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The kinetic mixing (KM) portal, by which the Standard Model (SM) photon mixes with a light dark
photon arising from a new Uð1ÞD gauge group, allows for the possibility of viable scenarios of sub-GeV
thermal dark matter with appropriately suppressed couplings to the SM. This KM can only occur if particles
having both SM and dark quantum numbers, here termed portal matter, also exist. The presence of such
types of states and the strong suggestion of a need to embed Uð1ÞD into a non-Abelian gauge structure not
too far above the TeV scale based on the renormalization-group equation running of the Uð1ÞD gauge
coupling is potentially indicative of an enlarged group linking together the visible and dark sectors. The
gauge group G ¼ SUð3Þc × SUð3ÞL ×Uð1ÞA × Uð1ÞB ¼ 3c3L1A1B is perhaps the simplest setup wherein
the SM and dark interactions are partially unified in a non-Abelian fashion that is not a simple product
group of the form G ¼ GSM × GD encountered frequently in earlier work. The present paper describes the
implications and phenomenology of this type of setup.
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I. INTRODUCTION AND OVERVIEW

As anomalies come and go, the Standard Model (SM)
continues to be in exceptional agreement with almost all
experimental data. However, many mysteries still remain
unexplained with perhaps one of the most obvious being
the nature of dark matter (DM). As of today, the existence
of DM is only known of through its gravitational inter-
actions derived from astrophysical and cosmological obser-
vations and whether or not it has any further interactions
with the SM remains unclear. If DM indeed consists of
(a set of) new particles (and not, e.g., primordial black holes
[1]), then the measured value of its relic density [2] does
suggest that some additional, yet unobserved, interactions
with at least some subset of the familiar SM particles
should be present. Models of particle DM have a long
history beginning with either/both the QCD axion [3–5]
and thermal weakly interacting massive particles (WIMP)
in the few GeV to ∼100 TeV mass range [6–8], and broad
searches for states such as these continue to push ever
further into new parameter space regimes [9–16]. However,
the so far null results from these searches have inspired a
host of new potential candidate DM models now known to
populate an extremely wide spectrum in both mass and

coupling that is found to be dauntingly large [17–23].
Attempts to cover even a fraction of this space in the
coming years through a variety of different novel search
techniques will be quite challenging. In a reasonably large
fraction of this space, however, the new interaction(s)
between DM and the SM can be described by a set of
“portals,” i.e., effective field theories (EFTs), all of which
predict the existence of a new class of mediator particles
[24] beyond just the DM itself and which may or may not
be renormalizable depending upon the specific scenario.
One of the most attractive of these general frameworks is

an extension of the thermal WIMP [25,26] idea into the few
MeV to ∼1 GeV mass range which is made possible by
introducing the renormalizable kinetic mixing/vector
portal setup [27–29]. In these models, the DM field carries
a “dark charge,” QD ≠ 0, that is linked to a new gauge
interaction—most simply a new (dark) Uð1ÞD—which has
an associated gauge boson, called the dark photon (DP)
V [30–32]. It is assumed that under this new Uð1ÞD group
the SM fields will all haveQD ¼ 0 and so the only way for
the SM and DM fields to interact at low energy scales is via
the kinetic mixing (KM) of the DP with the SM photon A.
Below wewill assume thatUð1ÞD is broken so both the DM
and the DP obtain their masses (at least partially in the case
of DM) via the vacuum expectation value(s) [VEV(s)] of a,
or several, dark Higgs field(s) [33]. Clearly, in order to
construct the vacuum polarizationlike diagram(s) that are
needed to generate this KM, new heavy particles that carry
both SM as well asUð1ÞD quantum numbers must exist that
are either complex scalars and/or vectorlike fermions
(VLFs) [34–41] so as to avoid the well-known unitarity,
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precision electroweak, and Higgs boson coupling con-
straints. We will refer to such exotic particles as portal
matter (PM) and they have been the subject of much recent
attention [42–60].
Given a set of such PM particles, the loop-induced

strength of the KM can be expressed via the value of the
familiar small dimensionless parameter ϵ as

ϵ ¼ gDe
12π2

X
i

ðηiNciQemi
QDi

Þ lnm
2
i

μ2
: ð1Þ

Here, gD is identified as the Uð1ÞD gauge coupling (so that
we can likewise define αD ¼ g2D=4π) and
miðQemi

; QDi
; NciÞ are the mass (electric charge, dark

charge, number of colors) of the ith PM field. Also, one
has that ηi ¼ 1ð1=4Þ if the PM is a VLF (complex scalar).
In all generality, ϵ is not a finite quantity, but we might
imagine that in an at least partially UV-complete theory that
group theoretical constraints render the sumX

i

ðηiNciQemi
QDi

Þ ¼ 0; ð2Þ

so that ϵ will become both finite as well as, in principle,
calculable in such a setup. Numerically, for a set of PM
fields that have similar masses, such as those we will
encounter below, we might expect that, roughly speaking, ϵ
lies in the range of ∼10−ð3–4Þ so that experimental search
constraints can be satisfied while also yielding the observed
DM abundance for sub-GeV thermal DM with similar DP
masses. It is important to note that once one postulates the
necessity of PM particles to generated KM, their existence
can also induce other loop-level interactions between (some
of) the SM fields and DM which have a strength similar to
that induced by KM.
As is well known, there are numerous constraints on

these types of setups ranging from direct detection experi-
ments and accelerator searches to cosmology and astro-
physics. For example, in addition to the thermal DM
velocity-weighted annihilation cross section at freeze-out
requirement [25,26], σvrel ∼ 3 × 10−26 cm3 sec−1, the cor-
responding cross section must be significantly suppressed
at later times, i.e., during the cosmic microwave back-
ground (CMB) [2,61–64] and today [65,66], implying that
such reactions must display a significant temperature (T)
dependence. This implies that the annihilation through the
DP cannot be via a typical s-wave process and so the DM
cannot be an ordinary Dirac fermion. Instead such proc-
esses must be, e.g., (i) p wave so that there is a v2 ∼ T
suppression at later times, as may be realized in the case of
complex scalar or Majorana fermionic DM1 or may take
place (ii) through the coannihilation mechanism, as can be
the case with pseudo-Dirac DM with a sizable mass

splitting (induced by, e.g., a QD ¼ 2 dark Higgs VEV),
so that annihilation rate is exponentially Boltzmann sup-
pressed at later times due to the much lower temperatures
[68–71]. Interestingly, especially in this later case, it has
been observed that, over a significant range of low energy
couplings, the renormalization-group equation (RGE) run-
ning of αD into the UV indicates that the scale of additional
new physics is possibly not very far away due to the
eventual loss of perturbativity. This may take place at a
scale as low as ∼10 TeV mass or so [48,51,72,73],
depending, of course, upon the specific details of the
low energy field content. The solution to the nonperturba-
tive coupling issue would then be the embedding of the
Abelian Uð1ÞD into a larger non-Abelian, asymptotically
free group GD, which would then reverse the “bad” RGE
running before this high mass scale is reached thus
avoiding this problem.
This observation, combined with the existence of

PM—which we can easily imagine might obtain masses
as part of the process ofGD → Uð1ÞD symmetry breaking—
leads to considerations of how this new physics might fit
together with the SM in a more unified picture, something
that has been the subject of much of our recent work
[42,43,45–48,50,51,54,57–59],with the eventual goal being
the construction of an at least partially unified UV-complete
setup. Following a bottom-up approach, we have previously
examined scenarios of the general product form GSM ×GD
where, in the simplest setup considered, it has been assumed
that GD ¼ SUð2ÞI ×Uð1ÞYI

[74], into which Uð1ÞD can be
straightforwardly embedded in a quite familiar fashion. In
this class of setups, although the SM SUð2ÞL and the dark
SUð2ÞI act on orthogonal spaces, at least some of the PM
fields lie in SUð2ÞI doublet representations along with SM
fields with which they share common strong and electro-
weak properties.2 In such a setup, additional tree-level
interactions will exist between the PM and SM fields due
to the exchange of the new heavy non-Hermitian gauge
boson (NHGB) fields in GD—interactions beyond those
arising just from KM.While such scenarios provide us with
important insights into more UV-complete setups, they lack
any sort of direct (or even partial) linkage between the SM
and the dark sector interactions that we would need to
understand better, even if only within the context of a
semirealistic toy model.
In this paper, we will explore a quite different type of

semiunified structurewherein (at least part of) the electroweak
interactions of the SM and theGD ¼ SUð2ÞI × Uð1ÞYI

-type
interactions linking the SM and PM are described by a single
non-Abelian groupwhose breaking (eventually)will also lead
to a light DP. Perhaps the simplest example of a model of this
kind, wherein the SM and these new NHGB-induced inter-
actions arise from a single group, which we will consider

1See, however, [67].

2This was motivated by our study in earlier work of E6-type
gauge models [75].
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below, is based on the gauge structure SUð3Þc × SUð3ÞL ×
Uð1ÞA ×Uð1ÞB ¼ 3c3L1A1B [76–85]. This group has pre-
viously been examined within the framework of, e.g., ≲TeV
scale DMand a correspondingmassive DP, as well as in other
interesting contexts, and which might, in the set of models to
be discussed below, be regarded as a (very) descoped version
of the quartification class of setups examined previously in
Ref. [57]. Models based on this gauge group are themselves
extensions of the somewhat more familiar and quite well-
studied 3c3L1X scenarios [86–109], but which is not large
enough to contain both a light DP as well as the direct link
between PM and the usual SM fields that we seek here. Note
that in these 3c3L1A1B setups the familiar Uð1ÞY and Uð1ÞD
are now both partially contained within the 1A1B group
factors and we imagine that at some scale,≳10 TeV, one (or
more) Higgs VEV induce the breaking 3L1A1B → 2L1Y1D,
generating both the PM and new heavy gauge boson masses
in the process.
The outline of this paper is as follows: Following this

Introduction, in Sec. II, we present the basic overall group/
gauge structure of our 3c3L1A1B setup in generality and
review its basic components from the perspective of a sub-
GeV DP and DM but with multi-TeV scale PM. This
includes a discussion of anomaly cancellations and param-
eter values as well as choices of the various fermion
representations along with the corresponding possible
PM electroweak and dark charge assignments. In
Sec. III, we discuss the three step symmetry breaking
chain 3L1A1B → 2L1Y1D → 1D1em → 1em for both the
Hermitian and non-Hermitian gauge boson sectors and
determine the masses and coupling of the new non-SM
states in terms of the high scale model parameters and the
set of required Higgs VEVs. Some simple implications of
this symmetry breaking relating the heavy gauge boson
masses to each other and the impact of their mixings with
those of the SM are discussed in Sec. IV along with a
restriction on the size of the Uð1ÞD gauge coupling gD. In
Sec. V, the masses of the various PM fields are analyzed
along with their mixing with those of the SM. These
mixings are usually critical in allowing for the PM to decay
into SM states along with a DP. In Sec. VI, the production
and decays of the PM fields and the new heavy gauge
bosons at the LHC and the FCC-hh are then analyzed.
Finally, a discussion and our conclusions can be found in
Sec. VII.

