmw("fm)'e

agreement that the critical occupation numbers where a
bosenova could occur are likely not realized), and studying
the dynamics in this regime requires dedicated numerical
simulations in order to make qualitative predictions.

In the presence of quartic self-interactions, the equation
of motion becomes

(0= 2)d = —%qﬁ. (34)
In the limit where self-interactions can be thought of as
perturbative, it is natural to expand the axion field as ® =
>~ 2i®(). The zeroth order wave function is naturally that of
the free particle (the solution having been discussed the
proceeding sections), (1 — x?)®©) = 0, with the first order
correction being given by (00— u?)®() = —1(®)3/6,
Since ®© is the free particle solution, one can decompose

this into the relevant contribution of each of the bound
superradiant states:

=3[y et e, (39)

|nlm)

where N, ., are the occupation numbers, y,,.,,, the complex
wave functions of each state |nlm), and c.c. denotes the
complex conjugate. Plugging this solution in the source term,
one finds terms proportional to

AN\ 3/ . .
3 =3iw et 2 — i@yl
A [l//nfme Honemt - 3anmw;klfme Honemt 4 C'C']
nfm

1200+ pmy )1

(ntm) i(2wupm— (nm)! /)t
+ 3wnfml//(nfm)’e ' +c.c. ]

NnmNnmNnm” _
__Z Z Z <\/ - ;3/>2 ) >[6l//nfml//(nfm)’l//(nfm)”e

mf’m (n¢m) (ném)”

i(mn/m +w(nfm)/ +w(nfm)”)t

+ 61//nfml//(nfm)'v/zknfm)”e Honenttueny = em ) +c.c. ] (36)

where we have explicitly expanded the summations such
that ném # (nfm)’ # (n€m)”. One can directly identify
the role of each term in the above summation by analyzing
the induced energy of the harmonic:
() y3,,,e3@ent: Production of a relativistic axion with
energy @ = 3w,,,,, ~3u from a 3 — 1 scattering
process, with the three axions in the nZm state.

"It is worth mentioning that self-interactions also play an
important role in modifying the expected gravitational wave
signal that emerges from these systems, see, e.g., [72,94] for a
recent analysis.

(i) wﬁfml//(,,fm)/e_i(z“’”””’er('lfm 1): Production of a rela-

tivistic axion with energy @ ~3u from a 3 — 1
scattering process, with the two axions in the nZm
state and one in the (nZm)’.

(ii1) l//nfml//(nfm)’l//(nfm)”e_l(wmﬁrw(nm)/er(”/m)”>t: Produc-
tion of a relativistic axion with energy @ ~ 3u from
a 3 — 1 scattering process, with one axion in the
n¢m state, one in the (n£m)’, and one in the (n¢m)".

Av) w2, wh, e @wn’; Self-energy correction to the
nm state. '

V) YatmWnsmW (nemy € “@weny'; Correction to the energy
of state (n#m)’ from mixing with the state nZm.
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(vi) l//%fm‘//?nfm),e_i(zw”””'_“’("f’”')’)’: Two-to-two scattering

process, with the two initial states in the nZm
quasibound state and (n¢m)’ in the final state. The
other final leg corresponds either to a nonrelativistic
bound axion, which dissipates its energy through the
horizon 2w,z — @(nemy < p), O to an outgoing
nonrelativistic axions (2w,z,, — @(emy = H)-

(Vll) l//nfml//(nfm)’l//?nfm)”e_i(wllf’"+w(’1('ﬂ)l_w("[m)”)t: Two-to-
two scattering process, with initial states nZm and
(n¢m)’, one final state in the (n£m)” quasibound
level, and the other final leg corresponds either to a
nonrelativistic bound axion, which dissipates its energy
through the horizon (@,z1, + ®(wmy = Onemy < W,
or to outgoing nonrelativistic axions 2w,z +
D (nem) — O(ngm)” 2 M)

Note that three-to-one scattering processes are heavily sup-
pressed (at least so long as the density remains small relative
to the bosenova threshold) and can typically be neglected in
the evolution of the superradiant system (see, e.g., [44])—as
such, we focus on the role of energy corrections and energy
dissipation via two-to-two processes.

1. Hydrogenlike limit

We now turn toward solving for the first order correction,
@), focusing specifically on the semianalytic derivation in
the hydrogenlike limit; this subsection is largely a review of
what has previously been outlined in [44], but which we
include both for the sake of completeness and to provide
the reader with intuition that may serve as a useful guide as
we later move into the fully relativistic limit.

Let us begin by noting that the discrete frequency
spectrum of the source term simplifies the structure of
the first order correction, such that ®(!) can generically be
written as

q)(l) — E the_ifl’hllt+§ l//nree—ia)“,et+§ l//ree—ia)mt
bd

nre e

+ Y it .. (37)

[nlm)

where the sums run over the bound states that dissipate their
energy through the horizon (bd; with w,; < u), the
emission of nonrelativistic states (nre; with wp,. ~u + €
with 0 < € < ), the emission of relativistic states (re; with
e ~3pu), and the first order corrections to the bound
superradiant states |nlm). Note that the definition above is
such that each of the contributions in Eq. (37) is inherently
orthogonal, and thus, any contribution can be isolated by
projecting onto the energy mode of interest. We will begin

by analyzing the self-energy corrections included in l//il;)m.

For energy eigenstates of the system, y,,,,, the leading
order correction l//i,l,/)m from the source will serve to modify

the energy of the state itself. This can be seen by adopting

1) _ /N
nfm — znﬂml//nfme

inserting this into the equation of motion—in the hydro-
genlike limit, this yields

L2 () 2 02

) T T

—iAéw

an ansatz for a given state y nem and

r2dr

N ntm)
- 2/1605(0:| Yntm = _/h//nfm E <2//t ) |l//(nfm)’|2’ (38)
(nfm)’

where we have only kept the leading order correction. The
standard operator acting on the basis state vanishes, i.e.,
OWpem =0 with O=-V2-2au/r+£(6+1)/r> +
(4> — a?), allowing one to isolate the energy shift by
projecting onto v, ; i.e.,

—2wéw / AV oW pm = —2000

¢
- _Z Z N(”f’”)/ dv|l//nfm|2|l//(nfm)’|2, (39)

[nlm)’

where we have assumed a normalization such that
JdV|y,em> = 1,and & =} /1 for identical/different initial
states.

Below, we provide the leading order corrections to the
energies of a few of the relevant quasibound states:

A
1(50)211) ~ —4 (l3ﬂ3 [46 X 10_4N211 =+ 14 X 10_4N322

w114
+ .- ]
M 2
~ —(xs,u (f_pl) [12 X 10_46211 +3.5 % 10_56322

a

+ .- ] (40)

A

W34
+3.1x1075N,33+3.9% 107N g4y + -]

M 2
st —(ZSM (f—pl> [35 X 10_56211

a

Mbws) ~—7 @13 [1.4x 107Ny + 5.7 x 1079 N3,y

+ 1.4 % 10_56322 + 7.7 % 10_66433
+9.7 x 10_76544+ ] (41)

A
1(560433) ﬁ—4 (13//!3 {90 X 10_6N211 +31 X 10_5N322

W4334
+1.3x107°N33+9.6 X 10N gy + -]

M 2
o~ —(ZSM (f_pl) [22 X 10_65211

a

—+ 7.7 x 10_66322 —+ 33x 10_66433
+ 2.4 % 10_66544 .. ] (42)
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A(bwsy4) = 1?[3.1 x 107Ny +3.9x 107°N3p,

_40)544#
+9.6 x 10_6N433 +4.3x 10_6N544 +-- ]

M 2
~ —asﬂ <f_p1> [79 X 10_86211

a

+ 9.7 x 10_76322 + 2.4 % 10_66'433
+1.1X10_6€533"']"', (43)

where we have restricted our attention to a few of the
relevant quasibound states and defined normalized occu-
pation numbers ey = N/(GM?). One can generalize this
approach in a straightforward manner to compute the
relativistic corrections valid at larger a—we find that these
corrections to the leading coefficients of each term are
typically at the O(1) level for the a values of interest.

In order to determine if the frequency shifts play an
important role in the spin-down, one can compute the ratio
of the energy shift induced by self-interactions to the
leading order energy shift induced by gravity (5a))gmV o
—a’u/(2n?) (note that small perturbations at this level to
the real component of the energy eigenstates will not
significantly alter the superradiant growth, but, as discussed
below, such corrections do play an important role in setting
the strength of the self-interaction scattering processes—it
is for this reason that we use this as a reasonable, and
conservative, threshold for comparison). The maximum
shift obtainable can be computed using the characteristic
occupation number required for a bosenova (where higher
order self-interactions would necessarily disrupt the growth
of the cloud) [44]

2
n)4 1024712 m

Ny, ~GM?*( = | ——=>2,
b (2 90> M3,

which, in normalized units, is given by

~357 n\*( . \?
ebn-?(i) (M—PI> . (45)

Comparing these corrections, we find that self-interaction
induced corrections (even including an order one relativ-
istic correction) could be as large as ~O(10%) (6®),,,» but
only for occupation numbers saturated to the bosenova
threshold. As we show below, the occupation numbers
associated to a bosenova are in general not expected to be
realized for the range of parameter space studied here, and
thus, we conclude that the energy shifts are not expected to
significantly alter the evolution of spin-down (however,
they can play an important role in the search for narrow
frequency gravitational wave signatures emitted from the
clouds; see [72,94]).

Determining the rate at which self-interactions dissipate
energy, either into bound oscillations (which lose energy

through the horizon) or to infinity, requires directly solving
for the value of W) at the horizon or at large radial
distances, and in turn computing

dE
& / Tin,dC, (46)
dt oz

where the surface 0X is taken to be either the outer horizon
or a two-sphere at large r, dQ = p? sin dfd¢, the normal
vector n, = —5}“ and T the stress energy tensor.

Energy losses through the horizon are dominated by ., ;;
in the hydrogenlike limit, this function can be deter-
mined by decomposing the wave function into a complete
set of basis states of the operator ' = —V? — 2au/r +
£(¢+1)/r% e,

q)l = chfml//nfm + z / dkc(k)l//kfmv (47)

n‘m ‘m

where the sum runs over the bound states v,., [Whose
wave functions are provided in Eq. (11)], and the integra-
tion is performed over the continuum states y;,, = Y% Rz,
with the radial function defined by

 2ke™ PO 4+ 1 —if(kay))| .,
k= 27 +1)! ¢
x (2kr)? | F\(i/(kag) + € +1,2¢ 4 2,2ikr). (48)

Here, ay = (au)~!, T is the Gamma function, and | F, is
the confluent hypergeometric function of the first
kind. Using the fact that Oy, = —(a*u*/n?*)y,z,, and
OWipm = k*Wipm, one can transform the equation of
motion for ¥(!) into

5 5 (12/,{2
Z H —w _7 CntmW¥nem

- Z / dk(:uz - (1)2 + kz)cfm(k>kam = _%CD(O>3'
‘m
(49)

The orthonormality of the basis states
/d3n//:fml//n’f’m’ = 5n,n’5f,f’5m,m’ (50)
/d3 n//zfml//kfm = 27[5(]{/ - k)(S,gf/ém’mr (51)

/ Pyt e =0 (52)

allows one to project onto v/, ., O Wy, ., and extract the
coefficients, yielding
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é koo %
Cntm = 2 Ery i,  (53)
(0* —w” =%5)
¢
2r(u? — w® + k)

Com(k) = / Ery v, (54)

with & = % /1 for identical/different initial states, and wy;
(i =1, 2, 3) being the superradiant states entering the
source term (i.e., those states for which @ = w; +

@, — w3). Note that for bound oscillations, u > w, so (4> —

o — %) can vanish, violating the perturbative expansion.
In general, one can imagine expanding the original operator
O to include the leading order relativistic correction—this
induces corrections to momentum eigenvalues, thereby
“detuning” this resonance and restoring the validity of
the expansion. The same issue does not occur for ¢, (k) in
this case, as (4> — @?), k* > 0.

In the limit » — r,, Y will be dominated by the
¢ =m =0 components of y,,; (since the continuum
spectrum and the higher-£ components are suppressed in
the limit » — r,). Neglecting all other terms, one can
compute the energy losses via bound oscillations using
Eq. (46), which yields

dE

ar = AH|0’|2|/1R1(’"+)|2

~4a?(1+ V1 =a) 22| RO (r)

, (55)

where the horizon area Ay = 87r,r,, and R is the radial
wave function (i.e., without the spherical harmonic). Note
that the existence of a horizon is not present in the
hydrogenlike limit, and thus, it is natural to evaluate
RW in the limit that » — O (in the small a limit, this
apparent inconsistency introduces a negligible correction).

