
Meson spectroscopy in the Spð4Þ gauge theory with three
antisymmetric fermions

Ed Bennett ,1,* Deog Ki Hong ,2,3,† Ho Hsiao ,4,5,‡ Jong-Wan Lee ,6,§ C.-J. David Lin ,5,7,∥ Biagio Lucini ,1,8,¶

Maurizio Piai ,9,** and Davide Vadacchino 10,††

1Swansea Academy of Advanced Computing, Swansea University (Bay Campus),
Fabian Way, SA1 8EN Swansea, Wales, United Kingdom

2Department of Physics, Pusan National University, Busan 46241, Korea
3Extreme Physics Institute, Pusan National University, Busan 46241, Korea

4Center for Computational Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

5Institute of Physics, National Yang Ming Chiao Tung University,
1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan

6Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe,
Institute for Basic Science (IBS), Daejeon, 34126, Korea

7Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
8Department of Mathematics, Faculty of Science and Engineering, Swansea University (Bay Campus),

Fabian Way, SA1 8EN Swansea, Wales, United Kingdom
9Department of Physics, Faculty of Science and Engineering, Swansea University,

Singleton Park, SA2 8PP, Swansea, Wales, United Kingdom
10Centre for Mathematical Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom

(Received 19 December 2024; accepted 28 February 2025; published 14 April 2025)

We report the results of an extensive numerical study of the Spð4Þ lattice gauge theory coupled to
fermion matter content consisting of three (Dirac) flavors, transforming in the two-index antisymmetric
representation of the gauge group. In the presence of (degenerate) fermion masses, the theory has an
enhanced global SUð6Þ symmetry, broken explicitly and spontaneously to its SOð6Þ subgroup. This
symmetry breaking pattern makes the theory interesting for applications in the context of composite Higgs
models, as well as for the implementation of top partial compositeness. Alternatively, it can also provide a
dynamical realization of the strongly interacting massive particle paradigm for the origin of dark matter. We
adopt the standard plaquette gauge action, along with the Wilson-Dirac formulation for the fermions, and
apply the (rational) hybrid Monte Carlo algorithm in our ensemble generation process. We monitor the
autocorrelation and topology of the ensembles. We explore the bare parameter space, and identify the weak
and strong coupling regimes, which are separated by a line of first-order bulk phase transitions.

We measure two-point correlation functions between meson operators that transform as nontrivial
representations of SOð6Þ, and extract the ground-state masses, in all accessible spin and parity channels.
We assess the size of finite volume effects, and restrict attention to measurements in which these systematic
effects are negligibly small compared to the statistical uncertainties. The accuracy of our data enables us to
extract the decay constants of the composite particles in the pseudoscalar, vector and axial-vector channels.
In addition, we measure the mass of the first excited state for one of the channels, the vector meson, by
performing a generalized eigenvalue problem analysis involving two different meson operators. Spectral
quantities show a mass dependence that is compatible with the expectation that, at long distances, the
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theory undergoes confinement, accompanied by the spontaneous breaking of the approximate global
symmetries acting on the matter fields. Finally, we discuss the continuum and massless extrapolations
within the framework of Wilson chiral perturbation theory, after setting the physical scale using the gradient
flow method, and compare the results to those of existing studies in the quenched approximation, as well as
to the literature on closely related theories.
DOI: 10.1103/PhysRevD.111.074511

I. INTRODUCTION

New physics systems made of composite particles, arising
from novel strong coupling dynamics, yield promising
scenarios within which to address the big open questions
in contemporary particle physics and astrophysics. They
form the basis of composite Higgs models (CHMs) [1–3]
(see also the reviews in Refs. [4–6], the tables in Refs. [7–9],
a selection of publications in Refs. [10–51] and the holo-
graphic models in Refs. [52–65]), models of top partial
compositeness (TPC) [66] (see also Refs. [67–69], for useful
discussions), models of dark sectors [70–76], composite
dark matter [6,77–86] (see also Ref. [87]), and strongly
interacting massive particles (SIMPs) [88–97] (see also the
review [98] and references therein). Their presence might
even affect the thermal history of the early Universe, giving
rise to inflation [99–101]. A stochastic relic density of
gravitational waves might arise if such systems underwent
a first-order phase transition during the times our universe
was hot [102–107]. Such effects are detectable in present
and future experiments [108–125] (see the discussions in
Refs. [126–133] and [134–142]).
Motivated by compositeness scenarios, an extensive

program of theoretical explorations on the lattice with
orthogonal and symplectic groups (TELOS), in particular
in the case of Spð2NÞ groups, has led to significant recent
advancements in their understanding [143–156]—see also
Refs. [157–164] as well as Refs. [165–172] and the
pioneering work in Ref. [173]. Field theories with sym-
plectic gauge group, SpðNc ¼ 2NÞ, lead to enhanced
global symmetry patterns, distinctive from those emerging
in SUðNcÞ gauge theories. Nevertheless, in the large-Nc
limit, SpðNcÞ and SUðNcÞ gauge theories are expected
to share the same physics in a common sector. Interesting
ideas have been put forward to describe the associated
nonperturbative phenomena [146,149,174–176], hence
providing more general reasons to gain understanding of
nonperturbative properties of Spð2NÞ theories. Finally,
dedicated studies of these theories have also appeared within
bottom-up holographic models [177–179]—an example of
top-down holographic models is found in Ref. [180].
In the CHM context, the minimal model amenable to

lattice studies exploits the global symmetry patterns
described by the SUð4Þ=Spð4Þ coset. It can be realized
by the Spð2NÞ gauge theory coupled to Nf ¼ 2 matter
fermions transforming in the fundamental representation,
(f) [181]. For N > 1, the addition of Nas ¼ 3 fermions

transforming in the two-index antisymmetric representa-
tion, (as), leads to the minimal realization of a model
combining CHM and TPC [182].1 The enhanced SUð6Þ
global symmetry acting on theNas ¼ 3 fermions is broken to
SOð6Þ, both by the presence of degenerate fermion masses,
and by the formation of a fermion condensate [181]. The
SUð3Þ group associated with quantum chromodynamics
(QCD) is identified with a subgroup of the unbroken SOð6Þ,
and fermion bound states involving one (as)-type and two
(f)-type fermions have the right quantum numbers to act as
partners of the top quark.
In this paper, we study a closely related Spð4Þ lattice

theory, coupled to Nas ¼ 3 (as)-type dynamical Dirac
fermions, but in which Nf ¼ 0. Because of the large
multiplicity of the antisymmetric representation, this single-
representation lattice theory is expected to approximate well
the two species theory, without the significant complications
due to the mixed matter field content. We refer to the handful
of existing lattice studies in theories with mixed representa-
tions: see for instance Refs. [193–199] for the SUð4Þ theory
with fundamental and two-index antisymmetric fermions,
Refs. [148,155,156] for the Spð4Þ theory with Nas ¼ 3 and
Nf ¼ 2, and Refs. [200,201] for the SUð2Þ gauge theories
with fundamental and adjoint matter.
This lattice theory is of interest in itself, as the strongly

coupled origin of effective field theories (EFTs) based on
the SUð6Þ=SOð6Þ coset. Such EFTs can be used to provide
an alternative CHM, which includes a composite dark
matter candidate [41]. The SIMP mechanism could also be
realized in this theory, by generalizing the SUð4Þ=SOð4Þ
analysis in Ref. [86].
A further reason why this lattice theory is interesting

per se pertains the mapping of the phase space of gauge
theories at zero temperature. Given the large multiplicity
of its fermion matter fields, it is important to check with
an ab initio calculation how far the Spð4Þ theory with
Nas ¼ 3 sits from the lower edge of the conformal
window [202–210]—see also the higher-loop analyses in
Refs. [211–221], which generalize the Banks-Zaks (BZ)
fixed point [222,223] to higher-loop orders using the
results in Refs. [224–227]. Nonperturbative hints of near
conformal dynamics might manifest themselves in the
slow running of the coupling (walking [228–230]), and

1The SUð4Þ=Spð4Þ coset appears also in SUð2Þ lattice theories
[183–192]. In this case, though, the antisymmetric representation
is trivial, and TPC cannot be realized in the same way.
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unconventional scaling of composite operators [203,231].
We are going to test these possibilities, and provide evidence
that this theory confines and breaks its global, approximate,
continuous symmetries, in a way not dissimilar from QCD,
the theory of strong nuclear forces. The literature on lattice
studies of candidate theories with unconventional, near
conformal, strongly coupled dynamics—see, for instance,
Refs. [232–282]—is reviewed in Ref. [283].
For this work, we adopt the standard (unimproved)

Wilson gauge action and Wilson-Dirac fermions. Their
dynamical implementation is achieved through the rational
hybrid Monte-Carlo (RHMC) algorithm [284,285].
Preliminary results have been presented in Ref. [160].
We use the Wilson flow [286–288] to set the scale, and also
as a smoothening procedure in computing the topology
of the ensembles, with which we monitor their auto-
correlations. To measure the meson mass spectra, we
complement the use of stochastic wall sources [289] by
the implementation of Wuppertal smearing of sources and
sinks [290–292], supplemented by APE smearing of the
link variables [293,294]. The spectrum of the vector meson
sector is obtained from a generalized eigenvalue problem
(GEVP)—see also Ref. [156]. We compute also (renor-
malized) meson decay constants [295,296], where this is
possible with our available data. We perform an extensive
study of finite-volume effects. We extrapolate our numeri-
cal results toward the massless and continuum limits,
relying on Wilson chiral perturbation theory (WχPT)
[297,298] by borrowing ideas from Ref. [299], and from
the literature on improvement [300,301].
This is the first systematic, dedicated calculation, in this

lattice gauge theory, to allow for an extrapolation toward
the continuum limit. We benchmark our results against
existing measurements, obtained either in the quenched
approximation of the same theory, or in other related
theories with dynamical fermions: the Spð4Þ theory
coupled to Nf ¼ 2 fermions, and the SUð3Þ theory with
three quarks—we remind the reader that, in SUð3Þ, the
two-index antisymmetric representation coincides with
the conjugate of the fundamental one. Interesting trends
emerge from these critical comparisons, which we high-
light later in the paper.
The paper is organized as follows. We introduce the

(continuum and lattice) theories of interest in Sec. II. We
devote Sec. III to studying the properties of the lattice
theory. We identify its bulk phase transitions in (lattice)
parameter space. We perform a finite-volume study, to
identify criteria that allow us to ensure that such systematic
effects can be neglected, in comparison with existing
statistical uncertainties. We introduce at this stage our
treatment of theWilson flow, and its complementary uses to
set the scale and to compute the topology in our configu-
rations. Section IV details our definitions of meson
operators, correlation functions, masses, and decay con-
stants, and the processes we follow in our measurements.

The numerical results are summarized in Sec. V, which
describes also our approach to the continuum and massless
limits. We discuss our main results and outline future
avenues for investigation in Sec. VI. Appendixes A–D
contain tables of intermediate numerical results and
technical details that may be helpful in reproducing our
analysis—we provide access to our data and the analysis
code in Refs. [302,303].
Appendix E presents a preliminary, alternative analysis of

the spectral measurements we collected, performed in the
light of dilaton effective field theory (dEFT) [304–319].2 It
provides an unconventional interpretation and analysis tool,
with respect to the Wilson chiral perturbation theory adopted
in the main body of the paper. This new instrument has given
interesting results in dynamical theories with near conformal
dynamics, such as the case of SUð3Þ theories with Nf ¼ 8
fundamental fermions [339–347], or NðsÞ ¼ 2 fermions
transforming in the two-index symmetric representation
[348–353]. We hence decided to perform and report this
exercise, although we anticipate that our results are incon-
clusive. Such an analysis promises to become important for
future higher statistics calculations, performed at smaller
fermion masses and closer to the continuum limit, particu-
larly if flavor-singlet scalar mesons are accessible.

II. THE Spð4Þ THEORY OF INTEREST

The field content of the Spð4Þ gauge theory of interest
consists of the gauge fields, Vμ ≡P

A V
A
μTA (where TA, for

A ¼ 1;…; 10, are the hermitian generators of the group,
normalized so that TrTATB ¼ 1

2
δAB), and three flavors of

massive (degenerate) hyperquarks, Ψ. These Dirac fer-
mions, that are described by antisymmetric 4 × 4 matrices
in Spð4Þ, obey the condition Tr½ΩΨ� ¼ 0, where the
symplectic matrix, Ω, is

Ω≡
�

0 12×2
−12×2 0

�
: ð1Þ

The fermions transform in the antisymmetric, two-index
representation, as Ψ → UΨUT , under the action of a group
element, U∈ Spð4Þ. The continuum Lagrangian density is

L ¼ −
1

2
TrVμνVμν þ ΨjðiDμγ

μ −mÞΨj; ð2Þ

2The idea that a light scalar particle, the dilaton, associated
with the spontaneous breaking of scale invariance, might appear
in proximity of the lower edge of the conformal window is quite
old [229,320,321], and so is the first effective field theory (EFT)
description of its behavior [322,323]. The striking phenomeno-
logical implications for new physics of the emergence of a dilaton
[324] are the subject of a vast literature—an incomplete selection
of interesting work includes Refs. [69,325–335] and references
therein. Examples of application of dEFT in the CHM context can
be found in Refs. [317,318]—see also related earlier work in
Refs. [336–338].
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where μ, ν ¼ 1, 2, 3, 4 are space-time indexes and
j ¼ 1, 2, 3 flavor indexes, while summations over repeated
indices are understood. In our convention the Minkowski
metric has signature ðþ;−;−;−Þ. The field strength tensor,
Vμν, and the covariant derivative, Dμ, are defined by

Vμν ≡ ∂μVν − ∂νVμ þ ig½Vμ; Vν�; ð3Þ

DμΨ≡ ∂μΨþ igVμΨþ igΨVT
μ ; ð4Þ

where g is the gauge coupling.
The fermion degrees of freedom populating the entries of

the antisymmetric matrices, Ψab, with a; b ¼ 1;…; 4, span
an irreducible representations of Spð4Þ, which, as the group
is locally isomorphic to SOð5Þ, coincides with the vectorial
representation, 5, of SOð5Þ, after imposing the afore-
mentioned Ω-traceless requirement on Ψ. Because such
a representation is real, the global (flavor) symmetry acting
on Nð as Þ ¼ 3 Dirac fermions is enhanced from Uð3ÞL ×
Uð3ÞR to Uð1Þ × SUð6Þ. In this paper, we ignore the
(anomalous) Uð1Þ, focusing on nontrivial representations
of the non-Abelian, SUð6Þ, factor. This symmetry is broken
to the maximal SOð6Þ subgroup by the nonzero, degenerate
fermion mass, m. In the massless case, the SUð6Þ global
symmetry is also spontaneously broken along the same
pattern, if a nonvanishing condensate, hΨ̄Ψi ≠ 0, emerges.