II. REVIEW, PRELIMINARIES, AND GENERIC
MODEL FRAMEWORK

As noted above, the well-studied G ¼ SUð3Þc ×
SUð3ÞL ×Uð1ÞA × Uð1ÞB ¼ 3c3L1A1B [76–85] general
framework of models are obviously extensions of the even
more well-studied 3c3L1X model class [86–109], from
which we can extract much important model-building
information. The matter content of such models consists
of a set of SUð3ÞL triplets 3 and/or antitriplets 3� of fermion

fields, together with a set of singlets 1, chosen such that
they contain all of the familiar SM fields in their
appropriate representations of the SUð2ÞL isospin sub-
group, i.e., the ordinary SUð2ÞL SM isodoublets, are
directly embedded into these 3’s and/or 3�’s. As we will
see below, the additional fermion in each of these (anti)
triplets will be identified with PM and will prove to be
vectorlike with respect to the SM interactions while not
being generally vectorlike with respect to the larger gauge
group. Clearly, since these fundamental triplets and anti-
triplets, unlike in the case of the SUð2ÞL doublets, are
inequivalent representations, the most basic constraint on
any model building one might consider is that 33L-type
gauge anomaly cancellation will require that the number
(including color degrees of freedom) of 3 and 3� must be
equal. Still, this cancellation can take place in numerous
ways but these can be divided into two main categories
depending upon whether or not they cancel within each
generation or only when we sum over the contributions of
all three generations. In the former case, the leptonic sector
of each generation would need to be significantly aug-
mented as, e.g., each color triplet quark 3 would need to
have its contribution to this anomaly canceled by three sets
of color singlet lepton 3�’s yielding a total of 18 (chiral)
triplets plus antitriplets for three generations. In general, in
these cases, some of the right-handed (RH) color singlet
leptons will also end up in 3’s or 3�’s. Furthermore, the
gauge interactions in such setups could then be trivially
arranged so that there are no obvious tree-level flavor
changing neutral currents (FCNCs). As has been recently
stressed [105], in the later case, when one also demands
that asymptotic freedom above the PM scale be maintained
then only three generations are allowed—a prediction of
such setups. Also in such models, all of the corresponding
RH partners of these fermions will lie in 3L singlets.
However, though these types of setups would have fewer
degrees of freedom (only 12 chiral triplets/antitriplets
instead of 18), the price for this greater simplicity would
be that FCNCs at tree level would naturally be induced in
the quark sector through the exchange of a new heavy
neutral gauge boson that arises from GD breaking. As has
been much discussed in the literature, this happens because,
while we can choose all three lepton generations to lie in,
e.g., identical 3’s, then it must be that two of the quark
generations would need to be in 3�’s, while the remaining
one would instead be in a 3. FCNCs would then occur for a
heavy gauge boson whose couplings would be sensitive to
the this difference among the quark generations and this
would clearly lead to a lower bound on the mass of such
new particles. Representative examples of both of these
classes of models will be encountered in our discus-
sion below.
More generally, the potential experimental bounds on the

masses of the new heavy gauge and scalar fields that can
transmit these FCNCs in such classes of models would
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depend upon exactly how these FCNCs arise in a particular
setup, e.g., whether they occur in the u, d quark and/or
lepton sector(s), which if any of the generations are treated
differently, the nature and size of the mixing between the
states that causes them to mix, and whether or not addi-
tional discrete symmetries/mixing textures are present that
may reduce their influence. Further, since at least some of
the PM fields must, in general, mix with their SM analogs
(via the ∼1 GeV QD-violating VEVs to be discussed
below) to allow for all of the PM to decay, these PM
fields together with the SM Z can also transmit FCNCs,
making the situation even more complex. In addition to
those referenced earlier, this problem has been studied by
numerous authors [110] who obtain a wide range of
possible constraints, from only a few TeV to well over
100 TeV, under a multitude various assumptions. However,
it seems clear that the present experimental constraints will
allow for new gauge bosons with masses not far above the
∼10 TeV scale without too much effort. A detailed dis-
cussion of this complex subject is, however, beyond the
scope of the present paper.
As we will also consider further below, the breaking of

3L1A1B → 1em will be accomplished in three steps, differ-
ing by roughly a factor of ∼100 in mass scale: the first
occurs through one large VEV, w≳ 10 TeV, which breaks
3L1A1B → 2L1Y1D, then through a set of SM breaking
VEVs, v1;2 ∼ 100 GeV, as usual, and finally via the VEVs
u1;2 ≲ 1 GeV which break Uð1ÞD, generating the DP mass
as well as PM decay paths through mixing with the SM
fields. While all these VEVs arise simultaneously when the
scalar potential is minimized, these mass scales are suffi-
ciently widely separated that we can discuss them in
sequential steps and, essentially, independently since they
are, to a very good approximation, decoupled. Some care is,
however, required in the situations where this approxima-
tion is not strictly valid. As will be further discussed, these
various symmetry breaking steps (as well as the generation
of the Dirac fermion masses) can all be accomplished
through the introduction of, for simplicity, only three Higgs
scalar 3’s (or 3�’s), each with at least one nonzero VEV.
Alternatively, one could assign the 1D-violating, u1;2 VEVs
to different 3 (or 3�) representations.
The gauge part of the covariant derivative for the 3L1A1B

subgroup of G, with which we will be most concerned
below (since 3c remains unbroken), can be written as
(suppressing Lorentz indices for simplicity)

gLTiLWiL þ gAXAVA þ gBXBVB; ð3Þ

where gL;A;B are the SUð3ÞL; Uð1ÞA, and Uð1ÞB gauge
couplings, respectively. Furthermore, for later convenience,
we can also define the two coupling constant ratios (in
analogy with tw ¼ tan θw ¼ g0=gL in the SM)

tX ¼ gA=gL; tG ¼ gB=gL: ð4Þ

Note that, below the 3L breaking scale, gL can be directly
identified with the usual SM SUð2ÞL coupling. Here, the
Wi are the eight gauge fields of 3L with the TiL being the
corresponding 3L generators normalized so that for the
fundamental, 3, representation is just given by λi=2, the λi
being the familiar 3 × 3 Gell-Mann matrices; for the
antifundamental 3� representation, one has instead that
Ti ¼ −λ�i =2. Recall that both the T3;8L generators are
diagonal with T3L being identified with the third compo-
nent of the weak isospin in the SM. Similarly, XA;B and
VA;B are the corresponding gauge charges and gauge fields
for the 1A;B Abelian groups.
The electric charge Q ¼ T3L þ Y=2 in the SM can

clearly be expressed, in general, as some linear combina-
tion of the 3L1A1B diagonal generators. However, we are
free to perform a rotation in 1A1B space before symmetry
breaking so that the 1B generator does not contribute to this
sum. Also, since T3L is identified with the usual SM
generator and we can freely choose the normalization of the
XA charges, we may define Q as just the sum

Q ¼ T3L þ σffiffiffi
3

p T8L þ XA ¼ T3L þ Y
2
; ð5Þ

with the second equality just being the SM relationship and
with σ being, a priori, an unknown (integer) parameter
given this choice of normalization, but, as is well known
[86–108], can only take on a rather restricted set of values
as we will see below. From the expression above it follows
that (at the G breaking scale in the case of running
couplings)

1

g2Y
¼ σ2

3g2L
þ 1

g2A
: ð6Þ

Similarly, the dark charge QD, which we will normalize
here to take on integer values, can also be expressed as a
linear sum of the diagonal generators. However, since both
fields in the usual SM doublets, i.e., ðν; eÞTL (with e standing
in for a generic charged lepton) and ðu; dÞTL, have QD ¼ 0,
thenQD cannot depend upon the generator T3L. Thus, since
the normalization of the charges XB is arbitrary, we can
express QD, in general, as

QD ¼ −2τffiffiffi
3

p T8L þ 2λXA þ XB; ð7Þ

and, with a further rescaling, we can freely take τ ¼ 1while
λ will, for the moment, still remain arbitrary. We might
expect in a more complete UV setup that the value of the
parameter λ (not to be confused with any of the Gell-Mann
matrices) might be derivable from the other quantities. We
can easily invert these relationships and express the XA;B in
terms of the other generators; we then see that
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XA ¼ Y
2
−

σffiffiffi
3

p T8L

XB ¼ QD − 2λ
Y
2
þ 2ffiffiffi

3
p ð1þ λσÞT8L; ð8Þ

which we can employ to simplify some of the expressions
for the covariant derivative and/or couplings of the various
gauge bosons that we will encounter below.
Since, in all generality, we will be embedding the

familiar SM isodoublets ðν; eÞTL and ðu; dÞTL into 3 and/or
3� representations, it is useful to contemplate the following
possible generic basic constructs that will likely appear in
any given specific model that we will consider below:

q1¼

0
B@

u

d

X1

1
CA

L

; q�2¼

0
B@

d

u

X2

1
CA

L

; l1¼

0
B@

ν

e

X3

1
CA

L

; l�2¼

0
B@

e

ν

X4

1
CA

L

;

ð9Þ

with q1, l1 being 3’s, while q�2; l
�
2 are instead 3�’s, and with

the detailed nature of the fermions Xi being yet unspecified
except that we will want to identify them as PM fields
having QD ≠ 0. Note that X1;2 are necessarily color triplet
quarks in the SM sense, while X3;4 correspond to color
singlet leptons from this same perspective. It is then
instructive to act with both the Q and QD generators on
these four representations and require that we recover the
usual electric charges for the SM fields and that these same
fields all have QD ¼ 0. Doing this will then tell us, among
other things, the possible values of Q and QD for the
remaining unfamiliar Xi fields. The first result of this
procedure is that we find that uniquely, independent of the
values of either σ or λ, that the dark charges of these states
are completely fixed,

