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Masses of the singly heavy baryons (SHBs), composed of a heavy quark and a light diquark, are studied
from the viewpoints of heavy-quark spin symmetry (HQSS) and chiral-symmetry restoration at finite
temperature. We consider the light diquarks with spin-parity JP ¼ 0� and 1�. Medium corrections to the
SHBs are provided through the diquarks whereas the heavy quark is simply regarded as a spectator. The
chiral dynamics of the diquark are described by the Nambu-Jona-Lasinio (NJL) model having (pseudo)
scalar-type and (axial)vector-type four-point interactions and the six-point ones responsible for the Uð1Þ
axial anomaly. The divergences are handled by means of the three-dimensional proper-time regularization
with both ultraviolet and infrared cutoffs included, in order to eliminate unphysical imaginary parts. As a
result, the mass degeneracies between the parity partners of all the SHBs are predicted in accordance with
the chiral restoration. In particular, the HQS-doublet SHBs exhibit clear mass degeneracies due to the
absence of the direct anomaly effects. We also predict a mass degeneracy of Σc and Ωc above the
pseudocritical temperature Tpc of chiral restoration, which results in a peculiar mass hierarchy for positive-
parity HQS-doublet SHBs where Ξ0

c becomes heavier than Ωc Besides, it is found that the decay width of
Σc → Λcπ vanishes above Tpc reflecting a closing of the threshold. The predicted modifications of masses
and decay widths of the SHBs are expected to provide future heavy-ion collision experiments and lattice
simulations with useful information on chiral dynamics of the diquarks.

DOI: 10.1103/PhysRevD.111.074032

I. INTRODUCTION

A diquark, a cluster made of two quarks, is known as a
useful building block of hadrons. In particular, light
diquarks play a significant role in determining dynamical
properties of singly heavy baryons (SHBs) constructed
by two light quarks (u; d; s) and one heavy quark (c; b),
since the heavy quark can be regraded as a spectator due to
its heavy mass from the aspect of heavy-quark spin
symmetry (HQSS) [1,2]. Having focused on this advan-
tage of diquarks, e.g., theoretical analyses based on the
quark model [3,4] and the diquark–heavy-quark potential
model [5–9] have been conducted.

It is well known that quantum chromodynamics (QCD)
has (approximate) chiral symmetry for light flavors, and
this symmetry is spontaneously broken in the vacuum.
Thus, it is inevitable to take chiral dynamics into account in
describing light hadrons from QCD point of view. In this
regard, pions and kaons are regarded as the Nambu-
Goldstone (NG) bosons associated with chiral symmetry
breaking. Thanks to those chiral-symmetry aspects, cou-
pling properties among the NG bosons and other light
hadrons are delineated in a rather systematic way [10,11].
In addition to the light hadrons, chiral symmetry governs
the dynamics of the diquarks in SHBs too. So far, mass
spectrum and decay properties of the SHBs [12–17]
including their pentaquark pictures [18–20] have been
investigated based on chiral models of the diquarks.
Chiral symmetry is a continuous symmetry in terms of

left-handed and right-handed quarks defined through the
parity eigenvalues. Hence, we are able to examine not only
the ground state but also the excited state carrying an
opposite parity, i.e., the parity partner or chiral partner, in
a unified way when the linear representation of chiral
symmetry is adopted [10,11]. The mass difference between
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these two states are generated by the spontaneous break-
down of chiral symmetry, and thus their masses tend to
become degenerate as chiral symmetry is restored. This
characteristic feature is often referred to as the chiral-
partner structure [21].
Another important symmetry aspect of QCD is the

nonconservation of the Uð1Þ axial charge due to topologi-
cal gluon configurations, i.e., the Uð1Þ axial anomaly [22].
For light hadrons this anomaly is essential to explain why
the η0 meson is so heavy that it cannot be regarded as an NG
boson [23]. For diquarks, the direct anomaly effects were
found to lead to the so-called inverse mass hierarchy of 0−

diquarks; the mass of ud ð0−Þ diquark can be larger than
that of su ð0−Þ [and sd ð0−Þ] diquark in contrast to the naive
expectation from their quark contents [15].
One useful testing ground to explore chiral dynamics of

hadrons in more detail is finite-temperature system, since in
such hot medium chiral symmetry tends to be restored
[24,25]. For instance, focusing on the chiral-partner struc-
ture our understanding of the mass origin of hadrons is
deepened. Moreover, this deeper understanding enables us
to shed light on coupling properties among the hadrons,
particularly with NG bosons, by virtue of the low-energy
theorems. The mass degeneracies between the chiral
partners in medium have been examined for various
hadrons [26–37] including open heavy systems [38–42].
In our previous paper [43], modifications of spin-0

diquark masses at finite temperature were investigated
based on a chiral model, the Nambu-Jona-Lasinio (NJL)
model, particularly focusing on the Uð1Þ axial anomaly
effects and chiral restoration. As a result, the inverse mass
hierarchy driven by the Uð1Þ axial anomaly was found to
persist at any temperatures. Furthermore, we found that the
anomaly effects delay the mass degeneracies between the
chiral partners of ud diquarks at high temperature.
In this paper, we extend the previous work by taking

spin-1 diquarks into account and present comprehensively
predictions of the mass corrections of the diquarks in
medium. In terms of multiplets of HQSS, the spin-0
diquarks and spin-1 diquarks lead to HQS-singlet SHBs
with J ¼ 1

2
and HQS-doublet ones with J ¼ 1

2
and 3

2
,

respectively [44]. Therefore, we exhibit the mass modifi-
cations in terms of these SHBs as appropriate observables
in order to provide future heavy-ion collision experiments
and lattice simulations with useful information on chiral
properties of the diquarks.
In Refs. [8,9], it was predicted that the mass of Σc baryon

becomes smaller than that ofΛc baryon within the diquark–
heavy-quark potential description as chiral symmetry is
restored. This peculiar mass ordering were, however,
obtained by simply reducing the value of chiral conden-
sates, the order parameter of chiral-symmetry breaking,
although in more realistic situation medium effects give rise
to other corrections upon the SHB masses. Thus, in the
present work we also focus on the mass hierarchy of Σc and

Λc and the fate of Σc → Λcπ decays at high temperature
paying particular attentions to the threshold value.
This paper is organized as follows. In Sec. II we

introduce our NJL model toward describing the dynamics
of spin-0 and spin-1 diquarks. In Secs. III and IV, we
explain our method to evaluate the diquark masses and to
regularize the divergences, respectively. Based on these
procedures, numerical results on the SHB masses at finite
temperature are presented in Sec. V. Some discussions on
the mass hierarchy of the spin-1 diquarks are provided in
Sec. VI. Moreover, the fate of the decay width of Σc → Λcπ
at high temperature is examined in Sec. VII. Then, finally
we conclude the present study in Sec. VIII.