Examples illustrating the radial integrand entering
Eq. (53) are shown in the bottom panel of Fig. 2, using
both the nonrelativistic and relativistic calculations outlined
in the proceeding section, as a function of the normalized
radial coordinate. Here, one can see that large energy losses
could be due either to large overlap of the wave functions
entering the source term or due to an enhanced rate of
energy dissipation through the horizon, which occurs for
large a.

Radiative energy losses at infinity can be treated analo-
gously. These will be dominated by the . (recall that we
neglect v, as 3 — 1 processes are less efficient'"), which
scales at large r as y,,. ~ e’ /r. In this case, Z and m are
fixed by the angular structure of the source term (e.g., the

"This can be understood by noting that the final state
momentum in 3 — 1 processes is of order the axion mass, while
for nonrelativistic emission, it is suppressed by a factor of a.
Axion production is largely controlled by the overlap of the free
and bound state wave functions near r ~ 1/k, and the bound state
wave functions are largely suppressed in the small r limit.

|322) x [322) — |211) x 00 requires a final state with
m=23, and =3 and or £ =15, with the £ =15 case
being suppressed). The bound states vanish at large r, and
c(k) is apparently singular at k = \/@? — u?; as with the
bound states, however, relativistic corrections to @ will in
general contain a small imaginary component—inserting a
perturbation of this form allows one to compute the [ dk
using the residue theorem, yielding

i Z_,: eikr

l//nre(r‘_’oo Nﬂ B

|:/dr/llll(I”/)Wz(r/)llfg(r/)l//kfm(r/)]’
(56)

where we have only kept the leading order # mode. Using
Eq. (46), this yields a rate of energy loss given by

dE  wli*& 2

dr - 2k

(57)

/ dr'yy (7w (r)ws (r ) wiem ()

Note that this expression is equivalent to that derived
in [44].

Using the rate of energy loss defined in Egs. (55) and (57),
one can determine the rate of change of the occupation
number of a superradiant state |nlm); for the process |nlm)x
|n'¢'m’y — |n"¢"m") x BH, the rate of change is given by

anm == ld_E
udt
A1+ V1=a)2 [ |R(r))P
- H <anmNn’f'm’Nn”f”m”>
X anmNn’f’m’Nn”zf’”m”
= FZ;IZT;’;%_’I X anmNn’rf”m’Nn”f”m”v (58)

where in the last line we have introduced the scattering rate I',
following the notation of [44] (with analogous expressions
for the energy loss at infinity being derived in the same
manner). As we will discuss below, we will work with
normalized occupation numbers ¢; = N;/(GM?); in this

case, the rate of change can be expressed as ¢€; «

vixPHe;e; € (where we have momentarily compressed each

state to a single identifying index), with the relationship
between y and I' being obtained via the substitution
22— a*(M,/f,)*. We have compiled a list of the relevant
rate coefficients, which have been computed in the hydro-
genlike limit using the procedure outlined above, for the
leading processes involving the relevant states at n < 4 (see
Table I) and n = 5 (see Table II). We find good agreement
with the results of Ref. [44] when comparisons are possible,
except for two processes—the origin of this discrepancy is
unclear, but we do obtain identical results using the hydro-
genlike calculation and computing energy losses using
Green’s functions in the small-a limit. It is worth noting
that despite the nonexistence of continuum states near the
Kerr black hole, the small o limit of the relativistic
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TABLE I. Nonrelativistic limit of the scattering rates driving
the growth and evolution of the superradiant system (up to
n = 4). Relativistic corrections to some of these rates as a
function of « are shown in Fig. 3.

TABLE II. Leading order behavior of a subset of scattering
rates arising at n =5, computed in the hydrogenlike limit.
Relativistic corrections to some of these rates as a function of
a are shown in Fig. 4.

Process Rate Process Rate
o 4x107a' (M, /f.)*Fpu EEEw) 19 x 107a' (M, /f,)*Fpu
raitan 2.5 %1075 (M, /£ ) T yH380 2x 107 (M, /£ ,)* f,,u
Vit L6 x 107 (M, /f ) Tou 13530 13x 107" (M, /£,)*F,
Tt 15 x 107a' (M, /f, ) Fou 732230 9.0x 10 "a' (M ,/ fa)47p;t
arrioH 23x 107 (M, /f)* T 74BH 3.4 % 107207 (M )/ f4)*F ot
ri 18 107U (M, [ Fon 7 235 107! (M, /£, Ty
it 9.0 10l (O, /£ 7 37X 1040 (M /) Ty
Yo 38X 1071 (M /[ ) T 7P 2.7 x 1078’ (M, /f ) *Fpp
Vot 32x 107" (M), /fa)“?p/t o 7.5 %107 (M, /f,)*Tpu
Viilxan 23x 107 o (M, /fo) Tpu Vi 9.0x107"a'! (M, /fa)4?pﬂ
T 301070 (M, ) fo) Tpu V3R L0 x 107" (M, /f,)*F,
TR L6 x 10707 (M, /f.)* T 1iitidh 9.9 x 107%a’ (M, /f,)* ?
T 27 x107a (M, /f) Fop SN 6.6 x 107"%a"(M,,/f,)! 7 oH
Yithati L7x 107 e (M, /£ o 115 2.6 x 107"’ (M, /f)'T ot
Vit 7.0 x 1075 (M, /fo)'Fou 131155 4.6 x 107a’ (M, / f)*7 o
Vit 1.9 x 107% (M, /fa)“w Vinr S 2.5 x 107! e (M p/fa>4u
Yitiati 38 x 10757 (M, /fu)' Tpu 1538 7.8 x 107%% (M, /f.)'n
giterss 7.7x 10712 7(M,,/fa)4~,,u e 22x 107 e (M, /f,)n
7%%&%32 107%a* (M, /f.)'n Y333u504 1.8 x 107" (M, / f,)*u
YD 3x 1078y YaganSia 43x107"a® (Mp/fa)4ﬂ
gtriont LTx107a% (M, /f)'n 133 121076 (M,,/ f2)*u
Va6 L1x107%%(M,, /f.)*n Vi35S 28 %107 (M, /f.)*n
Yini L6 x 107" (M, /fo)'n r55iss 44 %1075 (M, /f.)*u
yﬁéé§z3 6.1 x 10‘10a8(Mp/fa)4/,t y%%%i?% 1.3x10%a% (M p/fu)
Vi 38x107%a*(M,/f.)'p Vi 6.3 x107%% (M, /f.)'n
Vil 22x107%a* (M, /f)'p Vi 1.6 x 107%a% (M, / f4)*u
(eI 9.2x 107" (M, /f4)*u V32555 1.6 1071 (M, / f,)*u
Vinis 2.6 x 107 (M, /fa)*n i L7 x 107 (M, /f,)'p
EL 1.6 x 107%a®(M, /f,)'p Vi 3.7x 107 (M, /fu)*n
ot 5.1x107%a* (M, /f.)*u
viish 12x107%a(M,/f.)'n
2lixc0 88 4
}}%iizgi ;gi 18 9 8E$ %:;42 by the' presence of self—interaction.s ar.e comppted by
p2lixe 22 % 107993 (M,, /. e{cpandmg the perturbed wave fqnctlon in a basis of the
1.5 x 10-%2 (M, /£,)u dls(j‘rete bqupd states and the continuum free .spectrum; the
yélv{f 10-2g14 piia basis coefficients can be computed by projecting the source
%;\i,xz;lll 51 Oia/lloy term onto the basis functions, and the rate of energy

calculations does not show any notable differences with
respect to the hydrogenlike limit—we believe this is likely a
consequence of the fact that the source term peaks at an
increasingly large distance from the black hole in this limit,
implying the produced axions are increasingly insensitive to
the existence of the horizon (which in the end is what is
responsible for generating the discretized spectrum).

Let us briefly summarize the result outlined above. In the
hydrogenlike limit, dissipative scattering processes induced

dissipation can in turn be determined by integrating the
perturbed wave function over the horizon or over the sky in
the r — oo limit. This process determines the rate of
depletion/growth of any superradiant state due to the
quartic self-interactions. We now turn our attention to
the issue of generalizing the above calculation to obtain
the energy dissipation rates in the relativistic limit.

2. Relativistic treatment

Generalizing the procedure outlined above to the fully
relativistic case carries a number of additional challenges.
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First, note that light scalar fields in a Kerr background do
not contain a continuum component in the energy spec-
trum; rather, these continuum states are comprised of a
combination of discrete “quasinormal modes,” a prompt
signal, and a slowly decaying mode. This already presents a
rather significant departure (at least conceptually) from the
classical limit outlined above and suggests that one is not
necessarily guaranteed to recover the hydrogenlike result as
one takes the a — 0 limit (although for bound transitions,
the dominant contribution to the energy loss is often
through the bound, rather than the continuum states).
Now the presence of a fully discrete spectrum does not
inherently present an impediment to the aforementioned
approach. Complications, however, begin to arise when one
realizes that the radial wave functions of quasinormal
modes are divergent at the horizon and spatial infinity,
implying the conventional definition of an inner product
(which is used, for example, to project the source term onto
the basis states and determine the coefficients c,,,) is not
sufficient to, e.g., establish orthogonality, to normalize
wave functions, or to perform a spectral decomposition.
Recent progress has been made [95,96] in establishing
suitable definitions of the relativistic inner product, which
explicitly demonstrates the quasinormal modes and quasi-
bound states are indeed orthogonal and in general can be
used to derive well-defined spectral coefficients for these
basis functions (see also a counterterm subtraction method
developed for the Schwarzschild limit [97]). A more
formidable obstacle, which inhibits the spectral decom-
position, however, stems from the fact that the set of
eigenfunctions of the quasibound and quasinormal states do
not form a complete basis (note that this differs from the
hydrogen limit, where the Hermitian nature of the operator
guarantees completeness); in general, the complete basis
also includes a prompt (high-energy) component and a
slowly decaying low-energy tail [98]. In that sense, the
quasibound and quasinormal modes only offer an approxi-
mate description of the system at intermediate times (after
the prompt early time died off and before the quasinormal
modes have decayed away).

An alternative approach that avoids the spectral decom-
position outlined above (thereby naturally including contri-
butions not only from the quasibound states and quasinormal
modes, but also from the prompt and slowly decaying
components) is to solve the radial equation using Green’s
functions. This approach has been applied in a variety of
contexts, including, e.g., to solve for gravitational wave
emission sourced by an in-falling point particle [99-101]
(which mimics the physics, for example, of an extreme mass
ratio inspiral), and has been applied in a similar context to
compute scattering rates and self-energy corrections of axions
[65,102]. The general approach in this case is as follows. One
begins by writing down the two solutions, call them Ri;mw and
R;‘;nw, of the homogeneous equation [i.e., Eq. (6)], where
asymptotically these solutions scale as

) e—i(m—mQH)r*
R™ ~ A r, = —00 (59)
e—ikr*
R" ~ ry — 00. (60)
r

These solutions can be obtained directly by integrating Eq. (8)
inward (outward) from infinity (the outer horizon). The
solution to the inhomogeneous radial equation

d (pdR\ [ +a®)? —4GMamor + m’a®
dr \ dr A
—(0*a® + p?r* + Azm)] Rin(r) = T oo (r), (61)

which is purely ingoing at the horizon and outgoing at infinity
is given by

1 r .
R= [R%woojwde%WuvTﬁwuv
W)f’ma) ry
LR (r) / ” dr/R‘;E’m(r/)Tm(r/)] . (62)

Here, Wy, is the A-scaled Wronskian

dRi;mw i dR;lr)n )
Wemw = A |:R;I))nw dr - Rglma) dr <l (63)

which is independent of r. For the case of self-interactions, the
source term of the Zm® mode is simply given by

Tonalr) == [ dbd(eos)p?(@1)'S;,.. (64

where (I),(,?) is the term in ®(©) « e~i®! , and the integrals serve

to project the initial source term onto the appropriate value of
¢ and m. With the radial solution in hand, one can compute
energy losses using Eq. (46) and thereby rate coefficients (i.e.,
I'/y) in an analogous manner to what has been outlined above.
It should be mentioned that at large «, the relativistic
corrections from the energy can cause a change in the final
state (e.g., from nonrelativistic emission to bound absorption
at the horizon)—we comment on this briefly below, mention-
ing here only that such a shift is trivially computed in this
formalism as one can compute the full radial wave function for
any set of wZm. This is the approach adopted throughout
much of this work, and which allows one to extend the results
of the hydrogenlike limit to the relativistic regime. The ratio of
the relativistic to hydrogenlike rates as a function of « are
shown in Figs. 3 and 4.