QDðX1Þ ¼ QDðX2Þ ¼ −QDðX3Þ ¼ −QDðX4Þ ¼ 1: ð10Þ

The electric charges of these states, however, and as is well
known in the 3c3L1X model literature, will remain depen-
dent upon the value of σ, though they are, of course, λ
independent and are summarized in Table I. Clearly, as is
well known, arbitrary values of σ are excluded and, in fact,
only a small set of possibilities are permissible to exclude

bizarrely charged states. We observe, e.g., that if we choose
σ ¼ �1 then the Xi will carry values ofQ that are the same
as the familiar quarks and leptons of the SM. If, instead,
one chooses σ ¼ �3, then we see that the X1;2 will have
Q ¼ 5=3 or −4=3 (the choice of which one is identified
with X1 or X2 being dependent upon the sign of σ), while
the X3;4 will have similarly Q ¼ 1 or −2. Now since we are
not identifying any of these Xi with DM but instead as PM,
we need all of them to be unstable while they all still carry
SM charges as well as havingQD ¼ �1. While some of the
heavy 3L gauge bosons will link these Xi with the ordinary
SM fermions occupying the same multiplet, they will not
all be able to decay this way. At the very least, e.g., the
lightest of the PM states will be stable unless we allow it to
have Uð1ÞD-violating interactions. In previous discussions,
we observed that it was the mixings of the PM fields with
the corresponding SM ones having the same color and
electroweak quantum numbers, which occurs via the same
QD-violating Higgs VEVs responsible for generating the
DPmass, that was responsible for this. This mixing allowed
decays of the general form PM → SMþ V; hD, where hD
is the dark Higgs, to occur and these were found to be the
dominant decay modes for PM in the simplest approaches.
In the present case, this requirement would seem to exclude
the possibility of the exotic charged states such as
Q ¼ 5=3;−4=3 as one of the lightest of these might then
be stable and so this would restrict us further (or give
greater weight) to the choices σ ¼ �1. Although we will
not always impose this requirement in the analysis that
follows below, since some clever model building might
avoid this apparent outcome, we should remain mindful of
it as it will come in at a later stage in our discussion, as all of
the heavy charged PM fields must be allowed to decay
down to SM states by some means.
How will the DM itself fit into this setup since we recall

that it must be both light ∼1 GeV as well as a SM singlet
with jQDj ¼ 1? In the fermionic case, there are essentially
two possibilities: if it lies in a 3 or 3� with Q ¼ T3L ¼ 0, it
must be the lowest multiplet member analogous to, e.g.,
one of the X2;4’s introduced above when σ ¼∓ 1. In such
setups the DM mass is generally set by the large VEV w
discussed above thus having a TeV scale mass [82], a
situation that we are not interested in here. A second
possibility is that the DM is instead a vectorlike fermion (to
avoid any anomalies) which is a singlet under 3L1A having
QD ¼ XB which becomes a pseudo-Dirac state via a dark
Higgs VEV as discussed in the Introduction above and as
recently analyzed in, e.g., Ref. [59]. If the DM is a complex
scalar without a VEV, it can again be chosen to be a 3L1A
singlet state, but still carrying a dark charge QD ≠ 0, and
can easily satisfy the cross section bounds coming from the
CMB mentioned above while still obtaining the required
relic density observed by Planck.
We now turn to a discussion of the symmetry breaking

and mass generation issues in this setup.

TABLE I. Electric charges of the Xi. The electric charges of the
new states Xi independent of the value of λ, that lie in the 3 and 3�
representations q1; q�2; l1; l

�
2 as discussed in the text.

State Q

X1
1
6
ð1 − 3σÞ

X2
1
6
ð1þ 3σÞ

X3 − 1
2
ð1þ σÞ

X4 − 1
2
ð1 − σÞ

TOWARD UV MODELS OF …. VII. A LIGHT DARK PHOTON … PHYS. REV. D 111, 075018 (2025)

075018-5



III. THREE STAGES OF GAUGE SYMMETRY
BREAKING

A. Hermitian gauge bosons

The goal of this section is to demonstrate that a light DP
with a mass ≲1 GeV is possible in this type of setup,
having all of the required properties, along with the SM
photon and Z and, e.g., a new neutral heavy gauge boson
Z0
M, which might be accessible at the HL-LHC or at other

future colliders. Schematically, the plan is to do this in three
distinct stages: the first is via a VEV, w ∼ 10 TeV, breaking
3L1A1B → 2L1Y1D. Since there is a mass gap until the SM
breaking scale is reached, we could imagine that in the
energy regime below this large breaking scale we could
imagine writing something like an EFT by taking the field
content of the original model, now rewriting it in terms of
2L1Y1D representations, i.e., decomposing the 3L triplets
into 2L singlets and doublets and removing/integrating out
the heavy fields. Then when the electroweak scale is
reached a pair of VEVs, v1;2, which would now appear
in 2L doublets, will break the SM at ∼100 GeV as usual,
i.e., 2L1Y → 1em. Since there is now another large mass
gap, below this scale we could again imagine constructing
an EFT, consisting only of singlets, by integrating out the
SM W and Z, until finally 1D is broken by a last pair of
VEVs, u1;2, which we will require to be at the scale
≲1 GeV, leaving us with only unbroken QED. Though all
of these VEVs are the result of a single minimization of the
scalar potential, their large hierarchy allow us to treat their
actions sequentially in most cases.
We first turn to the symmetry breaking for the neutral

gauge boson sector; here we will be very generic and
assume for simplicity that the only Higgs fields that are
present are those that give masses to the quarks and leptons
to be discussed below. As noted above and in the previous
section, the breaking of 3L1A1B → 1em takes place in three
distinct, widely separated stages via a set of 3L Higgs
triplets/antitriplets with the first occurring at or above the
∼10 TeV mass scale where 3L1A1B → 2L1Y1D, i.e., the
unbroken SM plus the usual (and at this point massless) DP.
The VEV for this breaking, w, must be experienced
by one of the components of a complex scalar, which
here we will denote as χ ¼ ðχ1; χ2; χ3ÞT ¼ HX, having
Q ¼ T3L ¼ QD ¼ 0, as these symmetries must remain
unbroken until lower mass scales are reached. These
restrictions then tell us that it is the lowest member of
this triplet/antitriplet that obtains the VEV, hχ3i ¼ w=

ffiffiffi
2

p
,

to avoid breaking 2L and, further, these considerations also
completely fix the corresponding values of XA;B for χ in
terms of the parameters λ, σ. As we will see later below, w
will also end up generating the masses of all of the
PM fermion fields as required as well as breaking
3L1A1B → 2L1Y1D. Interestingly, when σ ¼ �1, one also
finds that another one of the components of χ (i.e., χ1 or
χ2), but now carryingQD ¼ �1, depending upon whether χ

is a 3 or 3�, is also electrically neutral, Q ¼ 0, and which
also has T3L ¼ �1=2. In such a case this component may
also obtain a VEV, e.g., hχ1ð2Þi ¼ u1=

ffiffiffi
2

p
, but we will

require it to be ≲1 GeV as it leads to a breaking of Uð1ÞD
and generates a DP mass at this scale.
An occurrence of more than one VEV in a single scalar

field cannot/is forbidden to happen, e.g., in the SM since
there no more than a single component of a Higgs scalar
representation can be electrically neutral due to the relation-
ship Qem ¼ T3L þ Y=2 and the fact that we wish to avoid
the possibility of charge breaking minima. However, in
more general models with enlarged gauge groups, where
Qem is the sum of several generators, it is possible that two
or more components of a given scalar representation can be
electrically neutral and so obtain VEVs simultaneously.
Perhaps the most well-known example where this happen is
the Higgs bidoublet in the left-right symmetric model
[111], wherein both neutral components obtain VEVs
whose ratio is ∼50 in order to explain the ratio of the
top and bottom quark masses at the weak scale. Another
such example is provided by the bitriplet Higgs represen-
tation appearing in trinification models [112], which obtain
three distinct VEVs, which in some cases are very widely
separated in scale. We again stress that these multiple
distinct VEVs are “generated” simultaneous as part of the
minimization of the potential but, due to their hierarchal
nature as occurs in the present setup, can be treated as if
they occurred sequentially as to their effects. For now, since
w ≫ u1, we can safely ignore the effects of u1 ≠ 0 for the
moment, but we will return to it in the later discus-
sion below.
Now consider the piece of the covariant derivative

corresponding to the set of four neutral gauge fields
W3L;8L; VA;B acting upon the VEV of χ3 which, since
T3Lðχ3Þ ¼ 0, can be simply written as (note that W3L will
not enter here as this VEV has T3L ¼ 0)

∓ gLw

3
ffiffiffi
2

p � ffiffiffi
3

p
W8L − σtXVA þ 2tGð1þ λσÞVB

�
; ð11Þ

with the overall sign depending upon whether χ is a 3 or 3�.
Now let us define the quantities

C¼½3þσ2t2Xþ4t2Gð1þλσÞ2�1=2; C0 ¼ ð3þσ2t2XÞ1=2;
ð12Þ

so that we can rewrite the expression above as

∓ gLw

3
ffiffiffi
2

p C

�
C0ð

ffiffi
3

p
W8L−σtXVA

C0 Þ þ 2tGð1þ λσÞVB

C

�
: ð13Þ

Now we can further introduce the mixing angle factors
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cλ ¼
ffiffiffi
3

p

C0 ; sλ ¼
−σtX
C0 ;

cϕ ¼ 2tGð1þ λσÞ
C

; sϕ ¼ C0

C
; ð14Þ

with tλ ¼ sλ=cλ, etc., so that we can define the single
(normalized) eigenstate that obtains a mass from the VEV
w as

Z0
M ¼ sϕðcλW8L þ sλVAÞ þ cϕVB; ð15Þ

with a mass-squared value given by

M2
Z0
M
¼ g2Lw

2

9
C2: ð16Þ

More generally then, we can write the necessary orthogonal
transformation and its inverse as0
BB@

K

L

Z0
M

1
CCA¼O

0
BB@
W8L

VA

VB

1
CCA or

0
BB@
W8L

VA

VB

1
CCA¼OT

0
BB@

K

L

Z0
M

1
CCA; ð17Þ

with the two massless states, K and L, being orthogonal to
Z0
M so that, explicitly, one has

W8L ¼ −sλK þ cλðcϕLþ sϕZ0
MÞ;

VA ¼ cλK þ sλðcϕLþ sϕZ0
MÞ;

VB ¼ −sϕLþ cϕZ0
M: ð18Þ

In terms of these newly defined fields (and reintroducing
W3L as well), the couplings of the four Hermitian gauge
bosons can be written compactly as

gL
�
T3LW3L þ XKK þ XLLþ XMZ0

M

�
; ð19Þ

with

XK ¼ cλtX
Y
2
¼ X̃K

Y
2
;