II. MODEL CONSTRUCTION

A. NJL Lagrangian

This paper is devoted to examining the mass corrections
of low-lying HQS-singlet and HQS-doublet SHBs at high
temperature based on a chiral model of the composing
diquarks. To this aim, in this subsection we introduce our
NJL model to describe both the spin-0 and spin-1 diquarks.
Our NJL model takes the following form:

LNJL ¼ L2q þ LS
4q þ LV

4q þ Lanom
6q : ð1Þ

The first term L2q includes the kinetic and mass terms of
constituent quarks

L2q ¼ ψ̄ði=∂ −MÞψ ; ð2Þ

where ψ ¼ ðu; d; sÞ is the quark triplet and M is the 3 × 3
quark mass matrix. In the present work we assume the
SUð2Þ isospin symmetry so that M ¼ diagðmq;mq;msÞ.
The second and third pieces LS

4q and LV
4q in Eq. (1)

represent the (pseudo)scalar-type and (axial)vector-type
four-point interactions, respectively, which are given by [45]

LS
4q ¼ GS½ðψ̄λXfψÞ2 þ ðψ̄iγ5λXfψÞ2�

þHS½jψTCλAfλ
A0
c ψ j2 þ jψTCγ5λAfλ

A0
c ψ j2�; ð3Þ

and

LV
4q ¼ −HV ½jψTCγμλSfλ

A0
c ψ j2 þ jψTCγμγ5λAfλ

A0
c ψ j2�: ð4Þ

In these equations, GS is a coupling constant controlling
the formation of spin-0 mesons, while HS and HV are
those for spin-0 diquarks and spin-1 diquarks. C ¼ iγ2γ0

is the charge-conjugation matrix. Besides, λXf and λXc are
Hermitian 3 × 3 matrices in flavor and color spaces. Then,
the superscript X runs over X ¼ 0–8 with λX¼0

fðcÞ ¼ ð1= ffiffiffi
3

p Þ1
and λX¼1–8

fðcÞ being the Gell-Mannmatrices. The indicesA (A0)
and S (S0) take only the antisymmetric and symmetric parts
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of X, respectively, more explicitly, AðA0Þ ¼ 2; 5; 7 and
SðS0Þ ¼ 0; 1; 3; 4; 6; 8. We note that these selections for
diquark channels are derived from the Pauli principle of
the quark bilinears, with which the allowed operators and
quantum numbers are summarized in Table I. We also note
that the spin-1 meson channels which could correct the
temperature dependences of the pion decay constant are
abbreviated in our present model so as to focus on the mass
spectrum of the diquarks, since such effects are expected to
be comparably suppressed. On the other hand, the spin-0
meson coupling is necessary to determine the chiral proper-
ties in both the vacuum and high temperature.
On the other hand, we have assumed that.
The interactions (3) and (4) are constructed in a chiral

symmetricway. To see this,we introduce the following quark
composite operators whose flavor indices are uncontracted:

ϕij ¼ ðψ̄RÞaj ðψLÞai ;
ðηLÞai ¼ ϵijkϵ

abcðψT
LÞbjCðψLÞck;

ðηRÞai ¼ ϵijkϵ
abcðψT

RÞbjCðψRÞck;
η̃a;μij ¼ ϵabcψT;b

R;i Cγ
μψc

L;j; ð5Þ

with ψRðLÞ ¼ 1�γ5
2

ψ being the right-handed (left-handed)
quark field, while i; j; � � � and a; b; � � � denote the flavor and
color indices, respectively. Since the quark field transforms
asψRðLÞ → gRðLÞψRðLÞwith gRðLÞ ∈Uð3ÞRðLÞ underUð3ÞR ×
Uð3ÞL chiral transformation, the chiral transformation laws
of the bilinears in Eq. (5) read

ϕ → gLϕg
†
R; η̃a;μ → gRη̃a;μgTL;

ηaL → g�Lη
a
L; ηaR → g�Rη

a
R: ð6Þ

Here, using the identities

tr½ϕ†ϕ� ¼ 1

8
½ðψ̄λXfψÞ2 þ ðψ̄ iγ5λXfψÞ2�;

η†LηL þ η†RηR ¼ 1

2
½jψTCλAfλ

A0
c ψ j2 þ jψTCγ5λAfλ

A0
c ψ j2�;

tr½η̃†μη̃μ� ¼ 1

8
½jψTCγμλSfλ

A0
c ψ j2 þ jψTCγ5γμλAfλ

A0
c ψ j2�;

ð7Þ

one can rewrite the four-point interactions (3) and (4) into

LS
4q ¼ 8GStr½ϕ†ϕ� þ 2HSðη†LηL þ η†RηRÞ; ð8Þ

and

LV
4q ¼ 8tr½η̃†μη̃μ�; ð9Þ

which are indeed chiral symmetric from Eq. (6).
The last contribution in Eq. (1), Lanom

6q ., is responsible for
the Uð1Þ axial anomaly. That is, this term is invariant under
SUð3ÞL × SUð3ÞR chiral transformation but violates Uð1Þ
axial symmetry. In this work we employ the following
interactions:

Lanom
6q ¼ −8Kðdetϕþ detϕ†Þ þ K0ðηTLϕη�R þ ηTRϕ

†η�LÞ:
ð10Þ

The first term is the so-called Kobayashi-Maskawa-’tHooft
(KMT) determinant interaction [46–49] while the second
one describes the anomalous coupling among the mesons
and diquarks [50,51].
The spontaneous breaking of chiral symmetry can be

expressed by generation of the vacuum expectation values
(VEVs) of ψ̄ψ . (We denote the VEVs by hOi.) Under the
SUð2Þ isospin symmetry, these VEVs are given by
hϕi ¼ diagðhq̄qi; hq̄qi; hs̄siÞ. Then, by employing the
following approximation in the four-point and six-point
interactions in Eq. (1):

XY ≈ XY þ hXiY þ hYiX − hXihYi;
XYZ ≈ hXiYZ þ hYiXZ þ hZiXY þ hXihYiZ

þ hYihZiX þ hZihXiY − 2hXihYihZi; ð11Þ

at the mean-field level the masses of q ð¼ u; dÞ and s
quarks read

Mq ¼ mq − 4GShq̄qi þ 2Khq̄qihs̄si;
Ms ¼ ms − 4GShs̄si þ 2Khq̄qi2; ð12Þ

respectively. From this formula one can see that the
anomalous K interactions provide hs̄si contributions to
the u (d) quark masses while they only generate hq̄qi ones
to the s quark mass.

B. Kernel

The chiral symmetric interactions which is capable of
generating spin-0 mesons and spin-0 and spin-1 diquarks
have been introduced in Sec. II A. Their masses are read off
by pole positions of the amplitude from the corresponding
composite operators [52]. The procedure for the meson
channels is already well-known, however, for the diquark
channels it would not be straightforward, particularly to

TABLE I. Each quantum number of the spin-0 and spin-1
diquark operators incorporated in the present NJL model.