A. Lattice action

The lattice theory is written by applying a Wick rotation
to the four-dimensional space-time, and discretizing the
Euclidean space on hypercubic lattice of size Nt × N3

s ¼
ðT=aÞ × ðL=aÞ3, with a the lattice spacing, T and L the
temporal and spatial extents, respectively. As the discre-
tized version of the action based on the Lagrangian density
in Eq. (2), we adopt the standard plaquette action for the
gauge fields, supplemented by the Wilson-Dirac fermion
formulation for hyperquarks, Ψ, and write

S≡ β
X
n;μ<ν

�
1 −

1

4
ReTrPμνðnÞ

�
þ a4

X
n

Ψ̄jðnÞDðasÞΨjðnÞ;

ð5Þ

where μ, ν ¼ 1, 2, 3, 4 are space-time indexes, j ¼ 1, 2, 3
the flavor indexes, and n denotes the lattice sites. The lattice
bare coupling, β, is related with the gauge coupling, g, by
β ¼ 8=g2. The elementary plaquette, Pμν, is defined as

PμνðnÞ≡UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ; ð6Þ

where Uμ ∈ Spð4Þ denotes the gauge link, which satisfies
the condition U� ¼ ΩUΩ†. We impose periodic boundary
conditions on all the fields, except for the temporal

directions for the fermion fields, Ψ, which obey antiperi-
odic boundary conditions.
We exploit the aforementioned properties of the irre-

ducible representation of the fermions, 5, to write the
Wilson-Dirac operator in terms of the link variable for the

antisymmetric representation, UðasÞ
μ , and the bare hyper-

quark mass, m0, as

DðasÞΨjðxÞ≡ ð4=aþm0ÞΨjðxÞ

−
1

2a

X
μ

n
ð1 − γμÞUðasÞ

μ ðxÞΨjðxþ μ̂Þ

þ ð1þ γμÞUðasÞ†
μ ðx − μ̂ÞΨjðx − μ̂Þ

o
: ð7Þ

The relation to the fundamental link, Uμ, reads

UðasÞ
μ;ABðxÞ≡ Tr

h
eðasÞ†A UμðxÞeðasÞB UT

μðxÞ
i
; ð8Þ

where the multi-indexes, A ¼ ðabÞ and B ¼ ðcdÞ, denote
the ordered pairs with 1 ≤ aðcÞ < bðdÞ ≤ 4. The basis

matrices, eðasÞA , are antisymmetric, and obey the defining

relations Tr½ΩeðasÞA � ¼ 0 (they are Ω-traceless) and

�
eðasÞA¼ðabÞ

�
cd

¼ 1ffiffiffi
2

p �
δadδbc − δacδbd

�
; ð9Þ

except for A ¼ ð24Þ, which is given by

eðasÞA¼ð24Þ ¼

0
BBBBB@

0 0 1
2

0

0 0 0 − 1
2

− 1
2

0 0 0

0 1
2

0 0

1
CCCCCA
: ð10Þ

These five basis matrices satisfy also the orthonormaliza-

tion condition Tr½eðasÞTA eðasÞB � ¼ δAB.

B. Simulation details

Throughout this work, we employ standard bootstrap
methods in our statistical analyses. We perform numerical
calculations using a branch of the HiRep code [233], in
which some of us implemented the Spð2NÞ gauge groups
[143]. Dynamical gauge ensembles are generated with an
admixture of both the Hybrid Monte Carlo (HMC) and
Rational HMC (RHMC) [285,354] algorithms3; we intro-
duce two pseudofermions, one in the HMC (for two
flavor species) and the other (for the third species) in
the RHMC evolutions, and dial their masses to reproduce
the presence of three mass-degenerate Wilson-Dirac
fermions—we verified elsewhere that this choice yields

3Using HiRep commit IDs d3ab8d8 [355] and 9e66e56 [356].
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compatible result with using the RHMC algorithm for all
three species [148,152]. The determinant of the Dirac
operator is real and positive for fermions in the antisym-
metric representation (even with an odd number of them),
thus numerical simulations are free from sign problems.
The molecular dynamics (MD) evolution is implemented
using a second-order Omelyan integrator [357].
The main properties of all our ensembles are summarized

in Table I. Each ensemble consists of Ncfg thermalized
configurations. The lattice coupling, β, and the bare hyper-
quark mass, am0, as well as the lattice volume,Nt × N3

s , are

chosen in such a way that our numerical results do not
suffer from two typical artefacts due to the implementation
of dynamical fermions in lattice calculations: the presence
of first-order bulk transition and finite volume effects. We
will discuss them in details in the next section.
For each ensemble we present the expectation value, hPi,

of the average plaquette, P, defined as

P ≡ 1

6NtN3
s

X
n

X
μ<ν

	
1

4
ReTrPμνðnÞ



: ð11Þ

TABLE I. Ensembles of dynamical Spð4Þ lattice gauge theories coupled to Nas ¼ 3 Wilson-Dirac hyperquarks
transforming in the two-index antisymmetric representation of the gauge group. For each ensemble analyzed, we
report the lattice extent, Nt × N3

s , the bare coupling, β, the fermion mass, am0, the number of configurations, Ncfg,
and the expectation value of average plaquette, hPi. We also include a comment in the last column, discussed in the
body of the paper.

Ensemble Nt × N3
s β am0 Ncfg hPi Comment

ASB0M1 48 × 183 6.6 −1.075 100 0.580347(15) Heavy
ASB0M2 48 × 243 6.6 −1.08 140 0.582733(10) Heavy
ASB0M3 48 × 323 6.6 −1.085 130 0.5849929(62)

ASB1M1 48 × 183 6.65 −1.05 128 0.579896(12) Heavy
ASB1M2 48 × 183 6.65 −1.06 120 0.583984(12) Heavy
ASB1M3 48 × 183 6.65 −1.063 135 0.585150(14) Heavy
ASB1M4 48 × 243 6.65 −1.07 137 0.5877893(86)
ASB1M5 48 × 283 6.65 −1.075 215 0.5896176(54)
ASB1M6 48 × 323 6.65 −1.08 180 0.5914586(56)

ASB2M1 48 × 163 6.7 −1.02 200 0.578740(28) Heavy
ASB2M2 48 × 163 6.7 −1.03 110 0.582264(35) Heavy
ASB2M3 48 × 183 6.7 −1.04 100 0.585678(14) Heavy
ASB2M4 48 × 243 6.7 −1.045 120 0.5873337(84) Heavy
ASB2M5 48 × 243 6.7 −1.05 110 0.5889499(90) Heavy
ASB2M6 48 × 243 6.7 −1.055 180 0.5905740(86)
ASB2M7 54 × 283 6.7 −1.06 201 0.5921942(59)
ASB2M8 54 × 283 6.7 −1.063 150 0.5931513(75)
ASB2M9 54 × 323 6.7 −1.065 150 0.5937583(54)
ASB2M10 54 × 363 6.7 −1.067 195 0.5944477(41)
ASB2M11 54 × 363 6.7 −1.069 218 0.5950649(38)

ASB3M1 54 × 183 6.75 −1.03 180 0.590439(12) Heavy
ASB3M2 54 × 243 6.75 −1.041 120 0.5935363(84)
ASB3M3 54 × 243 6.75 −1.046 180 0.5949951(72)
ASB3M4 54 × 283 6.75 −1.051 196 0.5963914(66)
ASB3M5 54 × 323 6.75 −1.055 225 0.5975680(48)

ASB4M1 56 × 163 6.8 −1.01 171 0.592230(14) Heavy
ASB4M2 54 × 163 6.8 −1.02 165 0.594777(13) Heavy
ASB4M3 54 × 243 6.8 −1.03 180 0.5972763(73)
ASB4M4 56 × 243 6.8 −1.035 275 0.5985597(78)
ASB4M5 54 × 323 6.8 −1.04 170 0.5998238(50)
ASB4M6 54 × 323 6.8 −1.043 251 0.6006178(38)
ASB4M7 54 × 363 6.8 −1.046 219 0.6014000(34)

ASB5M1 54 × 243 6.9 −1.01 391 0.6045303(54)
ASB5M2 54 × 323 6.9 −1.017 216 0.6060103(43)

MESON SPECTROSCOPY IN THE Spð4Þ GAUGE THEORY … PHYS. REV. D 111, 074511 (2025)

074511-5



We also investigate the history of the average plaquette
along the trajectories to ensure that the system is thermal-
ized. We discard a few hundreds of initial trajectories, the
precise number of which, for each ensemble, is chosen by
monitoring the value of P. We compute the autocorrelation
length of the average plaquette, τPexp, over the thermalized
configurations, and separate them by δtraj trajectories, with
δtraj ≳ τPexp. The definition and the resulting values of τPexp,
as well as our choices of δtraj, can be found in Appendix B.
In the last column of Table I, we also anticipate some

qualitative assessment of the properties of the ensembles,
that will be discussed in more details later in the body of the
paper. We denote as “heavy” those ensembles in which the
bare mass is so large that an unexpected behavior (to be
discussed in Sec. V) shows up in the measured spectral
quantities; we exclude such ensembles from the continuum
extrapolation.

III. CHARACTERIZATION
OF THE LATTICE THEORY

We devote this section to the characterization of the
lattice theory of interest. This part of the numerical
investigation determines the range of lattice theory bare
parameters and volumes used in the generation of gauge
ensembles and physics measurements. We reveal the
existence of a first-order bulk phase transition separating
the range of lattice parameters that is connected to the
continuum theory from the lattice strong coupling regime.
We assess the size of finite-volume effects on spectroscopic
observables. We introduce the Wilson flow as a scale
setting procedure, and as a tool to compute the topological
properties of the configurations.

A. Phase space

The lattice spacing, a, serves as an ultraviolet (UV)
regulator. The continuum theory of interest is recovered in
the limit a → 0, corresponding to the quantum critical point
of the lattice theory. In the space of lattice parameters, the
continuum theory can be approached by extrapolating
physical measurements toward the limit β → ∞. In the
presence of fermions, there is also a second free parameter,
the bare mass, am0, which must be dialed toward the limit
of interest. In the Wilson-Dirac formulation of the fer-
mions, this parameter is affected by additive renormaliza-
tion, which further complicates extrapolations toward
physically interesting regions of parameter space. Yet,
the main concern is the existence of potential bulk phase
transitions, restricting the basin of attraction of the
Gaussian fixed point in lattice parameter space.
Preliminary studies have shown the existence of a first-

order bulk phase transition in the strong coupling regime
[152,157], highlighted by evidence of hysteresis in the

average plaquette, hPi. Phase transition points appear to lie
along a line in the plane of lattice parameters, ðam0; βÞ,
with the line ending at a critical point. For this publication,
we conducted an additional study, which refines earlier
findings by narrowing down the range of β values to
β ¼ 6.4, 6.45, 6.5, near the critical point, and increasing the
statistics. The results are shown in Fig. 1. The transition is
first order for β ¼ 6.4, but becomes a smooth crossover at
β ≃ 6.45. We therefore restrict our computations to the
weak coupling regime, defined by the constraint β > 6.45.

FIG. 1. Numerical measurement of the ensemble average of the
plaquette, hPi, as a function of the (degenerate) bare mass, am0,
of the fermions transforming as the antisymmetric representation
of the Spð4Þ gauge group, for three representative values of the
lattice coupling, β ¼ 6.4, 6.45, 6.5 (top to bottom panels,
respectively). Results are presented for isotropic lattices with
extent NtN3

s ¼ 84. Average plaquette values are measured using
thermalized configurations with both cold (unit) and hot (ran-
dom) starts; we denote the former by blue crosses and the latter by
red empty circles.
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B. Finite volume effects

The finiteness of the volume introduces a spurious
discretization of all physical spectra measured on the
lattice. The volume itself appears as an unphysical scale,
acting as an infrared (IR) regulator, and affects all spectral
quantities. For the purpose of assessing (and minimizing)
the size of these finite volume (FV) effects, in this brief
subsection we anticipate some preliminary results of our
analysis of spectral quantities. We identify general criteria
that we later apply to select the ensembles we retain in the
physical analysis in the body of the paper. Having done so,
FV effects will be ignored in subsequent sections.
In confining theories, spectral observables are expected

to receive exponentially suppressed corrections due to FV
effects, as long as the spatial length, L ¼ aNs, is larger than
the longest intrinsic length scale in the physical system, the
Compton wavelength of the lightest composite state. As
can be confirmed a posteriori, the pseudoscalar (ps) meson
is the lightest among the composite states considered in this
work. We hence focus attention on the mass of the ground
state in the ps channel, and study its dependence on the
spatial volume—we return to describing this measurement
in the next section.
In Table II, we present an example of the numerical

results we collected for the purpose of FVeffects study. We
fix the lattice parameters, β ¼ 6.8 and am0 ¼ −1.03, the
length of the time direction in the lattice, Nt ¼ 54. We also
provide some details about the characterization of the
ensembles. We consider six different volumes, with
Ns ¼ L=a ¼ 8, 12, 16, 18, 20, 24, and for each measure
the mass of the lightest ps state, amps. For completeness, in
the table we report the (bare) partially-conserved axial
current (PCAC) mass, amPCAC, which can be used as a
more physical assessment of the fermion mass, being free
of additive renormalization. Finally, we show the value of
the mass of the lightest vector meson, amv.
In the upper panel of Fig. 2, we show the measured mass

of the ps mesons, amps, as a function ofminf
ps L. We estimate

TABLE II. Ensembles generated for the study of finite volume effects. The lattice coupling and the bare mass are
fixed to β ¼ 6.8 and am0 ¼ −1.03, respectively, while Ncfg is the number of configurations, separated by δtraj ¼ 12

trajectories between adjacent configurations, and hPi is the average plaquette. The measured PCAC hyperquark and
meson masses are expressed in lattice units, while minf

ps denotes the pseudoscalar mass at infinite volume which is
estimated as the mass measured at the largest available lattice.

Nt × N3
s Ncfg hPi amPCAC amps amv minf

ps L

54 × 8 200 0.596973(37) 0.05742(64) 0.2506(36) 0.2605(47) 3.2413(60)
54 × 12 300 0.597306(14) 0.05837(24) 0.3186(28) 0.3403(49) 4.8619(91)
54 × 16 209 0.597278(13) 0.05926(18) 0.3860(25) 0.4374(48) 6.483(12)
54 × 18 200 0.5972729(99) 0.05975(14) 0.4012(16) 0.4577(30) 7.293(14)
54 × 20 200 0.5972551(91) 0.05987(12) 0.4052(10) 0.4565(30) 8.103(15)
54 × 24 180 0.5972763(73) 0.059877(85) 0.40516(75) 0.4639(19) 9.724(18)

FIG. 2. Pseudoscalar meson mass, amps (top panel), and vector
meson mass, amv (bottom panel), as a function of the infinite-
volume pseudoscalar mass, aminf

ps , multiplied by the spatial extent
Ns ¼ L=a. The lattice coupling and the bare hyperquark mass
used for the calculations are β ¼ 6.8 and m0 ¼ −1.03, respec-
tively. The pseudoscalar mass at infinite volume, minf

ps , is
estimated by taking the one measured in the largest available
lattice, with Nt × N3

s ¼ 54 × 243.
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minf
ps by assuming it coincides with the mass measured

at the largest available lattice, Nt × N3
s ¼ 54 × 243.4 As

expected, the ps mass quickly converges to its infinite-
volume asymptotic value as the volume increases. The
results for the two largest-volume lattices are indistinguish-
able, given present statistical uncertainties, indicating that
FVeffects can be ignored, whenminf

ps L≳ 7.5. We show also
amv as a function of minf

ps L, in the lower panel of Fig. 2. In
the case of the three largest lattice volumes, the size of FV
effects affecting amv is comparable to the statistical
uncertainty, which confirms that FV effects are negligible
for minf

ps L≳ 7.5.
This requirement is somewhat stronger than the analo-

gous bound on the lattice volume applied to typical
calculations in QCD, but significantly weaker than in
theories known to be in the conformal window such as
SUð2Þ with two adjoint fermions [358]. Assuming that our
theory is deep inside the confined and chirally broken
phase, like is the case in QCD, this effect might be due to
the fact that our dynamical ensembles probe a region of
parameter space with relatively large mass, as will be
discussed in Sec. V, where FV effects are enlarged by a
factor of m2

ps. The observed, negative contribution of FV
effects to amps is consistent with next-to-leading-order
chiral perturbation theory (NLO χPT) expectations, as the
sign of the coefficient of the contribution due to FV
corrections, at the one-loop level, solely depends on the
chiral symmetry breaking pattern [359]. We refer the reader
to Refs. [148,151,159] for further details and discussion of
FV effects in the Spð4Þ theory with dynamical fermions in
different representations.