XL ¼ C0

C
QD þ XLY

Y
2
; ð20Þ

where, for later use, we have defined the quantity

XLY ¼ 2tGð3λ − σt2XÞ
CC0 ; ð21Þ

and where we also obtain the result that

XM¼C
T8Lffiffiffi
3

p þ2t2Gð1þλσÞ
C

QD−
�
σt2Xþ4λt2Gð1þλσÞ

C

�
Y
2
;

ð22Þ

where we have employed the SM relationship
Y=2 ¼ Q − T3L.
The next stage of symmetry breaking (for our Hermitian

gauge fields) is to, essentially, generate the SM Z mass
which will require VEVs with T3L ¼ �1=2 ¼ −Y=2 (since
these states are electrically neutral), but still havingQD ¼ 0
so that 1D is not simultaneously broken at the electroweak
scale. As will be further emphasized below, in doing this we
can ignore the Z0

M to an excellent approximation as Z − Z0
M

mixing is suppressed by a factor of ∼104, but we will return
to this issue in a later discussion. In practice, we will need
to employ two distinct Higgs representations to generate,
e.g., the u- and d-type SM fermion masses which, again,
will be 3’s or 3�’s of 3L, since in the models we will
examine below the right-handed quarks will all lie in 3L
singlet representations. To be specific, we then need to
introduce the two Higgs fields: η ¼ Hu, one of whose two
upper components obtains a VEV v1=

ffiffiffi
2

p
, which will

generally also give mass to SM u-type quarks, and
ρ ¼ Hd, one of whose upper two components obtains a
VEV v2=

ffiffiffi
2

p
, which will also generally give masses to the

SM d-type quarks in complete analogy with the type-II two
Higgs doublet model (THDM). So, e.g., if it is η1, which is
the top component that gets the VEV ∼ v1, then it is ρ2, the
middle component, that gets the VEV ∼ v2.
To proceed further, since w2 ≫ v21;2, as noted we can to a

very good approximation simply decouple Z0
M and limit

ourselves to just the basis W3L; K; L. Of course, some care
is required since XM has a term proportional to Y=2, so that
both v1;2 ≠ 0 will also induce Z − Z0

M mass mixing besides
generating the SM Z mass, a subject that we will return to
later as noted earlier. Acting on these states, the covariant
derivative can be written symbolically using the definitions
above as

D½hηi; hρi� ¼ gLðT3LW3L þ XKK þ XLLÞ½Hu;Hd�
¼ gL

2
ffiffiffi
2

p ðW3L − X̃KK − XLYLÞ½v1;−v2�; ð23Þ

where the relative sign reflects that the two VEVs have
opposite values of T3L ¼ �1=2. Now let v stand in for
either one of v1;2; then the expression above up to a sign is
just

D¼ gLv

2
ffiffiffi
2

p NZZ; N2
Z¼1þN2

I ; N2
I ¼ X̃2

KþX2
LY; ð24Þ

from which we see that, including now the contributions of
both v1;2,

M2
Z ¼ g2L

4
ðv21 þ v21ÞN2

Z; ð25Þ

as we might already have guessed and which looks
suspiciously like the SM result that we will reproduce,
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provided that we can identify N2
Z ¼ 1=c2 with c ¼ cw

corresponding to the usual weak mixing angle. To see that
is indeed the case, we first define

α ¼ X̃K

NI
β ¼ XLY

NI
; α2 þ β2 ¼ 1; ð26Þ

so that

X̃ ¼ αK þ βL; Ỹ ¼ −βK þ αL; ð27Þ

and thus we can further define the two orthogonal combi-
nations,

Z ¼ cW3L − sX̃; Ã ¼ sW3L þ cX̃; ð28Þ

with

c ¼ 1

NZ
; s ¼ NI

NZ
; c2 þ s2 ¼ 1; ð29Þ

where we still need to show that c ¼ cw (so that s ¼ sw). To
that end, we insert these expressions back into the relevant
piece of the covariant derivative at this stage yielding, after
some algebra, first finding that

t2X ¼ 3s2

3 − ð3þ σ2Þs2 ; ð30Þ

and so we arrive at

T3LW3L þ XKK þ XLL

¼
�
1

c
ðT3L − s2QÞ − ðβsÞsϕtGQD

�
Z

þ ½sQþ ðβcÞsϕtGQD�Ãþ αsϕtGQDỸ; ð31Þ

so that Z indeed couples to the SM fields as expected with
the identification s ¼ sw, etc., but also apparently couples
to SM singlet dark sector fields at this stage as well and
which wewill return to later below. Now recall that we have
yet to break Uð1ÞD so that neither Ã nor Ỹ are mass
eigenstates. These two states will be seen to mix via this
remaining symmetry breaking step leaving us with the
massless photon and the massive DP.
We recall from above that two components out of the set

of Higgs fields, χ, ρ, η, in the case σ ¼ �1, will have an
additional Q ¼ 0 element but with QD ¼ �1 depending
upon whether this Higgs is a 3 or 3� that may obtain a VEV,
∼u1;2, that will break 1D; further, one of these VEVs, u1,
will also have T3L ≠ 0. This will not happen in the case of
σ ¼ �3 and we would then need to introduce additional
Higgs fields to break 1D. To simplify the analysis that
follows we will assume for now that indeed σ ¼ �1 except
as noted (which we will frequently do). Then, similar to

what was done for isospin breaking above, since these
VEVs u1;2 ≲ 1 GeV, we can decouple the heavy SM Z,
which is an excellent first approximation since
MZ ≫ 0.1–1 GeV, so that we can define the mass eigen-
states

V¼αỸþβcÃ
N3

; A¼−βcỸþαA
N3

; N2
3¼α2þβ2c2; ð32Þ

where we identify ðVÞ; A with the usual (dark) photon and
with the masses of these states that are just given by

M2
A ¼ 0; M2

V ¼ ðgLsϕtGÞ2ðu21 þ u22Þ: ð33Þ

These mass eigenstates are then found to couple as

gL
α

N3

sQAþ gL

�
N3sϕtGQD þ scβ

N3

Q

�
V; ð34Þ

so that we must identify

e ¼ gL
α

N3

sw; ð35Þ

with the usual electromagnetic coupling to reproduce the
familiar QED/SM expression. This all looks rather good,
except that we are still left with V having a coupling to Q
and the Z having a coupling to QD with the common
feature that these are both proportional to the parameter β,
but neither of which is phenomenologically acceptable if
these are both of order unity. We notice that if β ¼ 0 then
α ¼ N3 ¼ 1 and so e ¼ gLsw as usual in the SM and we
can then define the Uð1ÞD gauge coupling to be just

gD ¼ gLsϕtG: ð36Þ

Interestingly, these conditions can all be easily achieved
simultaneously if we assume the rather simple relationship

λσ ¼ t2λ ¼
s2λ
c2λ

¼ σ2t2X
3

; ð37Þ

with sλ, cλ as defined above, and something that we
might expect to appear as a signal for and arise from a
much more UV-complete picture such as partial unification
in quartification [57] or even complete unification in
SUðNÞ [51]. Imposing this condition, up to mass and
kinetic mixing corrections which are now all of order
∼M2

Z=M
2
Z0
M
∼M2

V=M
2
Z ∼ ϵ ∼ 10−4, we would obtain a very

SM-like situation—subject to several constraints—but
aligned with our hoped for expectations and with
M2

Z ¼ g2Lðv21 þ v22Þ=4c2w as usual in, e.g., the THDM.
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B. Non-Hermitian gauge bosons

We now turn to the parallel analysis for the mass
generation for the three non-Hermitian gauge bosons that
appear in this framework. Fortunately, this is far simpler
than in the Hermitian gauge boson case. The symmetry
breaking implications for the “off-diagonal” non-Hermitian
gauge bosons are relatively straightforward to analyze as
this breaking is contained entirely within the 3L sector of
the model. The interactions of such fields can be expressed
simply through the off-diagonal matrix acting upon, e.g., 3
fields, here, in particular, the Higgs scalars, as (we stress
that the NHGB field A appearing here is not to be confused
with the SM photon above)

gLTiLWiLjoff-diagonal ¼
gLffiffiffi
2

p

0
B@

0 W A

W† 0 B

A† B† 0

1
CA; ð38Þ

where we need to consider the individual contributions of
each of the threeHiggs fields, χ, ρ, and η above to theNHGB
mass-squared matrix and then simply combine them. Note
that while the SM W carries Q ¼ 1, when σ ¼ �1 we see
that one of A or B is electrically neutral while the other also
carries a Q ¼ 1 charge. If we make the alternate choice of
σ ¼ �3, then one of the new NHGBs would have Q ¼ 2
instead of being neutral. Further, we see that both A, B will
carry a nonzero value of QD so that the W might then mix
with theQ ¼ 1NHGB state via one of the, e.g., 1D breaking
VEVs, u1;2. Clearly, in any of these cases we expect that to
leading order in the VEVs and in the absence of any mixing,
M2

A;B≃g2Lw
2=4whileM2

W ≃ g2Lðv21 þ v22Þ=4. As an example
of these mixing effects, let us be specific and consider the
case with σ ¼ −1 and with the Higgs in triplets; then using
the expression above, the mass-squared matrix for the
NHGB in the (W, A, B) basis would then become

M2
NHBG ¼ g2L

4

0
B@

v21 þ v22 þ u21 0 v1u2 þ wu1
0 w2 þ v21 þ u21 þ u22 0

v1u2 þ wu1 0 w2 þ v22 þ u22

1
CA: ð39Þ

Here we see that our naive expectations are met and that
W-B mixing is dominated (assuming that roughly u1 ≃ u2)
by the product of VEVs wu1, since w ≫ v1;2, and that the
relevant mixing angle would then be θWB ≃ u1=w≲ 10−4,
which is phenomenologically negligible for most consid-
erations. The result we have obtained is typical of what one
would find in the other sample cases. For example, when
σ ¼ �3, the W will still mix with the other Q ¼ 1 gauge
boson via the 1D breaking VEVs but in this case leaving the
Q ¼ 2 state unmixed. This mixing is also seen to induce a
small downward shift in the expected W mass by roughly
the same fractional amount, i.e., δM2

W=M
2
W ≃ −u1=w.