Operator JP Flavor Color 2Sþ1LJ

ψTCγ5λAfλ
A0
c ψ 0þ 3̄f 3̄c

1S0
ψTCλAf λ

A0
c ψ 0− 3̄f 3̄c

3P0

ψTCγμλSfλ
A0
c ψ 1þ 6f 3̄c

3S1
ψTCγμγ5λAfλ

A0
c ψ 1− 3̄f 3̄c

3P1
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find appropriate kernels in computing the amplitude, due to
constraints from the Pauli principle. For this reason, before
moving on to the evaluation of the scattering amplitudes, in
this subsection, we present proper diquark operators and
rewrite the interaction Lagrangians into a useful form to
find the corresponding kernels.
As for the spin-0 diquarks, the mass-eigenstate operators

are simply given by

ðηþÞai ¼
1ffiffiffi
2

p ðηR − ηLÞai ¼
1ffiffiffi
2

p ϵijkϵ
abcψT;b

j Cγ5ψc
k;

ðη−Þai ¼
1ffiffiffi
2

p ðηR þ ηLÞai ¼
1ffiffiffi
2

p ϵijkϵ
abcψT;b

j Cψc
k; ð13Þ

thus, we define

ηa½ud�þ
0

¼ ϵabcffiffiffi
2

p ðuT;bCγ5dc − dT;bCγ5ucÞ;

ηa½su�þ
0

¼ ϵabcffiffiffi
2

p ðsT;bCγ5uc − uT;bCγ5scÞ;

ηa½sd�þ
0

¼ ϵabcffiffiffi
2

p ðsT;bCγ5dc − dT;bCγ5scÞ; ð14Þ

and

ηa½ud�−
0
¼ ϵabcffiffiffi

2
p ðuT;bCdc − dT;bCucÞ;

ηa½su�−
0
¼ ϵabcffiffiffi

2
p ðsT;bCuc − uT;bCscÞ;

ηa½sd�−
0

¼ ϵabcffiffiffi
2

p ðsT;bCdc − dT;bCscÞ; ð15Þ

to refer to the scalar and pseudoscalar diquarks. Using
these operators the interaction terms in Eqs. (8) and (10)
which are relevant to the scattering amplitude within the
approximation (11) read

LS
int ¼ K½qq�þ

0
jηa½ud�þ

0

j2 þK½sq�þ
0
ðjηa½su�þ

0

j2 þ jηa½sd�þ
0

j2Þ
þK½qq�−

0
jηa½ud�þ

0

j2 þK½sq�−
0
ðjηa½su�þ

0

j2 þ jηa½sd�þ
0

j2Þ; ð16Þ

where each kernel is defined by

K½qq��
0
≡ 2HS ∓ K0

2
hs̄si;

K½sq��
0
≡ 2HS ∓ K0

2
hq̄qi: ð17Þ

The sign of K0 term incorporating the chiral condensates
differs for positive and negative diquarks which reflects the
chiral-partner structure; the kernels converge to the iden-
tical value when chiral symmetry is completely restored.

Besides, the hs̄si and hq̄qi contribute to the kernels for ud
and su (sd) diquarks, respectively, hence, again one can
understand that the anomalous contributions generate the
“flavor-mixing” structure with respect to the kernels. These
properties significantly affect the attractive force to form
the diquarks and their masses.
The spin-1 diquarks are rather complicated since the

flavor structure is correlated with the parity. For this reason,
we separate the operator η̃a;μij in Eq. (5) as

η̃a;μij ¼ 1

2
ðη̃6Þa;μij þ 1

2
ðη̃3̄Þa;μij ; ð18Þ

where the flavor sextet and antitriplet matrices are given by

η̃a;μ6 ¼

0
BBB@

ηfuugþ
1

1ffiffi
2

p ηfudgþ
1

1ffiffi
2

p ηfsugþ
1

1ffiffi
2

p ηfudgþ
1

ηfddgþ
1

1ffiffi
2

p ηfsdgþ
1

1ffiffi
2

p ηfsugþ
1

1ffiffi
2

p ηfsdgþ
1

ηfssgþ
1

1
CCCA

a;μ

;

η̃a;μ
3̄

¼

0
BBB@

0 1ffiffi
2

p η½ud�−
1

1ffiffi
2

p η½su�−
1

− 1ffiffi
2

p η½ud�−
1

0 1ffiffi
2

p η½sd�þ
1

− 1ffiffi
2

p η½su�−
1

− 1ffiffi
2

p η½sd�þ
1

0

1
CCCA

a;μ

; ð19Þ

with the axial-vector- and vector-diquark operators being

ðη̃fuugþ
1
Þa;μ ¼ ϵabcuT;bCγμuc;

ðη̃fddgþ
1
Þa;μ ¼ ϵabcdT;bCγμdc;

ðη̃fssgþ
1
Þa;μ ¼ ϵabcsT;bCγμsc;

ðη̃fudgþ
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðuT;bCγμdc þ dT;bCγμucÞ;

ðη̃fsugþ
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðuT;bCγμsc þ sT;bCγμucÞ;

ðη̃fsdgþ
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðdT;bCγμsc þ sT;bCγμdcÞ; ð20Þ

and

ðη̃½ud�−
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðuT;bCγ5γμdc − dT;bCγ5γμucÞ;

ðη̃½su�−
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðsT;bCγ5γμuc − uT;bCγ5γμscÞ;

ðη̃½sd�−
1
Þa;μ ¼ ϵabcffiffiffi

2
p ðdT;bCγ5γμsc − sT;bCγ5γμdcÞ; ð21Þ

respectively. Hence, with these operators the interaction
terms are read off from Eqs. (8) and (10) as
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LV
int ¼ −K1�ðjη̃a;μfuugþ

1

j2 þ jη̃a;μfddgþ
1

j2 þ jη̃a;μfssgþ
1

j2 þ jη̃a;μfsugþ
1

j2

þ jη̃a;μfsdgþ
1

j2 þ jη̃a;μ½ud�−
1

j2 þ jη̃a;μ½su�−
1

j2 þ jη̃a;μ½sd�−
1

j2Þ; ð22Þ

where the corresponding kernel

K1� ≡ 2HV ð23Þ

is commonly applied to all the spin-1 channels. This
universality is due to the absence of the direct anomaly
effects on the spin-1 diquarks.

III. BETHE-SALPETER EQUATION

The proper interactions in terms of the diquark
composite operators have been obtained in Sec. II B.
Based on them, here, we present the formula to evaluate
the diquark masses. In the following analysis, the color
indices will be omitted since SUð3Þ color symmetry is
trivial.
The amplitude T within the one-loop approximation

follows the Bethe-Salpeter equation

T ¼ KþKJT ↔ T ¼ ðK−1 − J Þ−1; ð24Þ

whereK is the kernel derived in Eq. (17) or Eq. (23) for the
respective channels, and J is the corresponding one-loop
function. For instance, J for ½qq�þ0 diquark reads

J ½qq�þ
0
¼ −4T

X
m

Z
d3p
ð2πÞ3 tr½γ5SðqÞðp

0Þγ5SCðqÞðpÞ�; ð25Þ

within the imaginary-time formalism at arbitrary temper-
ature T. In this equation, p0 ¼ pþ q with p0 ¼ iωm
(ωm ¼ ð2mþ 1ÞπT) and q0 ¼ iω̄n (ω̄n ¼ 2nπT) being
the fermionic and bosonic Matsubara frequencies, res-
pectively [53]. The quark propagator SðqÞðpÞ is defined
by the Fourier transformation of h0jTuðxÞūð0Þj0i [or
h0jTdðxÞd̄ð0Þj0i] which is given by

SðqÞðpÞ ¼
i

=p −Mq
¼ i
X
ζ¼p;a

ΛðqÞ
ζ ðpÞ

p0 − EðqÞ
p

γ0; ð26Þ

with EðqÞ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
, where

ΛðqÞ
p ðpÞ ¼ EðqÞ

p þ ðMqγ0 þ p · αÞ
2EðqÞ

p

;