Before continuing, let us note that we only compute the
relativistic rates for values of a small enough such that all
three quasibound states entering the source term are
superradiant. At larger values of @, the imaginary compo-
nent of the energy of at least one state flips sign, causing the
state to undergo exponential decay (rather than exponential
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growth)—this decay is typically sufficiently strong to drive
the occupation number to zero, rendering the scattering
process of interest irrelevant.

D. Evolution of superradiant systems

The sections above have served to provide a general
outline that allows one to compute the growth rates,
evolution, and spin-down of rapidly rotating black holes
in the presence of a free scalar field or a scalar field with
quartic self-interactions. Having developed the generalized
formalism, we now turn our attention toward demonstrating
the potential impact on realistic systems. We begin by
studying the coupled evolution with n < 3 and incremen-
tally include the n = 4 and n = 5 states. For completeness,
we also demonstrate the relative importance of including
relativistic corrections to the self-interaction induced scat-
tering rates.

1. Evolution at n <3

We now turn our attention to studying the evolution of the
superradiant system with self-interactions. We begin by
focusing our attention on states with n < 3, which includes
the [211), [311), |321), and the |322) states. The |211) and
|322) are both leading order superradiant states and thus must
be included. The superradiance growth rate of the [321) state
is extremely slow, and since selection rules prevent the
growth of this state via the other states, this state can be
neglected. In principle, ) state can grow via super-
radiance on timescales that are only slightly longer than the
|211) state, but there has been some disagreement in the
literature as to whether self-interactions are sufficient strong
to prohibit the growth of the |311) state; in particular,
Ref. [44] has argued that the [311) x |[211) — [322) x
|200) scattering process always suppresses the growth, while
Ref. [65] instead finds non-negligible occupation numbers of
the |311) state. In order to remain open to both possibilities,
we include this state in the evolution. We are thus left with the
following coupled differential equations:

2xBH /2

- _ SR 32 322xBH
€211 = V311€211 — 2V311x211€311€322 — Va11x311€211€311€322

211x
+ 73S enenean + riiiSe6men

3
+ 7322x322€322€322€211 - 2}’211x211€211 3}’2”362“
+ 75-211€211€32 (65)
. _ SR 322xBH 211xc0 L2
€311 = V3116311 — Va11x311€211€311€322 = 2¥311%311€311 €211
211xc0 322xBH ,2
= ¥311x322€311€322€211 — 2V311%311€311€322 (66)

. __ SR 322xBH 322xBH
€320 = 73226320 T V211%211€211€211€322 T V311%311€211€311€322
211x 211xc0 2
—V311x3226311€322€211 — 2Y320%322€320€211
GW 2
+ 7/311><311€311€311€322 = 2730043226322

—V$D-a11€211€32 (67)

~ SR SR SR
a = —ys511€211 — V3116311 — 27’3226322 (68)
M
_ SR SR 322xBH .2
WGM? —Ya11€211 — V326322 T Va11%211€211€322

320xBH 2 322xBH
+ 7/311><3ll€311€322 T V3113116211 €311€322 (69)

where we have defined the normalized occupation number
of each state x as e, = N,/(GM?), with N, is the un-
normalized occupation number. In the analysis that
follows, we do not find that the |311) level reaches
non-negligible occupation numbers (in some cases, mod-
erate growth is seen, but is then quickly quenched), and
thus, we find that this level can in fact be safely
neglected. This implies the n < 3 evolution is effectively
well described by a two-level system, defined only by the
|211) and |322) states.

We illustrate in Fig. 5 (using dashed lines) the evolution
of the two-level system for various values of f,, taking
M =222Mg, a = 0.99, and a ~ 0.33. Here, we adopt the
nonrelativistic limit of the scattering rates y provided in
Table I and return to the question of relativistic corrections
below. The top panels of each figure show the evolution of
the dimensionless spin (the spin evolution of the two-level
system is shown with a dashed line, which is, on occasion,
overlapping with the spin evolution of the higher order
model, shown in solid). The bottom panels display the
evolution of the normalized occupation number of each
state, with the black horizontal dashed lines denoting the
bosenova threshold of the n = 2, 3, and 4 levels (with the
gray shaded region covering the occupation numbers for
the n = 4 bosenova).'> One can see that for large values of
fa» each superradiant level grows rapidly and independ-
ently, spinning down the black hole on their respective
timescales. Here, the exponential decay of the |211) state
occurs because the imaginary component of the energy
becomes negative when the |322) spin-down begins. For
larger values of f,, the |211) forces the |322) to grow at a
comparable rate, driving the system to a temporarily
equilibrium, which is sustained until spin can be extracted
by the black hole. Note the occupation numbers for the
n <3 system always remain well below the bosenova
threshold.

In the limit that f, — M, self-interactions are negli-
gible, and one can supplement Egs. (65)-(69) by analogous
equations governing the growth of higher order states.
Despite the fact that the |n11) and |n22) states may have
large growth rates, these states are negligible in this limit
since the [211) and |322) states operate on shorter
timescales and will spin down the black hole before the

PFor f, = 10'® GeV, the bosenova threshold is above the
maximal occupation number shown on the figure and is never
realizable (since spin-down is guaranteed to occur prior to
reaching such large occupation numbers).
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FIG.5. Evolution of the |211) (red), [322) (blue), |411) (green), [422) (gold), and |433) (light blue) levels, and the dimensionless spin

(top panel of each figure) for various axion decay constants ranging from f, = 10'8 GeV (top left) to f, = 10'?> GeV (bottom right).
Dashed and solid lines show the evolution in the two-level system (evolving only the |211) and |322) states) and the five-level system
(evolving relevant states with n < 4), respectively. Calculations are shown using the nonrelativistic limit of the scattering rates provided
in Table I (examples of the evolution of the full system, namely n < 5 with relativistic corrections, are shown below). All panels display
results for a black hole of mass M = 22.2M, spin & = 0.99, and an axion mass u = 2 x 10~'? eV (corresponding to & ~ 0.33). The
maximum occupation number achievable before self-interactions induce a bosenova is shown using black horizontal dotted lines (one
line for each value of n), with the shaded region denoting values of €, exceeding the n = 4 bosenova threshold (no such lines are seen in
the top left panel, as the occupation numbers occur at larger €, and are thus irrelevant for the evolution of the system). Note that growth

is assumed to saturate at these thresholds.

higher n states have had sufficient time to grow. This same
statement does not apply when self-interactions are
included, since the |211) —|322) equilibrium slows the
spin-down process, in some cases allowing for higher order
states to play a nontrivial role in the evolution of the
system.

For values of a < 0.22, it has been argued that the two-
level system accurately describes the early stages of spin-
down of black holes with self-interactions [44]—this
statement stems from analyzing the relative ratio of growth
and energy dissipation of higher order states and showing
that at small a, dissipation prevents most states from
achieving large occupation numbers. This is not necessarily
true for larger values of « and has thus far prohibited robust
constraints from being derived across broad regions of
axion parameter space. In the large a regime, higher order
level mixing and relativistic corrections to the scattering
rates play a crucial role. We now turn our attention toward
these aspects of the problem.

2. Evolution at n < 4

Let us now extend beyond the n < 3 system and include
the next set of states arising at n = 4.

At n =4, one introduces the following six states:

(i) |411): This state can potentially grow via super-
radiance on short timescales, and it has been argued in
Ref. [44] (based on the rates derived in the hydrogen-
like limit) that it can contribute to spin down for
a 2 0.2. We therefore include this level in our analysis.
|421): The superradiant growth rate is highly sup-
pressed and cannot drive the state to large occupation
numbers on the relevant timescales. One may ask
whether rates of the form |ném) x |n'¢'m') —
|421) x BHor [nfm) x |[n'¢'m’) — |421) x oo could
lead to non-negligible occupations numbers; however,
the former processes are absent due to selection rules,
and the latter processes would require initial states with
n >4 in order to ensure the axion emission is not
bound. Therefore we neglect this state.

(i)
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(iii) |431): Similarly to the [421) state, the superradiance

timescale is too large to be relevant, and this state
cannot be grown via scattering processes; therefore,
we neglect this state in the evolution of the system.

(iv) |422): The superradiance timescale can be sufficiently

short (relative to the black hole lifetime, or to the
Salpeter timescale, see Sec. II) such that the [422) level
becomes sizable. In addition, this level can potentially
be grown at intermediate values of a via [211) x |211)
scattering processes. As such, we do include this state
in the evolution of the n < 4 system.13

(v) |432): The superradiant growth rate for this state is

heavily suppressed, and as with the [431) and |421)
states, the [432) state cannot be grown via n < 4
states. We neglect this state in the evolution.

(vi) |433): The superradiant growth rate is sufficiently

large to spin down the black hole on relevant
timescales. This state is also the first m = 3 state
to appear and furthermore can be grown via vari-
ous scattering processes (see Table I). We include
this in the evolution. It is worth mentioning that
Refs. [44,94] have concluded that the |433) state
cannot grow for a < 0.3, which is in part used to
justify the claim that the two-level system (com-
prised purely of the [211) and |322) states) is
sufficient to describe the early stages of spin-down
|

H 2

and the gravitational wave spectrum in this region of
parameter space. This conclusion is based on the
fact that the rate of change of the occupation number
of the |n33) state (assuming growth is driven by
self-interactions, rather than superradiance) is pro-
portional 10 ¢33 & (V53 — 7411:8H), which in
the hydrogenlike limit, is always negative for
a < 0.3. Let us point out, however, that the relativ-

istic corrections to y333<B8 are much larger than

those to y311%%,, and readjust this threshold to lower
values of o (implying the two-level system is only
accurate for values of a < 0.15, in agreement with
the conclusion of [72]). This is demonstrated explic-
itly in Fig. 6, where the solid (dashed) lines denote
the evolution of the occupation numbers with (with-
out) relativistic corrections. Similar conclusions
were also recently obtained in [72], which studied
the evolution of the four coupled Z = m < 4 states
(with the focus of studying the impact of self-
interactions on the gravitational wave emission).
In the end, studying the evolution of states at n <4
involves introducing three new states, namely [411),
|422), and |433). We now turn our attention to evolution
of this five-level system.
In order to move from the two-level to the five-level

system, Egs. (65)—(69) must be augmented by the following:

. _ .SR 322xB 422xBH 2 433xBH 322xBH 422xBH
€211 = V5116211 — 2V311x211€311€322 — 2V21Tx211€311€422 — V211x322€211€322€433 — ¥31Txd11€211€411€322 — Va11x411€211€411€422

433xBH 211x 211x 211x 21ix
= Vo1 1xd22€211€422€433 T ¥322%3226322€320€211 + ¥320%411€322€411€211 T ¥320x422€322€420€211  V322%433€322€433€211

211x 211x 211x 211x 211x
+ Va11xa11€411€411€211 + Vi11%420€411€4226211 T+ V411%433€411€433€211 T Va205%492€422€422€211 T Yap0%433€422€433€211

211x00 GW 2 © 3 GW
+ Vi33%433€433€433€211 — 2721 1x211€211 — 35113611 T V3220211€211€322 (70)

. _ .SR 322xBH 433xBH 322xBH 211x 2
€320 = V3226322 + V211x211€211€211€322 — V211x322€211€322€433 + V311x411€211€411€322 — 27322x§32€322€211

211x 21ix 211x 433xBH
— V300%411€322€411€211 — V3205422€322€422€211 ~ V320%433€322€433€211 — ¥Y322%411€322€411€433

320xBH oW 2 GW
+ VaT1x411€411€411€322 — 2V 3294320€320 — ¥3925211€211€322

. _ .SR 322xBH 422xBH 211x00 433xBH
€411 = V4116411 — V211%x411€211€411€322 — V211%411€211€411€422 — V320%411€322€411€211 ~ V322%411€322€411€433

211xco L2 211x00 211xc0 322xBH 2 420xBH ,2
= 27411%411€411€211 ~ V411x422€411€422€211 — Y411x433€411€433€211 — 2V 4111164116322 — 2V a11411€411€422

433xBH
— V411x422€411€422€433

(71)

. _ SR 422xBH 422xBH 433xBH 211x
€420 = V422€422 F V511x211€211€211€422 T Vo1 nd11€211€411€422 — V11x422€211€422€433 = ¥320%422€322€422€211

211x 211xc0 ,2 211x 422xBH 433xBH
= Vi11x2€411€4226211 — 2V 400%422€420€211 — V422433€422€433€211 + V4TTxa11€411€411€422 — V411 x422€411€422€433 (72)

. _ SR 433xBH 433xBH 211x 433xBH
€433 = V4336433 T V211x3226211€322€433 T V571%422€211€422€433 — ¥3224433€322€433€211 + ¥325%411€322€411€433

211x 21ix 2ixco L2 433xBH
= Vi11x433€411€433€211 — Viprxa33€422€433€211 — 2V 533%433€133€211 T V411 xa22€411€422€433 (73)

We note that Ref. [65] concluded that this level should not grow; we disagree with this conclusion. One can directly compute the
ratio of the growth rate to the energy dissipation rate in the hydrogen like limit and show that this state can grow once the occupation
number of the |[411) state has become sufficiently large. This conclusion is in agreement with what was previously found in [44].
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FIG. 6. Comparison between evolution of n <4 superradiant states for a ~0.17, with (solid) and without (dashed) relativistic
corrections. Results are shown for and f, = 10'2 GeV (left) and f, = 10'® GeV (right). As can be seen, the growth of the n = 4 states
are sufficient to disrupt the [211) — |322) equilibrium. Note that the |[433) does not grow in the nonrelativistic analysis, and thus, only the

solid lines for this state appear (see text for further details).

a= _Zm}'igmenfm (74)
n‘m
M SR kxBH
,uGM2 = _Zynt’menfm + Zyixj €i€j€k- (75)

ném ijk

Figure 5 illustrates the evolution of the black hole spin
and quasibound state occupation numbers €, aside the two-
level system as described above. As before, scattering rates
are taken to their nonrelativistic values listed in Table I.
Here, one can see that the evolution of the |211) and |322)
states largely follow those of the two-level system at early
times, but there is a shift of the occupation numbers when
the [422) and |433) states begin to become sizable. Before
continuing, let us point out that Fig. 5 appears to suggest
that the inclusion of the n = 4 states has a minimal role of
the rate of spin extraction—this is somewhat misleading
and is merely a coincidental feature arising at this point in
parameter space.
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FIG. 7.