IV. SOME IMPLICATIONS

If we demand that the relationship λσ ¼ t2λ holds
(especially in the cases where σ2 ¼ 1, which we will
generally assume henceforth except where noted), then
there are many simplifications in the expressions above and
the results of the previous analysis become much more
transparent with a number of interesting implications. A
simple example is provided by Eq. (33) above; defining the
abbreviations

κL ¼ gD
gL

; r ¼ 4ð1 − xwÞ
½3 − ð3þ σ2Þxw�

; ð40Þ

with xw ¼ s2w ≃ 0.2315 at the weak scale as usual, we find
that we can express tG simply as

t2G ¼ κ2L
1 − κ2Lr

≥ 0; ð41Þ

implying that κL is “bounded” from above, i.e.,

κL ≤
1ffiffiffi
r

p ≃ 0.821ð0.269Þ; ð42Þ

for jσj ¼ 1ð3Þ or gD ≲ 0.535ð0.176Þ, again employing
suggestive weak scale input values. If gD runs to smaller
values as the ∼1 GeV mass scale is approached from
above, as we might perhaps expect, this can have impli-
cations for low energy dark sector searches. Another simple
example is provided by the mass ratio of the new heavy
Hermitian gauge boson Z0

M to those of the new NHGB
encountered in the previous section (in the limit where the
subleading v21;2 contributions can be neglected) is just

M2
Z0
M

M2
NHGB

¼ r
1 − κ2Lr

; ð43Þ

which is always greater than unity and has important
phenomenological implications as it determines whether
or not NHGB pairs can be produced resonantly via the Z0

M,
i.e., when the relationMZ0

M
> 2MNHGB holds. This require-

ment is shown in the upper panel of Fig. 1 in the case when
jσj ¼ 1 and we observe that κL ≳ 0.652 must be satisfied
for such processes to occur. Interestingly, when jσj ¼ 3,
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this mass ratio requirement is always satisfied for all
physical κL values, as r in this case is so much larger
than when jσj ¼ 1.
Finally, we consider the case of Z − Z0

M mixing as
alluded to previously; this quantity partly arises from the
terms in XM, as introduced above, which are proportional to

both T8L and also to Y=2 ¼ −T3L, with the last equality
holding when acting on the QD ¼ Q ¼ 0 components
of the Higgs fields that obtain the electroweak scale
VEVs, v1;2. Note that these VEVs have T8L=

ffiffiffi
3

p ¼ 1=6;
T3L ¼ �1=2, respectively. Employing the same notation as
above, for simplicity we first introduce the abbreviations

a¼3

2

�
r

1−rκ2L

�
1=2

; b¼−
1

4aσ

�
r−

4

3

��
1þ8rκ2L
1−rκ2L

�
: ð44Þ

Note that, for σ ¼ �1, r ≃ 1.482 so that b is generally small
in comparison to a. Then, to leading order in the ratio of
squared VEVs, v21;2=w

2, the Z − Z0
M mass-squared subma-

trix is given by

M2
Z−Z0

M
≃

 
M2

Z0
M

M2
int

M2
int M2

Z

!
; ð45Þ

where bothM2
Z andM2

Z0
M
are given above and M2

int is given

in terms of the parameters a, b by

M2
int ¼

g2L
2cw

�
b
2
ðv21 þ v22Þ þ

a
6
ðv22 − v21Þ

�
; ð46Þ

which leads to an explicit expression for the Z − Z0
M

mixing angle to leading order in the VEV ratios given by

θmix≃
M2

int

M2
Z0
M

¼ 3

4acw

�
3b
a

�
v21þv21
w2

�
þv22−v21

w2

�
∼10−4; ð47Þ

with the magnitude being as expected. This induces, at the
same level of approximation, a small downward fractional
shift in the SM Z mass explicitly given by

δM2
Z

M2
Z
≃ −

1

36w2

��
1 −

3b
a

�
2

v21 þ
�
1þ 3b

a

�
2

v22

�
∼ 10−4;

ð48Þ

which we see is again of the same small magnitude as found
in the case of W-NHGB mixing.

V. FERMION PM MASSES

Given the setup above we can now more explicitly
discuss the Dirac masses of the PM fields, all of which lie at
the scale of the VEV ∼ w. In the case where the anomalies
cancel between the fermions among the three generations,
the PM will consist of some set of the Xi introduced above
as left-handed 3’s or 3�’s and right-handed singlets. When
the anomalies instead cancel within each of the generations,
then the quark (i.e., color triplet) sector will still appear as a
set of the X1;2 as just described, but then the lepton sector
is necessarily more complex as was discussed above.

FIG. 1. Top: ratio of the mass of the neutral Z0
M gauge boson to

that of either of the NHGBs (solid red curve) as a function of κL
when jσj ¼ 1 in the v21;2=w

2 → 0 limit. The vertical dash-dotted
blue line on the right-hand side of the figure show the upper
bound on κL ≃ 0.821 in this case as discussed in the text. The
horizontal green dashed line shows the mass threshold beyond
which Z0

M is kinematically allowed to decay to NHGB pairs,
which occurs when κL exceeds ≃0.652. Bottom: maximum value
of the PM (F) generic Yukawa coupling yF as a function of κL
above which the decay Z0

M → F̄F is kinematically forbidden. The
vertical green dashed line on the right-hand side of the panel
corresponds to the value of κL ≃ 0.788 when yF ¼ 1. The
magenta dotted line indicates the corresponding maximum value
of yF ≃ 0.462 beyond which NHGB decays to F̄f are kinemat-
ically forbidden. As in the upper panel, the blue vertical dash-
dotted line shows the upper bound on κL.

THOMAS G. RIZZO PHYS. REV. D 111, 075018 (2025)

075018-10



This being the case, we will begin with the “simpler” quark
sector where, ignoring flavor issues, there are two subcases,
denoted as Q ¼ q1; q�2 above, depending upon whether the
u or d quark, respectively, has a PM partner field
with which it mixes via one or more of the QD-violating
VEVs. For example, taking σ ¼ −1, if we make the choice
Q ¼ q�2, we see that the quark mass terms can be written as

LYukawa¼ydQ̄dRη�þyuQ̄dRρ�þyDQ̄DRχ
�þH:c:; ð49Þ

which, once all of the VEVs are turned on, yields the 2 × 2
mass matrix

Md ¼
1ffiffiffi
2

p ð d̄L; D̄L Þ
�
ydv1 yDu2
ydu1 yDw

��
dR
DR

�
; ð50Þ

while mu ¼ yuv2=
ffiffiffi
2

p
. Md is, as usual, diagonalized by a

biunitarity transformation,Mdiag ¼ ULMdU
†
R which, if we

neglect any phases for simplicity, can be parametrized by
employing two smallmixing angles θdðL;RÞ ≃ ðu2; ydu1=yDÞ=
w≲ 10−4, since we might expect that yd=yD < 1, to leading
order in the VEV ratios. This is roughly the samemagnitude
as was found for both of the Z − Z0

M andW-NHGB mixing
factors obtained above. Note that if we had instead chosen
Q ¼ q1, then essentially the roles of d and u would be
interchanged with the replacementD → U. Similarly, when
the left-handed leptonic multiplet is either of l1; l�2, as is the
case when the anomalies cancel among the three gener-
ations, an essentially identical set of results are found to
hold. As alluded to previously, these rather small mixings
between the PM and the corresponding SM particles with
which it shares a multiplet are of great phenomenological
relevance as they generate the PM dominant decays, such as
D → dV; hD, with partial rates proportional to the combi-
nations ∼ðθL;RmD=mVÞ2, which we see is ∼Oð1Þ as was
shown invery earlywork onPM [42]. Clearly, this important
mixing cannot occur when Xi has an exotic electric charge,
as will be the case when the corresponding choice jσj ¼ 3
is made.
Of course, in the leptonic sector, the situation is a bit

more complex when the gauge anomalies cancel generation
by generation due to the required augmentation mentioned
above, i.e., three leptonic 3’s are needed to cancel the
contribution to the 33L anomaly of a single quark 3� for each
generation and vice versa. In models such as this, fields
with SM charges but with QD ¼ �2 can occur. The
simplest examples of this, when σ ¼ 1, are the S9;10 sets

of lepton representations as given in [102] for a single
generation that is quite representative of this possibility and
so we will examine them briefly here. In the case of S9, all
of the leptonic fields lie in three 3� representations, R1−3,
including the conjugates of the left-handed fields, e.g., ecL,
etc., which can be written in the form

S9∶R1¼

0
B@

e−

ν

N1

1
CA

L

; R2¼

0
B@

E

N2

N3

1
CA

L

; R3¼

0
B@
Nc

2

Ec

ec

1
CA

L

;

ð51Þ

where we see that the leptonic PM fields consist of a Q ¼
QD ¼ −1 Dirac state, E ¼ E−, as well as the four neutral
fermions, N1−3; Nc

2, with various transformation properties,
e.g., QDðN1Þ ¼ QDðN2Þ ¼ −1 while QDðN3Þ ¼ −2.
Given our previous discussion, such a state as N3 would
necessarily decay via a NHGB exchange if it does not mix
with any of the others. Also note that only a conjugate field
exists for N2 to form a Dirac mass term. In such a case, as
there are no right-handed singlets present, the relevant
fermion mass terms must be generated via the asymmetric
triple product of pairs of the R’s, with the set of (con-
jugated) Higgs fields, H�

A;B;C with H’s being generally
similar to one of the members of the set ðχ; η; ρÞ introduced
in Sec. II above. This results in a set of general interactions
of the form

LS9 ¼ ϵijk
�
κARi

2R
j
3H

k�
A þ κBRi

1R
j
3H

k�
B þ κCRi

1R
j
2H

k�
C

�
þ H:c:; ð52Þ

where the κ’s are a set of Yukawa couplings and with the
ði; j; kÞ’s labeling the various components of the relevant
representations. Here we observe, for example, that HA ∼ χ
and HB ∼ η above, while we will see that HC is necessarily
somewhat different.
For the charged leptons, after the Higgs fields obtain

their VEVs, this set of couplings results in the 2 × 2 mass
matrix

Me ¼
1ffiffiffi
2

p ð e; E ÞL
�−κBv1 κBu2
−κAu1 κAw

��
ec

Ec

�
L

; ð53Þ

which is quite similar to the matrix Md discussed pre-
viously above. We also obtain the following 4 × 4 Dirac
mass matrix for the neutral fields given by

Mν ¼
1ffiffiffi
2

p ð ν; N1; N2; N3 ÞL

0
BBB@

0 0 −κBu2 0

0 0 κBv1 0

0 0 −κAw 0

0 0 κAu1 0

1
CCCA
0
BBB@

νc

Nc
1

Nc
2

Nc
3

1
CCCA

L

; ð54Þ
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where we see that only one combination, essentially N2Nc
2

to leading order in the VEVs, gets a Dirac mass at this
stage, as the fields νc; Nc