ΛðqÞ
a ðpÞ ¼ EðqÞ

p − ðMqγ0 þ p · αÞ
2EðqÞ

p

; ð27Þ

(α ¼ γ0γ) are the projection operators for positive-energy
and negative-energy components. Meanwhile, SCðqÞðpÞ in

Eq. (25) is the charge-conjugated quark propagator defined
by the Fourier transform of h0jTuCðxÞūCð0Þj0i [or
h0jTdCðxÞd̄Cð0Þj0i] with uC ¼ CūT (dC ¼ Cd̄T) being the
charge-conjugated field. Using this definition one can
easily find SCðqÞðpÞ coincides with SðqÞðpÞ:

SCðqÞðpÞ ¼ SðqÞðpÞ: ð28Þ

This coincidence stems from the charge-conjugation sym-
metry of the system as long as we do not take chemical
potentials into account.
After taking the Dirac trace in Eq. (25) with Eq. (26), the

loop function turns into

J ½qq�þ
0
¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

Tζ0ζ
½qq�þ

0

× T
X
m

1

ðp0
0 − ηζ0E

ðqÞ
p0 Þðp0 − ηζE

ðqÞ
p Þ

; ð29Þ

with ηp=a ¼ �1, where the kinetic part

Tζ0ζ
½qq�þ

0

¼ tr½γ5ΛðqÞ
ζ0 ðp0Þγ5ΛðqÞ

ζ ðpÞ�

¼ EðqÞ
p0 E

ðqÞ
p þ ηζ0ηζðp0 · pþM2

qÞ
EðqÞ
p0 E

ðqÞ
p

ð30Þ

represents the spin couplings among the quarks and diquark.
The information of thermal excitations is described by the
second line of Eq. (29) with the Matsubara summation. The
summation in Eq. (29) is straightforwardly performed with
the help of the identity [53]

T
X
m

1

ðiωm þ iω̄n − ϵ0Þðiωm − ϵÞ ¼
fFðϵÞ − fFðϵ0Þ
iω̄n − ϵ0 þ ϵ

; ð31Þ

to express the thermal contributions in terms of the Fermi-
Dirac distribution function

fFðϵÞ ¼
1

eϵ=T þ 1
: ð32Þ

Then, after the analytic continuation to the real time, finally
one can express J ½qq�þ

0
in the following useful way:

J ½qq�þ
0
¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
1þ ηζ0ηζðp0 · pþM2

qÞ
EðqÞ
p0 E

ðqÞ
p

�

×
1 − fFðηζEðqÞ

p Þ − fFðηζ0EðqÞ
p0 Þ

q0 − ηζ0E
ðqÞ
p0 − ηζE

ðqÞ
p

: ð33Þ

From this loop function together with the kernel (17), the
scattering amplitude leading to the ½qq�þ0 diquark is evaluated
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from theBethe-Salpeter equation (24). Then, finally themass
of ½qq�þ0 diquark is numerically obtained by finding the pole
position of the amplitude at rest frame q ¼ 0. It should be
noted that the ultraviolet (UV) divergences in Eq. (33) are
regularized by inserting a regularization function as will be
explained in Sec. IV.
In a similar way, loop functions of the spin-1 diquarks,

e.g., fqqgþ1 diquark: J fqqgþ
1
, can be evaluated. That is,

from the interaction Lagrangian (22) and the appropriate
operator (20), the loop function J fqqgþ

1
reads

J μν
fqqgþ

1

¼ 4T
X
m

Z
d3p
ð2πÞ3 tr½γ

μSðqÞðp0ÞγνSCðqÞðpÞ�: ð34Þ

Here, Using the charge-conjugation symmetry for the
propagator in Eq. (28) and calculating the trace of the
Dirac matrices, one can get

J μν
fqqgþ

1

¼ −4
Z

d3p
ð2πÞ3

X
ζ0;ζ¼p;a

Tζ0ζ;μν
fqqgþ

1

×
1 − fFðηζEðqÞ

p Þ − fFðηζ0EðqÞ
p0 Þ

q0 − ηζ0E
ðqÞ
p0 − ηζE

ðqÞ
p

ð35Þ

with the summation formula (31), where the kinetic part is
of the form

Tζ0ζ;μν
fqqgþ

1

¼ 1

EðqÞ
p0 E

ðqÞ
p

½EðqÞ
p0 E

ðqÞ
p ð2gμ0gν0 − gμνÞ

þ ηζE
ðqÞ
p0 p

jðgμ0gνj þ gμjgν0Þ − ηζ0E
ðqÞ
p p0i

× ðgμigν0 þ gμ0gνiÞ − ηζ0ηζp0ipjðgμigνj
− gμνgij þ gμjgiνÞ − ηζ0ηζM2

qgμν�: ð36Þ

From these equations one sees that J 00
fqqgþ

1

, J 0j
fqqgþ

1

, and

J ij
fqqgþ

1

differ from each other, reflecting the violation of

Lorentz covariance, even at zero temperature due to the
present three-dimensional integral form.
In the present study, we only focus on the mass of

diquarks defined by pole positions of the scattering
amplitudes at rest: q ¼ 0. In this limit, only the spatial
components of the spin-1 diquarks become physical so that
only the J ij

fqqgþ
1

contributes to mass evaluation. Moreover,

when q ¼ 0, J ij
fqqgþ

1

must be proportional to δij, hence, the

matrix structure of the Bethe-Salpeter equation (24) is
reduced to a handleable form.
In a similar manner, all the one-loop functions are

evaluated within three-dimensional integrals that include
UV divergences. They are summarized in Appendix A. It is
important to see that the scalar diquark and the vector
diquark may mix through derivative couplings when the

flavor structure is identical. Although we take q → 0 limit,
such mixing effects survive since the zeroth component q0

of the momentum is not vanishing. In other words, for
instance, J ½qq�þ

0
and J 00

½qq�−
1

are correlated by the mixed loop

function J 0
fqqgþ

0
½ud�−

1

∝ q0. Therefore, although the J 00
½qq�−

1

decouples from evaluating the ½qq�−1 diquark mass with
q → 0, it provides corrections to the ½qq�þ0 mass. Such
processes are also explicitly shown in Appendix A.
Another notable point is that the loop functions of the

diquarks can share the same structure with those of mesons.
In fact, from Eq. (25) together with Eq. (28), one can notice
that the loop function of ½qq�þ0 is essentially the same as the
pion’s one.1 The duality is summarized as2

0þdiquark ⇔ 0−meson;

0−diquark ⇔ 0þmeson;

1þdiquark ⇔ 1−meson;

1−diquark ⇔ 1þmeson:

Finally, we comment on the “gauge invariance” of the
loop functions of (axial)vector diquarks. In association
with the above duality between diquarks and mesons,
the diquark one-loop functions should satisfy the Ward-
Takahashi identities (WTIs) derived from the current (non)
conservations. In fact, the loop structure of Eq. (34)
together with charge-conjugation symmetry (28) is found
to be identical to the familiar vector current-current
correlator as in quantum electrodynamics (QED) [56].
When we employ the expressions of three-dimensional
integrals as in the present work, the WTI for the spatial
components are violated due to regularization artifacts
at T ¼ 0. More concretely, one sees in Appendix A
that J ij

fqqgþ
1

jT¼0 leads to quadratic divergences with

a naive three-dimensional cutoff: J ij
fqqgþ

1

jT¼0 ∼ 4δij=

ð3π2ÞΛ2
UV þ � � �, while the other parts, J 00

fqqgþ
1

and

J 0j
fqqgþ

1

, do not. Here, we note that when the rest frame

q ¼ 0 is adopted to estimate the diquark masses, the
current (non)conservation law becomes trivial since in this
limit there is no current flow. Thus, as long as we stick to

1The loop function of pion is given by

J π ¼ NcT
X
m

Z
d3p
ð2πÞ3 tr½iγ5SðqÞðp

0Þiγ5SðqÞðpÞ�; ð37Þ

with Nc ¼ 3 [43]. Regardless of the overall factor stemming from
the color factor, indeed the structure is the same as J ½qq�þ

0
.