Thus far, we have illustrated the evolution of the various
quasibound states using the hydrogenlike scattering rates.
In order to move beyond this approximation, we adopt the
Green’s function approach outlined in Sec. IIC and
reanalyze the growth of the system. An example of the
evolution of the occupation numbers is shown in Fig. 6 for
a = 0.17, both with and without relativistic corrections,
and including n <4 states. Here, one can see that the
relativistic corrections serve to (i) modify the equilibrium
occupation numbers of the |211) and |322) states, (ii) allow
for the growth of the [433) state, and (iii) although it is not
seen, enhance the spin-down rate (which can be inferred
from the elevated |211) occupation number).

The left panel of Fig. 7 shows the evolution of the n < 4
states at a higher axion mass, corresponding to y =4 x
10712 eV (also including relativistic corrections). Here, one
can see that the |322) (dark blue), [422) (yellow), and |433)
(light blue) states grow unimpeded to the bosenova thresh-
old. This occurs purely because one has removed any
efficient “energy sink,” which would impede the growth of
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Same as Fig. 5, but including relativistic corrections to the scattering rates, and comparing the evolution between the n < 4

(left) and n < S (right) analysis for y = 4 x 1072 eV (a ~0.66) and f, = 10'* GeV.

083044-17



SAMUEL J. WITTE and ANDREW MUMMERY

PHYS. REV. D 111, 083044 (2025)

these states (at lower a, scattering processes with, or into,
the |211) serve this role); energy sinks for these states do
exist, but for large a, they only arise at n > 5. Thus, in order
to ensure one does not overstate the strength of the spin-
down limits, one should ensure that any state capable of
extracting spin (on the relevant timescale of interest) has the
leading order energy sink present in the analysis. For the
m = 2 states, this leading order contribution will arise at
|544), while for the m = 3 states, this will arise at [766).
Reaching n = 7 in a self-consistent and contained manner
is nontrivial, and thus, we will continue to expand the
analysis to n = 5 but do not attempt to analyze higher n
states—this approach should allow us to establish the
location of the m =1 and m = 2 spin-down regions.
Future work will focus on extending this analysis to yet
higher states, thereby understanding the spin-down induced
by yet heavier axions.

3. Evolution at n <5

In order to understand the stability of the evolution at
n < 4, we extend our analysis to include the n = 5 states.
With this in mind, the relevant states include:

(i) |511): This state has a sufficiently short super-
radiance growth time to be relevant for the evolution
of the system. We include this level in the evolution,
although we note now that our numerical solutions
do not show this state reaching sizable occupation
numbers.

(i) |522): This state has a sufficiently short super-
radiance growth time to be relevant for the evolution
of the system. We include this level in the evolution.

(iii) |532): The superradiance timescale of this level is
typically far too large to allow for the necessary
~180 e-folds of growth, except for a narrow range of
axion masses near a ~ 0.6. The growth rate cannot
be enhanced via mixing (as selection rules do not
permit this for the relevant states) nor can it
efficiently enhance or suppress the growth rate of
other n =5 states. Given that the bosenova thresh-
old naturally implies 7y, > 180 x 7. for even rea-
sonably large f,, this state will not play a relevant
role in the evolution of the system. Therefore, we do
not include this level.

(iv) |533): The superradiance growth rate can be sizable,
and this level can efficiently mix with other states.
We include this level.

(v) |542): The superradiance timescale is too large to be
relevant, and growth via mixing would require large
occupation numbers in the m =1 states (which
should not be occupied at large a). We therefore
neglect this level.

(vi) |543): The superradiance growth timescale is barely
large enough to grow a few e-folds at a ~ 0.9 but
certainly not large enough to extract energy or alter
the evolution of the system. Efficient growth via

mixing would require m = 1 states, which we have
argued should not be present at large a.

(vii) |544): This state can grow via superradiance, and the
growth rate can be enhanced (e.g., via the |322)
state). We include this level.

In summary, we introduce four new states at n = 5, include:
|511), 1522), |533), and |544).

For the sake of simplicity, we do not explicitly write the
modifications to the evolution of the occupations numbers
e, or mass or spin of the black hole (although the
generalization from the equations outlined above is
straightforward to infer). In Table II, we outline a subset
of the relevant scattering rates involving the n = 5 proc-
esses—in practice, all scattering permutations between
active states are included in the analysis even though we
only show the analytic expressions for a subset of these. As
mentioned above, we show relativistic corrections to a
subset of the scattering rates in Fig. 4.

In Fig. 7, we compare the evolution of the n <4 and
n <5 systems for a fixed value of @ and f,, including
relativistic corrections in both systems. Here, one can see
that the inclusion of the |544) state serves to quench the
growth of the |322) and prevent the growth of the |422) and
|433) states (which were previously grown via super-
radiance). This state prevents the appearance of a bosenova
and delays and suppresses spin-down.

In Fig. 8, we show the evolution of the same state as
Fig. 5 (namely, a ~ 0.33), but including all states up to
n <5 (including relativistic corrections). By comparing
these figures, one can see that the behavior qualitatively
quite different, leading to a more complex evolution for
values of f, < 10'° GeV.

In Figs. 9 and 10, we show the evolution of the full
system in the high mass regime, specifically at o = 0.75
and o = 0.83. Here, one sees that for values of
fa S 10 GeV, the |544) state is grown via the |322)
state, suppressing the characteristic occupation numbers of
the m = 2 states, and therefore, the m = 2 spin-down. At
smaller values of f,, the suppressed [322) occupation
numbers fully prevent spin-down on all relevant timescales.
For the highest axion mass shown (see Fig. 10), the
occupation numbers of the |322) level are actually not
produced via superradiance; the [322) is superradiant but
has a timescale much longer than the Salpeter timescale,
and the large occupation numbers seen at small f, are
instead realized via the scattering of higher order states
(meaning that spin-down is not arising at m = 2, but rather
at m > 3).

4. Prospects for going beyond n=5

As mentioned above, truncating states at n < 5 prevents
one from confidently inferring the evolution of spin-down
at m > 3—this is simply a consequence of the fact that one
of the most efficient dissipation channels will proceed via
|n33) x [n33) — |n'66) x BH, with n’ > 7. If such states
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FIG. 8. Same as Fig. 5 (a ~ 0.33), but evolving all relevant states at n < 5 and including relativistic corrections to all scattering processes.
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083044-19



SAMUEL J. WITTE and ANDREW MUMMERY PHYS. REV. D 111, 083044 (2025)
i ‘ T T T T T L T T \A
3 r 1 3 1
0 Lot Ll v e el el 0 bl vl vl i el il il ! T
[ T T T T T T T T A A Lt LA A m e et
10° — 100
102 = — 103 |- 4
1072 - = = 1076 o -
w0t - €211 €433 ‘ 4 ¢ 1079 |- o
: €
09 L €322 511 ‘; i oL i
. €411 a=083 | =0.83
— L = —15 | . -
10 €499 €533 €544 fo= 10'8 G‘ AV 10 . 1016 GeV
1018 ol v vend o] el Bl el el wovendl Bl o1 1018 vl vl vl vl Wl vl vl vl vl
102 107! 10° 10! 10% 10° 10 10° 10° 102 107t 10° 10 10? 10° 10 10° 106
t [y t [y
O A A A A A WA A SN IO L[ T T T T T
3 3
0 bl vl vl v il il el el ] 0 b vl il i il il el ]
-3 = —
10 108 [ -
1070 - T = 1070 —
" R |
L 00 | i I (e n
w | w
10712 “ - 104 |- ]
o =0.83 | a=0.83
—15 | . 16 | =102 GeV |
10 fo= lOH‘CCV 10 fa
|
10-1 Ll vt vl v B vl bl 10-1 Ll vl vl v B il il il il
102 107! 10° 10! 10% 10° 10t 10° 10° 102 107! 10° 10! 10% 10° 104 10° 10°
t [yrs] t [yrs]

FIG. 10. Same as Fig. 8, but for a = 0.83.

grow, they can establish equilibria with suppressed occu-
pation numbers in a manner analogous to the [211) — |322)
(or the |322) — |544)) system. While this poses a challenge
in understanding the evolution of m > 3, the dominant
energy dissipation channels for the m <2 states are
included in the n <5 system; as such, it is natural to
ask whether this spin-down at m = 2 is stable with respect
to the inclusion of the n > 6 states.

One way to approach this problem was outlined in [44],
where they studied the stability of the two-level system to
higher order states in the hydrogenlike limit. In this case,
the two-level system admits a well-defined quasistable
equilibria with occupations numbers €5,, €5}, that can be
computed for any value of a and f,. Starting from these
equilibrium occupation numbers, one can then analyze the
size of terms contributing to the growth and dissipation of
higher order states—it turns out that for many states,
dissipation in the low-a limit is favored, allowing one to
argue that the two-level system is stable for a <0.22
(although, as mentioned above, relativistic corrections push
this value slightly lower).

While this should probably be thought of as the preferred
“first” approach, it becomes dramatically more complicated
at larger a; this is because (i) there exists not a single
quasistable equilibrium configuration, but many such
configurations, including configurations with more than
two states (implying one needs to perform the equilibrium

stability analysis across many subsets of parameter space,
with each analysis being more complicated due to the larger
permutations of scattering processes), (ii) the number of
terms contributing to the growth or dissipation of higher
order states increases rapidly with n, (iii) relativistic
corrections quickly break the simple scaling relations,
complicating the clean analytic comparisons that are used
in the hydrogenlike limit (this was already seen above,
where relativistic corrections disrupted the two-level sys-
tem at a ~0.15), and (iv) unlike in the two-level low-a
system, many states do grow at large a and large n (the low-
a hydrogenlike limit was simple exactly because one could
argue that states do not grow). To some degree, the
complexity of applying such an approach can already be
seen merely by analyzing the complexity of the behavior
seen in Figs. 6-10.

As an illustrative example, we consider here how one
might attempt to go about extending this approach beyond
the two level system. For the sake of simplicity, we focus on
the range of a such that the m = 1 levels are no longer
superradiant, but the m = 2 levels are (e.g., this roughly
corresponds to 0.4 < a < 0.7 for black holes with spin
a ~ 0.95)—this simplification allows one to neglect the
m =3 levels as these cannot be grown via scattering
processes, and the superradiant timescale is typically quite
long. For this range of parameters, the |322) state is the
fastest to grow, quickly driving the growth of the |544) for
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equilibrium occupation number (see text for discussion).

even moderate values of f,. These two states typically
establish an equilibrium, with €3,,/€s44 ~ O(0.5) for the
relevant range of a. Once this equilibrium is established,
one can show that the |522) state cannot grow—this is
because self-interactions cannot grow this state without the
presence of an m = 1 state and because superradiance is
inefficient relative to the |322) x |522) — |544) x BH and
|544) x [522) — |322) x oo scattering processes (assum-
ing equilibrium distributions for €55, and e544).'* The [422)
state can grow via superradiance, but its growth is
quenched by the [422) x |422) — |544) x BH process
when its occupation number is still small (typically
saturating near €3y,), and therefore it does not disrupt
the |322) — |544) equilibrium. Bearing this in mind, the
question that remains is whether levels at n > 6, which
have not been included in the numerical analysis presented
here, could invalidate the inferred m =2 spin-down
timescale.