1;3 do not appear among the S9 set.
Two Majorana mass terms are also found to be potentially
generated by the last term in these couplings,

κCũffiffiffi
2

p ðνN3 − N1N2Þ þ H:c:; ð55Þ

but this requires that the top component of H�
C with Q ¼ 0

obtain a small VEV, ũ ≲ 1 GeV, while this same field
simultaneously must have QD ¼ 2. This is perhaps not so
strange as a QD ¼ 2 Higgs VEV is also needed to generate
pseudo-Dirac dark matter to satisfy the CMB constraints, as
mentioned in the Introduction. While such a field will
contribute to the DP mass, if it exists it will not significantly
influence the discussion of the gauge boson masses pre-
sented in the previous sections. Clearly, the neutral lepton
sector of this type of setup deserves some further study.
In the case of S10, the leptons of a single generation (and

their conjugates) now lie in three different 3 representa-
tions, R1−3, as well as three additional 3L singlets, which
we can, in terms of left-handed fields, write as

S10∶R1¼

0
B@

ν

e

E1

1
CA

L

; R2¼

0
B@

Ec
2

Nc
1

Nc
2

1
CA

L

;

R3¼

0
B@
N1

E2

E3

1
CA

L

; ecL; Ec
1L; Ec

3L; ð56Þ

wherewe now see that the PM states consist of the threeDirac
charged states, E−

1−3, as well as two neutral states, N1;2, all
with various transformation properties. Inprinciple, due to the
parameter freedom in this model, unusual QD quantum
numbers can arise in this case. With the SM fields having
QD ¼ 0 as usual, we see that the general assignments
QDðE1Þ ¼ 1, QDðE2; N1Þ ¼ q, QDðNc

2Þ ¼ 1 − q, and
QDðE3Þ ¼ 1þ q are possible for arbitrary values of q, with
the choice q ¼ 1 being the simplest one that wewill consider
below. In such a case, we see that we can make the important
identificationNc

2 ¼ νc so that the SMneutrinos can obtain an
ordinary Dirac mass. Here the SM and PM masses are not
only the result of the triple product of fields, as was the case
with S9 above, but are also due to themore familiar couplings
of the quarklike 313� product variety already encountered
above. A minimal set of such couplings (without, e.g.,
introducing any additional jQDj ¼ 2Higgs fields) is given by

LS10 ¼ ϵijkðyνRi
1R

j
2HðνÞk þ yDRi

2R
j
3HðN1; E2ÞkÞ

þ yeR1ecHðeÞ þ yE1
R1Ec

1HðE1Þ
þ yE3

R3Ec
3HðE3Þ þ H:c:; ð57Þ

where as before i, j, k label the multiplet member and theH’s
are potentially different Higgs representations denoted
by the fields to which they give mass. Some algebra tells
us, in the notation above, that in terms of transformation
properties and VEVs, HðE1Þ ¼ HðE3Þ ∼ χ�, HðeÞ ∼ η�,
HðN1; E2Þ ∼ χ, and HðνÞ ∼ η. From this interaction, after
the all theHiggs fields obtain their VEVs, the following 4 × 4
mass matrix is generated for the jQj ¼ 1 fermions:

Me ¼
1ffiffiffi
2

p ð e; E1; E2; E3 ÞL

0
BBB@

yev1 yE1
u2 −yνu1 0

yeu1 yE1
w yνv1 0

0 0 yDw yE3
u2

0 0 −yDu2 yE3
w

1
CCCA
0
BBB@

ec

Ec
1

Ec
2

Ec
3

1
CCCA

L

: ð58Þ

Here we see that the PM fields obtain their usual large
masses from the w VEV and that both e − E1 and E2 − E3

will mix via the Uð1ÞD-violating VEVs u1;2, while E1 − E2

mixing is generated by the electroweak scale VEV v1.
These mixings are observed to be sufficient to allow the Ei
to all eventually decay down to the electron plus DP final
state as required. Similarly, the corresponding 2 × 2 Dirac
mass matrix for the neutral fields, after now making the
identification νc ¼ Nc

2, is then given by

Mν¼
1ffiffiffi
2

p ðν; N1 ÞL
�−yνv1 −yνu1

yDu2 −yDw

��
νc

Nc
1

�
L

; ð59Þ

while we see that no Majorana mass terms are generated
from just these terms alone without further extending LS10 ,

which is certainly possible. This is similar to that obtained
for e − E mixing in the case of the S9 setup previously
discussed, as well as what was obtained for the quark
sector, except that yν must be highly suppressed to explain
the SM neutrino masses, while we might expect yD ∼Oð1Þ.
This implies that θνL ≃ ðyν=yDÞu1=w ≪ θνR ≃ u2=w ∼ 10−4,
but still allows for the decay N1 → νV to occur.
One of the obvious results of the discussion above is that

we find, as expected, that the masses of all of the PM
fermions F are given generically by a relation of the form
mF ≃ yFw=

ffiffiffi
2

p
to leading order in the VEVs, where we

might expect the various yF’s to be Oð1Þ. An important
question to ask, especially when we address the
phenomenological collider signatures below, is whether
or not the new heavy gauge bosons Z0

M and the NHGB
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above can decay into such states, i.e., Z0
M → F̄F,

NHGB → F̄fðor f̄FÞ as these would then be potentially
resonantly enhanced cross sections, particularly in
the Z0

M case. The case for the NHGB is simple as, to
leading order in the VEVs,MNHGB ≃ gLw=2 so that we see
that this decay channel is open provided that yF <ffiffiffi
2

p ð ffiffiffi
2

p
GFM2

WÞ1=2 ¼
ffiffiffi
2

p
x ≃ 0.462, a bound that is shown

in the lower panel of Fig. 1. In the case of Z0
M → F̄F, the

corresponding bound on yF will clearly be κL dependent
and is given instead by

yF <
xffiffiffi
2

p
�

r
1 − rκ2L

�
1=2

; ð60Þ

so that, e.g., if yF ¼ 1 (similar to that of the top quark on
the SM) and σ ¼ �1, then κL > 0.788 is needed for this
decay to be kinematically allowed, a value not much
smaller that the upper bound of ≃0.821 previously obtained
on κL above. This constraint on yF, as a function of κL, is
also shown in the lower panel of Fig. 1. In the case where
σ ¼ �3, r is significantly larger by almost an order of
magnitude such than even potentially perturbatively
troublesome values of yF would be still allowed, as long
as we stayed away from the corresponding upper bound on
the value of κL in this case, i.e., ≃0.269.

VI. COLLIDER SIGNATURES FROM NEWHEAVY
STATES

Having the results of the analyses above in hand, we can
now turn to a discussion of some of the collider implica-
tions of this setup resulting from the production of the new
heavy gauge bosons as well as the PM fields; here we will
many times limit ourselves to the cases where σ ¼ �1 for
definiteness, but occasionally we will note the differences
were we to instead choose jσj ¼ 3. Of course, in addition to
new physics at colliders, the existence of these new states
can also impact phenomena at lower energies, e.g., flavor
physics. However, the level of this impact depends upon the
model details of both the generational dependence of the
PM-SM mixings and the associated couplings to the new
heavy gauge bosons. Because of this significant model
dependence (that we have so far avoided), we will not
consider these interesting possibilities here.
The most obvious place to begin is with the Drell-Yan

production of the Z0
M in q̄q annihilation at hadron colliders,

e.g., the LHC and the 100 TeV FCC-hh, as this state can
couple to a purely SM initial state, be resonantly produced
on shell, and decay into lepton pairs with a significant
branching fraction. In the narrow width approximation
(NWA), the signal rate is proportional to the Z0

M resonant
production cross section times its leptonic branching
fraction Bl. For the SM fields, which we recall all have
QD ¼ 0, we can write the relevant couplings in terms of the
parameters (a, b) that were introduced previously [which

we recall are functions of both r (and so also σ) and κL]
as just

gL

�
a
T8Lffiffiffi
3

p þ b
Y
2
þ 2

3
aκ2LQD

�
Z0
M; ð61Þ

with the last term just being zero in the case of the SM
fields. We also recall from above, for numerical purposes,
that for σ ¼ �1, b is relatively small in comparison to a so
that we expect reduced sensitivity to the sign of σ in
production cross sections. Since the values of both T8L and
Y=2 are fixed for the SM fields, all of the relevant couplings
are known quantities apart from the values of κL and σ. For
later usage, we note that the partial width for the Z0

M decay
into (massless) left-handed SM leptons (which we recall
have T8L=

ffiffiffi
3

p ¼ 1=6) is given, for simplicity, in the
approximate jb=aj → 0 limit by

Γj ¼ ΓðZ0
M → lþl−Þ ≃ g2LMZ0

M

864π
a2: ð62Þ

Further, apart from the overall QCD/color factors, i.e.,
Nc ¼ 3, and small QCD corrections, ≃ð1þ αsðMZ0

M
Þ=πÞ,

that appear for the quarks, all of the SM fermions will
essentially have this same partial width in the jb=aj → 0
limit when the top mass can be safely neglected. Observe
that when a2 gets sufficiently large near the upper limit of
the allowed range for κL we will loose perturbativity and so
we can no longer be able to trust our results and certainly
not the NWA to be employed below. Clearly, the largest that
Bl can be is when the Z0

M decays only into just the SM
fermion final states, as any additional modes would
increase its total decay width. If this condition is satisfied,
then we find that Bl ≃ 0.04 but, more generally, Bl is
instead

Bl ¼
Γl

ΓT þNΓl
≃

1

25þN
; ð63Þ

where we have parametrized any additional contributions
to the total Z0

M decay width via the quantity
N ¼ ΓðZ0

M → newÞ=ΓðZ0
M → lþl−Þ, which is zero in the

simplest case, with ΓT being the total width in this case.
Thus, we will be interested in knowing how any additional
partial decay widths will scale with respect to that for the
SM leptons given above in what follows. Certainly, if N
becomes very large, the NWA approximation will also fail,
as the Z0

M total width to mass ratio will be become too
large—as may also happen when a becomes too large even
without the introduction of any new additional decay
modes as already noted. Below, we frequently employ this
simplifying assumption, i.e., the absence of any additional
new physics, so that if jb=aj ≪ 1 then we will have
Bl ≃ 4% as previously noted. Any bound on N will be
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much more easily saturated when σ ¼ �3 than if σ ¼ �1,
as much larger values of a2 are obtained in that case.
Figure 2 shows the rate for Z0