2This duality applies to the kernels (coupling constants) as well
when the number of colors is Nc ¼ 2, i.e., in two-color QCD
(QC2D), owing to the so-called Pauli-Gürsey SUð4Þ symmetry
relating dynamics of mesons and diquarks [54,55].

DAIKI SUENAGA and MAKOTO OKA PHYS. REV. D 111, 074032 (2025)

074032-6



the rest frame, at least the WTIs derived from the current
(non)conservation are trivially satisfied despite the emer-
gence of the quadratic divergences. Besides, the temper-
ature-dependent parts of the loop functions which are the
main target of this work are not suffered by the regulari-
zation artifacts, since these contributions are always finite
due to the Boltzmann suppression factor. For these reason-
ings, in the present work, we proceed with the present
three-dimensional-integral form. For more detail, see
Appendix B. In this Appendix, realization of the WTIs
for T-dependent parts with general q0 and q is explicitly
shown in Eq. (B9).3

IV. REGULARIZATION

The UV divergences of the loop functions must be
regularized when computing the scattering amplitudes
numerically. In the present work we employ the three-
dimensional proper-time regularization which includes
both UV and infrared (IR) cutoffs, ΛUV and μIR, as done
in our previous work [43].
As inferred from Eq. (33) or explicitly shown in

Appendix. A, the loop functions generally contain the q0
dependences of 1=ðq0 − ϵ0p0 − ϵp þ i0Þ, where we have
included a infinitesimal positive imaginary part þi0 to
manifestly represent the retarded propagation, due to the
analytic continuation from the imaginary-time formalism.
Our regularization is performed by replacing this piece as

1

q0 − ϵ0p0 − ϵp þ i0
→

Rðq0 − ϵ0p0 − ϵp þ i0Þ
q0 − ϵ0p0 − ϵp þ i0

; ð38Þ

where the regulator is of the form

RðxÞ≡ e−
jxj

ΛUV − e−
jxj
μIR : ð39Þ

Equation (38) together with our proper-time regulator (39)
enables us to evaluate the imaginary part as

Rðq0 − ϵ0p0 − ϵpÞ
q0 − ϵ0p0 − ϵp þ i0

!Im − iπRðq0 − ϵ0p0 − ϵpÞδðq0 − ϵ0p0 − ϵpÞ:

ð40Þ

Here, the delta function is dealt with by the p integral so
that the right-hand side of Eq. (40) vanishes since
Rð0Þ ¼ 0. In other words, our proper-time regularization
allows us to eliminate the imaginary parts of the loop
functions [52,57]. Hence, one can easily define the mass of
diquarks with no contamination from imaginary parts.
Besides, this fact seems to be rather suitable to describe

the diquarks confined in SHBs, since it is unlikely that
those diquarks decay into quarks or are annihilated by
antiquarks in medium due to a confining force from the
remaining heavy quark. For a schematic picture see Fig. 1.
The IR cutoff would originate from nonperturbative gluo-
dynamics at ΛQCD of several hundreds MeV.

V. NUMERICAL RESULTS

In this section, we present numerical results on the
masses and decay widths of the SHBs, more concretely
the singly charmed baryons, at finite temperature, where
the temperature effects are upon the diquarks inside the
SHBs. Since the scalar and pseudoscalar diquraks carry
spin 0, the corresponding SHBs are HQS-singlet of
JP ¼ 1

2
�, with appropriate flavor structures. Meanwhile,

the vector and axial-vector ones carry spin 1 so that they
contribute to form the HQS-doublet of JP ¼ 1

2
� and 3

2
�. We

summarize experimental values of the masses and widths of
the singly charmed baryons in the vacuum collected in the
particle data group (PDG) in Table II.
In what follows we use a notation ofΛcð�Þ and Ξcð�Þ to

refer to the HQS-singlet SHBs carrying � parities. As for
the HQS-doublet ones, we use ΣcðþÞ, Ξ0

cðþÞ, ΩcðþÞ,
Λ0
cð−Þ, and Ξ0

cð−Þ. The parity eigenvalues will be omitted
when being trivially understood. There are two types of
orbital excitations of the SHBs; one stems from the relative
coordinate between a diquark and a heavy quark, and
the other one from the excitation insides the diquark. In a
quark-model language, the former and latter are called
λ-mode and ρ-mode excitations, respectively, correspond-
ing to the Jacobi coordinates generally adopted [4]. Within
our present approximation (44), the λ-mode excitations are
ignored, and hence only the ρ-mode excitations made of the

FIG. 1. A schematic picture that intuitively explains the absence
of the imaginary parts.

3One plausible way to evaluate the gauge invariant loop
functions within the three-dimensional integral form is also
provided in Appendix C.
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spin-1 diquarks (21) are examined. Those ρ-mode excita-
tions are regarded as the chiral partners to the ground
state ΛcðþÞ and ΞcðþÞ within a chiral-model descrip-
tion. Experimentally observed fΛcð2595Þ;Λcð2625Þg and
fΞcð2790Þ;Ξcð2815Þg would be dominated by the λ-mode
excitations since those SHBs are always lighter than the
ρ-mode ones, whereas the ρ-mode ones, or the chiral-
partner Λcð−Þ and Ξcð−Þ, have not been observed.

A. Parameter determination

Toward examination of temperature dependences of the
SHB masses, here we determine the model parameters.
Our NJL model contains nine parameters: mq, ms, GS,

HS, HV , K, and K0 from the Lagrangian (1), and ΛUV and
μIR for the cutoffs. Among these parameters, mq, ms, GS,
K, ΛUV, and μIR are fixed solely by the meson sector and
temperature dependences of the chiral condensates. As
explained in Ref. [43] in detail, we choose the parameter
values to be

mq ¼ 0.00258 GeV; ms ¼ 0.0761 GeV;

G ¼ 1.15 GeV−2; K ¼ 10.3 GeV−5; ð41Þ

and

ΛUV ¼ 1.6 GeV; μIR ¼ 0.45 GeV: ð42Þ

With these parameters, the decay constants fπ ¼
0.0921 GeV, fK ¼ 0.110 GeV and the pseudoscalar-
meson masses mπ ¼ 0.138 GeV, mK ¼ 0.496 GeV are
reproduced. The cutoff values (42) have been adjusted in
such a way that the pseudocritical temperature with respect
to chiral restoration reads Tpc ∼ 0.15 GeV, as depicted in

the top panel of Fig. 2. This pseudocritical temperature is
motivated by the lattice simulation results [24,25].
Temperature dependence of the constituent quark masses

is also depicted in the bottom panel of Fig. 2. The solid
curves denote Mq and Ms defined in Eq. (12), which
implies that the mass reductions of Mq and Ms follow the
decrement of hq̄qi and hs̄si, respectively. This coincidence
reflects a fact that K term driving the flavor-mixing effects
plays a minor role in the constituent quark masses. This
behavior is more clearly seen by examining the T depend-
ences of M̃q and M̃s defined by subtracting K terms in the
masses