Starting from a three-state equilibrium, one can see
that the leading states (leading here implying the smallest
n state) that could potentially be produced via self-
interactions include |644) (from [322) x [322) —
|644) x BH, or from [322) x [422) — |644) x BH),
|766) (from |322) x |544) — |766) x BH, or from [422)x
|544) — |766) x BH), and |988) (from |544) x |544) —
|988) x BH). For each of these states, one can compute all
scattering permutations with the three preexisting states;

14 . .
We caution the reader, however, that the ratio
544xBH 322%00 ] eq _eq

SR :
V52 (I3 + V544x522 €3y€5y;) < 1 is extremely close to 1
in the large mass limit, and thus reasonable perturbations to the
equilibrium occupation numbers may alter this statement.

using the a and f,-dependent occupation numbers of each
state, one can then determine if the growth rate of any of
these states is positive (and if so, for which values of @). We
find that neither the |644) state nor the |766) state grow for
any value of a" where the m = 2 state is superradiant,
while the |988) state instead grows for all relevant values of
a. Despite the appearance of the [988) state, the energy
being extracted via this scattering process is sufficiently
low so as to have a minimal effect on the equilibrium value
of €35, (which, in the end, is responsible for the m = 2
spin-down).

Despite the fact that the |988) level did not signifi-
cantly disrupt the m =2 spin-down, one cannot stop
here. First, it remains possible that this new level pumps
energy into other states, which in turn disrupts the [322) —
|544) equilibrium, thereby delaying m =2 spin-down.
Therefore, one must once again compute all scattering
permutations, including the newly populated |988) state,
with this process stopping only when all scattering permu-
tations do not populate new levels. Second, the story is
again complicated by the fact that stopping at “lowest-
order” in that n is not guaranteed to be sufficient. In fact,
the [322) x|322) — |544) x BH is as efficient as the
[322) x |322) — |644) x BH process in the a — 0 limit
(actually, this process is nearly degenerate atn = 5, 6, 7, 8§,
9, and 10, only beginning to fall at » > 11)! Now it turns
out that the presence of these higher order states (at least

BLet us emphasize that the conclusions drawn using this
approach crucially depend on the inclusion of relativistic cor-
rections everywhere, as the distinction between growth and decay
often boils down to O(1) numbers appearing in the growth/decay
rates.
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at leading order) alone do not significantly alter the
m = 2 spin-down. This is because the equilibrium occu-
pation number receives corrections, which scale as
€337 ~ Z?ﬁ% and y¥23<  falls off more quickly with
544x544

n. Nevertheless, the occupation numbers of such states are
not negligible and should be carefully considered if one is
to argue for well-controlled equilibrium configurations.
For reference, the ratio of the higher-n scattering rates for
the |[322) x |322) — |n44) x BH and |n44) x |nd44) —
|322) x oo processes are shown in Fig. 11.

Rather than exhausting all permutations, one can
instead try to intelligently guess which levels could
potentially reduce the equilibrium occupation number
of the |322) state (since this would be the only way
in which constraints derived from the n < 5 levels would
overestimate sensitivity). The lowest lying state with
m > 2 that has a resonant scattering (in the hydrogenlike
limit) with the [322) level is |522). This state can be
directly populated via |988) x [988) — |522) x BH. We
had previously argued that the |522) state does not grow
—we can now ask whether the appearance of the |988)
state changes this conclusion, and if so, how large can
the occupation number of the |522) state become. We
find that the |522) level remains unpopulated, even when
including the additional channel. Moreover, no such
resonant processes are present at n =6 or n = 7. This
is again suggestive of the fact that the [322) state is
difficult to deplete, but numerical validation is likely
necessary to confirm this conclusion.

An alternative approach is to focus not on the exact
stability of the occupation numbers themselves, but rather
on the characteristic stability of the spin-down process.
The general idea here is to recognize that energy is
injected into the bound states with low m, and the role
of self-interactions is to redistribute some of that energy
to higher order states (with energy redistribution being
most efficient when high-occupation states have strongly
overlapping radial wave functions). This naturally intro-
duces a hierarchy of scales, such that large-n states
should play an increasingly unimportant role in modi-
fying the evolution of low-n states. This statement does
not imply that large n states are not populated and of
course does not hold on a level-by-level basis (as is
seen, e.g., by the fact that the [322) state is primarily
modified by the |544) state), but rather should hold as a
general trend. This is, however, reflected in the example
provided above and is also reflected in the hydrogen-
limit scattering rates of Tables I and II (for the sake of
simplicity, we do not list all possible scattering rates,
but rather a subset; all possible scattering permutations
are nevertheless included in the evolution of the super-
radiant system).

This introduces the possibility of a brute force
approach, where one attempts to study of the stability

of low-m spin -down (rather than stability of the
occupation numbers themselves) for a particular system
by extending the analysis level by level. The conclusion
derived in Ref. [44] that the two-level system is a
complete description at o < 0.1 would also be easily
seen using this approach, as no higher order levels
would be populated at small «, regardless of how many
levels were introduced into the analysis; this approach,
on the other hand, evades the issue of having to search
for tens, hundreds, or even thousands of different
quasistable equilibria and scattering permutations, which
may be present during the evolution of a single system
(should such equilibria even exist). Needless to say,
caution must be taken when applying this approach,
since one must extend to sufficiently large n to ensure
that stability is achieved. In this work, we truncate at
n =5, which we argue is likely sufficient for the m =2
of typical high spin solar mass black holes, but intend to
extend to higher n in future work.

In order to demonstrate this approach, we study the
spin-down stability of a black hole consistent with the
fiducial parameters of Cygnus X-1. Specifically, we
look at the final spin of the black hole for a range
of values of a and f,, performing the n <3, n <4, and
n <5 analysis. We perform two tests—one in which
only the m <2 states can extract spin from the black
hole'® and one in which all states can extract spin. The
result of this analysis is shown in Fig. 12, with the left
panel showing the special m <2 case and the right
panel showing the general result.

From Fig. 12, one can see that the m <2 spin-down
analysis (left panel) is stable across the n <3, 4, and 5
analyses for nearly all values of a shown, up to
fa =10 GeV; including the higher order spin-down
(right panel), one can see that for £, < 10'* GeV the role
of higher m spin-down is merely to enhance the amount
of spin extracted (in other words, m = 1, 2 extract spin
maximally, but so do m = 3 and/or m = 4). For smaller
values of f,, the inclusion of n =15 states tends to
suppress spin-down—this is true for both analyses (left
and right panels, with a small exception arising at large o
and f, = 10" GeV of the right panel) and arises merely
because the |544) state quenches the growth of the |322)
state. What is interesting to note, however, is that as f,, is
decreased, the results of the m <2 analysis converge to
those of the full analysis, with convergence first arising at
smaller value of a and larger values of f,, and pushing
toward covering the full parameter space. This is strongly
suggestive of the fact that the n <5 analysis is relatively

"“The analysis with only m < 2 spin-down is technically not
fully self-consistent, since other quasibound states grow and can
in turn alter the mass of the black hole itself. In order to avoid
instabilities in this case, we fix the black hole mass to its initial
value and do not evolve it in time. This should not significantly
alter the conclusions.
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FIG. 12. Final spin at 7 = 4 x 10° yrs of a test black hole with the fiducial parameters of Cygnus X-1 as a function of a, for fixed
values of f, and for the n < 3, n <4, and n < 5 level systems. Left panel assumes that only the m = 1 and m = 2 states can extract
rotational energy from the black hole, while right panel does not. The original black hole spin is shown with a vertical dashed line, and
the gold shaded band approximately highlights where the |322) state will have fully spun down (with the band edges being computed by
equating wsy, = 2€2, assuming a final black hole mass five percent smaller than the initial value). The green shaded regions denote the

approximate m = 1 spin-down.

robust, so long as the m <2 states are capable of
extracting sufficient spin to be constrained by observa-
tional measurements (note that this naturally applies an
upper axion mass for which results can be trusted, since
for @ 2 0.7, one does not expect m < 2 to be capable of
sizably altering the black hole spin). Finally, let us note
that we have already argued above that states at n =6
will not grow via self-interactions for a = 0.4, and the
|622) will only have a minimal effect on the m =2
spin-down—as such, we expect the n < 6 result to look
nearly identical to that of the n = 5. Similar conclusions

hold at n =7 (the |722) state is less influential than the
|622), the |744) state will extract energy from the m = 2
state less efficiently than the |544) state, and the |766)
state does not grow).

The above conclusion only applies to the specific
example at hand, and thus, we choose to repeat the same
exercise but adopting a slightly smaller initial spin,
a =097, and lifetime set to the Salpeter timescale
(roughly reflecting parameters consistent with the
spin-down analysis of GRS 1915 + 105, see following
section)—the result is shown in Fig. 13. As before, one
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Same as Fig. 12, but for a spin @ = 0.97 and a lifetime set to 7g,; = 5 x 107 yrs (this defines the so-called Salpeter timescale,

which corresponds to the minimum timescale required to alter the black hole mass and spin—see discussion in Sec. III). This setup is
intended to instead be reflective of the case of black hole GRS 1915 + 105. The green shaded regions denote the approximate m = 1

spin-down.

can see for f, > 10 GeV and a > 0.4, the left panel
shows that the n < 3, 4 and 5 analyses are convergent.
As before, the full analysis (right panel) consistently
shows that the higher order states can always increase
spin extraction, but this is as expected since the
enhanced spin extraction is coming on top of the
m =2 spin-down. For smaller values of f,, we again
see that the n <5 analysis seems to be consistent
between the left and right panels, except for large
values of a = 0.66. As before, this is suggestive of
the fact that the m = 3, 4 states are further enhancing
spin extraction. Since we do not include the relevant
states that quench m = 3, 4 spin extraction (which arise

at n > 6), one can still perform a conservative analysis
at o £0.66 with n <5 so long as the final spin of the
m < 2 state is sufficiently low to be incompatible with
observations. This is the relevant regime for the highly
spinning black holes studied in this work.

In effect, let us reiterate that Figs. 12 and 13
demonstrate that for black holes that are highly spinning
and have strong constraints on the spin itself (meaning
that the m <2 spin-down is sufficient to induce an
incompatibility with observations), an analysis using
the n <5 states should be sufficiently to conservatively
derive limits at o < 0.66. Let us further note that for
shorter timescales, this conclusion is strengthened—this
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TABLEIII. Black hole data used in this work. Mass and spin errors are quoted at 1o and 20 (except when an upper limit is listed,
in which case we adopt the 3¢ threshold), respectively. In the case of Cygnus X-1, we include a fiducial model (“Fid.”) based on
conventional spin-inference modeling, and a conservative model (“Cnsrv.”), which was obtained when relaxing the priors on
radiative transfer in the disc atmosphere [105] (see Sec. IV for more details). A more extensive table of measurements of highly
spinning solar-mass-scale black holes can be found, for example, in [17] (note, however, that not all black holes have mass or age
estimates).

Name Mass [M) a Ty [yrs] Bin. period [days] M omp [Mo]
Cyg X-1 [Fid.] 21.24£22[106]  >0.9985 [107,108]  4.8-7.6 x 10° [109]*  5.599829 [110] 40 [108]

Cyg X-1 [Cnsrv.]  21.2 £ 2.2 [106] 0.92:09 [105]  4.8-7.6x 10° [109]  5.599829 [110] 40 [108]
GRS 1915 4 105 12,4530 [111] >0.95 [111] 3-5x10° [112] 33.85 [113] 0.47 £0.27 [113]
GRO J1655-40 6.3£0.5 [114] 0.7210,9 [11] 3.4-10 x 10® [115] 2.622 [115] 2.3-4 [115]
LMC X-1 10.91 + 1.4 [114] 0.92799¢ [116] 5-6 x 106 [117] 3.9093 [118] 31.79 +3.48 [118]
M33 X-7 1565+ 1.45[114]  0.84+0.1 [11] 2-3 x 106 [119] 3.4530 [120] 220 [120]

It is worth noting that various groups have quoted a “conservative” age of Cygnus X-1, 7 ~ O(0.05) Myr, much lower than the
value quoted here; this claim comes from Ref. [121], which infers the characteristic age of a shock wave which seems to have been
produced by the jet of Cygnus X-1. This observation merely puts a lower limit on the age of the black hole (or more precisely, the
age over which Cygnus X-1 was rapidly rotating). In fact, it was speculated in [121] that the shock wave formed only after Cygnus
X-1 moved into a dense HII region, implying the age of the black hole is likely to be fully consistent with the inferred value quoted

here [109].

is merely because the m > 3 states require longer time-
scales in order to extract spin and thus play an increas-
ingly subdominant role in modifying the spin of the
black hole.