M production as a function
of its mass under the assumption that only SM fermion final
states can appear for either choice of σ ¼ �1 and with
different selections of the value of κL at both the LHC and
the 100 TeV FCC-hh. Here we see that, as expected, this
rate is relatively insensitive to b and, hence, the sign of σ.
We also see that it grows as κL approaches its maximum
value, 1=

ffiffiffi
r

p
≃ 0.821, due to the factor of ð1 − κ2LrÞ1=2

appearing in the denominator of the definition of a. When
σ ¼ �3, for a given value of κ ≲ 0.269, both r and a are

now larger, which would then result in an enhanced
production cross section and a potentially increased
influence of the sign of σ as r would be somewhat larger
in such a case. In practice, however, we still find that this
sign will have little practical influence on the search
reaches.
Both ATLAS [113] and CMS [114] have performed Z0

searches in the dilepton channel at the 13 TeV LHC
employing an integrated luminosity of 139 fb−1, which
we can apply to the case at hand; here we will employ the
specific results obtained by ATLAS. Similarly, we can
follow the analysis as presented in Ref. [115] to obtain the
corresponding expected reach for the 100 TeV FCC-hh
assuming 30 ab−1 of integrated luminosity. The results of
these analyses are shown in Fig. 3 as functions of κL
assuming that σ ¼ �1.3 Here we see that the bounds at the
13 TeV LHC are relatively modest and increase slowly at
first as κ increases away from zero with the choice of σ ¼ 1
yielding the slightly larger values; as a point of comparison,
a heavy SM-like Z0, Z0

SSM, is constrained to lie above
≃5.1 TeV from this search [113]. However, again due to
the factor of ð1 − κ2LrÞ1=2, when κL exceeds roughly ≃0.64,
the limit strengthens significantly due to the now much
more rapid growth of the parameter a. Assuming no signals
are found, the 14 TeV HL-LHC with a luminosity of 3 ab−1

is expected to increase these bounds by roughly
∼10%–15%. The corresponding results for the 100 TeV
FCC-hh in the lower panel of the figure show quite similar
behavior; in this case, we note that the Z0

SSM bound is
determined to be ≃42 TeV from Ref. [115] for comparison
purposes.
The corresponding bounds obtained in the case of σ ¼

�3 are shown in Fig. 4. Here we see that, as expected,
substantially greater exclusion and search reaches are
obtained, by roughly ≃20%–25%, since the values of a
are now much larger. With the ratio of jb=aj being some-
what larger in this case, as was noted above, we also
observe a somewhat greater sensitivity to the sign of σ, also
as expected.
One simple and immediate application of the Z0

M mass
constraints obtained above is that, within the present model
context, we can translate these bounds into the correspond-
ing, yet “indirect,” constraints on the NHGB using the mass
relationships discussed above. These are potentially impor-
tant as they can, in some parameter space regions, super-
sede those from direct production to be discussed further
below. In Fig. 5, these constraints are shown, assuming
σ ¼ �1, using the results as displayed in Figs. 1 and 3 as
input. These constraints are seen to be relatively strong for
small values of κL but then weaken substantially as κL
increases toward its upper bound as we might have

FIG. 2. Production cross section times leptonic branching
fraction for the new heavy gauge boson Z0

M, as a function of
its mass employing the narrow width approximation as discussed
in the text for (top) the 13 TeV LHC and (bottom) the 100 TeV
FCC-hh. The red (blue, green) curves correspond to κL ¼
0.1;

ffiffiffi
x

p
w (i.e., gD ¼ e), and 0.8, respectively, with the choice

of σ ¼ 1. The magenta (cyan, yellow) curves are the correspond-
ing results assuming instead that σ ¼ −1, and we observe very
little difference. In all cases, only Z0

M decays to SM fermions have
been assumed to be kinematically accessible.

3As we will see below, when σ ¼ �3, these cross sections will
we seen to increase by an order of magnitude or more, which
results in an increased mass reach of ≃20%–25%.
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expected. Correspondingly, indirect bounds are similarly
obtainable for the case of σ ¼ �3 and display a comparable
overall behavior.
What about other Z0

M decay modes beyond those to the
SM fermions which may be significant? Such modes can
exist even if we remain restricted to the familiar set of SM
final states. Any such modes will lower Bl and so lead to a
(generally modest) reduction in the corresponding search
reach using the Drell-Yan channel, but they are also
important to consider on their own. Interestingly, as is
well known [75], the small mixing of a new gauge boson
such as Z0

M with the SM Z can induce other decay modes
which may have significant partial widths, which can be
comparable to those for the SM leptons. A classic example
of this is the mode Z0

M → WþW− which is induced via this

angle, θmix, as encountered above in Eqs. (44)–(46); in the
present case, one finds that this partial width is given, to
leading order in the small mass ratios, by

ΓðZ0
M → WþW−Þ ≃ g2LMZ0

M

192πc2w

�
θmix

M2
Z0
M

M2
Z

�
2

; ð64Þ

where (using MW ¼ MZcw which remains true to
leading order in the small VEV ratios) we see the familiar
result that the small mixing angle is offset by the square of
the large ratio of the Z0

M and SM Z. Using the expression
above that relates this mixing angle to the other
model parameters, θmix ≃M2

int=M
2
Z0
M
, we obtain from

Eqs. (44)–(46) that

RW ¼ BðZ0
M → WþW−Þ

Bl
≃
1

4
·

�
v22 − v21
v22 þ v21

þ 3b
a

�
2

; ð65Þ

FIG. 4. Same as the previous figure, but now assuming that
σ ¼ �3.

FIG. 3. Z0
M mass bounds as functions of κL with σ ¼ 1ð−1Þ

corresponding to the red (blue) curve, following the analysis
described in the text for (top) the 13 TeV LHC employing the
results from ATLAS [113] and (bottom) for the 100 TeV FCC-hh
assuming an integrated luminosity of 30 ab−1 and employing the
analysis as presented in Ref. [115], respectively. The NWA
approximation is employed in obtaining these results and
assumes decays only to the SM fermions.
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so that RW may be appreciable ≃0.25 or so as the
expression in brackets ifOð1Þ. Clearly, a relative branching
fraction of this magnitude would have essentially no impact
on the searches above employing the dilepton channel. If
the dilepton production rate is significant, then the WþW−

mode can also be sufficiently large to be used to probe this
gauge boson mixing and the symmetry breaking structure
of the model. The cleanest signature for the observation of
this decay, since theW’s are expected to be highly boosted,
would likely be an almost collinear leptonþmissing
transverse energy (MET) combination plus two collimated
jets in the opposite hemisphere with both systems recon-
structing to the W mass.
The NHGBs, which we recall carry QD ≠ 0, can be

produced at hadron colliders via two mechanisms:
generically, the first of these, associated production,
can be described by the gqðq̄Þ → NHGBþ PM process
where g is a gluon andqðq̄Þ is a either a SMu- ord-type (anti)

quark—not dissimilar to a previously examined production
process studied for both the LHC and FCC-hh [57].
Depending upon whether the quarks lie in a q1 or a q�2
representation, as well as the value of σ, several distinct
channels are possible, e.g., gu → BþD;A0U in the language
employed above. Since the overall coupling gL is fixed, only
the PM and NHGB masses are a priori unknown. Figure 6
shows the relevant cross sections for both the gu- and gd-
initiated processes at the 13 TeV LHC and at the 100 TeV
FCC-hh as functions of the masses of these two heavy
particles in the final state. Certainly the signatures for this
production process will depend somewhat on the model
details such as the mass ordering of the PM and NHGB,
neither of which are likely to be very boosted since they are
expected to be quite massive. For example, in the simple
scenario where the NHGB is the heavier of the two, then
we can have decays such as NHGB → PMþ q̄ while

FIG. 6. guðgdÞ-initiated NHGB plus PM associated production
cross section represented by the solid (dashed) curves at the (top)
13 TeV LHC and (bottom) 100 TeV FCC-hh as functions of the
appropriate NHGBmass. In the top panel, from top to bottom, the
curves are for a PM mass of 1, 1.5, 2, 2.5, and 3 TeV, respectfully,
whereas in the bottom panel, the corresponding curves label the
results for PM masses of 5, 10, 15, 20, and 25 TeV, respectively.

FIG. 5. Indirect mass bounds on the NHGBs obtained by
employing the model-dependent mass relationship given in the
text and the Z0

M mass constraints from the previous figures, here
assuming that σ ¼ �1.
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PM → qV, which leads to a 3jþMET final state with the
MET coming from the two DP in the final state, which are
assumed to be either long-lived or which decay into DM.
Many other similarly interesting modes can occur, as any
given model will have both color triplet as well as color
singlet PM field content. For example, the NHGB may
instead dominantly decay to a leptonic ēE pair followed by
the E → eV leading to a 1jþ a nonresonant, opposite sign
dilepton pair þMET final state. By combining several such
modes, a substantial discovery reach is very likely obtain-
able. From Fig. 6, we see that regions of parameter space
corresponding to the sumof theNHGBandPMmasses up to
(very) roughly ≃4.0ð3.5Þ and ≃27ð25Þ TeV for the guðdÞ-
initiated process may be obtainable at these two colliders,
respectively.
The second mechanism for making these NHGBs is pair

production via s-channel exchanges, i.e., qq̄ → γ;
Z; Z0

M → NHGBþ NHGB†, where the SM γ exchange
may or may not contribute depending upon the particular
model details and the specific NHGB under consideration.
Recall that both of the NHGBs carry weak isospin having
T3L ¼ �1=2, and at least one of them has a nonzero electric
charge. Since, unlike in the case of associated production,
pair production is a purely electroweak process, the cross
section in this case is generally small. Importantly, how-
ever, the rate for this reaction can also be potentially Z0

M
resonance enhanced as was discussed earlier provided that
MZ0

M
> 2MNHGB. As we saw above, when jσj ¼ 1, one

finds that κL is restricted to a narrow range to allow for this
possibility, whereas for, jσj ¼ 3, there is no such restriction.
It thus behooves us to examine the ratio of branching
fractions RN ¼ BðZ0

M → NHGBþ NHGB†Þ=Bl above
this threshold, which is similar to that for the WþW− final
state above except that there is no longer any small mixing
angle suppression and that the Z0

M and NHGB masses are
now more than likely be comparable. Quite generally, we
may write (again for simplicity assuming that we may
approximately take jb=aj → 0 as above)