M̃q ≡Mq − 2Khq̄qihs̄si;
M̃s ≡Mq − 2Khq̄qi2: ð43Þ

Indeed, the dashed curves in the bottom panel of Fig. 2
qualitatively trace the solid curves. The degeneracies of
the Mq and M̃q (Ms and M̃s) originate from the rapid
decrement of hq̄qi above Tpc.
As for the remaining model parameters on the diquarks,

HS, HV , and K0, we will keep K0 to be a free parameter
so as to examine the Uð1Þ axial anomaly effects on the
diquarks clearly. To fix HS and HV we adopt appropriate
mass differences among the experimentally observed singly
charmed baryons summarized in Table II. In the present

TABLE II. The PDG values (central values) of mass and width
of singly charmed baryons in units of MeV [58].

Baryon Diquark JP Mass Total width

Λþ
c ½ud�þ0 1=2þ 2286.46 No strong decay

Ξþ
c ½su�þ0 1=2þ 2467.71 No strong decay

Ξ0
c ½sd�þ0 1=2þ 2470.44 No strong decay

Σcð2455Þþþ fuugþ1 1=2þ 2453.97 1.89
Σcð2455Þþ fudgþ1 1=2þ 2452.65 2.3
Σcð2455Þ0 fddgþ1 1=2þ 2453.75 1.83
Σcð2520Þþþ fuugþ1 3=2þ 2518.41 14.78
Σcð2520Þþ fudgþ1 3=2þ 2517.4 17.2
Σcð2520Þ0 fddgþ1 3=2þ 2518.48 15.3
Ξ0þ
c fsugþ1 1=2þ 2578.2 No strong decay

Ξ00
c fsdgþ1 1=2þ 2578.7 No strong decay

Ξcð2645Þþ fsugþ1 3=2þ 2645.10 2.14
Ξcð2645Þ0 fsdgþ1 3=2þ 2646.16 2.35
Ω0

c fssgþ1 1=2þ 2696.2 ?

Ωcð2770Þ0 fssgþ1 3=2þ 2765.9 ?

FIG. 2. Temperature dependences of the chiral condensates
(top) and of the constituent quark masses (bottom).
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paper, the masses of SHBs, MSHB, are assumed to be
determined by the following simple formula at any temper-
atures [1,2]:

MSHB ¼ MQ þMdiquark; ð44Þ

by virtue of the heavy-quark effective theory. In this
formula MQ represents the mass of a constituent heavy
quark which is universal to the arbitrary accompanying
diquarks, while Mdiquark is the diquark mass evaluated by
the present NJL model. Hence, the mass differences are
simply provided by the corresponding ones among the
diquarks. For instance,

Δm1 ≡Mvac
Ξc

−Mvac
Λc

¼ Mvac
½sq�þ

0

−Mvac
½qq�þ

0

;

Δm2 ≡Mvac
Σc

−Mvac
Λc

¼ Mvac
fqqgþ

1

−Mvac
½qq�þ

0

; ð45Þ

hold. Here Mvac
Λc

and Mvac
Ξc

are read off straightforwardly
from Table II. Meanwhile, since Σc’s are isotriplet and
HQS-doublet of JP ¼ 1

2
þ and 3

2
þ, we need to take isospin

and spin averages to reasonably estimateMvac
Σc

. The isospin
average for spin-1=2 and spin-3=2 Σc baryons are per-
formed by

Mvac
Σcð1=2þÞ ¼

Mvac
Σcð2455Þþþ þMvac

Σcð2455Þþ þMvac
Σcð2455Þ0

3
;

Mvac
Σcð3=2þÞ ¼

Mvac
Σcð2520Þþþ þMvac

Σcð2520Þþ þMvac
Σcð2520Þ0

3
; ð46Þ

respectively, and with these values the spin average yields

Mvac
Σc

¼
Mvac

Σcð1=2þÞ þ 3Mvac
Σcð3=2þÞ

4
: ð47Þ

Thus, from Table II Mvac
Σc

¼ 2.50 GeV. From the above
estimation one can find

Δm1 ¼ 0.183 GeV; Δm2 ¼ 0.215 GeV: ð48Þ

In the following numerical analysis we will employ these
two mass differences as further inputs to fix HS and HV for
a given K0.
The numerically estimated coupling constants HS and

HV and the corresponding vacuum kernels of the spin-0
diquarks for K0½GeV−5� ¼ 0, 5, 10, and 15 are tabulated in
Table III. This table indicates that the four-point inter-
actions HS and HV get weakened as magnitude of the
anomaly effect K0 is enhanced, and so do the all diquark
kernels K’s. That is, the attractive force between the quarks
becomes weaker with the Uð1Þ axial anomaly effect
increased. Accordingly, the diquarks become heavier for
larger K0 as the binding energy gets small, which is clearly
observed in Table IV. For the scalar diquarks the masses are
corrected by mixings with the time components of the
vector-diquark loop function so that those naive structure
would not hold easily. However, at least we have confirmed
numerically that such mixing corrections are approximately
universal for any choices of K0; the corrections commonly
increase the diquark masses by ∼7% for any K0. We note
that the ratio of Kvac

½qq�þ
0

=Kvac
½sq�þ

0

is also almost the same for

all K0. Those universality would follow our inputs (48).

B. SHB masses at finite temperature

In this subsection, we present our main results on the fate
of SHB masses at finite temperature.
Depicted in Fig. 3 is the resultant T dependences of the

SHB masses for K0 ¼ 5 GeV−5 and K0 ¼ 15 GeV−5. The
left panels are the masses of HQS-singlet SHBs formed by
the (pseudo)scalar diquarks, while the right ones are those

TABLE III. The estimated values of HS and HV and the corresponding vacuum kernels, with K0½GeV−5� ¼ 0, 5, 10, and 15. The
kernel for spin-1 is commonly given by K1� ¼ 2HV for all the channels.

K0 [GeV−5] HS [GeV−2] HV [GeV−2] Kvac
½qq�þ

0
[GeV−2] Kvac

½qq�−
0
[GeV−2] Kvac

½sq�þ
0
[GeV−2] Kvac

½sq�−
0
[GeV−2] K1� [GeV−2]

0 2.20 2.97 4.40 4.40 4.40 4.40 5.94
5 2.08 2.86 4.31 4.00 4.27 4.05 5.72
10 1.94 2.73 4.20 3.56 4.10 3.66 5.46
15 1.76 2.58 3.99 3.05 3.85 3.19 5.16

TABLE IV. The computed diquark masses in the vacuum for K0½GeV−5� ¼ 0, 5, 10 and 15. The masses are displayed in a unit of GeV.