C. Wilson flow and scale setting procedure

We adopt the gradient flow and its lattice implementa-
tion, the Wilson flow [286–288], to set the scale in our
lattice results and extrapolate them toward the continuum
limit. This scale-setting procedure relies only on theoretical
input, and amounts to the study of a diffusion process, in
five dimensions, along a fictitious time, t. Gradient flow
and Wilson flow can also be used to study the nonpertur-
bative evolution of renormalized couplings [360,361].
Furthermore, they provide a smoothening procedure, sup-
pressing short-distance fluctuations and optimizing the
computation of long-distance properties, such as the
topological charge, Q. We follow the ideas exposed in
Ref. [362] to further reduce discretization effects.
The diffusion equation defining the gradient flow is

d
dt

Vμðx; tÞ ¼ −Vμðx; tÞ
∂SðVμÞ
∂Vμðx; tÞ

; ð12Þ

and the flow variable, Vμ, at t ¼ 0 obeys the initial
condition Vμðx; 0Þ ¼ UμðxÞ. The flow equation can be
solved via numerical integration, with infinitesimal flow
time, δt. For the gauge action in Eq. (12), S, one can use the
Wilson plaquette action, the first term of Eq. (5), which
defines the Wilson flow. (One can replace, in S, the
plaquette Pμν, with a different object, so that the results
differ only by terms that vanish in the continuum, a → 0,
limit.) As the fictitious time, t, flows, the gauge fields
diffuse and high momentum fluctuations (discretization
effects) are suppressed, while long-distance physics is
preserved.
The gradient (Wilson) flow acts as Gaussian smoothen-

ing operator on the fields (configurations), removing short-
distance singularities. The diffusion radius associated with
this smoothening process has a characteristic length scale
∼1=

ffiffiffiffi
8t

p
[286]. For t > 0, furthermore, it has been shown

that correlation functions are finite to all orders in pertur-
bation theory, in the sense described in Ref. [287]. Hence,
one can fix a physical scale by assigning a reference value
to one, conveniently chosen, physical observable.
Following the proposal in Ref. [286], one can consider
the energy density

EðtÞ≡ 1

2
TrGμνðtÞGμνðtÞ; ð13Þ

where Gμν is the field strength tensor associated with Vμ.
As the expectation value of EðtÞ has dimension of a mass to
the fourth power, while t scales as the inverse of a mass
squared, one defines the following dimensionless quan-
tities, defined for any t > 0 [286,362]:

EðtÞ≡ t2hEðtÞi; ð14Þ

and its (logarithmic) derivative,

WðtÞ≡ t
d
dt
EðtÞ: ð15Þ

One then defines two alternative scales, t0 and w0, by
imposing the following conditions, respectively:

EðtÞjt¼t0 ¼ E0; or WðtÞjt¼w2
0
¼ W0: ð16Þ

The references values, E0 orW0, are chosen empirically,
by aiming at minimizing systematic effects, such as lattice
spacing and finite volume artefacts. To assess the size of
discretization effects, we adopt two distinct, alternative
definitions for the field-strength tensor, Gμν, obtained
with either the plaquette in Eq. (6), Pμν, or the clover-
leaf, Cμν [297,363],

4We remark that the commonly used exponential fit in the mass
of the pseudoscalar to determine the latter in the infinite volume
limit does not appear to work in the regime of our calculation.
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CμνðxÞ≡ 1

8

�
UμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ

þ UνðxÞU†
μðxþ ν̂ − μ̂ÞU†

νðx − μ̂ÞUμðx − μ̂Þ
þ U†

μðx − μ̂ÞU†
νðx − ν̂ − μ̂ÞUμðx − ν̂ − μ̂Þ

×Uνðx − ν̂Þ þ U†
νðx − ν̂ÞUμðx − ν̂Þ

×Uνðx − ν̂þ μ̂ÞU†
μðxÞ − H:c:

�
; ð17Þ

built out of the discretized lattice link variables by replacing
UμðxÞ with Vμðx; tÞ, at t > 0. With our ensembles, we
could demonstrate the fact that, for EðtÞ, the plaquette and
clover definitions are not in complete agreement, yet show
little discernible difference if we choose E0 ≳ 0.25. As
illustrated in the example in Fig. 3, though, we find that the
two definitions yield statistically consistent results, if one
instead uses WðtÞ, and W0 ≳ 0.1.
In view of these considerations, in our numerical study

we use w0 as the gradient flow scale, measured with the
choice W0 ¼ 0.28125, applied to the clover-leaf definition
of the energy density. This numerical choice for W0 is
derived by first adopting W0 ¼ 0.3 for the SUð3Þ Yang-
Mills theory, and then applying plausible assumptions to
the large-Nc scaling of the relevant observables, to compare
to Spð4Þ [147].5 For this choice of W0, we find that finite
volume effects are at most Oð5%Þ, as

ffiffiffiffiffiffi
8t0

p
=L≲ 0.35,

according to the estimates in Ref. [360], except for a few
heavy ensembles and for β ¼ 6.9.
Another potential source of sizable systematic errors,

particularly in ensembles with large β and small am0, is the
presence of autocorrelation in the measurements of the
Wilson flow, which can be quantified by the autocorrelation
time τw0

exp of the action density, EðtÞ, evaluated at t ¼ w2
0. We

refer the reader to Appendix B for the details of the
determination of τw0

exp and to Table XI for the result. We
find that τw0

exp is substantially larger than δtraj in any given
ensemble. We therefore enlarge the separation between
adjacent configurations to δGFtraj ≳ τw0

exp in the measurements
of the gradient flow scale. We report in Table III the
measured values of w0=a, obtained from NGF

traj configura-
tions, separated by δGFtraj trajectories. In some cases, we are
left with only a handful of independent configurations,
hence we alert the reader to use caution in assessing the size
of the statistical errors. Similar considerations will reappear
later in the paper, when discussing the topological charge.
We rewrite all dimensionful quantities in terms of the

Wilson flow scale, w0. We denote the resulting quantities as

m̂ ¼ mw0 and f̂ ¼ fw0, for masses and decay constants,
respectively. As shown in Fig. 4, we find that the values of
w0=a grow as β grows, over the range β∈ ½6.6; 6.9�
available for this work. We also find evidence of a
significant mass dependence in w0=a, which is different
to lattice QCD [362], but has been observed in lattice
calculations for other gauge theories with dynamical
fermions [145,193,276]. Following Refs. [145,193],
throughout this work we adopt a mass-dependent scale-
setting scheme, and rescale all dimensional quantities using
the value of w0=a as measured in the individual ensembles.
The implications for our spectral measurementss are dis-
cussed in Sec. VA and Appendix C.

D. Topology

The approach to the continuum limit of lattice calcu-
lations is affected by the critical slowing down of the
local update algorithms, such as the HMC and RHMC used
in this work. The topological charge, Q, is particularly
sensitive to this problem. Its autocorrelation time rapidly
grows as the lattice spacing decreases, and eventually
becomes one of the longest ones in the system, as shown
in Ref. [364] for SUðNcÞ and Ref. [150] for SpðNc ¼ 2NÞ
gauge theories. If one keeps reducing the lattice spacing
naively, asymptotically the algorithm gets trapped into one
topological sector, rather than sampling the space, and
violates ergodicity conditions.
This phenomenon of topological freezing may introduce

sizable systematic effects in physical observables. For
instance, 2-point correlation functions of flavor-singlet

FIG. 3. The derivative of the expectation value of the energy
density, WðtÞ≡ tdht2Ei=dt, defined in Eq. (15), and built from
the field strength tensor, Gμν, obtained either with the plaquette
(blue circle) or the alternative, clover-leaf (orange square) defini-
tions, as a function of flow time, t, in the ensemble ASB4M5.
The black dashed line denotes our choice of reference value,
W0 ¼ 0.28125. Qualitatively equivalent plots can be obtained
with other available ensembles.

5The renormalized coupling at the scale μ ¼ 1=
ffiffiffiffi
8t

p
is given by

αðμÞ ¼ kαEðtÞ at the leading order in the perturbative expansion,
with k−1α ¼ 3NcC2ðGÞ=16π, and C2ðGÞ the quadratic Casimir
operator of the gauge group, G. Combined with the numerical
value of kα ¼ 16π=15 for the Spð4Þ theory, our choice of W0 ¼
0.28125 yields that αðμÞ ≃ 0.94, suggesting that we are indeed
testing the theory at the scale of hadronic physics.
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pseudoscalar mesons are expected to receive corrections of
OðQ2=V2Þ, with V the lattice volume, at large Euclidean
time [365]. Since our primary interest is in the spectrum of
flavored mesons, the problem might be less severe. Never-
theless, we do monitor the topological charge of our
Monte Carlo trajectories, to assess whether any physical
measurements are performed with ensembles that are
affected by topological freezing.

Because the gradient flow is a diffusion process which
essentially smoothens out the quantum fields and thus
suppresses UV fluctuations, we take advantage of it to
study the topological charge on the lattice, QLðtÞ≡P

x qLðx; tÞ, which is otherwise difficult to compute [286].
We define the lattice topological charge density, qLðx; tÞ, in
terms of the clover-leaf operator, Cμνðx; tÞ, obtained from
the flowed gauge fields, Vμðx; tÞ

qLðx; tÞ≡ 1

32π2
ϵμνρσTrCμνðx; tÞCρσðx; tÞ: ð18Þ

As the fields, Vμ, flow along the flow time, t, the values
assumed by QLðtÞ approach quasi-integer numbers, and
their distribution displays a clear separation into different
topological sectors. For large enough t, the measurement of
QLðtÞ becomes independent of t. In practice, we evaluate it
at t ¼ tQ ≡ L2=32. For notational convenience, we drop
the subscript L fromQL, for the rest of this section, being it
understood that our topology measurements are always
performed on the lattice.
In Fig. 5, we show examples of the history of the

topological charge, Q, along the (R)HMC trajectory, for
four representative ensembles. In the figure, going from left
to right we reduce the fermion mass, while holding fixed β
value, and from top to bottom we increase the value of β.
We also perform a Gaussian fit of the histogram distribution
of Q, and display the results of the maximum likelihood
analysis, by using the fit function

FIG. 4. The Wilson flow scale, w0=a, measured in all the
ensembles considered in this work, as a function of m̂PCAC ≡
mPCACw0, The clover-leaf definition has been adopted in the
energy density, while the reference valueW0 ¼ 0.28125 has been
used in the scale-setting exercise. The value of β is indicated by
the color and marker, as shown in the legend.

TABLE III. Measurement of the gradient flow scale, w0=a, and
the measurement of the topological charge, Q, with Gaussian fit
of the resulting distributions, in the ensembles used in this work.
For each ensemble, the central value, Q0, and standard deviation,
σQ, are tabulated. Regarding the measurement of w0=a, the
number of uncorrelated configurations, NGF

traj, is also presented. In
the case of ASB5M1, the gradient flow scale is not available,
because for some of the configurations we cannot reach the
reference scale W0 in the measurement of WðtÞ.

Ensemble NGF
traj w0=a Q0 σQ

ASB0M1 32 1.855(12) −0.37ð48Þ 3.61(42)
ASB0M2 46 2.1435(70) 1.84(46) 4.14(38)
ASB0M3 18 2.575(12) −3.37ð46Þ 4.04(39)

ASB1M1 42 1.6260(80) −1.31ð60Þ 4.69(47)
ASB1M2 23 1.982(17) −1.21ð45Þ 3.71(34)
ASB1M3 26 2.148(19) −0.67ð34Þ 3.19(29)
ASB1M4 33 2.600(19) 0.10(26) 2.40(23)
ASB1M5 17 3.063(29) 0.13(16) 2.00(11)
ASB1M6 8 3.654(56) 0.03(11) 1.386(86)

ASB2M1 66 1.4303(39) 0.06(38) 4.51(32)
ASB2M2 36 1.6262(70) 0.20(38) 3.17(32)
ASB2M3 16 1.925(21) 0.28(39) 2.91(33)
ASB2M4 39 2.1132(86) −1.31ð39Þ 3.34(32)
ASB2M5 27 2.342(17) 0.61(48) 3.93(39)
ASB2M6 14 2.630(36) 0.37(25) 2.86(19)
ASB2M7 9 3.125(68) 1.75(32) 2.33(24)
ASB2M8 18 3.405(41) 0.42(23) 2.22(17)
ASB2M9 12 3.614(56) −0.814ð89Þ 1.001(70)
ASB2M10 21 4.183(41) 0.426(77) 0.963(65)
ASB2M11 10 4.330(56) 1.462(76) 0.714(59)

ASB3M1 25 2.206(16) −0.79ð20Þ 2.34(17)
ASB3M2 19 2.634(24) 0.61(31) 2.74(26)
ASB3M3 22 3.059(37) 1.82(11) 1.302(87)
ASB3M4 9 3.628(51) 0.21(23) 2.08(16)
ASB3M5 12 4.079(55) −2.46ð16Þ 1.49(11)

ASB4M1 33 2.101(14) −0.429ð86Þ 1.839(62)
ASB4M2 23 2.437(36) −1.38ð15Þ 1.60(12)
ASB4M3 19 2.958(28) −1.08ð11Þ 1.296(86)
ASB4M4 21 3.365(36) 0.814(80) 1.075(47)
ASB4M5 28 3.828(22) −1.30ð13Þ 1.310(81)
ASB4M6 35 4.378(38) −0.025ð54Þ 0.697(39)
ASB4M7 13 4.692(52) 3.506(55) 0.591(46)

ASB5M1 � � � � � � 0.053(60) 0.781(33)
ASB5M2 35 4.304(27) −0.239ð43Þ 0.407(30)
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nðQÞ≡ An exp

�
−
ðQ −Q0Þ2

2σ2Q

�
; ð19Þ

in which Q0 and σQ are the mean and the standard
deviation, respectively. Our results for Q0 and σQ are
summarized in Table III. Except for a few light ensembles
at larger β values, we find that the distribution of topo-
logical charge in the ensemble reproduces the expected
Gaussian around zero.
The examples in Fig. 5 show long autocorrelation in the

history of the topological charge along the trajectories. We
estimate the autocorrelation time, τQexp, from exponential fit
to the autocorrelation function for Q. In Appendix B, we
present the results for τQexp in Table XI. Because in each
ensemble the fermion mass is different, one must use
caution in making comparisons between different lattice
couplings, yet the general trend is that the autocorrelation
time, τQexp, increases while going toward finer lattices.
Furthermore, τQexp rapidly grows, for fixed β, as the fermion

mass decreases. In the cases of light and fine ensembles, we
find that the topological charge is almost frozen and the
estimate of τQexp is comparable in size to that of the available
ensemble. The mass dependence of our results agrees with
what we found in the calculation of the gradient flow scale,
w0=a, as well as its autocorrelation time, τw0

exp: τ
Q
exp and τw0

exp

rapidly grow as the lattice becomes finer and/or the
fermions are lighter.

IV. MESON SPECTROSCOPY

This section is devoted to defining the observables
relevant to our study. We list the meson operators in the
theory, the correlation functions we measure, and we
describe the processes by which we extract the masses
and decay constants of the composite states of interest.

A. Interpolating operators

In Table IV, we list the operators considered in this work.
They are gauge invariant hyperquark bilinears, in the form

FIG. 5. Examples of the history of the topological charge,Q, along the (R)HMC trajectories. The lattice parameters, ðβ; am0Þ, used for
the figures are ð6.7;−1.045Þ (top-left), ð6.7;−1.067Þ (top-right), ð6.8;−1.035Þ (bottom-left), and ð6.8;−1.046Þ (bottom-right). For each
figure we also present an histogram of the distribution of Q, superimposed onto a Gaussian fit of the results.
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OMðxÞ≡ Ψ̄iðxÞΓMΨjðxÞ, and we refer to them as
mesons, borrowing terminology from QCD. The index,
M ¼ ps; s; v; t; av; at, denotes pseudoscalar, scalar, vector,
tensor, axial-vector, and axial-tensor mesons, respectively.
We restrict attention to combinations with flavor indexes
i ≠ j, and for each of them we specify the corresponding
irreducible representations of the global (flavor) symmetry
group, SOð6Þ. This choice introduces a simplification, as
we are only required to compute connected diagrams. For
completeness, the table reports also the spin and parity
quantum numbers, JP, associated to each operator. (Charge
conjugation is trivial.)
We anticipate here an observation that is going to be

useful later in the paper. The vector (v) and tensor (t)
operators carry the same SOð6Þ quantum numbers, and thus
interpolate the same meson states in the continuum theory.
As will be demonstrated by our numerical results, even on
the discretized lattice the masses of these two mesons are
statistically compatible. We exploit this property with a
GEVP analysis, that allows us to extract the first excited
state in the vector meson channel.