III. STATISTICAL ANALYSIS
AND RE-VISITATION OF LIMITS

The above sections have served to demonstrate the
formalism and impact of self-interactions on the super-
radiant evolution of scalar fields around rapidly rotating
black holes. We now turn our attention to the question of
how one should derive spin-down constraints on obser-
vations of the black hole population, focusing specifically
at observations of solar mass scale black holes.

From a statistical perspective, the question one would
like to ask is whether an axion of fixed mass and
decay constant (m,, f,) is consistent with the observed
set of black hole mass and spin distributions. One of the
difficulties in addressing this question inherently stems
from the fact that we observe black holes foday, and we are
effectively ignorant of their properties and evolution at
much earlier times. For sufficiently young black holes with
lifetimes 7., < 7g,, Where the Salpeter timescale zg, ~
4.5 x 107 yrs is the minimum time required for a black hole
to significantly alter its mass or spin (which assumes
Eddington-limited accretion with radiative efficiency
n=~0.1) [103], one may be tempted to assume that spin
at birth @; is equal to the spin observed today a, Up to
caveats about extended periods of super-Eddington accre-
tion (which are not expected in x-ray binary systems over
these long time periods, although GRS 1915 4 105 has
reached rates close to its Eddington limit during its current
30 yr outburst, and GRO J1655-40 may have briefly

entered a super-Eddington phase in 2005 [104]), this is
certainly likely to be true in the conventional scenario'’;
however, in the presence of light bosons, this assumption
may no longer hold. In other words, we cannot be
confident whether a black hole is currently undergoing
spin-down—while such a distinction is irrelevant for
noninteracting bosons (since spin-down occurs exponen-
tially fast), the same is not guaranteed to be true when
self-interactions are included in the evolution. As a result,
it is natural to perform statistical inference by including
the initial spin and mass of each black hole as model
parameters {M;,d;} and marginalizing over them (or
profiling them out, depending on whether one performs a
Bayesian or frequentist analysis) when deriving con-
straints on (m,, f,). Since it is difficult to make strong
statements about the properties of black holes on time-
scales t = Tsal,lg we assume that the “initial” mass and
spin distributions of black holes with ages 7, > 7g, are
defined at a time f~ fy — 75, (rather than ¢~ ty — 7},
with ¢ = 1, being today).

17Dynamically it is exceedingly unlikely that any x-ray
binary system was previously a part of a triple (BH, BH,
star) system that has since undergone a merger, as all three
objects would have to be extremely densely packed to leave the
final star + BH system able to accrete, a setup which is
inherently chaotic and liable to the ejecting of one/more bodies.

®In general, one could attempt to extend analyses of older
black holes to times > zg, via a self-consistent model, which
includes the evolutionary history of black holes in the
presence of accretion, merges, and superradiance. This is
beyond the scope of this work but would be of great interest
as it could allow for a significant improvement in sensitivity
(see, e.g., [103] for initial attempts to perform such an
analysis).
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In this work, we perform a Bayesian analysis]9 using the
solar-mass-scale black holes listed in Table III. For each
black hole in the sample, we adopt the following priors on
the initial mass and spin

~ 2@ ,1—21.) a; > a,
p(ai> — ‘max c (76)
N(&i,ac,()'(;) Zli S ZZC
NMi,MC,G+ Mi>Mc
oy = { 1 e ) S
NM M. cy) M;<M.

where M, and G, are the central values of the inferred mass
and spin, and N (x, x., ) is a Normal distribution evalu-
ated at x, and with central value and standard deviation x,
and o, respectively. When only a lower limit on the spin is
observed, we adopt a flat prior over the values of spin. The
maximum spin is set to ., = 0.998.

InEgs. (76) and (77), we have assumed the initial mass and
spin distribution to be uncorrelated, which in general need
not be the case—we note, however, that [122] has recently
shown that using fully correlated spin-mass measurements
does not significantly alter the superradiant sensitivity (at
least for the examples provided). We take o3; to be the 1-¢
upper/lower uncertainty in the inferred mass in Table III [note
we focus on timescales ¢ < 7g,, Where the mass of the black
hole is nearly constant—consequently, the mass prior in
Eq. (77) effectively serves to replace the need for a mass-
dependent term in the likelihood itself] and 7 to be the lower
1-0 uncertainty on the measured spin distribution. Our
fiducial analysis adopts log-flat priors on both the axion
mass and the axion decay constant, which span the intervals
m, €107 eV, 107!° eV] and f, € [10° GeV, 10'® GeV].

Let us elaborate briefly on the choice of priors in
Egs. (76) and (77). In the case of the black hole spin,
we are effectively ignorant of the value of &;, with
observations only constraining the value of the spin today.
Therefore, a logical choice would be to merely adopt flat
priors over the interval a € [0, @y, ). This would be a good
choice, except in our analysis we are not including any
mechanism that can spin up the black hole, only a
mechanism capable of spinning down the black hole.
Therefore, any of the samples we draw with a; < a, —
2 x o7 are guaranteed to be strongly disfavored by the data,
regardless of the presence of an axion. This implies our
sampling procedure is inefficient (potentially highly inef-
ficient). The obvious way to avoid this issue is to adopt a
prior, which preferentially does not sample this region of
parameter space, while leaving the “acceptable” region of
parameter space unaltered. The logical choice that avoids
introducing arbitrary hard boundaries in the prior is the one
of Eq. (76). In the case of the black hole mass, the story is

Since the spins of various black holes are measured extremely
precisely, our analysis will be largely data driven, and thus, a
frequentist approach is expected to yield similar results.

slightly different. Here, we have not included any mecha-
nism capable of significantly altering the mass of the black
hole itself (superradiance can change the mass but does so
only by an amount that is much less than the uncertainty in
the measurement). A natural choice of priors in this case
would be a log-flat distribution in masses that is sufficiently
broad to be well beyond the mass uncertainty of any object.
In this case, one would incorporate the actual mass
measurement directly into the likelihood itself (described
below). The problem, as before, is that one ends up with a
highly inefficient sampling procedure where most of the
sampled points will inherently be rejected purely because
of the poor overlap between the prior and the likelihood. An
easy fix is to fold the mass measurement directly into the
prior, and remove it from the likelihood in order to avoid
double counting. In this sense, one is directly sampling
from the allowed mass posterior in a way that is compatible
with the observation—since there is no strong evolution in
the mass, the final mass is guaranteed to be consistent with
the observations (with the statistical sampling procedure
already reflecting the relative posterior weighting). Before
continuing, let us emphasize that these choices are valid
here only because we are working on sufficiently short
timescales where we can neglect mass and spin evolution—
a generalized analysis including these effects would need to
modify both the priors and the likelihood.

For fixed axion and initial black hole parameters, we
evolve Eqgs. (65)—(69) (or the equivalent versions that include
higher order superradiant states) from ¢ = ty — 7, tO fg,
where 7., = Min|[z,,, 7sq] (for the sake of being conser-
vative, we always adopt a value of 7, consistent with the
lower limit in Table I1I); this yields a prediction of the mass
and spin today, (M, d,). The likelihood is then given by

=T Viarooon

where the central values @, and upper/lower uncertainties are
those quoted in Table III, and the product runs over all black
holes in the sample. In practice, we perform an independent
analysis for each black hole—this is done for computational
simplicity, but a joint analysis may give marginally stronger
limits. For black holes whose spin inference leads only to
lower limits on a, we instead take the likelithood to be an
asymmetric Gaussian centered on the two-sigma limit, and
with an excessively large tail in high-spin regime (truncated at
a = 0.998, thereby mimicking a flat distribution), and a lower
standard deviation of 10~>—this choice effectively serves to
ensure high spin black holes are not penalized, while those
below the limit are immediately excluded (and does so
without imposing any hard thresholds in the analysis). In
general, one could adopt a procedure that directly uses the
inferred distributions themselves.

In Table III, we have also included information on the
binary systems to which these black holes belong (namely,

t

N

,ZlC,U 0>

<, 78
o< (78)

c

[SUN ST

Nt
Qi

0
Zlo,ac,ﬁ

083044-26



STEPPING UP SUPERRADIANCE CONSTRAINTS ON AXIONS

PHYS. REV. D 111, 083044 (2025)

1071 gy — — 3

., [ Cyg X-1 n<3 ]

07 E LMo x 3

o o M33 X-7 ]

10" = GRs E
— C R ]
T -1 [ GRO ]
- E E
5] L i
O wnt -
ﬁ 10°1% ;— —;
— E =
1016 ;_ _;
10—17 §_ _g
10718 _I III| 1 1 Lil | IIII i | 1 1 IIII 1 ]

10—13 10—12 10~

mg [eV]

FIG. 14.  95% upper limits on f, derived using the n < 3 states,
and including relativistic corrections to the scattering rates, for
each of the black holes listed in Table III (results for the
conservative spin measurement of Cyg X-1 is shown using a
dotted line). The region excluded by the combination of these
constraints in shown in gray.

the binary period and the companion mass). Various groups
have investigated the role of binary companions in per-
turbing the growth and evolution of superradiant systems
(see, e.g., [41,44,46,47,49,123]), where the general expect-
ation is that the binary can induce an effective mixing
between the superradiant levels, allowing axions in grow-
ing superradiant modes to dissipate some of their energy.
This effect is expected to be small so long as [44]

M 1 2/9 M 1/9
azo.013<—ﬂ> a9 <M7> . (79)

M 0] P orb comp +M

where Py, is the binary period and M, the companion
mass. Binaries can also resonantly deplete superradiant
levels when the binary periods are close to the energy
splittings—this can be computed for each system by
determining if Py, X (@, — @y ) ~ 1 [41,44] (see also
[124] for a recent study of the interplay of binaries with
axion self-interactions). The systems shown in Table III are
safely away from both of these thresholds for the parameter
space of interest,” and thus, we do not need to impose any
additional constraints on the parameter space of interest.

*Technically, the |433) and [422) levels (and some of the
n =15) levels are sufficiently close to potentially allow for a
resonance in Cyg X-1 at very low axion masses (near o ~ 0.03);
however, these states only play a relevant role in the evolution of
the superradiant system for larger values of «, and thus, such a
resonance would not alter the spin-down of the black hole.

We begin by running an independent MCMC for each
black hole listed in Table III using the two-level system (i.e.,
only including the n < 3 states). The results are presented in
Fig. 14. All calculations include relativistic corrections to the
scattering rates. One should be careful in interpreting the
m = 2 spin-down region (corresponding to the strengthening
in constraints at large masses), as there is no scattering
process included in this model that prevents the growth of the
|322) state (any suppression of the limit is instead being
driven by the statistical uncertainties in the black hole
properties, which instead blur the boundaries of the
m = 1, 2 spin-down regimes). In the case of Cygnus X-1,
we plot both the fiducial (solid) and the conservative result
(dotted). The union of all constraints is highlighted in gray.
As expected, we see that constraints are dominated by the
high-precision spin measurements of Cygnus X-1 and GRS
1915 + 105, although the conservative Cygnus X-1 limit
suggests that the strength of the fiducial bound should be
treated with caution. We return to the motivation for includ-
ing the “conservative” model below.

In Fig. 15, we plot the constraints derived on GRS 1915 +
105 (left) and Cygnus X-1 (right) for the n < 3 states,
including (red) and neglecting (blue) relativistic corrections
to the scattering rates. We also include an analysis in which
the only role of self-interactions is to impose an upper limit
on the occupation number—this limit is referred to as the
bosenova cut (“BN Cut”), and is shown in cyan. For both
black holes, we see that relativistic corrections serve to
slightly suppress the constraint coming from the m = 1 level
(this occurs because the enhanced spin extraction rate of
m = 2 slightly modifies the equilibrium distributions). The
impact of the relativistic corrections on the m = 1 spin-down
is subdominant to the role of self-interaction induced level
mixing, as can be seen by the fact that the “BN Cut” limit
extends to as much as an order of magnitude smaller f, in
both cases. Note that the absence of the |211) state at large
implies the |322) state can grow unimpeded to the bosenova
threshold. For Cygnus X-1, one finds all constraints tend
toward degeneracy at large masses, while for GRS
1915 + 105, the larger uncertainty in black hole mass and
spin are sufficiently great to prohibit the m = 2 spin-down
region from obtaining full sensitivity.