K0 [GeV−5] Mvac
½qq�þ

0

Mvac
½sq�þ

0

Mvac
fqqgþ

1

Mvac
fsqgþ

1

Mvac
fssgþ

1

Mvac
½qq�−

0

Mvac
½sq�−

0

Mvac
½qq�−

1

Mvac
½sq�−

1

0 0.197 0.379 0.412 0.485 0.534 0.425 0.573 0.636 0.748
5 0.281 0.463 0.496 0.560 0.605 0.619 0.716 0.706 0.809
10 0.375 0.558 0.590 0.639 0.681 0.827 0.877 0.787 0.881
15 0.502 0.684 0.717 0.738 0.766 1.11 1.10 0.888 0.972
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of HQS-doublet SHBs by the (axial)vector diquarks. From
the left panel, one can see that the inverse mass ordering of
the negative-parity and HQS-singlet SHBs, particularly at
higher temperature, are realized for K0 ¼ 15 GeV−5; the
Λcð−Þ mass is heavier than the Ξcð−Þ mass in contrast to
our naive expectation from Ms > Mq [15]. On the other
hand, the positive-parity and HQS-singlet SHBs exhibit
the naive mass ordering that is consistent with Ms > Mq.

The figure also indicates that the masses, particularly Λc
mass, are once suppressed around T ∼ Tpc, which simply
reflect the reduction of the constituent quark mass inside
the diquarks stemming from the abrupt chiral restoration, as
shown in Fig. 2. Above this temperature thermal effects
manifest themselves in addition to the chiral-restoration
effects and govern the fate of the SHB masses, so that the
SHB masses increase monotonically. The former mass

FIG. 3. Temperature dependences of the SHB masses for K0 ¼ 5 and 15 GeV−5.

FIG. 4. Temperature dependences of the spin-0 (left) and the spin-1 (right) diquark masses for K0 ¼ 5 and 15 GeV−5.
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reduction of Λc is more prominent for K0 ¼ 5 GeV−5 since
the ½qq�þ0 diquark mass is smaller and the reduction of Mq

affects considerably. Those characteristic temperature
dependences of the masses of the HQS-singlet SHBs were
indeed observed in our previous paper [43].
It should be noted that within the present setup, the ½qq�þ0

diquark turns into a tachyonic mode around T ∼ Tpc when a
small value of K0 is taken, resulting in the unphysical
instability of the ground state, and hence we have presented
the numerical results with K0 ≥ 5 GeV−5. For complete-
ness we also depict temperature dependences of the spin-0
and spin-1 diquark masses in Fig. 4, despite being
essentially the same as Fig. 3.
The right panel of Fig. 3 shows the masses of the

HQS-doublet. It shows that the normal mass orderings
consistent with the quark contents, follow at lower temper-
ature for both the positive-parity and negative-parity SHBs,
although quantitatively the masses of the positive-parity
strange SHBs are underestimated. One reason to get this
ordinary mass hierarchy is that the direct Uð1Þ axial
anomaly effects on spin-1 diquarks leading to mixing
different flavors are absent. Meanwhile, at higher temper-
ature above Tpc ∼ 0.15 GeV, for the positive-parity SHBs,
the mass ofΩc decreases to degenerate with Σc. As a result,
notably a new peculiar mass ordering of the HQS-doublet
SHBs is predicted; Ξ0

c gets heavier than Ωc at high
temperature. The spin-1 diquark masses evaluated within
the NJL model will be analyzed in Sec. VI in detail.
Within the present treatment based on the approximation

of Eq. (44), the binding energy between a diquark and a
heavy quark cannot be estimated. For its evaluation,
the diquark–heavy-quark potential model as adopted in

Refs. [7–9] is useful. Such improvement enables us to
describe the dissociation of SHBs at high temperatures in a
more realistic way. We leave these investigations for
future study.

C. Chiral-partner structures of the SHBs

The parity partners, hadrons carrying opposite parities,
can be regarded as a useful indicator of chiral-symmetry
restoration in medium, since their masses tend to be
degenerated as chiral symmetry is restored to exhibit the
so-called chiral-partner structure. To take a closer look at
this characteristic phenomenon, we depict mass differences
of the parity partners in Fig. 5 for K0 ¼ 5 GeV−5 and
K0 ¼ 15 GeV−5. The left and right panels denote the mass
differences among the HQS-singlet and HQS-doublet
SHBs, respectively. Those figures indicate that the mass
degeneracies between the partners are well realized except
for the Λc sector. This exceptional behavior stems from the
slow reduction of hs̄si driven by the anomalous K0 term in
the kernel (17), as analyzed in Ref. [43] in detail. It should
be noted that the mass degeneracies of the HQS-doublet
SHBs are always well realized since the K0 term does not
contribute to them.

VI. DISCUSSIONS ON THE SPIN-1 DIQUARK
MASS SPECTRUM

In Sec. V B, we have found characteristic mass hier-
archies of the spin-1 diquarks; the small flavor dependence
of the axial-vector diquark masses, and the mass degen-
eracy of fqqgþ1 and fssgþ1 diquarks at high temperature.
Here, we discuss these issues focusing on structures of the
loop functions analytically.

FIG. 5. Temperature dependences of the mass differences of parity-partner SHBs for K0 ¼ 5 and 15 GeV−5.
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First, we explain the small flavor dependences of the
axial-vector diquarks, by comparing to those of the vector
diquarks. Before proceeding with the arguments, we
remind that the spin-1 diquark masses are evaluated by
solving J ðq0Þ ¼ K−1 ¼ ðconstantÞ with respect to q0,
from Eq. (24). In other words, the quark mass dependence
of the resultant diquark mass is obtained such that the loop
function J is always constant.
For simplicity, here we restrict ourselves at zero

temperature. In this limit, from the last equation in
Eqs. (A13) and (A14), loop functions of the axial-vector
and vector diquarks generated by the identical quarks
(Mf ≡M1 ¼ M2) read

J ij
AV → −4δij

Z
d3p
ð2πÞ3

1

ðEðfÞ
p Þ2

�
4

3
p2 þ 2M2

f

�
Dðq0; pÞ;

ð49Þ

and

J ij
V → −4δij

Z
d3p
ð2πÞ3

1

ðEðfÞ
p Þ2

4

3
p2Dðq0; pÞ ð50Þ

at the rest frame q ¼ 0, respectively, with

Dðq0; pÞ≡ 1

q0 − 2EðfÞ
p

−
1

q0 þ 2EðfÞ
p

: ð51Þ

The difference between axial-vector and vector diquark
channels are the sign of quark mass contributions, in such a
way as to leave 2M2

f only for J AV. Here, the loop functions
are governed by the excitations of p ∼ 1 GeV for which the
contributions (51) are mostly negative. Hence, in order to
make the loop function constant, when we change the quark
mass Mf, a smaller variation of q0 is enough for J AV

compared to J V due to the compensation from 2Mf in
Eq. (49). As an extreme situation, when we ignore the detail
of regularization and assume the integrands of Eqs. (49)
and (50) themselves are constant, the following conditions
are obtained:

4
3
p2 þ 2M2

f

q20 − 4ðEðfÞ
p Þ2

∼ −CAV;
4
3
p2

q20 − 4ðEðfÞ
p Þ2

∼ −CV; ð52Þ

where CAV; CV > 0 are constants, for a given p (∼1 GeV).
These conditions yield

q20 ∼
�
4 −

2

CAV

�
M2

f þ � � � ; q20 ∼ 4M2
f þ � � � ; ð53Þ

for the axial-vector and vector channels, respectively.
Therefore, a small correction of q0 with respect to a change
of Mf is indeed obtained for the axial-vector diquarks.