B. Two-point correlation functions

We write the zero-momentum correlation functions
involving source meson operators, OM0 , located at
x≡ ðt; x⃗Þ, and sink, OM, at y≡ ðt0; y⃗Þ, as follows

CM;M0 ðt − t0Þ ¼
X
x⃗;y⃗

hOMðxÞO†
M0 ðyÞi: ð20Þ

We omit flavor indexes, i; j ¼ 1;…; 3, for which we only
consider the nondiagonal terms with i ≠ j. After applying
the appropriate Wick contractions, we write

CM;M0 ðt− t0Þ¼−
X
x⃗;y⃗

Tr


γ5ΓMSiðx;yÞΓ̄M0γ5S†jðx;yÞ

�
; ð21Þ

where Γ̄≡ γ0Γ†γ0 and the trace is taken over color and
spinor indices. The hyperquark propagator, Sjðx; yÞ, carry-
ing flavor, j, is defined by

SABj;αβðx; yÞ ¼ hΨA
jαðxÞΨ̄B

jβðyÞi; ð22Þ

where A, B and α, β are (ordered) pairs of color and spinor
indexes, respectively. Without loss of generality, we set the
initial time of the source operator to be zero, t0 ¼ 0.
The spectral decomposition of two-point functions

in finite (Euclidean) space-time volume, Ṽ, is discrete.
Finite energy eigenvalues, En, are labeled by an integer,
n ¼ 0; 1; 2;…. At sufficiently large Euclidean times, the
two-point function is dominated by the contribution of the
ground state, with the lowest energy, E0, while that of
excited states has exponentially suppressed. For M ¼ M0,
this state is the lightest meson, jMi, with mass mM,
interpolated by OM. The correlation function approaches
the functional form

CM;MðtÞ →
jh0jOMjMij2

2mM

�
e−mMt þ e−mMðT−tÞ�: ð23Þ

The second term arises from the contribution of backward
propagation, with finite temporal extent, T. We then extract
the meson masses and the matrix elements by fitting the
lattice correlation function to Eq. (23), having restricted the
fit range to large Euclidean time.
The matrix elements of vector, (v), and axial-vector, (av),

operators (currents), bracketed between the relevant one-
meson state and the vacuum, are related to the decay
constants of the corresponding mesons, fv and fav,
respectively. For vanishing three-momentum, p⃗ ¼ 0, they
are parametrized as follows:

h0jOμ
vjvi ¼

ffiffiffi
2

p
fvmvϵ

μ; ð24Þ

h0jOμ
avjavi ¼

ffiffiffi
2

p
favmavϵ

μ; ð25Þ

where ϵμ is the polarization four-vector obeying the
defining relations pμϵμ ¼ 0 and ϵ�μϵμ ¼ 1.
The wave-functions of the pseudoscalar mesons overlap

with the axial-vector current. We adopt the following
definition for the pseudoscalar decay constant, fps

6

h0jO0
avjpsi ¼

ffiffiffi
2

p
fpsmps: ð26Þ

TABLE IV. Interpolating operators, OM, for mesons with spin
J ¼ 0, 1, and parity P ¼ �1, built of Dirac fermions in the
antisymmetric representation, Ψiab, of Spð4Þ. We show explicitly
the flavor indices i ≠ j ¼ 1, 2, 3, while color and spinor indices
are implicit and summed over. We also show the spin and parity
quantum numbers, JP, the corresponding QCDmeson sourced by
the analogous operator, and the irreducible representation of the
unbroken global SOð6Þ spanned by the meson, ignoring the
SOð6Þ-singlets.
Label Interpolating Meson

JP SOð6Þ
operator in

M OM QCD

ps Ψiγ5Ψj π 0− 200

s ΨiΨj a0 0þ 200

v ΨiγμΨj ρ 1− 15

t Ψiγ0γμΨj ρ 1− 15

av Ψiγ5γμΨj a1 1þ 200

at Ψiγ5γ0γμΨj b1 1þ 15

6Analogous conventions and normalizations yield, in QCD,
the pion decay constant, fπ ≃ 93 MeV, in lieu of fps.
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To determine fps, we calculate Cps;psðtÞ, as well as the
following correlation function:

Cav;psðtÞ →
fpsh0jOpsjpsi�ffiffiffi

2
p ðe−mpst − e−mpsðT−tÞÞ: ð27Þ

By combining these correlation functions, Cps;ps and Cav;ps,
and exploiting the PCAC relation, we also define the PCAC
mass, amPCAC (see Appendix D), which provides a useful
definition of the hyperquark mass, in place of the (additively
renormalized) Wilson bare mass, am0.
The decay constants, extracted from lattice matrix

elements, must be renormalized and matched to their
continuum counterparts. We adopt a renormalization pro-
cedure based on the analytical evaluation of 1-loop inte-
grals in lattice perturbation theory with Wilson fermions, in
the MS scheme [295]. The conversion factors from lattice
results, flattM , to continuum ones, fconM , read as follows:

fconpsðavÞ ¼
�
1þ CRðΔΣ1

þ Δγμγ5Þ
g̃2

16π2

�
flattpsðavÞ; ð28Þ

fconv ¼
�
1þ CRðΔΣ1

þ ΔγμÞ
g̃2

16π2

�
flattv : ð29Þ

In these relations, the eigenvalue of the quadratic Casimir
operator for antisymmetric fermions in the Spð4Þ gauge
theory is CR¼as ¼ 2. The first numerical factor, ΔΣ1

¼
−12.82, arises from wave function renormalization,
while Δγμ ¼ −7.75 and Δγμγ5 ¼ −3.0 descend from vertex
renormalization. Perturbative matching can further be
improved, as discussed in Ref. [296], by using as definition
of the effective coupling the combination g̃2 ≡ g2=hPi,
instead of the bare gauge coupling, where hPi is the
average plaquette. This approach is effectively equivalent
to a mean-field approximation, in which the contributions
of tadpole diagrams, which are absent in the continuum
theory, are subtracted from the gauge links.
Our numerical calculation of 2-point correlation func-

tions adopts two different and complementary strategies in
the construction of source and sink operators. Both pro-
cedures are well established in the lattice QCD literature.
We have developed and tested these implementations in the
present work.
We first consider Z2 ⊗ Z2 stochastic wall sources, with

the one-end trick—see, e.g., Ref. [289]—implemented in
the HiRep code. In comparison with using naive point
sources (delta functions), this choice allows to improve
the signal, and determine masses and decay constants with
higher precision. We set the number of hits to 3, for all
meson correlation functions and for all the ensembles listed
in Table I. We verified that this strategy leads to a reduction
of statistical noise and the appearance of a cleaner plateau
in the effective mass plots at large Euclidean time,

compared to the point source, but for the same computa-
tional cost.
Having completed these measurements, we select a

subset of our ensembles that are useful for our first extra-
polation of the meson spectroscopy observables toward the
continuum and massless limits. We repeat the measurement
of meson masses in these ensembles, by applying a
more sophisticated combination of two noise reduction
techniques, referred to as APE smearing [293,294]
and Wuppertal smearing [290–292], respectively. Both
smearing procedures introduce non-nearest-neighbor inter-
actions, and some degree of nonlocality in the measure-
ment process, as we shall explain.
APE smearing is a procedure that smoothens out the UV

fluctuations of the gauge links, by combining staples and
gauge link iteratively [293]. The smearing procedure is
controlled by two parameters, the smearing step-size, αAPE,
and the number of iterations, NAPE, the choices of which
have to be optimized.
Gauge covariant Wuppertal smearing, by contrast, acts

on the hyperquark fields and composite operators, by
replacing pointlike sources and sinks with extended
configurations, defined through an iterative diffusion
process [290]. Doing so increases the overlap between
smeared interpolating operators and meson eigenstates of
interest, by suppressing contributions to correlation func-
tions coming from other states. This procedure requires
optimizing (on a channel-by-channel basis, in principle), its
step-size, ϵW , and the number of iterations, Nsource and
Nsink, with the aim of maximizing the overlaps, without
introducing unwanted systematic errors.
A typical consequence of smearing is that the plateau in

the effective mass plots start at earlier Euclidean time. This
is particularly useful in measuring the properties of com-
paratively heavy states, for which one loses signal into
noise, at large time. The increase in fitting range also yields
a reduction of statistical uncertainties.
A drawback of the adoption of smeared operators is that

their nonlocal nature alters the correlation functions in
respect to those built of local operators in Eq. (23). One
can still extract the decay constants in Eqs. (24)–(26) by
performing a simultaneous fit to smeared-smeared and
smeared-point correlation functions, but one expects little
to no numerical gain, in terms of noise reduction, in doing
so. Hence, in our measurement of meson decay constants,
we revert to Z2 ⊗ Z2 stochastic wall sources.
Both APE and Wuppertal smearing have been recently

implemented in the HiRep code,7 extensively tested and used
for the measurements of spin-1=2 chimera baryons in
quenched Spð4Þ gauge theories [153,356]. Their use in
the study of connected diagram contributions to flavor-
singlet meson correlation functions in the Spð4Þ theory

7Specifically, commit ID 1b204b6 [366].
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coupled to Nf ¼ 2 fundamental and Nas ¼ 3 antisymmetric
fermions dramatically improves noise control, and makes it
possible to perform measurements in this sector of the
theory [156]. Application to the same theory further
provides a supporting tool for the spectral density approach
to lattice spectroscopy [155].
Finally, as anticipated in Sec. IVA, the vector, v, and

tensor, t, operators interpolate the same physical states. We
exploit this observation to optimize the extraction of the
first excited state, by formulating (and solving) a GEVP,
taking the form

CðtÞvnðt; t1Þ ¼ λnðt; t1ÞCðt1Þvnðt; t1Þ; ð30Þ

where the 2 × 2 matrix-valued correlation function, CðtÞ, is
defined by

CðtÞ≡
�
Cv;vðtÞ Cv;tðtÞ
Ct;vðtÞ Ct;tðtÞ

�
: ð31Þ

For fixed t1 ¼ 1, and choosing t > t1, the resulting eigen-
values, λ0ðt; t1Þ and λ1ðt; t1Þ, exhibit single-exponential
decays at large Euclidean time, with the decay rates
measured by the masses of ground state and first excited
state of the system, respectively.

V. NUMERICAL RESULTS

In this section we report our measurements of masses
and decay constants, for the flavored mesons sourced by
the operators in Table IV. A first, preliminary analysis of the
fermion mass dependence of the relevant observables
allows us to identify two distinct regions of parameter
space explored by our ensembles, at lower and higher
masses, respectively, that exhibit different dynamical prop-
erties. We then restrict our attention to ensembles in the
lower-mass region, within which the mass dependence of
the observables is compatible with expectations from
Wilson chiral perturbation theory, truncated at the next-
to-leading order (NLO). In the resulting, restricted set of
ensembles, we refine our measurements, fix the scale with
the gradient flow method discussed in Sec. III C, and
perform the first continuum and massless extrapolations of
the spectroscopic observables in the theory. We critically
discuss our numerical results, by comparing them to the
quenched studies reported in Ref. [145].
We deploy a GEVP analysis to extract the mass of

the ground and first excited states of the vector mesons,
the flavored spin-1 composite states with negative parity.
We also measure the ratio mv=fps, and compare our
results to other related theories. If one takes at face value
the phenomenological Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation, m2

v ¼ 2g2v ps psf2ps [367,368],
these measurements provide a first, naive estimate of the

effective coupling, gv ps ps, associated with the decay of
vector into pairs of pseudoscalar mesons.

A. Masses and decay constants

We start by discussing measurements extracted from
correlation functions defined with Z2 ⊗ Z2 stochastic wall
sources. The complete spectroscopic results are reported in
Appendix A, for all the ensembles listed in Table I. In this
section, we restrict our discussion to the ensembles with
lattice coupling β ¼ 6.7, for convenience. Similar consid-
erations to those exposed in the following apply to other
ensembles as well.
In a typical non-Abelian gauge theory, in which confine-

ment appears at long distances, and is accompanied by
the formation of a bilinear fermion condensate, with the
associated spontaneous breaking of approximate global
symmetries, one expects chiral perturbation theory (χPT) to
apply. The pseudoscalar meson is the lightest particle in the
spectrum, and its mass is expected to approach zero with
the functional form mps ∝

ffiffiffiffiffiffimf
p , where mf stands for a

measurement of the fermion mass.
By contrast, in a theory with IR-conformal dynamics, in

which the massless theory does not confine, but rather
flows into a new, nontrivial fixed point of the renormaliza-
tion group flow at long distances, all the meson masses
are expected to approach zero with the same exponent,
mM ∝ ðmfÞ1=ð1þγ�Þ, with γ� an anomalous dimension,
measured at the IR fixed point [369].
We start by testing the hypothesis of IR conformality. We

focus on the pseudoscalar and vector mesons, as the
measurements of their mass and decay constant are the
most precise available to us. In Fig. 6, we plot the ratio
between the pseudoscalar and vector meson masses,

FIG. 6. The ratio between masses of ground-state pseudoscalar
and vector mesons, mps=mv, extracted using Z2 ⊗ Z2 stochastic
wall sources in the definition of the correlation functions. The
lattice coupling, β ¼ 6.7, is held fixed, while the bare mass of the
hyperquarks, am0, varies, and so does the PCAC hyperquark
mass, amPCAC.
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mps=mv. In the available ensembles, the smallest value of
this ratio is approximately mps=mv ∼ 0.8, for the lightest
ensemble, which is quite far away from the opening of the
kinematical threshold for vector decay to two pseudo-
scalars. In a IR-conformal theory this ratio should be
independent of the fermion mass; conversely we find clear
evidence of a variation of this ratio, as the hyperquark mass
(represented here by amPCAC) changes. The ratio decreases
as the hyperquark mass is reduced, and furthermore, the
slope of the resulting curve becomes steeper at lower
masses.
We show the numerical results for the ratio of the mass

and decay constant of the pseudoscalar meson, mps=fps, in
Fig. 7. We find evidence of two distinct dynamical regimes.
For amPCAC ≳ 0.07, our measurements form a plateau at
an approximately constant value, mps=fps ∼ 6.3. However,
this ratio sharply drops for amPCAC ≲ 0.07. Combined with
our evidence of significant mass dependence for the ratio
mps=mv, the results for the lighter ensembles contradict the
hyperscaling hypothesis, and we infer that the theory in the
limit of vanishing hyperquark mass is not IR conformal.
We have evidence in our numerical results suggesting

that in the limit of massless hyperquarks of the theory,
confinement is taking place, with spontaneous breaking
of the (approximate) non-Abelian global symmetry.8 The
resulting low-energy spectrum contains light pseudoscalar
meson states identified as the pseudo Nambu-Goldstone
bosons. Yet, despite the wide range of hyperquark masses

we explored, our results suggest that we expect to see
significant deviations from the predictions of leading order
(LO) chiral perturbation theory, as none of the ensembles
are close enough to the massless limit. We devote the next
paragraphs to presenting this evidence and discussing its
implications.
In Fig. 8, we present the masses of flavored mesons as a

function both of the bare hyperquark mass, am0, and of the
alternative PCAC mass. As expected, over the range of
masses considered, the lightest state in the spectrum is the
pseudoscalar meson, followed by the vector meson. The
tensor mesons are almost degenerate with the vectors, and
thus we omit them from the plots, for simplicity. The scalar,
axial-vector and axial-tensor flavored mesons are heavier,
and the correlation functions from which they are extracted
are affected by significant amounts of statistical noise,
which is reflected in larger errors in the measurements. The
overall trend displayed in Fig. 8 is that the masses grow
approximately linearly with the hyperquark mass for
amPCAC ≲ 0.07, but show deviations from such trend for
larger fermion masses, amPCAC ≳ 0.07.
The decay constants for the pseudoscalar, vector and

axial-vector mesons are displayed in Fig. 9. The pseudo-
scalar decay constant, fps, is consistently smaller than the
vector one, fv. The measurements for the axial-vector decay
constants are affected by larger uncertainties, yet their value
is close to that of the vectors, when amPCAC ≲ 0.07. All
three decay constants grow approximately linearly with the
hyperquark mass, and seem to approach a nonvanishing
value if naively extrapolated toward the massless limit. This
observation further disfavors the hypothesis that the con-
tinuum, massless theory is IR-conformal, and is consistent
with the expectations of a confining theory with sponta-
neous breaking of approximate global symmetries.
In Fig. 10 we combine our measurements of the masses

of ps, v, s, av, and at mesons, and present them in units of
the decay constant of the ps meson, fps. We display the
results as a function of amPCAC. The figure highlights the
contrast between the scaling properties of the ps meson,
and all the other mesons. This observation further enforces
the conclusion that the massless extrapolation of this theory
is chirally broken, not IR conformal, and the ps mesons are
indeed (light) Goldstone bosons. This therefore justifies the
adoption of an analysis strategy that assumes confinement
and spontaneous symmetry breaking of (approximate)
global symmetry.
In Fig. 11, we show a comparison between measure-

ments in the Spð4Þ theory with Nas ¼ 3 antisymmetric
fermions (for fixed β ¼ 6.7), and those reported in
Ref. [144], for the Spð4Þ theory with Nf ¼ 2 fundamental
fermions (for fixed β ¼ 7.2). We display the mass squared
of the vector mesons, in the two theories, denoted by m2

v

and m2
V, as a function of the mass squared of the pseudo-

scalar mesons, m2
ps and m2

PS, respectively. The masses are
expressed in units of the gradient flow scale, w0. In the

FIG. 7. The ratio between mass and decay constant of ground-
state pseudoscalar mesons, mps=fps, extracted using Z2 ⊗ Z2

stochastic wall sources in the definition of the correlation
functions. The lattice coupling, β ¼ 6.7, is held fixed, while
the bare mass of the hyperquarks, am0, varies, and so does the
PCAC hyperquark mass, amPCAC.