In the left panel of Fig. 16, we plot the limits derived using
Cygnus X-1, applying the analysis with n < 3, n <4, and
n <5 states (with relativistic corrections included every-
where). Here, we find that the inclusion of the n = 4 and
n = 5 states have a minimal impact on the m = 1 spin-down
region. The m = 2 spin-down limit, instead, is strongly
affected by the inclusion of the n = 5 states, since this in turn
is predominantly responsible for suppressing the growth of
the |322) state. The extension of the n <4, 5 models to
masses above the m = 2 region should be discarded, as we
have not included the relevant levels for suppressing the m =
3 spin-down (which arises at n = 7). The net suppression
observed in the m = 2 limit amounts to a factor of nearly 10
in f, at its peak.
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95% upper limits on f, derived using the n < 3 states for GRS 1915 + 105 (left) and Cyg X-1 (right). Results are shown

using the nonrelativistic scattering rates (blue), relativistic scattering rates (red), and by neglecting scattering and only imposing a
maximum upper limit on the occupation number set by the bosenova threshold (cyan, labeled “BN Cut”).

One can perform the same comparison with GRS
1915 + 105—the result is shown in the right panel of
Fig. 16. As before, one sees that the results converge in
the m = 1 spin-down region, but for the m = 2 spin-down
region, only the n < 4 analysis sees enhanced sensitivity
(being driven not by the m = 2 level but rather the m = 3)—
instead, the n < 3, 5 analyses display similar sensitivities in
this regime.
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In the previous figures, the uncertainty in the black hole
mass tends to reduce the range of axion masses, which can
be constrained, and induces a smearing of what would
typically be sharp features at the boundaries of the various
spin-down levels. In order to illustrate the effect of the mass
uncertainty of the black hole on the derived limits, we rerun
the n < 5 analysis of GRS 1915 4 105 assuming the black
hole mass is known precisely and compare it to our fiducial
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FIG. 16. Comparison of the 95% CI limits derived using the fiducial properties of Cygnus X-1 (left) and GRS 1915 + 105 (right) and
evolving the n < 3, n <4, and n <5 states. Relativistic corrections are included everywhere.
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FIG. 17. Comparison between the 95% CI obtained for the
fiducial parameters of GRS 1915 + 105 (labeled “Std.,” meaning
Standard) and the limit obtained assuming no uncertainty on the
mass inference of the black hole (labeled “Mass Res.,” meaning
Mass Resolution analysis). Both analyses are performed for
n <5 and including relativistic corrections.

limit from GRS 1915 + 105—the result is shown in Fig. 17.
The net effect is rather minimal, generating a modest
enhancement near the peak spin-down of the m =1, 2
spin-down regions, a slight suppression of the region where
the m = 1 level turns off (before, the mass uncertainty
smeared this sensitivity), and an extension of the constraints
to marginally higher and lower masses. In this sense,
precision mass measurements are not enough to sizably
extend constraints to heavier axions—this needs to be
accomplished by studying the coupled spin-down at high-n.

Superradiance limits on solar-mass-scale black holes
have previously been derived in Refs. [44,68,69,122]. The
approaches of these groups are known to differ signifi-
cantly, as are their derived limits. We briefly discuss the
differences in these approaches below, and provide a
comparison with the most relevant of these below.

We begin with a discussion of the limits derived in
Refs. [68,69] (which have also been applied to the analyses
of [70,71]). The primary differences between the analysis
of Refs. [68,69] and that provided here are:

(i) References [68,69] do not include self-interaction
induced level mixing. Rather, the role of self-
interactions is only to establish a maximal occupa-
tion number at which each level ceases to grow (i.e.,
they impose a bosenova threshold™). As discussed
above, self-interactions quench the growth at lower

?'The bosenova threshold differs slightly from Eq. (44) by a
small prefactor, but this only induces a minor shift in the derived
sensitivity.

(i)

(iii)

@iv)

)
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occupation numbers, reducing spin-down and sig-
nificantly suppressing the derived sensitivity.
References [68,69] do not time evolve the super-
radiant system, but rather set constraints by compar-
ing the growth rate, the black hole lifetime, and the
relevant thresholds on the occupation numbers. In
principle, such an approach can be used to obtain
rough ideas of where constraints should lie, but only
for high-precision measurements of highly spinning
black holes (in other cases, the superradiant time-
scale can evolve strongly in time that only allows for
a minimal change, with respect to the measurement
uncertainties, in the black hole spin). We believe that
this is one of the primary reasons Refs. [68,69]
appear (enormously) to obtain constraints using
black holes that have spins perfectly consistent with
a ~ 0, We note that this error has also propagated
into the works of [70,71].

There are slight differences between the datasets
used in Refs. [68,69] and the dataset adopted here,
see, e.g., Table 1 of [71], but these do not contribute
appreciably to the differences in the limits.
References [68,69] perform an analysis up to n = 6
and work in the nonrelativistic limit. In the absence
of self-interaction induced level mixing, working at
large n leads to an over estimation of the constraints
at large a.

Finally, there is an important distinction in the
statistical approach. In this work, limits are ob-
tained here by looking at the 20 marginal posterior
in (f,,m,). Instead, in Refs. [68,69], limits are set
by computing the weighted fraction of the black
hole posterior that overlaps with the region of
parameter space where one would expect spin-
down to occur. Focusing momentarily only on
the technique (rather than the application to super-
radiance) and putting aside the issues mentioned
above, one could imagine a pathological scenario in
which an axion is excluded at 90% despite the best
fit point (and the region of parameter space around
it) being fully consistent with the presence of an
axion. In this case, various model comparison
methods would yield little or no preference for a
model either with, or without, the axion. Further-
more, a higher-precision and fully consistent meas-
urement (e.g., with the same inferred central value
of the mass and spin) would in fact not exclude the
presence of such an axion. This behavior suggests
that the type I error could deviate (potentially
strongly) from the quoted exclusion confidence
level, which is not a desirable feature of a limit
setting procedure. While we believe this issue is
subdominant to the issues discussed above (and
likely not to have introduced any such pathological
problems in previous analyses), it is nevertheless
worth highlighting.
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FIG. 18. Left: Comparison between the m = 1 spin-down limit derived in Ref. [44] using Cygnus X-1 (green; see text), and the
equivalent comparison obtained using the procedure defined here (where we have run an analysis for n < 3 and used a black hole mass
consistent with the outdated value; see text). Note that the m = 2 spin-down region arising at large masses should be ignored, as this is
not included in the limit of Ref. [44]. Differences in the m = 1 spin-down are a result of the improved statistical analysis (see text).
Right: Comparison between the upper limit derived using M33 X-7 and the result obtained using the procedure defined here (for n < 3),
the upper limit of Ref. [122], and the m = 1 spin-down limit derived in Ref. [44]. Differences with Ref. [44] are driven by the statistical
analysis, while differences with Ref. [122] arise primarily from the limit setting procedure, and a hypothesized error in the analysis (with
subdominant differences also appearing due to the fact that mass and spin measurements here are assumed to be uncorrelated), which we

argue overestimates the sensitivity at high and low axion masses—see text for detailed discussion.

Owing to the large differences in the analysis, we do not
directly compare with the results of these works.

Recently, Ref. [122] (which includes a subset of the
authors in Refs. [68,70,71]) performed an analysis on one
solar mass black hole (M33 X-7) using the posterior
distributions from the inference of the black hole mass
and spin itself. As before, Ref. [122] does not evolve the
states, but rather defines a characteristic spin-down time-
scale that is set by assuming the |[211) —[322) states are
fixed to their equilibrium values (as derived in Ref. [44]).
The authors also look at the impact of using correlated
mass-spin uncertainties directly from the inferred posteriors
and find a small, but not significant, difference in these
results. As can be seen in the right panel of Fig. 18, the
approach of Ref. [122] typically yields similar results,
except near the lower- and upper-mass thresholds where
our analysis shows no (or a large reduction) in sensitivity.
While the origin of this discrepancy is not immediately
clear, one can compute the m = 1 spin-down timescale for
a mass in this region in the limit f, — oo (i.e., the limit of a
noninteracting boson), taking black hole parameters in the
central 1-o contour (see Fig. 2 of [122]), and show that this
timescale is longer than the age of the black hole itself—
this point cannot be physically excluded, suggesting an
error in the analysis of [122].

The limits obtained in Ref. [44] were derived by solving
the coupled |211) — |322) level system for each black hole
in Table III (note that the properties of Cyg X-1 have
recently been revised, with older estimates yielding a mass
of M ~14.8 = 1.0M, and a spin roughly consistent with
the fiducial model listed in Table III). Their approach is
similar to the two-level analysis (n < 3) provided here, with
the notable difference being the approach to limit setting. In
this work, we perform a Markov Chain Monte Carlo
(MCMC) over the parameters & = (f,, m,, M;, a;), mar-
ginalize over the initial mass and spin, and derive a limit on
each f, by binning the MC samples in m,. This can be
contrasted with the approach of Ref. [44], which evolves
the [211) and |322) states, and obtains a limit by equating
the age of the black hole with the dynamical timescale of
spin depletion (evaluated at the quasiequilibrium occupa-
tion numbers) [125]. In addition, Ref. [44] truncates the
m = 2 spin-down for values of f, <10'7 GeV, as they
identify the |544) level as becoming important as this
threshold, but do not include this level in the evolution. The
approach of Ref. [44] errs on the side of being conservative.
For high-precision spin measurements, this error can
become significant; this can be seen in Fig. 18 by
comparing the limits derived in Ref. [44] using Cygnus
X-1 and M33 X-7 with the limits obtained here. In the case
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of a high precision measurement like Cygnus X-1, the
approach of Ref. [44] tends to underestimate sensitivity by
roughly 1 order of magnitude, while this reduces to a factor
of ~2 for M33 X-7. Finally, notice that the extension of
these results to the m = 2 spin-down allows one to extend
the constraints at larger masses by a factor of ~2.

IV. DISCUSSION OF SPIN MEASUREMENTS

A wide variety of approaches to inferring the spin of
astrophysical black holes from astronomical observations
have been developed over the past few decades. Broadly
speaking, the general approach involves the generation of
some form of model template (be that a gravitational
waveform or an x-ray spectrum produced by an accretion
flow), which are explicitly a (often very sensitive) function
of black hole spin. These templates are then matched to
observations through a process of likelihood maximisation,
which typically leads to tight posteriors on black hole spins
(e.g., Table III).

Black hole spins can be estimated from the properties of
the gravitational waveforms detected by LIGO [126].
While measuring any one individual black hole spin with
this approach is difficult, the population of binary mergers
is now large enough that some structure is clear. The spins
of merging binary black holes inferred from gravitational
wave analysis are low. The most recent population study of
[127] presents the results from 70 binary black hole
mergers detected as part of the Gravitational Wave
Transient Catalog 3 (GWTC-3) [128]. GWTC-3 combines
observations from the first three observing runs (O1, O2,
03) of the Advanced LIGO and Advanced Virgo gravita-
tional-wave observatories. The distribution of the individ-
ual spins peaks at & ~ O.leg;lllz, and half of the individual
black holes in GWTC-3 are found to have a < 0.25. There
is no strong evidence of any rapidly rotating black holes in
the GWTC-3 sample [127].

On the contrary, techniques that make use of electro-
magnetic observations of astrophysical black hole systems
often find large black hole spin parameters (see, e.g.,
Table I11).** So far these have typically been restricted to
x-ray observations (e.g., see the following reviews [15,16]),
although optical techniques are being developed [23,27].
The accretion flows that form in black hole binary systems
can reach, for typical values of the free parameters of the
theory, temperatures of order a few keV in their innermost
regions. X-ray photons are therefore naturally produced in
abundance and in principle carry characteristic signatures
of the highly relativistic regions of spacetime from which
they originated. The general approach therefore is to search

“The discrepancy between electromagnetic and gravitational
wave inferences may strike the reader as odd, and it has been
suggested that this discrepancy may well relate to different
evolutionary pathways of both populations [129], although this
is a controversial statement [130].

for (and find) these signatures in the observed spectral
energy distributions (SEDs) of accreting black hole
systems.

As it is x-ray observations of accreting systems that
typically provide the highest black hole spin constraints,
which are of most practical use for superradiant studies, we
spend some time here discussing in more detail these
methods and their potential systematics.