ΓðZ0
M → NHGBþ NHGB†Þ

¼ g2LMZ0
M

192π
P2

1

X2
ð1 − 4XÞ3=2ð1þ 20X þ 12X2Þ; ð66Þ

where, from the above discussion and Eq. (42) one obtains
in the present setup that

X ¼ M2
NHGB

M2
Z0
M

¼ 1 − κ2Lr
r

≤
1

4
; ð67Þ

and we find, employing Eqs. (14) and (43) as well as the
subsequent discussion, that the parameterP2¼9=ð4a2Þ¼X.
Thus, we finally arrive at the required expression

RN ¼ 1

X
ð1 − 4XÞ3=2ð1þ 20X þ 12X2Þ; ð68Þ

which we see can very easily be larger than unity when X
becomes small. For example, taking jσj ¼ 1 and κL ¼ 0.7,
one finds thatRN ≃ 3.7 for each of theNHGBwhich is quite
substantial; when jσj ¼ 3, even larger values of this ratio are
obtained. Figure 7 shows thevalues ofRN as a function of κL
when jσj ¼ 1 or 3; the reader is reminded of the restricted
ranges of κL in these two cases as discussed above when
examining the results as presented in this figure.
On the positive side, this enhancement is quite advanta-

geous as it allows us to study the production of the NHGB
up to quite large masses assuming that they can be pair
produced on shell. Simultaneously, however, the relatively
large partial width for this process begins to significantly
reduce the value of Bl which will negatively impact the
discovery reach for the Z0

M in the dilepton channel when
very large values of RN are realized. However, even when
rather sizable values of this ratio are indeed obtained, e.g.,
25–50, the actual search reach is found to be not very much
degraded, roughly by less than ∼5%–10%, in practice.
Turning now to the heavy PM fields, in the case of theU-

or D-type color triplets, these states can be pair produced
though QCD in analogy to the top quark in the SM via gg
and q̄q. As mentioned previously, these particles will
dominantly decay to the analogous SM states with which
they share a 3 or 3̄ multiplet together with a DP so that the
simplest final state (for non-b or t quarks) is just
2jþMET, similar to that of squark production. As dis-
cussed in earlier work [48], these types of searches at the
13 TeV LHC already exclude U=D masses below
≃1.5–1.8 TeV, depending upon the flavor of the SM
quarks in the final state, but at the FCC-hh the correspond-
ing search reaches increase substantially to roughly
≃10 TeV. Analogously, the heavy PM fields which are

FIG. 7. The ratio RN described in the text as a function of the
parameter κL, for both jσj ¼ 1 (red) and jσj ¼ 3 (blue). Recall
that in both cases the allowed range of κ is restricted from above.
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color singlets, N and E, can only be produced by
electroweak exchanges, i.e., q̄q → γ; Z; Z0

M → N̄N; EþE−

and so their cross sections are relatively small. In the case of
E, LHC searches employing the assumed dominant eV (or
ehD) decay mode and producing an opposite sign lepton
plus MET signature already exclude PM masses up to
roughly ≃1 TeV [48]. However, if these PM leptons can
appear in the decays of Z0

M, as was the case with the
NHGB, we will have a resonance enhanced search reach. In
the case of jσj ¼ 1 where the anomalies cancel among the
three generations, these PM leptons, N, E, will lie in either
l1- or l�2-like triplet/antitriplet representations in a manner
similar to that of U, D just discussed. In such a case, where
the right-handed components of these PM leptons are
singlets of 3L, the relevant quantity of interest is then just
the ratio RL ¼ BðZ0

M → N̄N orEþE−Þ=Bl which, where if
we again make the now familiar approximation jb=aj → 0
and recall that jQDðN;EÞj ¼ 1, is given by an identical
expression for both N, E types of PM leptons,

RL ¼ 2β

�
β2 þ 3 − β2

2
ð1þ 4κ2LÞ2

�
; ð69Þ

with β2 ¼ 1–4m2=M2
Z0
M
and where m is now either mN;E.

As the top panel of Fig. 8 shows, RL can be quite large,
even near the mass threshold, when κL becomes large. A
similar expression would hold if Z0

M were allowed to decay
into pairs of the color triplet PM fields, apart from an
overall factor of ≃3ð1þ αsðMZ0

M
Þ=πÞ, which under some

circumstances may match or exceed the rate that is
expected from the pure QCD production process already
mentioned, especially at the 100 TeV FCC-hh. This could
push the discovery reach for these states up to roughly the
kinematic limit ≃0.5mZ0

M
, similar to that for the color

singlet states.
If the vectorlike (with respect to 3L) leptons of the type

appearing in S9;10 (i.e., N2; E in S9 or N1, E2 in S10,
respectively) are also/instead of encountered, then the
corresponding cross sections are somewhat reduced in
comparison to the previous result but can still be quite
significant and we would now obtain

RL ¼ 2β

�
3 − β2

2

�
ð1þ κ2LÞ2; ð70Þ

as is shown in the bottom panel of this same figure. These
models with the anomalies canceling within each gener-
ation will potentially also lead to more complex signatures
in the leptonic sector due to cascading decay effects
mentioned above, especially if a significant fraction of
the color singlet states are kinematically accessible in Z0

M
decays.
Clearly, the production of the color singlet and triplet PM

states as well as the new heavy gauge bosons associated

with the enlarged gauge symmetries can lead to some
interesting collider phenomenology.

VII. DISCUSSION AND CONCLUSION

The kinetic mixing between the dark photon, arising
from a Uð1ÞD gauge symmetry, and the SM photon to
mediate the interactions between a light DM and ordinary
particles provides a simple yet elegant portal to explain the
observed relic density with potentially numerous phenom-
enological implications. However, KM necessitates the
existence of a set of fields that carry both SM and dark
sector quantum numbers, i.e., portal matter, which must
consist of scalars and/or fermions which are vectorlike with

FIG. 8. The ratio RL of the leptonic PM Z0
M branching fraction

to that for ordinary SM charged leptons, described in the text, as a
function of the parameter κL assuming, from top to bottom,
m=MZ0

M
¼ 0.05 (red), 0.15 (blue), 0.25 (green), 0.35 (magenta),

and 0.45 (cyan), respectively, where m is the N or E PM mass in
the case where such fields are (top) right-handed singlets or are
(bottom) vectorlike with respect to 3L as discussed in the text.
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respect to their SM interactions due to numerous unitarity,
Higgs, and precision measurement constraints. The combi-
nation of the constraints arising from the CMB and the
requirement that the coupling of the Uð1ÞD gauge group
associated with the DP remain perturbative up to some
large scale, ∼ tens of TeV, possibly hints at the existence of
some enlarged non-Abelian group, GD. When this gets
broken down to (at least) Uð1ÞD, it provides the masses for
the PM fields as well as to a set of new heavy gauge bosons,
some of which will carry dark quantum numbers. It is then
natural to ask how these ideas can fit together with the SM
in a more unified framework. Is there a way to understand
how the PM fields carrying both SM and dark quantum
numbers arise in such a setup, what their properties might
be, and how they and the new heavy gauge bosons might be
directly discovered at colliders?
In our previously considered bottom-up approaches that

attempted to address these and related questions, we
examined an enlarged gauge group G, essentially consist-
ing of a product of the SM and dark gauge groups, wherein,
e.g., the SUð2ÞL part of the SM and Uð1ÞD were totally
uncorrelated and independent. One might easily imagine
that this would no longer be true in a more fully unified
picture so it behooves us to examine alternative possibil-
ities. In the present work, following a parallel bottom-up
approach, we have explored a (relatively) simple toy setup
wherein the SUð2ÞL part of the SM gauge group as well as
part of the Uð1ÞD gauge group associated with the DP are
unified within a single SUð3ÞL factor. This SUð3ÞL is also
accompanied by twoUð1Þ factors, 1A1B, thus providing for
partial unification of the dark and SM electroweak gauge
interactions. Explicitly, in such a setup the PM fields
naturally (mostly) lie in common representations of 3L
along with the corresponding SM fields having similar
quantum numbers. In this setup, the Higgs fields respon-
sible for breaking 3L1A1B down to the SM ×Uð1ÞD are
directly responsible for generating the PM masses, whereas
the Higgs VEVs that break 1D also lead to a mixing of the
PM fermions with analog SM fields, thus providing them
with a likely dominant decay path and a unique collider
signature. This is perhaps the simplest scenario that is not a
product group of the formGD ×GSM which allows for a (at
least partial) unification of the SM electroweak with the
dark sector. If we consider the breaking 3L → 2L1L, with
2L identified as the usual SM group in this setup, then the
SM hypercharge 1Y is embedded as a linear combination of
the two factors 1L1A, while 1D is instead embedded as an
orthogonal combination of all three factors, 1L1A1B.

Although several variants of this general setup are
possible, depending upon the assumed value of the param-
eter σ and the manner in which the anomalies are canceled,
they all have most of their features in common, which we
take advantage of in the current study. First, given the
extended group structure, a new heavy Hermitian and two
new non-Hermitian gauge bosonsmust exist in the spectrum
with masses comparable to the PM fields. In particular, the
required hierarchal breaking of the various gauge sym-
metries as well as the generation of all of the SM and PM
(Dirac) masses and the mixings necessary for all the PM
fermions to decay (unless exotically charged fields are
present that are the lightest ones among the set of PM)
can be accomplished via the VEVs of just three Higgs (anti)
triplets of 3L having differing 1A1B quantum numbers.
Second, these PM fermion fields necessarily consist of both
color singlet as well as color triplet states, at least some of
which will share 3L (anti)triplet representations with the SM
fermions and so are connected to themvia the two newheavy
NHGBs. PM decays via these NHGBs can competewith the
familiar and usually dominant SM-PM mixing-induced
mode provided they are kinematically allowed. Third, at
the high scale, the Uð1ÞD gauge coupling gD is found to be
bounded from above in a manner dependent upon the value
of jσj but is always constrained to be ≲0.83gL. This bound
can have important implications for low energy dark sector
searches if gD runs to even smaller values as the ∼1 GeV
scale is approached from above, as we might anticipate.
Finally, if kinematically allowed, PM and/or NHGBs
appearing as final states in resonant Z0

M decay can have
enhanced production rates and correspondingly extended
mass reaches beyond the typical naive estimates.
PM models with extended gauge sectors linking the dark

and SM sectors can lead to a wide spectrum of interesting
and complex phenomenology at existing and future col-
liders. Hopefully, signals of the physics of the dark sector
will soon be observed.
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