8As we have clear evidence of symmetry breaking, even in
naive extrapolations to the massless limit, we do not discuss
symmetric mass generation—see Ref. [370] and references
therein.
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Nf ¼ 2 theory, m̂2
V clearly displays a linear dependence on

m̂2
PS, over a wide range of different values for the masses. In

the case of the Nas ¼ 3 theory, on the other hand, the figure
shows that both the pseudoscalar and vector mesons are
heavier, in respect to the Nf ¼ 2 case, and hence the
extrapolation toward the massless limit is less reliable. We
note that, when we express the mass measurements in
lattice units, both datasets span the similar mass ranges,
0.04≲ ðamps;PSÞ2 ≲ 0.7, and can be shown to be well
described by polynomial functions with an appropriate
massless limit, as discussed with our preliminary results in
Ref. [160]. However, care should be taken in performing
the massless extrapolation, setting the scale with w0 high-
lights that the physical scale of the masses is far away from
the massless limit.

Furthermore, only for the lightest ensembles, those with
amPCAC ≲ 0.07, does one see evidence of an increase of m̂2

v

with m̂2
ps. Conversely, an unexpected qualitative behavior

appears for the measurements in heavier ensembles, those
with amPCAC ≳ 0.07, which cluster together in a small
region of parameter space. We conservatively discard these
heaviest ensembles from the rest of the subsequent analy-
sis, attributing their behavior to artefacts of the lattice
theory, when used far from the continuum and massless
limits.
The mass dependence of the Wilson flow governs the

qualitative changes observed in Fig. 11. Ultimately, this
phenomenon descends from the dynamics of the theory. We
have presented convincing evidence supporting an inter-
pretation of long distance data in terms of confinement with

FIG. 9. Decay constants of flavored mesons, afM, extracted using Z2 ⊗ Z2 stochastic wall sources in the definition of the correlation
functions. We display only results obtained in ensembles with lattice coupling β ¼ 6.7, and vary the Wilson-Dirac mass of the
hyperquarks, am0 (left panel), or, equivalently, the PCAC hyperquark mass, amPCAC (right panel). The color and marker in the legend
denote measurements with M ¼ ps; v; av for pseudoscalar, vector, axial-vector mesons.

FIG. 8. Masses of flavored mesons, amM, extracted using Z2 ⊗ Z2 stochastic wall sources in defining the correlation functions, in
ensembles with fixed lattice coupling, β ¼ 6.7, and varying Wilson-Dirac mass of the hyperquarks, am0 (left panel), or, equivalently, the
PCAC hyperquark mass, amPCAC (right panel). The color and marker in the legend denote measurements with M ¼ ps; v; s; av; at for
pseudoscalar, vector, scalar, axial-vector, and axial-tensor mesons.
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spontaneous symmetry breaking. Yet, the ratios mps=mv

andmps=fps vary at most by about 15%, while amps spans a
wide range, with the largest values about 3 ÷ 4 times larger
than the smallest available ones. The slow evolution of

dimensionless ratios, visible even at smaller hyperquark
masses, might be a consequence of the nontrivial properties
associated with near-conformal dynamics. We relegate to
Appendix C a more extensive set of results, in particular by
including measurements obtained at different values of β.
Despite all these cautionary remarks, the six lightest

ensembles with β ¼ 6.7 do exhibit the expected behavior,
m̂2

v depending linearly on m̂2
ps, as shown in Fig. 11. Similar

results hold for the other available ensembles. Based on our
investigation of the ensembles with β ¼ 6.65 and β ¼ 6.7,
we consistently find that the aforementioned linear behav-
ior appears when amps ≲ 0.45, and we apply this upper
bound to restrict the available ensembles, even those for
which we do not have enough independent measurements
to carry out a fixed-β analysis. With the resulting, restricted
set of ensembles, we repeat and refine the measurements by
implementing noise-reduction techniques (smearing), and
perform a first massless and continuum extrapolation.
We close this subsection with a technical, but important,

comment on the limitations of our calculations. As we saw
in Fig. 7, there appears to be a maximum value in the ratio
of mps=fps. Similarly, the masses of composite states,
expressed in units of the gradient flow scale, w0, are
bounded from above, as shown in Fig. 11. These upper
bounds can be exceeded only if the lattice coupling
increases, as shown in Appendix C. Alas, numerical studies
of finer lattices are hindered by the difficulties related with
topological freezing. In the opposite direction, exploring
small masses, m̂ps, requires using larger lattice sizes, in order
to overcome finite volume effects. This is not feasible, at the
present time, with realistic computing resources. In sum-
mary, the ensembles we reported here provide a good
representation of the region of parameter space that is
accessible to us with the technology deployed for this study.
Compared to the Spð4Þ theory with Nf ¼ 2, such a region is
far more restricted, and, to gain further numerical progress in
the Nas ¼ 3 theory, we will require to improve the action,
possibly by adopting also a different formulation for the
fermions.

B. Continuum extrapolations

We adopt fitting Ansätze inspired by the NLO Wilson
chiral perturbation theory to perform continuum extrapo-
lations in which we combine the available lattice data
obtained at six different beta values, β ¼ 6.6, 6.65, 6.7,
6.75, 6.8, and 6.9. We also assume a linear dependence on
m̂2

M of the measurements performed in ensembles with
different masses. As discussed in Sec. VA, we restrict
attention to ensembles in which amps ≲ 0.45. We refine the
measurement of the masses of the mesons by applying APE
and Wuppertal smearing. We extract the masses of the first
excited states of vector mesons using the GEVP method, as
explained in Sec. IV B. For the decay constants, we retain
the formulation of the correlation functions in terms of

FIG. 10. Mesons masses, expressed in units of the pseudoscalar
decay constant, fps, extracted using Z2 ⊗ Z2 stochastic wall
sources in the definition of the correlation functions. We display
only results obtained in ensembles with lattice coupling β ¼ 6.7,
and vary the Wilson-Dirac mass of the hyperquarks, am0, or,
equivalently, the PCAC hyperquark mass, amPCAC. The color
and marker in the legend denote measurements with M ¼
ps; v; s; av; at for pseudoscalar, vector, scalar, axial-vector, and
axial-tensor mesons.

FIG. 11. The square of the masses of vector mesons in the
Spð4Þ theory coupled to Nas ¼ 3 Dirac fermions transforming in
the antisymmetric representation,m2

v, as a function of the pseudo-
scalar masses,m2

ps (along the abscissa), and the Spð4Þ theory with
Nf ¼ 2 fermions transforming in the fundamental, m2

V, as a
function of the pseudoscalar masses, m2

PS (along the abscissa).
Numerical data on the Nf ¼ 2 theory with the fixed lattice
coupling of β ¼ 7.2 is taken from Ref. [144], and the measure-
ments displayed for the Nas ¼ 3 theory have been performed on
ensembles with β ¼ 6.7. Both vector and pseudoscalar masses
are expressed in units of the Wilson flow scale, w0.
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Z2 ⊗ Z2 stochastic wall sources. The functional depend-
ence we assume for the observables is the following:

m̂2
M ¼ m̂2

M;χð1þ Lm
Mm̂

2
PSÞ þWm

Mâ; ð32Þ

f̂2M ¼ f̂2M;χð1þ Lf
Mm̂

2
PSÞ þWf

Mâ; ð33Þ

where m̂M;χ , f̂M;χ , Lm
M, and Wm

M are the low-energy
constants (LECs) determined with the fits.
The resulting best-fit values of these LECs are presented

in Table V. The values of m̂2
M;χ and f̂2M;χ correspond to the

massless and continuum extrapolations of meson masses
and decay constants. We must utilize caution in using and
interpreting these numbers, in view of the considerations
exposed in Sec. VA, in particular the long extrapolation
toward the massless limit they make use of. Nevertheless,
these quantities are finite and positive in the massless limit,
m̂2

ps → 0, and display qualitatively the expected features, in
particular the fact that m̂v;χ ¼ m̂t;χ < m̂av;χ .
In Figs. 12 and 13, we present our measurements of the

meson masses and decay constants, expressed in units of
the gradient flow scale. We also display the continuum-
limit extrapolations, obtained by using Eqs. (32) and (33),
together with the best-fit values in Table V, to subtract finite
lattice-spacing corrections. Mass ratios, such as m̂2

v=m̂2
ps,

computed after this subtraction, are larger, as all the WM
coefficients in Table V are negative. The masses of vector
and tensor states are compatible with each other, as
expected. The axial-tensor mesons are the heaviest states
among the ground states, though no statistically significant
difference with the axial-vector is present. The scalar
meson lies between the vector (tensor) and axial-vector
mesons.
We also present the results for the first excited states of

the vector mesons. They are heavier than the ground state

mesons in all channels considered. This measurement uses
the subset of the available ensembles for which there is
sufficient numerical data to perform the GEVP analysis
successfully. In Fig. 14, we show a summary plot of the
continuum extrapolations for the masses of all flavored
mesons.
Looking at the decay constants, in Fig. 13, we observe

that of the pseudoscalar meson, f̂ps, is the smallest of the
three over the whole range of masses considered. It further
shows a strong mass dependence, yet the extrapolation
toward massless and continuum limits is positive. The
decay constant of axial vector meson shows large statistical
and systematical uncertainties, hence its extrapolation has
to be taken with caution.
While our extrapolations to the massless and continuum

limits have to be taken with a grain of salt, especially
because of potentially large systematic uncertainties due
to the long extrapolations, it is legitimate to compare them
to the results of the quenched calculations reported in
Refs. [145,154]—see Table III of Ref. [154]. We find good
agreement, within statistical errors, for the masses of
vector, tensor, axial-vector, and axial-tensor mesons. The
noticeable exception is the scalar meson, our value of the
mass squared being about 35% smaller than in the quen-
ched case. Our current results for the decay constant
squared are about 30% and 15% larger than the in the
quenched case, for the pseudoscalar and vector mesons,
respectively. For the axial-vector meson we find that the
dynamical result is statistically compatible with the quen-
ched one. In summary, the comparison with the quenched
results shows that our calculations are robust, and indeed
confirm that we are exploring a region of parameter space
which is not close to the massless limit. This is suitable for
applications to composite Higgs or strongly coupled dark
matter models.

C. More about vector mesons

The vector meson subsystem is particularly suitable
to our numerical strategy, as we study the region of
parameter space in which the decay channels for the
decay of the v mesons are kinematically forbidden.
Thanks also to the application of the GEVP method, we
both obtain good control over statistical errors, and gain
access to the first excited state, which we denote as v0.
Details can be found in the tables in Appendix A. We
devote this section to commenting on these results, and
comparing them to those obtained in closely related
theories.
A particularly interesting quantity is the ratio between

the vector meson mass and the pseudoscalar decay con-
stant, mv=fps. As it shows only a mild dependence on the
pseudoscalar mass squared, m̂2

ps, as well as the lattice
coupling â, as an exercise we perform a linear fit to the
values of mv=fps with a double expansion in m̂2

ps and â,

TABLE V. Fit coefficients appearing in NLO Wilson chiral
perturbation theory, Eqs. (32) and (33). We also present the
normalized chi-square values, χ2=Nd:o:f., associated with the
individual fits.

M f̂2M;χ Lf
M Wf

M χ2=Nd:o:f.

ps 0.01769(97) 0.913(88) −0.0130ð17Þ 0.41
v 0.0464(37) 0.47(10) −0.0374ð68Þ 1.55
av 0.087(14) 0.00(14) −0.089ð28Þ 1.70

M m̂2
M;χ Lm

M Wm
M χ2=Nd:o:f.

v 0.644(24) 1.570(81) −0.676ð33Þ 0.28
t 0.637(24) 1.604(85) −0.692ð33Þ 0.38
av 1.841(98) 0.741(76) −1.14ð17Þ 1.36
at 2.37(12) 0.475(58) −1.54ð19Þ 2.66
s 1.098(79) 1.27(14) −0.51ð13Þ 7.98
v0 3.41(44) 0.40(13) −0.90ð68Þ 4.36
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analogous to the continuum extrapolation discussed in the
previous section, using the functional dependence

mv

fps
¼ mv;χ

fps;χ
ð1þ clm̂2

psÞ þ cwâ; ð34Þ

and find

mv;χ

fps;χ
¼ 6.59ð11Þ; cl ¼ 0.069ð15Þ; cw ¼ −0.10ð21Þ:

ð35Þ

FIG. 12. Square of the meson masses, m̂2
M, expressed in units of the Wilson flow scale, w0, plotted as a function of the mass squared of

the pseudoscalar meson, m̂2
ps, in the Spð4Þ lattice gauge theory coupled to Nas ¼ 3 dynamical fermions. These measurements are

obtained implementing Wuppertal and APE smearing, and are restricted to ensembles satisfying the upper bound amps ≲ 0.45. Top to
bottom, and left to right, we display the individual measurements of m̂2

v, m̂2
t , m̂2

av, m̂2
at, m̂2

s , and, finally, m̂2
v0 , the first excited state sourced

by the ðv; tÞ operators. The value of β is indicated by the color and marker, as shown in the legend. The gray bands denote the result of
the extrapolation to the continuum limit, as defined in Eq. (32).
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The resulting value of the ratio in the massless and
continuum limits can be compared to the one obtained
by taking the ratio between the individual extrapolations of
the spectral observables, m̂v;χ and f̂ps;χ , reported in Table V.
This exercise yields m̂v;χ=f̂ps;χ ¼ 6.04ð13Þ. The discrep-
ancy between these two results points to the fact that the
hyperquark masses are still large, hence long extrapolations
toward the massless limit are being used, so that subleading
terms truncated in the expansion in Eq. (34) are not entirely
negligible.
In Fig. 15, we present the continuum extrapolated values

of this ratio, mv=fps, which are obtained by subtracting the
last term in Eq. (34) from the lattice measurements. For
comparison purposes, we also present the corresponding
results of the Spð4Þ theory with Nf ¼ 2 fundamental
fermions, taken from Ref. [144]. As the mass ranges

considered are quite different, in the two studies, a direct
comparison is not possible. Yet, the ratio for the case of
Nas ¼ 3 antisymmetric fermions is consistently smaller
than in the Nf ¼ 2 case.
Somewhat speculatively, we compare this finding to

expectations arising from large-N scaling arguments. One
expects the meson masses in Spð2NÞ theories to scale as
ð2NÞ0, while the decay constant in the fundamental and
2-index antisymmetric representation can be argued to
scale as the square root of the dimension of the represen-
tation, hence as

ffiffiffiffiffiffiffi
2N

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ 1ÞðN − 1Þp
, respec-

tively, by generalizing the arguments in Ref. [371].
Furthermore, various lattice calculations in strongly
coupled gauge theories with different gauge group and
fermion content suggest that mv=fps might be independent
of the number of fermions, at least in the confined phase of

FIG. 13. Square of the decay constants of the mesons, f̂2M, expressed in units of the Wilson flow scale, w0, plotted as a function of the
mass squared of the pseudoscalar meson, m̂2

ps, in the Spð4Þ lattice gauge theory coupled to Nas ¼ 3 dynamical fermions. These
measurements of the masses are obtained implementing Wuppertal and APE smearing, and are restricted to ensembles satisfying the
upper bound amps ≲ 0.45. The decay constants are extracted from correlation functions defined with Z2 ⊗ Z2 stochastic wall sources.