There are two ways in which x-ray observations of
accreting black holes can be leveraged to produce spin
constraints. Both methods utilize the fact that the accretion
flows in these systems penetrate deep into the spacetime of
the black hole but differ in that they probe different ways in
which this accretion flow can source x-ray photons. The so-
called “continuum fitting” technique [see, e.g., [16], for a
detailed review] is perhaps the simplest to qualitatively
understand. As a disc fluid element spirals in toward the
black hole, its gravitational potential energy is liberated by
turbulent dissipation in the flow (the process by which
accretion is itself mediated [131]). This liberated energy
ultimately escapes the disc as a hot thermal photon field and
is observed as a broad continuum SED. The constraints of
mass, angular momentum, and energy conservation within
the accretion fluid can be manipulated into a simple one-
dimensional temperature profile of the disc T(7, a)
[132,133], which depends sensitively on black hole spin
in the hottest innermost regions. The reason for this
sensitive dependence on spin can be traced to the efficiency
of the accretion process itself, as the fraction of the rest
mass energy of each fluid element, which is ultimately
radiated away during accretion, is [133]

n=1—<1 2>1/2, (80)

3R

where 7; is the (dimensionless) radius of the innermost
stable circular orbit, which ranges from 6 for a
Schwarzschild black hole to 1 for a maximally rotating
black hole [134]. The efficiency of accretion therefore
varies from ~0.06 to ~0.42 as the spin is increased, making
the discs around more rapidly rotating black holes signifi-
cantly hotter, and their SEDs therefore peak at higher
photon energies. It is this principle that is ultimately
utilized in the continuum fitting approach.

For the continuum fitting approach to work, a clear
detection of the emergent disc photon field must be
available. This, however, is often not the case. Many
x-ray binary systems (and in particular AGN) are observed
in (and often to transition between) various so-called
accretion “states,” one of which (referred to as the “hard”
state) is dominated by a nonthermal x-ray component,
understood to result from the Comptonisation of thermal
disc photons by a “corona” of relativistic electrons. The
physical origin and geometry of this corona is still hotly
debated in the community, but its emission often dominates
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over that of the bare disc itself, preventing the use of
continuum fitting techniques.

Fortunately, some of this coronal emission is directed
onto the accretion flow itself where it is absorbed and
remitted (a process referred to as “reflection,” although this
1S a misnomer), opening up further opportunities for black
hole spin constraints. The so-called “reflection spectrum”
observed from black holes in this state contains asymmetric
and broadened iron emission lines, owing to the presence of
iron atoms in the flow that are not fully ionized and can
therefore undergo atomic transitions. The iron Ka fluores-
cence line at ~6.4 keV is a prominent feature of the
reflection spectrum, which also includes emission lines
and absorption edges from all astrophysically abundant
elements and a broad Compton scattering feature at
~20-30 keV known as the “Compton hump” [135-137].
The iron line is a particularly powerful diagnostic because it
1s narrow in the emission rest frame, whereas the observed
line profile is heavily distorted by a combination of the
relativistic orbital motion of the emitting material (and
associated Doppler shifting of the lines) and the gravita-
tional energy-shifting of the emitted photons over their
trajectory to the observer [138-140].

This reflected component reveals itself as an excess of
flux above the coronal power-law component in the energy
range surrounding ~6.4 keV. This excess is assumed to be
the relativistically broadened rest frame iron Ka line
profile. The line profile is sensitive to the location of the
inner edge of the accretion disc, as this sets the fastest
orbital frequency and the largest gravitational redshift. As
such, it promises to be a powerful probe of the dimension-
less spin parameter of the Kerr metric, @, under the
assumption that the disc inner edge is set by the innermost
stable circular orbit, which is a function of spin. The spin
parameter also influences the line profile via the spin
dependence of orbital frequency, gravitational redshift,
and photon trajectories, although these are more subtle
effects. Now that both techniques have been introduced, we
proceed to a discussion of some potential sources of
systematic errors that have been suggested in the
community.

Firstly, as can be seen in Eq. (80) and in the above
discussion, the presence of an innermost stable circular
orbit (ISCO) plays a key role in both x-ray fitting
techniques. The reason for this is that the ISCO is assumed
to represent the inner edge of the accretion flow, with the
disc temperature (in the case of continuum fitting [141])
and disc density (in the case of reflection [142]) assumed to
be zero within this region. In the case of reflection
modeling, the rationale behind this is relatively simple,
although an oversimplification. Upon crossing the ISCO,
each fluid element is rapidly accelerated, and therefore, the
disc density must drop by a compensating factor to
conserve the radial mass flux. However, the disc density
of course does not drop truly to zero (see, e.g., [143]), and

recent calculations suggest that the intra-ISCO region may
contribute non-negligibly to the overall reflection spectrum
[144] (see also [145,146]). The concern here is that the
uncertainty in the location of the inner edge of the disc
occurs in the same spacetime regime at which the largest
signatures of the black hole spin are imprinted on the data
(i.e., close to the event horizon). This may be particularly of
concern for stellar mass black hole systems, which have
large densities in the run up to the ISCO (when compared to
AGN discs that are not thought to suffer from this
contamination [146], although see [144]), and therefore
may suffer most from any intra-ISCO contamination. It is
not yet clear if the intra-ISCO region acts as a degeneracy
with black hole spin measurements, but further calculations
such as those performed in [144] will likely illuminate this
issue in the near future.

The effect of the plunging region on continuum fitting
analyses has been more widely studied, typically by
numerical approaches that can self-consistently compute
the thermodynamic quantities of accretion flows as a
function of radius. Numerical general relativistic magneto-
hydrodynamic simulations [e.g., [147-152]] generically
find nonzero temperatures at and within the ISCO, with
nonzero associated thermal emission. This emission will
inevitably modify the SED of an observed black hole disc
and may induce systematic errors in inferred black hole
properties. The degree to which this region biases spin
measurements is unclear, with recent work [153] sug-
gesting that this bias could be substantial (although this
is contention with earlier work, which found minor [149],
or only moderate [154] degeneracies). More recent high
quality observations of stellar mass black hole binaries
[155,156] are not able to be satisfactorily fit by existing
models (which neglect this intra-ISCO region), and it has
been suggested that emission in the plunging region may be
the source of this model-data discrepancy. This suspicion
has recently been confirmed [157,158], and it remains to be
seen if this has a systematic impact on continuum fitting
spin measurements.

Another potential source of systematic bias in continuum
fitting spin measurements was recently proposed and
discussed in detail by [159]. The physical origin of this
potential bias is as follows. It has long been well known
[160] that the photons leaving the disc atmosphere will not
have completely thermalized their energy. On their path
through the disc atmosphere, photons can either be
absorbed and reemitted (thus totally thermalizing their
energy), or they can undergo elastic scattering. Elastic
scattering however, by definition, does not change the
energy of the photon, and so if this process dominates in the
disc atmosphere, photons will be observed to have hotter
temperatures associated with the altitudes closer to the disc
midplane, not the discs upper surface. As an alternative way
in which the energy of the photons emitted from the disc
surface can be increased is to increase the black hole spin
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(and liberate more gravitational energy); a rather natural
degeneracy between the physics of the radiative transfer in
the disc atmosphere and the black hole spin can be set up.
Models for the effects of radiative transfer on continuum
emission are well tested in the community (e.g., [161-163]),
but [159] demonstrated that reasonably small deviations
from these models can produce moderate changes in inferred
black hole spin constraints.

Another potential concern for all modeling approaches
(continuum and reflection) is that there may be additional
physical components that are not included in conventional
models but that produce flux in the key spectral regions
used for spin measurements, the concern being that high
inferred spin values may be an artifact of conventional
models compensating for the lack of these spectral com-
ponents. For instance, the thermal spectra of AGN are
known to be poorly described by a simple bare accretion
disc like that developed in classical models [132,133],
which generally do not produce sufficient flux in the x-ray
bands to satisfactorily describe observations. Additional
components (a popular model is a second, “warm” corona)
are then required to match the data. This is of concern
particularly for reflection constraints of black hole spins, as
this approach necessitates the subtraction of a continuum
component. It is only in the excess above the continuum
that the iron reflection components become visible, and if
this subtraction involves systematic errors in the con-
tinuum, then this may propagate into spin biases.

A recent case study of some of these potential systematic
effects was performed by [105], who reanalyzed Cygnus
X-1 data, which is usually found to favor high spins
(as utilized in this work, Table III). The authors reproduced
the high spin values inferred by conventional models
a > 0.9985 but showed that a reduced value a=
O.92J_r8.'857 was found if the priors on radiative transfer in
the disc atmosphere were relaxed (note that the inclusion of
the “conservative” Cyg X-1 model in the proceeding
section was motivated by this analysis). Allowing for an
additional “warm” coronal component on the other hand
completely changed the spin posterior, leading to a best fit
@ = 0.04752° (note that the existence of warm coronal
components are rather controversial, and thus, this model
should be interpreted as a heuristic, and somewhat pro-
vocative, example of the potential effects of additional
spectral components). The authors in [105] did not consider
the effects of the plunging region in their analysis.
Naturally, modifications of spin measurements at the
warm-corona level would have substantial implications
for superradiance calculations.

We conclude this section by stressing that the purpose of
this somewhat pessimistic overview was to bring to light
some of the discussions currently taking place in the x-ray
astronomy community, which represent an important caveat
to axion superradiance studies. Many of the discussions
of potential systematics presented here are themselves

controversial, and the physical reality of (e.g.,) “warm
coronae” are by no means settled or universally accepted.
In a statistical sense, x-ray spin measurements are repeatable,
produce good fits to the data, and are based upon physically
sound models (which may or may not be complete). The
study of black hole accretion is an active field of research, and
it is overwhelmingly likely that spin measurements will be
refined and improved upon in the coming years, particularly
as future observatories come online [164].

V. A COMMENT ON SUPERMASSIVE
BLACK HOLES

In this work, we have chosen to focus on solar mass scale
black holes for a number of different reasons. First, the
superradiance growth rate of a given mode scales propor-
tionally to the black hole mass, implying the characteristic
time required to extract a non-negligible fraction of the
black hole spin will, in most cases, be significantly longer
than the Salpeter timescale. While supermassive black
holes are much older than solar-mass-scale black holes
(and are unlikely to have been accreting near the Eddington
limit for all of that time), the need for long evolutionary
timescales makes deriving robust limits extremely difficult.
The second issue that arises for massive black holes stems
from the fact that these objects are subject to larger
environmental effects. The presence of dense accretion
disks, ambient stellar objects, binary companions, etc. can
complicate the superradiant evolution (see e.g., [26])—and
this is particularly true when superradiant growth is slow.
Finally, spin measurements are also subject to large
uncertainties. The slow growth and long timescales asso-
ciated to supermassive black holes tend to imply that self-
interactions are likely to play a prominent role in sup-
pressing spin extraction (suggesting the limits derived, e.g.,
in [165] may need to be revised). We intend to address this
quantitatively in future work.

VI. CONCLUSIONS

In this work, we have revisited superradiance constraints
on axions using the inferred spins of solar-mass-scale black
holes. The motivation for focusing on light black holes is
threefold: (1) These objects are relatively young, meaning
their typical age is short relative to the timescale required
for accretion to alter their properties, (2) the local envi-
ronments around these objects are not expected to alter the
short-term evolution of superradiance itself, and (3) the
superradiant growth timescale is shorter for light black
holes, meaning for a fixed black hole, there is a larger range
of axion masses for which pertubative control at small « is
obtainable. Extending such an analysis to the case to higher
mass black holes will be the focus of future work.

In this study, we have gone beyond the two-level system
and solved for the evolution of axion superradiance
including all relevant states at n <5 and computing
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relativistic corrections to all scattering processes using a
Green’s function approach. We have confirmed that higher
order level mixing plays a negligible role in the m = 1 spin-
down at a <0.15 (a threshold slightly marginally lower
than previously argued [44], but in agreement with the
numerical result of [65]), but we find these levels can
significantly alter the evolution at higher masses. In
particular, we have argued that the coupled evolution of
the n < 5 levels are likely sufficient to capture the estimated
m = 2 spin-down constraints on typical high spin solar
mass black holes, which allows one to extend constraints to
larger values of the axion mass (for a fixed mass black
hole). We have also introduced a statistical formalism that
allows for a more rigorous and meaningful interpretation of
observed black hole spins; comparing with previous results
in the literature, we find that prior limits had significantly
underestimated the sensitivity to the axion decay constant
(by roughly an order of magnitude). The main result of this
work is highlighted in Fig. 1, which shows the combined
spin-down constraints on GRS 1915+ 105 and the
conservative interpretation of Cygnus X-1.7

The role of the n =4 and n =5 states highlighted in
this work encourages further studies for mixing at n > 5;
such levels will be important for confirming stability of
spin-down constraints at m = 2, establishing spin-down
constraints at m > 2, and for studies of gravitational waves

ZAll code used to produce the results shown here can be found
at [166].

(where the signal produced from these objects is strongly
sensitive to characteristic occupation number of each state,
and the mass of the black hole itself), and may prove to be
important for supermassive black holes, where the char-
acteristic ages of black holes are notably larger than their
solar-mass counterparts. Finally, we have concluded with
an extensive discussion on the potential systematics asso-
ciated with black hole spin inference performed using x-ray
observations, arguing that care needs to be taken when
interpreting the robustness of these results.
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