Top to bottom, and left to right, we display the individual measurements of f̂2ps, f̂
2
v, and f̂

2
av, respectively. The value of β is indicated by

the color and marker, as shown in the legend. The gray bands denote the result of the extrapolation to the continuum limit, as
defined in Eq. (33).
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the gauge theory [372–374]. If we take these scaling
relations to hold also for Spð4Þ, we arrive at the predic-
tion that the ratio,mv=fps ¼

ffiffiffiffiffiffiffiffi
4=5

p
mV=fPS ≃ 0.89mV=fPS,

which is consistent with what we observe numerically
in Fig. 15.
Even more speculatively, this ratio, mv=fps, can be used

to provide a rough estimate of the on-shell coupling
constant associated with the decay of the vector into two
pseudoscalar mesons, gv ps ps, via the phenomenological

KSRF relation, gv ps ps ¼mv=
ffiffiffi
2

p
fps [367,368]. In the conti-

nuum and massless limits, our numerical results yield
gv ps ps ¼ 4.656ð80Þ, which is smaller than the QCD value
of∼5.9 [375] and the one in the Spð4Þ gauge theory with two
fundamental fermions, mV=

ffiffiffi
2

p
fPS ¼ 5.72ð18Þð13Þ [144].

It would be interesting to perform a direct measurement of the
coupling gv ps ps, which requires to study the theory with
lower hyperquark masses.
Finally, in Fig. 16, we present our results for the ratio

between the mass of the ground state and the first excited
state of the vector meson,mv0=mv, for all available values of
the bare coupling and hyperquark mass for which the
GEVP analysis yields statistically significant results. We
uncover clear evidence that this ratio depends on the mass
of the pseudoscalar meson, increasing toward the massles

FIG. 15. The ratio between vector meson mass and pseudo-
scalar decay constant, mv=fps, extrapolated to the continuum
limit by means of our simplified WχPT best-fit results, as a
function of the mass squared of the pseudoscalar, m̂2

ps, expressed
in units of the Wilson flow, w0. For comparison purposes, besides
the results for the Spð4Þ with Nas ¼ 3 obtained in this work, we
also present those for the Spð4Þ theory with Nf ¼ 2 fundamental
Dirac flavors,mV=fPS as a function of m̂2

PS, taken from Ref. [144].

FIG. 16. The mass ratio between the ground and first excited
states of the vector meson,mv0=mv. The value of β is indicated by
the color and marker, as shown in the legend. The blue rectangle
denotes the QCD value for ρð1450Þ, whose width represents the
experimental uncertainty.

FIG. 14. Summary plot of the meson spectrum in the con-
tinuum limit, obtained by applying the Ansätze in Eq. (32),
inspired by NLO Wilson chiral perturbation theory, to the Spð4Þ
theory with Nas ¼ 3 fermions. The masses have been measured
using a combination of APE and Wuppertal smearing, on ensem-
bles restricted to a comparatively low mass regime. The colored
bands represent the uncertainty of the extrapolation of the fitting
results. Lightest to heavier, we display, as a function of the
pseudoscalar mass squared, the mass squared of the pseudoscalar
(ps), vector (v) and tensor (t), scalar (s), axial-vector (av), axial-
tensor (at), and the first-excited state of vector (v0) mesons.
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limit. Yet, this measurement is affected by non-negligible
systematic effects, arising from the fact that the determi-
nation of the first-excited states, even with the GEVP
method, is limited by the short time extent for the plateau.
We hence do not try to model the dependence of this ratio
of the lattice parameter, but only compare to the analogous
quantity in QCD. For all the ensembles our measurements
yield a smaller ratio than the QCD value obtained from
experimental results, mρð1440Þ=mρð770Þ ≃ 1.89ð32Þ [375].

VI. SUMMARY AND OUTLOOK

We reported the results of an extensive numerical study
of the Spð4Þ (hypercolor) lattice gauge theory coupled to
Nas ¼ 3 Dirac fermions transforming in the two-index
antisymmetric representation of the gauge group. The
enhanced global SUð6Þ symmetry acting on the fermions
is broken to its SOð6Þ subgroup because of the presence of
nonzero (degenerate) hyperquark masses and the formation
of hyperquark condensate. The corresponding continuum
theory is of interest to the model building community,
as it may serve as an ultraviolet realization of a class of
composite Higgs models with top partial compositeness.
Alternatively, it can give rise to a candidate composite dark
matter model.
The Euclidean, four dimensional lattice theory is for-

mulated in terms of the (unimproved) plaquette action,
coupled to Wilson fermions. We explored the two-
dimensional parameter space of the lattice theory, and
identified the presence of a line of first-order bulk phase
transitions, terminating at the critical lattice coupling
βc ≃ 6.45. We conducted a preliminary, finite-volume
study, and ascertained that finite-volume corrections to
the mass of the lightest mesons have opposite sign in
respect to that observed in the literature on SUð3Þ theories
coupled to fundamental matter fields. We found that finite-
volume effects are statistically negligible as long as the
lattice size satisfies the empirical relation minf

ps L ≥ 7.5. We
generated gauge ensembles with six different values of
lattice coupling, β > βc, and a broad range of hyperquark
masses, am0, with volumes sufficiently large to satisfy the
relation minf

ps L ≥ 7.5.
We adopted the gradient (Wilson) flow method for the

purpose of setting the scale, and as a noise reduction
technique in the computation of the topological charge. As
observed in earlier lattice studies of new physics scenarios,
the Wilson flow scale displays strong dependence on the
hyperquark mass. The choices of lattice parameters used for
this study are good representatives of the portion of para-
meter space that is accessible with the type of lattice action
and algorithms we deployed. We saw hints of topological
freezing in the available ensembles with lightest masses and
largest couplings. The masses of the mesons, the pseudo-
scalar ones in particular, are comparatively large. The decay
of the lightest vector meson into pairs of pseudoscalars is

kinematically forbidden. To be able to produce and analyse
ensembles testing the lattice parameter space close to the
massless and continuum limit would require a drastic
change of simulation strategy. Nevertheless, this is the
main regime of interest to composite Higgs models and
strongly interacting dark matter, hence our results have
applicability to new physics models.
We reported our determination of masses and decay

constants of composite states interpolated by flavored
hyperquark bilinear operators (mesons). In the lightest
ensembles available, we find clear evidence of mass-
dependence in dimensionless combinations, such as the
ratio of mass and decay constant of the lightest pseudo-
scalar particle,mps=fps. This is inconsistent with the hyper-
scaling hypothesis, motivated by IR conformal dynamics.
We have evidence that the theory displays confinement,
accompanied by spontaneous breaking of its (approxi-
mately) global symmetries. This is the main result of this
paper. We also performed a preliminary analysis of the
available data in light of dEFT, as a test of near-conformal
dynamics in the confining theory. Such exercise proved
inconclusive, with available ensembles.
We find that the mass squared and the decay constant

squared of composite states, measured at fixed lattice
coupling, β, exhibit a linear dependence on the pseudo-
scalar mass squared, in all the ensembles in which
amps ≲ 0.45. We therefore perform continuum and mass-
less extrapolations of our measurements, restricted to these
(lighter) ensembles. We first express our measurements in
units of the Wilson-flow scale. Inspired by Wilson chiral
perturbation theory, we then adopt a fit Ansatz for the
masses, m̂2

M, and the decay constants, f̂2M, that is linear in
both m̂2

ps and â. The resulting linear fit well describes the
numerical data. Yet, the massless extrapolations are rather
long, and hence the results of this analysis might be
affected by significant systematic extrapolation effects.
Our results for the masses of mesons, extrapolated to the

continuum and massless limits, are overall comparable
to the quenched results reported in Ref. [154]. Yet, the
discrepancies are about 20% for the scalar mesons. For
pseudoscalar and vector meson decay constants, results
obtained with dynamical fermions are larger than the
quenched case. We pay particular attention to the vector
meson states, for which we develop a bespoke GEVP
analysis that allows to extract the masses of both the ground
and first excited states.
In the future, it would be interesting to explore the region

of parameter space closer to the massless limit. By doing
so, it should be possible to improve significantly our
control over the massless extrapolation, and hence our
spectroscopic results. While doing so may not be a priority
for the phenomenological purposes related to composite
Higgs and dark matter model building, it would be valuable
as a way to address the more general theoretical question of
understanding whether this theory lies close to the lower
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edge of the conformal window. To do so, it will be
necessary to introduce more sophisticated versions of the
lattice theory, involving improvement, and possibly modi-
fying our treatment of fermions.
Furthermore, it would be of interest to measure the

properties of mesons that do not carry flavor, in particular
the masses of the lightest scalar and pseudoscalar flavor
singlets. The former might be a candidate dilaton, with
applicability to alternative models of electroweak sym-
metry breaking. The latter might be of interest as an axion,
which could play a role in a different type of dark matter
models. In either case, pursuing these goals would require
significant new investment in software development, opti-
mization, and testing, and in computing resources. We
leave all these endeavors for the future.
Finally, we envision a complementary, equally ambitious,

research programme of study of the phase space of the theory.
There is not a sign problem, given the real nature of the
fermion representations, hence its behavior in the presence of
a (isospin) chemical potential can be studied numerically,
from first principles. Even at zero chemical potential, as this
might be used as a model of a new dark sector it is of general
interest to understand whether this theory undergoes a first-
order deconfinement phase transition at high temperature. If
this is the case, bubble dynamics may leave a relic stochastic
background of gravitational waves, as mentioned in the
introduction—see also Ref. [376].
The highly challenging goal of measuring, in strongly

coupled theories, those parameters that enter into the
calculation of the power spectrum of gravitation waves is
currently being pursued via several complementary inves-
tigation strategies [126–131], that use, for example, of
effective tools as the Polyakov-loop [377–385] or the matrix
models [386–394]. The Logarithmic Linear Relaxation
(LLR) algorithm [395–398] offers a new, alternative oppor-
tunity to perform such high precision numerical studies.
Finite-temperature studies of Yang-Mills theories using the
LLR exist for Spð4Þ [142], SUð3Þ [134,135,139], SUð4Þ
[136,137], and general SUðNcÞ [138,141]. It would be
interesting to generalize these studies to theories with matter
content, such as the one proposed here.
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APPENDIX A: MORE NUMERICAL RESULTS

In this appendix, we summarize all the new numerical
results on lattice measurements of meson masses and
decay constants which have been carried out for this
work. We adopted two different strategies for the analysis
of the correlation function. Measurement extracted from
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correlation functions defined with Z2 ⊗ Z2 stochastic wall
sources and sinks, for all the ensembles listed in Table I,
are tabulated in Tables VI and VII, and are discussed in
Sec. VA and Appendix C. We also report the results for the
PCAC (unrenormalized) hyperquark mass, amPCAC, and
for the quantities, mpsL and fpsL. To facilitate comparison
with phenomenological models and applications to model
building, we find it useful to express the measurements also
in units of the decay constant of the pseudoscalar meson,
fps, in Table VIII.

As explained in the body of the paper, we select a subset
of the ensembles, which we use for the massless and
continuum extrapolation, and apply a combination of APE
and Wuppertal smearing, to repeat the mass measurements,
performing also the extraction of the first-excited states of
vector mesons with the GEVP method. The results are
tabulated in Table IX, and discussed in Secs. V B and V C.
We express them in units of fps, in Table X, in which we
also report the ratio between the first excited and ground
states of vector meson.

TABLE VI. Hyperquark mass, defined through the PCAC, amPCAC, masses and decay constants of flavored spin-0 mesons, in the
pseudoscalar (ps) and scalar (s) channels, expressed in lattice units. For the ps mesons, we also express them in units of the spatial extent,
as mpsL and fpsL. All measurements use Z2 ⊗ Z2 stochastic wall sources and sinks. The decay constants are renormalized using one-
loop perturbative matching with tadpole improvement.

Ensemble amPCAC amps afps ams mpsL fpsL

ASB0M1 0.08631(27) 0.5640(15) 0.0919(11) 0.820(35) 10.152(27) 1.655(19)
ASB0M2 0.06943(13) 0.48451(74) 0.08092(56) 0.714(20) 11.628(18) 1.942(13)
ASB0M3 0.052539(88) 0.39808(64) 0.06690(39) 0.603(15) 12.738(21) 2.141(13)

ASB1M1 0.11558(25) 0.6797(11) 0.1083(10) 1.006(25) 12.234(19) 1.950(18)
ASB1M2 0.08628(19) 0.5527(11) 0.08901(72) 0.782(34) 9.949(20) 1.602(13)
ASB1M3 0.07723(19) 0.5122(14) 0.0828(12) 0.769(13) 9.219(25) 1.490(21)
ASB1M4 0.05690(11) 0.41476(80) 0.06900(57) 0.623(14) 9.954(19) 1.656(14)
ASB1M5 0.042270(77) 0.33816(61) 0.05689(34) 0.5108(57) 9.469(17) 1.5928(95)
ASB1M6 0.027553(84) 0.25472(66) 0.04563(26) 0.4087(67) 8.151(21) 1.4600(82)

ASB2M1 0.15086(17) 0.80669(61) 0.12706(69) 1.138(24) 12.9070(97) 2.033(11)
ASB2M2 0.12577(25) 0.7114(11) 0.11397(94) 1.098(25) 11.383(17) 1.823(15)
ASB2M3 0.10007(24) 0.6026(15) 0.0955(15) 0.877(19) 10.846(27) 1.718(28)
ASB2M4 0.08697(17) 0.54507(94) 0.08593(73) 0.799(15) 13.082(23) 2.062(18)
ASB2M5 0.07440(13) 0.4880(10) 0.07740(67) 0.727(11) 11.712(24) 1.857(16)
ASB2M6 0.06117(11) 0.42535(79) 0.06840(50) 0.6161(84) 10.208(19) 1.641(12)
ASB2M7 0.047757(77) 0.35813(67) 0.05875(38) 0.5277(78) 10.028(19) 1.645(11)
ASB2M8 0.039866(85) 0.31637(87) 0.05298(43) 0.4601(73) 8.858(24) 1.483(12)
ASB2M9 0.034595(65) 0.28696(65) 0.04878(31) 0.4317(83) 9.183(21) 1.5611(99)
ASB2M10 0.028748(53) 0.25200(54) 0.04347(21) 0.3711(52) 9.072(20) 1.5648(74)
ASB2M11 0.023573(50) 0.22427(48) 0.04020(20) 0.3420(65) 8.074(17) 1.4473(73)

ASB3M1 0.08962(17) 0.54658(92) 0.08402(87) 0.824(16) 9.838(17) 1.512(16)
ASB3M2 0.06421(11) 0.43374(78) 0.06985(53) 0.6520(89) 10.410(19) 1.676(13)
ASB3M3 0.051517(99) 0.36973(98) 0.05950(56) 0.499(12) 8.874(24) 1.428(14)
ASB3M4 0.039302(69) 0.30733(65) 0.05021(35) 0.430(11) 8.605(18) 1.4059(98)
ASB3M5 0.029091(59) 0.25332(61) 0.04350(22) 0.3971(46) 8.106(20) 1.3921(70)

ASB4M1 0.10354(17) 0.59853(92) 0.09217(72) 0.880(10) 9.577(15) 1.475(11)
ASB4M2 0.08184(18) 0.5055(11) 0.07765(77) 0.719(15) 8.087(18) 1.242(12)
ASB4M3 0.059877(85) 0.40516(75) 0.06437(50) 0.5920(70) 9.724(18) 1.545(12)
ASB4M4 0.048377(62) 0.34663(60) 0.05585(36) 0.5123(87) 8.319(14) 1.3404(86)
ASB4M5 0.036719(71) 0.28917(60) 0.04780(30) 0.4414(58) 9.254(19) 1.5296(95)
ASB4M6 0.029649(53) 0.25227(51) 0.04243(21) 0.3721(41) 8.073(16) 1.3577(67)
ASB4M7 0.022517(45) 0.20975(66) 0.03722(20) 0.3641(31) 7.551(24) 1.3401(73)

ASB5M1 0.050683(52) 0.34583(63) 0.05424(34) 0.4945(52) 8.300(15) 1.3017(82)
ASB5M2 0.036389(50) 0.27657(59) 0.04525(24) 0.3906(56) 8.850(19) 1.4482(78)
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TABLE VII. Masses and decay constants of spin-1 flavored vector (v) and axial-vector (av) mesons, and masses in the tensor (t) and
axial-tensor (at) mesons, in lattice units. All measurements use Z2 ⊗ Z2 stochastic wall sources and sinks. The decay constants are
renormalized using the one-loop perturbative matching with tadpole improvement.

Ensemble amv afv amav afav amt amat

ASB0M1 0.6445(22) 0.1265(18) 0.898(30) 0.101(13) 0.6437(33) 0.976(27)
ASB0M2 0.5608(16) 0.1110(12) 0.807(21) 0.0972(91) 0.5630(20) 0.804(30)
ASB0M3 0.4701(16) 0.0922(12) 0.686(16) 0.0897(69) 0.4691(21) 0.686(17)

ASB1M1 0.7558(19) 0.1473(20) 1.126(42) 0.140(24) 0.7542(25) 1.161(39)
ASB1M2 0.6272(21) 0.1211(17) 0.916(22) 0.1113(94) 0.6287(26) 0.932(23)
ASB1M3 0.5835(22) 0.1136(15) 0.821(21) 0.0932(82) 0.5807(38) 0.873(18)
ASB1M4 0.4789(20) 0.0912(12) 0.703(19) 0.0923(85) 0.4749(30) 0.712(41)
ASB1M5 0.4011(15) 0.07748(90) 0.553(12) 0.0668(46) 0.4025(17) 0.558(21)
ASB1M6 0.3197(23) 0.0643(11) 0.484(11) 0.0717(41) 0.3209(37) 0.474(22)

ASB2M1 0.8789(15) 0.1670(18) 1.211(31) 0.115(14) 0.8784(19) 1.261(29)
ASB2M2 0.7843(20) 0.1525(16) 1.179(35) 0.152(18) 0.7825(26) 1.152(26)
ASB2M3 0.6763(21) 0.1303(16) 0.899(28) 0.087(10) 0.6735(28) 0.959(34)
ASB2M4 0.6141(13) 0.11681(97) 0.852(19) 0.0953(83) 0.6127(19) 0.853(26)
ASB2M5 0.5525(17) 0.1030(13) 0.798(19) 0.0968(81) 0.5529(23) 0.797(34)
ASB2M6 0.4933(16) 0.0947(11) 0.699(11) 0.0880(41) 0.4915(25) 0.700(16)
ASB2M7 0.4174(16) 0.07815(99) 0.6008(78) 0.0781(27) 0.4195(21) 0.566(24)
ASB2M8 0.3754(17) 0.0728(10) 0.540(11) 0.0741(44) 0.3752(24) 0.564(15)
ASB2M9 0.3416(20) 0.0648(12) 0.5021(84) 0.0702(32) 0.3443(27) 0.501(16)
ASB2M10 0.3064(17) 0.05983(98) 0.4325(79) 0.0578(27) 0.3054(28) 0.4346(93)
ASB2M11 0.2770(16) 0.05466(84) 0.4223(79) 0.0625(30) 0.2803(26) 0.422(16)

ASB3M1 0.6133(17) 0.1151(14) 0.870(31) 0.107(18) 0.6152(23) 0.843(17)
ASB3M2 0.4945(19) 0.0923(13) 0.691(15) 0.0827(51) 0.4968(22) 0.729(16)
ASB3M3 0.4242(23) 0.0767(14) 0.565(24) 0.0566(97) 0.4246(32) 0.635(24)
ASB3M4 0.3645(17) 0.07033(89) 0.517(11) 0.0690(44) 0.3597(23) 0.541(10)
ASB3M5 0.3095(18) 0.06177(99) 0.4310(92) 0.0572(33) 0.3074(21) 0.441(16)

ASB4M1 0.6587(16) 0.1200(14) 0.934(16) 0.1108(63) 0.6592(21) 0.941(18)
ASB4M2 0.5668(22) 0.1042(15) 0.773(23) 0.084(10) 0.5683(29) 0.759(28)
ASB4M3 0.4639(19) 0.0873(13) 0.652(12) 0.0826(52) 0.4638(28) 0.674(17)
ASB4M4 0.3990(19) 0.0726(12) 0.563(11) 0.0704(46) 0.4001(22) 0.610(14)
ASB4M5 0.3430(16) 0.06546(93) 0.4936(97) 0.0667(38) 0.3426(27) 0.493(13)
ASB4M6 0.3028(15) 0.05849(78) 0.4172(62) 0.0553(21) 0.3011(21) 0.433(12)
ASB4M7 0.2588(16) 0.05181(65) 0.3925(77) 0.0599(29) 0.2583(25) 0.4161(86)

ASB5M1 0.3911(15) 0.0703(10) 0.5481(86) 0.0674(33) 0.3927(16) 0.557(11)
ASB5M2 0.3239(13) 0.06093(71) 0.4560(69) 0.0615(25) 0.3213(21) 0.447(15)

TABLE VIII. Ratio of the masses of flavored mesons to the pseudoscalar decay constant, mM=fps, measured with Z2 ⊗ Z2 stochastic
wall sources and sinks. Decay constants are renormalized with tadpole improved one-loop perturbative matching.

Ensemble mps=fps ms=fps mv=fps mt=fps mav=fps mat=fps

ASB0M1 6.134(60) 8.92(41) 7.010(75) 7.001(86) 9.77(36) 10.61(34)
ASB0M2 5.988(37) 8.83(25) 6.930(46) 6.958(48) 9.97(27) 9.93(37)
ASB0M3 5.950(29) 9.01(22) 7.027(41) 7.011(43) 10.25(25) 10.26(26)

ASB1M1 6.274(53) 9.29(24) 6.976(62) 6.962(63) 10.39(39) 10.72(38)
ASB1M2 6.210(41) 8.79(38) 7.046(53) 7.064(58) 10.29(26) 10.47(29)
ASB1M3 6.188(74) 9.30(20) 7.05(10) 7.016(99) 9.93(28) 10.55(28)
ASB1M4 6.011(46) 9.02(21) 6.941(58) 6.883(62) 10.19(29) 10.31(59)
ASB1M5 5.945(29) 8.98(12) 7.052(44) 7.076(51) 9.71(23) 9.80(37)
ASB1M6 5.583(28) 8.96(16) 7.007(56) 7.033(92) 10.60(24) 10.39(47)

(Table continued)
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TABLE VIII. (Continued)

Ensemble mps=fps ms=fps mv=fps mt=fps mav=fps mat=fps

ASB2M1 6.349(32) 8.95(20) 6.917(35) 6.913(35) 9.53(25) 9.92(23)
ASB2M2 6.242(46) 9.64(25) 6.882(56) 6.866(56) 10.34(32) 10.11(25)
ASB2M3 6.312(93) 9.19(26) 7.08(12) 7.06(12) 9.42(36) 10.05(42)
ASB2M4 6.343(47) 9.30(19) 7.146(60) 7.130(59) 9.91(24) 9.92(33)
ASB2M5 6.305(46) 9.40(17) 7.139(61) 7.143(67) 10.31(25) 10.30(44)
ASB2M6 6.219(38) 9.01(13) 7.212(57) 7.187(63) 10.22(17) 10.24(24)
ASB2M7 6.096(33) 8.98(13) 7.104(47) 7.140(49) 10.23(14) 9.64(41)
ASB2M8 5.972(38) 8.68(15) 7.087(62) 7.082(66) 10.20(22) 10.64(29)
ASB2M9 5.882(30) 8.85(17) 7.003(53) 7.059(69) 10.29(18) 10.28(34)
ASB2M10 5.798(21) 8.54(13) 7.050(48) 7.027(66) 9.95(19) 10.00(22)
ASB2M11 5.578(25) 8.51(17) 6.891(49) 6.972(70) 10.50(20) 10.50(41)

ASB3M1 6.505(61) 9.80(23) 7.300(74) 7.322(77) 10.35(40) 10.04(24)
ASB3M2 6.209(42) 9.33(15) 7.079(56) 7.112(57) 9.89(22) 10.44(25)
ASB3M3 6.214(47) 8.39(20) 7.130(61) 7.135(68) 9.50(42) 10.66(41)
ASB3M4 6.121(36) 8.56(23) 7.259(57) 7.165(68) 10.29(23) 10.77(22)
ASB3M5 5.823(23) 9.13(11) 7.114(50) 7.067(56) 9.91(21) 10.13(37)

ASB4M1 6.494(45) 9.55(13) 7.147(52) 7.151(54) 10.13(19) 10.21(22)
ASB4M2 6.509(56) 9.26(21) 7.300(70) 7.318(71) 9.95(30) 9.77(36)
ASB4M3 6.294(42) 9.20(12) 7.206(60) 7.205(66) 10.13(20) 10.47(26)
ASB4M4 6.206(35) 9.17(17) 7.144(54) 7.164(59) 10.08(21) 10.92(25)
ASB4M5 6.050(30) 9.23(12) 7.176(57) 7.167(71) 10.33(21) 10.32(28)
ASB4M6 5.946(24) 8.77(10) 7.136(47) 7.097(57) 9.83(16) 10.20(29)
ASB4M7 5.635(24) 9.780(95) 6.951(55) 6.939(74) 10.54(21) 11.18(24)

ASB5M1 6.376(33) 9.12(11) 7.210(44) 7.241(50) 10.10(17) 10.26(23)
ASB5M2 6.111(26) 8.63(13) 7.156(46) 7.099(52) 10.08(16) 9.88(35)

TABLE IX. Masses, amM, of the flavored mesons included in the continuum and massless extrapolations, measured by applying APE
and Wuppertal smearing in the definition of the correlation functions. The mass of the first excited state of vector meson, v0, is
determined through a GEVP analysis that includes the two, inequivalent, vector and tensor meson operators.

Ensemble amps ams mv amt mav mat mv0

ASB0M3 0.39776(34) 0.5897(36) 0.46643(59) 0.46591(63) 0.6486(45) 0.6702(26) 0.8198(51)

ASB1M4 0.41334(35) 0.6193(20) 0.48158(48) 0.48095(56) 0.6768(23) 0.6856(30) 0.8333(58)
ASB1M5 0.33690(33) 0.4921(51) 0.39960(62) 0.39990(55) 0.5495(37) 0.5600(38) 0.6759(42)
ASB1M6 0.25334(34) 0.3737(65) 0.31548(59) 0.31502(70) 0.4507(21) 0.4546(41) � � �
ASB2M6 0.42536(34) 0.6147(21) 0.48865(50) 0.48851(52) 0.6591(39) 0.6655(53) 0.7936(68)
ASB2M7 0.35657(43) 0.5102(56) 0.41402(71) 0.41489(73) 0.5432(79) 0.5608(96) 0.7107(45)
ASB2M8 0.31587(41) 0.4493(33) 0.37160(70) 0.37091(86) 0.5147(29) 0.5159(44) 0.6308(46)
ASB2M9 0.28559(29) 0.4361(14) 0.34276(42) 0.34264(51) 0.4747(28) 0.4696(60) 0.6088(38)
ASB2M10 0.25237(27) 0.3607(25) 0.30498(45) 0.30571(43) 0.4259(19) 0.4410(26) � � �
ASB2M11 0.22293(24) 0.3431(18) 0.27802(56) 0.27696(58) 0.3916(22) 0.4018(39) � � �
ASB3M2 0.43338(36) 0.6356(38) 0.49310(72) 0.49329(78) 0.6812(40) 0.6898(47) 0.8517(66)
ASB3M3 0.36971(36) 0.5382(28) 0.42442(59) 0.42449(71) 0.5800(33) 0.5842(60) 0.6969(96)
ASB3M4 0.30733(31) 0.4571(21) 0.35938(52) 0.35904(61) 0.4990(32) 0.5093(23) 0.6244(51)
ASB3M5 0.25275(38) 0.3906(15) 0.30510(65) 0.30402(58) 0.4288(23) 0.4381(25) � � �
ASB4M3 0.40446(27) 0.5767(22) 0.46126(38) 0.46130(43) 0.6228(19) 0.6243(25) 0.7383(93)
ASB4M4 0.34472(33) 0.4951(18) 0.39669(56) 0.39619(57) 0.5324(23) 0.5449(23) 0.6569(55)
ASB4M5 0.28740(27) 0.4309(16) 0.33855(42) 0.33856(50) 0.4646(20) 0.4662(28) � � �
ASB4M6 0.25112(28) 0.3675(13) 0.30058(45) 0.30219(43) 0.4129(21) 0.4243(21) � � �
ASB4M7 0.21017(31) 0.3577(11) 0.25691(49) 0.25652(52) 0.3590(34) 0.3889(22) � � �
ASB5M1 0.34496(50) 0.4881(25) 0.39154(72) 0.39107(77) 0.5333(28) 0.5343(28) 0.6501(40)
ASB5M2 0.27531(36) 0.3927(17) 0.32183(49) 0.32167(56) 0.4340(28) 0.4437(26) � � �
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APPENDIX B: AUTOCORRELATION

The local updates used by the (R)HMC algorithm
necessarily lead to residual autocorrelation between the
configurations retained in an ensemble. We devote this
appendix to estimating the autocorrelation length of such
effect, and to explaining the strategy adopted in our data
analysis to ensure that our statistical analysis is not
comprised by autocorrelation effects. As we shall see this
is dependent on the observable. For a given observable, O,
we define the autocorrelation function, COðτÞ, as follows:

COðτÞ≡
XNtraj−τ

i¼1

ðOi − hOiÞðOiþτ − hOiÞ
varðOÞ ; ðB1Þ

where τ labels the individual trajectory. In Eq. (B1), varðOÞ
is the ensemble variance of O, and Ntraj is the total number
of trajectories. After visually checking the behavior of
COðτÞ, the exponential autocorrelation time, τOexp, is esti-
mated by fitting COðτÞ=COð0Þ ¼ expð−τ=τOexpÞ.
The first observable we consider is the average plaquette,

P, defined in Eq. (6), measured on gauge configuration.
The corresponding autocorrelation time, τPexp, is then used
to determine the separation of trajectories, δtraj, between

two neighboring configurations selected for all the mea-
surements of 2-point mesonic correlation functions such
that δtraj ≳ τPexp. We report our results in Table XI, by
tabulating both the values of δtraj and τPexp. We additionally
compute the autocorrelation length of the 2-point correla-
tion function of the ps meson, taken at the choice of the
Euclidean time at which a plateau appears in the effective
mass. We denote this estimate of the autocorrelation as τpsexp.
This measurement provides an alternative way to estimate
the effect of autocorrelation in 2-pint functions involving
mesons. The resulting values of τPexp and τ

ps
exp are reported in

Table XI, from which one can conclude that the choice of
δtraj is sufficient to retain independent configurations for all
the spectral measurements we performed in this work.
As discussed in Secs. III C and III D, the observables

built from flowed fields through the gradient flow, includ-
ing the action density EðtÞ and the topological charge Q,
exhibit a long autocorrelation along the HMC trajectories.
We calculate autocorrelation functions for the action den-
sity at t ¼ w2

0 and the topological charge at t ¼ L2=32,
which we denote as CEðτÞ and CQðτÞ, by replacing O in
Eq. (B1) with Eðt ¼ w2

0Þ and Qðt ¼ L2=32Þ, respectively.
We then estimate the corresponding autocorrelation lengths,
τw0
exp and τQexp, from exponential fits to CEðτÞ and CQðτÞ.

TABLE X. Ratio of the masses of the flavored mesons included in the continuum and massless extrapolations, to the pseudoscalar
decay constant, mM=fps. The masses are measured by applying APE and Wuppertal smearing in the definition of the correlation
functions. The mass of the first excited state of vector mesons, v0, is determined through a GEVP analysis that includes the two,
inequivalent, vector and tensor meson operators. We also report the ratio of the masses of the first-excited and ground states of the vector
meson, mv0=mv.

Ensemble mps=fps ms=fps mv=fps mt=fps mav=fps mat=fps mv0=fps mv0=mv

ASB0M3 5.946(35) 8.814(73) 6.972(42) 6.964(42) 9.696(86) 10.018(70) 12.25(11) 1.758(11)

ASB1M4 5.991(50) 8.975(83) 6.980(59) 6.971(59) 9.809(88) 9.937(95) 12.08(13) 1.730(12)
ASB1M5 5.922(36) 8.650(96) 7.025(44) 7.030(44) 9.659(86) 9.844(88) 11.88(11) 1.691(11)
ASB1M6 5.553(32) 8.19(15) 6.915(40) 6.905(41) 9.879(74) 9.96(11) � � � � � �
ASB2M6 6.219(46) 8.987(71) 7.145(53) 7.142(53) 9.637(93) 9.73(10) 11.60(13) 1.624(14)
ASB2M7 6.069(39) 8.68(11) 7.047(47) 7.062(46) 9.25(14) 9.54(17) 12.10(11) 1.716(11)
ASB2M8 5.962(49) 8.480(96) 7.014(57) 7.001(59) 9.716(95) 9.74(11) 11.91(13) 1.698(13)
ASB2M9 5.854(37) 8.939(62) 7.026(46) 7.024(45) 9.732(85) 9.63(13) 12.48(11) 1.776(11)
ASB2M10 5.806(28) 8.299(71) 7.017(36) 7.033(35) 9.799(62) 10.145(68) � � � � � �
ASB2M11 5.545(29) 8.533(66) 6.915(37) 6.889(38) 9.740(74) 9.99(11) � � � � � �
ASB3M2 6.204(47) 9.099(88) 7.059(55) 7.062(55) 9.753(93) 9.87(10) 12.19(13) 1.727(13)
ASB3M3 6.213(59) 9.045(96) 7.133(69) 7.134(69) 9.75(11) 9.82(14) 11.71(19) 1.642(23)
ASB3M4 6.121(42) 9.104(70) 7.158(49) 7.151(50) 9.938(86) 10.143(83) 12.44(14) 1.737(14)
ASB3M5 5.810(32) 8.980(58) 7.013(40) 6.989(39) 9.856(75) 10.072(81) � � � � � �
ASB4M3 6.283(49) 8.959(79) 7.166(55) 7.166(55) 9.675(82) 9.698(81) 11.47(17) 1.601(20)
ASB4M4 6.172(40) 8.865(63) 7.103(47) 7.094(47) 9.532(73) 9.757(77) 11.76(13) 1.656(14)
ASB4M5 6.012(38) 9.014(64) 7.083(45) 7.083(45) 9.720(69) 9.753(80) � � � � � �
ASB4M6 5.919(30) 8.662(54) 7.084(38) 7.122(37) 9.730(70) 10.000(73) � � � � � �
ASB4M7 5.646(33) 9.609(61) 6.902(41) 6.891(41) 9.64(10) 10.447(81) � � � � � �
ASB5M1 6.360(40) 8.999(66) 7.219(46) 7.211(46) 9.833(76) 9.852(76) 11.99(10) 1.660(11)
ASB5M2 6.084(34) 8.677(60) 7.111(40) 7.108(40) 9.590(80) 9.804(76) � � � � � �
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We present the results for τw0
exp and τQexp in Table XI. The

measurements of the flowed observables have been carried
out on the configurations already separated by δtraj trajec-
tories, leaving a few hundred samples much smaller than
Ntraj. We notice that some correlation lengths obtained
in this way are much larger than δtraj. In these cases, the
exponential function may be insufficient to capture the
detailed magnitude of autocorrelation effects. The errors
quoted in our results have been estimated through standard
bootstrapping technique. Nevertheless, the clear conclusion
of this exercise is that the autocorrelation length of flowed
observables is substantially larger than that of the average
plaquette and the 2-point correlation functions of ps

mesons. We use the estimated autocorrelation length,
τw0
exp, for guidance in the selection of the subset for a given
ensemble, containing configurations separated by δGFtraj ≃
τw0
exp trajectories, for the measurements of the gradient flow
scale, w0=a.

APPENDIX C: HYPERQUARK MASS
DEPENDENCE

In this appendix we provide additional information on
the dependence of physical observables on the hyperquark
mass. We present our results for the Wilson flow scale,
w0=a, in Fig. 17. As expected, larger values of the lattice

TABLE XI. Autocorrelation lengths of the average plaquette, τPexp, of the 2-point correlation function of ps meson,
τpsexp, of the energy density at the flow time t ¼ ðw0=aÞ2, τw0

exp, and of the topological charge at the flow time
t ¼ L2=32, τQexp, in units of HMC trajectories. The separations in trajectories between adjacent configurations used
for the measurements of spectral quantities and the gradient flow scale are denoted by δtraj and δGFtraj, respectively.

Ensemble δtraj τPexp τpsexp δGFtraj τw0
exp τQexp

ASB0M1 24 15.3(1.8) 8.7(2.1) 72 74.1(8.2) 69.5(2.9)
ASB0M2 16 10.4(1.2) 4.35(83) 48 43.4(3.9) 130.2(7.8)
ASB0M3 16 10.6(1.3) 8.5(1.7) 112 119(12) 105(11)

ASB1M1 28 15.6(2.0) 6.0(1.3) 84 64.7(4.5) 32.4(3.0)
ASB1M2 20 7.4(1.2) 4.05(79) 100 94.7(5.0) 81.1(5.3)
ASB1M3 16 6.93(79) 7.5(1.6) 80 76.2(3.6) 64.6(2.2)
ASB1M4 16 8.08(67) 3.87(96) 64 77.8(2.6) 273(20)
ASB1M5 12 5.98(45) 4.31(68) 144 120.2(1.0) 115.6(4.4)
ASB1M6 12 5.63(62) 3.06(58) 240 259.0(6.4) 96.4(1.7)

ASB2M1 12 12.5(2.3) 4.98(68) 36 31.4(2.2) 22.9(1.1)
ASB2M2 20 18.3(5.3) 7.3(4.7) 60 62.6(5.5) 54.8(5.5)
ASB2M3 20 8.2(1.5) 8.4(1.7) 120 107.2(5.4) 63.3(5.1)
ASB2M4 20 12.5(1.9) 8.3(1.6) 60 65.4(7.5) 63.5(4.3)
ASB2M5 20 8.30(99) 5.8(1.1) 80 69.5(6.1) 159.2(7.1)
ASB2M6 12 6.09(68) 5.60(91) 144 124.43(93) 170.4(5.6)
ASB2M7 12 6.19(99) 6.5(1.7) 240 324(14) 225.6(7.9)
ASB2M8 20 6.35(52) 5.0(1.0) 160 191.8(5.9) 299.2(8.4)
ASB2M9 12 4.28(46) 4.77(93) 144 127.8(2.7) 61.5(8.3)
ASB2M10 12 5.38(29) 3.96(75) 108 89.3(3.1) 207(13)
ASB2M11 12 5.50(32) 3.80(48) 120 87.1(3.9) 47.5(6.8)

ASB3M1 12 6.36(65) 6.0(1.3) 84 88.7(2.1) 94.4(7.7)
ASB3M2 20 5.38(50) 3.53(85) 120 223(21) 118.3(5.1)
ASB3M3 12 3.64(36) 4.00(78) 96 80.5(1.9) 140.6(8.9)
ASB3M4 8 2.98(19) 4.23(93) 160 155.9(7.4) 348(12)
ASB3M5 8 3.40(43) 2.83(18) 144 125.9(1.6) 569(12)

ASB4M1 12 5.52(75) 2.61(44) 60 60.5(1.0) 30.00(93)
ASB4M2 12 3.92(41) 1.21(47) 84 82.5(2.2) 156.1(9.2)
ASB4M3 12 3.82(21) 4.16(84) 108 75.57(59) 88.1(4.0)
ASB4M4 8 3.44(35) 2.33(38) 104 88.6(1.1) 153.5(6.7)
ASB4M5 12 4.69(25) 4.06(80) 72 60.4(3.2) 491(30)
ASB4M6 12 4.33(31) 5.5(1.0) 84 63.1(1.0) 345(25)
ASB4M7 12 3.37(35) 5.19(97) 192 174(10) 814(52)

ASB5M1 8 3.89(15) 5.1(1.3) � � � � � � 368(18)
ASB5M2 12 5.95(80) 3.06(53) 72 74.4(2.9) 193(18)
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coupling, β, generically translate into larger values of w0=a,
for any fixed value of the pseudoscalar mass squared, m̂2

ps.
But we also find that w0=a changes substantially as the
pseudoscalar mass varies, for fixed β. With a few excep-
tions (the three heaviest ensembles with β ¼ 6.65 and the
five heaviest with β ¼ 6.7), we find approximately linear
dependence of w0=a on m̂2

ps. In the eight exceptions, all
characterized by large values of the hyperquark mass, we
find that w0=a changes significantly, despite the fact that

the pseudoscalar mass, m̂ps, is approximately constant. In
particular, there appears to be an upper bound on the
pseudoscalar mass, expressed in units of the Wilson flow
scale, at fixed β.
The ratio between mass and decay constant of the

flavored pseudoscalar meson, mps=fps, is shown in Fig. 18,
as a function of m̂2

ps, for all the ensembles. As discussed
above, the measured values of m̂2

ps at fixed β value are
bounded from above. We see that in the case of the heavy
ensembles with β ¼ 6.65 and 6.7, also the ratio mps=fps
converges, so that these heavier ensembles are, in practical
terms, testing the same physical scales.

APPENDIX D: PCAC MASS

In the Wilson-Dirac fermionic action, the hyperquark
mass receives additive renormalization. To provide a
definition of hyperquark mass that vanishes when the
global symmetry is restored, we use a Ward-Takahashi
identity, and introduce the PCAC mass. We devote this
appendix to providing such definition, and fixing
conventions.
Using the PCAC relation, the variation of an operator,O,

under the action of an infinitesimal chiral transformation,
can be written as

h0jδxOðyÞj0i ¼ h0jf∂μOμ
avðxÞ þ 2mPCACOpsðxÞgOðyÞj0i;

ðD1Þ

where mPCAC is the PCAC mass, while Oμ
avðxÞ and OpsðxÞ

are the axial-vector current and the pseudoscalar density,
respectively, defined as

Oμ
avðxÞ ¼ Ψ̄ðxÞγ5γμΨ;OpsðxÞ ¼ Ψ̄ðxÞγ5Ψ: ðD2Þ

If one specifiesOðxÞ ¼ OpsðxÞ and μ ¼ 0, and integrates
over the spatial coordinates, the left-hand side of Eq. (D1)
vanishes, and one finds

mPCAC ¼ −
∂0hO0

avðtÞOpsð0Þi
2hOpsðtÞOpsð0Þi

¼ −
∂0Cav;psðtÞ
2Cps;psðtÞ

; ðD3Þ

In the case of discretized, Euclidean time, with finite
extent, T, as in lattice calculations, after taking into account
the asymptotic behavior of the correlation functions, one
can define the effective PCAC mass as

meff
PCAC ≡ −

meff
ps

sinhmeff
ps

Cav;psðtþ 1Þ − Cav;psðt − 1Þ
4Cps;psðtÞ

: ðD4Þ

We plot the resulting values for amPCAC, as a function of
the bare mass, am0, in Fig. 19. We perform polynomial fits
to the data, for each choice of lattice coupling, β. We find
that a linear fit describes well the results obtained from the

FIG. 17. The Wilson flow scale, w0=a, as a function of the
pseudoscalar mass squared, expressed in units of the Wilson
scale, w0, and denoted as m̂2

ps, for all the available choices of
lattice coupling, β. The measurement of the pseudoscalar mass is
extracted from correlation functions defined with Z2 ⊗ Z2

stochastic wall sources and sinks. The value of β is indicated
by the color and marker, as shown in the legend.

FIG. 18. The ratio between mass and decay constant of the
flavored, pseudoscalar mesons, mps=fps, as a function of the
square of the mass of the pseudoscalar, expressed in units of
Wilson flow scale. The measurement are extracted from corre-
lation functions defined with Z2 ⊗ Z2 stochastic wall sources and
sinks. The value of β is indicated by the color and marker, as
shown in the legend.
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ensembles used for the continuum extrapolations, while a
quadratic term is required to extend the fits to all the ensem-
bles, including the heavier ones. Because of the smallness
of the uncertainties (which include only statistical errors),
some of the values of the chi-square per degrees of freedom,
χ2=Nd:o:f , are larger than unity. Yet, for the qualitative
purposes of this appendix, this is sufficient to provide support
for the usage of mPCAC as a replacement of bare hyperquark
mass m0 and for our choice of excluding the heavier
ensembles from the continuum and massless extrapolations.

APPENDIX E: DEFT, SIMPLIFIED

We devote this appendix to examining an alternative
approach, based upon dEFT [304–319], to the description
of the long distance behavior of the theory. We restrict our
attention to the mass and decay constant of the pseudo-
scalar mesons, ps, measured in lattice units, at fixed lattice
couplings. We notice that the presence in the spectrum of a
light scalar particle, the dilaton, is an essential feature of
dEFT, which we cannot test with the available data and
measurements. Nevertheless, the scaling relations built into
dEFT can be tested without a priori knowledge of the
properties (nor the existence) of such a particle, and it is
hence legitimate to carry out this exercise. To this purpose,
we borrow notation from Ref. [314], and write the scaling
relation

m2
psf

ð2−yÞ
ps ¼ Cmf; ðE1Þ

where the low-energy constant, C, is related to the
fermion condensate, while y is associated with its scaling

dimension [399]. We find it convenient to take the logarithm
of this expression, and consider instead the expression

log

	
am2

ps

mf



¼ C̃þ Y log ½a2f2ps�; ðE2Þ

where Y ¼ y
2
− 1, C̃ ¼ logC, and we identify mf ¼ mPCAC.

In Fig. 20, we plot the left-hand side of Eq. (E2) as a
function of logða2f2psÞ, for all the available values of the

FIG. 19. The PCAC mass, amPCAC, as a function of the Wilson-Dirac mass, am0, measured in all the ensembles used in this work,
together with linear (dashed) and polynomial (dotted) fits obtained for fixed lattice coupling, β. The value of β is indicated by the color
and marker, as shown in the legend.

FIG. 20. Logarithmic plot of the scaling relation between
fermion mass, amf ¼ amPCAC, pseudoscalar mass, amps, and
decay constant, afps, for all the available values of the lattice
coupling, β. The value of β is indicated by the color and marker,
as shown in the legend. The solid lines are the results
of dEFT fits.
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coupling, β. As shown in the figure, Eq. (E2) describes
qualitatively well the results, over the whole mass range,
while we find that the quality of the fits worsens as β
increases. Surprisingly, the resulting values of the scaling
dimension, y, are independent of the lattice coupling,
y ≃ 2.6. This is lower than the naive, engineering dimen-
sion of the fermion condensate, y0 ¼ 3, but larger than the
expectations for a theory in close proximity of edge of the
conformal window, y� ¼ 2—see Ref. [203], the recent
Ref. [400] and references therein.
We conclude by repeating that, even if the dEFT fit

to the data yields intriguing results, it remains a somewhat

speculative exercise. Besides the aforementioned fact
that we do not know whether a light scalar singlet is
present in the spectrum, this analysis relies on the use
of continuum relations, while we know that the values
of β available are such that significant corrections are
expected to be for this analysis due to discretization
effects. Another concern might originate from the obser-
vation that the quality of the dEFT fit worsens as the β
value increases. Nevertheless, the results are encouraging,
and it would be interesting to redo such analysis on lattice
data that is closer to both the continuum and the massless
limits.
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