Those structures essentially lead to the smaller flavor
dependence for the axial-vector diquarks, as indicated in
the right panel of Fig. 4, which would partly explain the
small mass splittings among the axial-vector diquarks.
We note that a similar argument follows for the spin-0

diquarks apart from the anomaly effects and mixings from
the spin-1 diquarks; From Eqs. (A11) and (A12) one can
expect that the flavor dependence is smaller for the scalar
diquarks compared to the pseudoscalar ones, and in fact
these tendencies are reflected in our previous simplified
analysis [43]. The present computations are essentially the
same as those of the mesons as long as the one-loop
analysis within the NJL model is adopted. So we also note
that a similar small flavor dependence for the vector meson
masses is obtained, as done in, e.g., Ref. [59] where those
masses are underestimated.
Next, we explain the mass degeneracy of fqqgþ1 and

fssgþ1 diquarks at higher temperature exhibited in the right
panel of Fig. 4. From Eq. (A13) the loop functions of
fqqgþ1 and fssgþ1 diquark channels share the common

piece of 1 − 2fFðEðfÞ
p Þ (f ¼ q, s) in their integrands. Those

contributions are mostly unity for all range of p due to the
rapid suppression of the distribution function, as long as
temperature is small compared to Mf. Hence, soft modes
which are sensitive to the mass difference of Mq and Ms

survive sizably so as to generate the mass difference of
fqqgþ1 and fssgþ1 in such a cold system. Meanwhile, the

factor 1 − 2fFðEðfÞ
p Þ is largely suppressed for the soft

modes, when temperature is adequately high, and thus
the variation from Mq and Ms is diminished. This sup-
pression results in the universality of the loop functions and
the masses of fqqgþ1 and fssgþ1 get degenerated. On the
other hand, the loop function of fsqgþ1 includes additional

contributions proportional to fFðEðqÞ
p Þ − fFðEðsÞ

p Þ from
Eq. (A13). Therefore, the mass of fsqgþ1 (Ξ0

c) always
deviates from those of fqqgþ1 and fssgþ1 (Σc and Ωc) even
at higher temperature.

VII. DECAY WIDTH OF Σc AT FINITE
TEMPERATURE

In Sec. V, mass modifications of the HQS-singlet and
HQS-doublet SHBs at finite temperature are comprehen-
sively predicted based on a chiral model for the correspond-
ing diquarks. In particular, the mass degeneracies of the
parity partners driven by the chiral restoration are clearly
delineated.Here, we focus on the fate of decays ofΣc → Λcπ
to present a clear signal of the predicted mass spectra.

A. Decay formula

An interaction Lagrangian which is capable of describ-
ing decays of Σc → Λcπ is given by [19]

Lint ¼ GAtr½B̄R∂μΣ†BT;μ
6 þ B̄L∂μΣB

μ
6 þ H:c:�; ð54Þ
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where ðBLðRÞÞij ∼ ϵijkQaðηLðRÞÞak denotes the HQS-singlet
SHBs while ðBμ

6Þij ∼Qaðη̃6Þa;μij denotes the HQS-doublet
ones. More concretely

B� ¼ 1ffiffiffi
2

p ðBR ∓ BLÞ

¼

0
B@

0 Λcð�Þ −Ξcð�Þ
−Λcð�Þ 0 Ξcð�Þ
Ξcð�Þ −Ξcð�Þ 0

1
CA; ð55Þ

and

B6 ¼

0
BBB@

ΣIz¼1
c

1ffiffi
2

p ΣIz¼0
c

1ffiffi
2

p Ξ0
c
Iz¼1=2

1ffiffi
2

p ΣIz¼0
c ΣIz¼−1

c
1ffiffi
2

p Ξ0
c
Iz¼−1=2

1ffiffi
2

p Ξ0
c
Iz¼1=2 1ffiffi

2
p Ξ0

c
Iz¼−1=2 Ωc

1
CCCA; ð56Þ

where Iz in Eq. (56) stands for the isospin third component.
Another 3 × 3 matrix Σ in Eq. (54) is a scalar and
pseudoscalar meson nonet Σ ¼ Sþ iP in which the latter
is embedded as

P ¼ 1ffiffiffi
2

p

0
BBB@

ηNþπ0ffiffi
2

p πþ Kþ

π− ηN−π0ffiffi
2

p K0

K− K̄0 ηS

1
CCCA: ð57Þ

This nonet transforms under SUð3ÞL × SUð3ÞR as
Σ → gLΣg†R. Hence, from the transformation laws (6) with
the decomposition (18) for the SHBs, chiral symmetry of
the interactions in Eq. (54) is obvious.4 Moreover, this
interaction Lagrangian is invariant under SUð2Þ HQS
transformation since no gamma matrices driving spin
flippings of the heavy quarks are present.
From the Lagrangian (54), the interactions correspond-

ing to Σc → Λcπ are read off to be

Lint → iGA½Λ̄c∂μπ
−ðΣIz¼1

c Þμ − Λ̄c∂μπ
0ðΣIz¼0

c Þμ

− Λ̄c∂μπ
þðΣIz¼−1

c Þμ�: ð58Þ

Here, the HQS-doublet field ðΣIz
c Þμ contains a spin-1=2 and

spin-3=2 components, ΣIz
c and ðΣIz

c Þ�μ. By separating these
components as

ðΣIz
c Þμ ¼ ðΣIz

c Þ�μ þ 1ffiffiffi
3

p ðγμ þ vμÞγ5ΣIz
c ; ð59Þ

where vμ is the four-velocity of the baryon, the decay
widths of Σc → Λcπ are evaluated. The resultant decay
width reads [19]

ΓΣc→Λcπ ¼
G2

A

12π

ðEΛc
þMΛc

Þjpπj3
MΣc

; ð60Þ

for all the channels, where EΛc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Λc
þ jpπj2

q
is the

dispersion relation of the final-state Λc, and pπ denotes the
momentum of the emitted pion that is simply given by
combinations of the hadron masses from energy-momen-
tum conservations. Assuming that the coupling manners
and dispersion relations do not change in medium signifi-
cantly, one can adopt Eq. (60) at any temperatures. In
particular, corrections of the decay width of Σc → Λcπ at
finite temperature are examined by the following normal-
ized decay width

ΓNorm
Σc→Λcπ

≡ ΓΣc→Λcπ

Γvac
Σc→Λcπ

¼ ðEΛc
þMΛc

Þjpπj3
ðEvac

Λc
þMvac

Λc
Þjpvacπ j3

Mvac
Σc

MΣc

; ð61Þ

with no ambiguities in determining GA.

B. ΓNorm
Σc→Λcπ

at high temperature

In this subsection, we examine the normalized decay
width ΓNorm

Σc→Λcπ
in Eq. (61) at finite temperature.

Depicted in the top panels of Fig. 6 denotes the
resultant T dependences of ΓNorm

Σc→Λcπ
. for K0 ¼ 5 GeV−5

and K0 ¼ 15 GeV−5. From these figures one can see that
the decay width is once enhanced around T ∼ Tpc, and
then it falls to zero at T ≈ 0.22 GeV and T ≈ 0.19 GeV for
K0 ¼ 5 GeV−5 andK0 ¼ 15 GeV−5, respectively. That is, it
is shown that the decay width of Σc → Λcπ vanishes above
the pseudocritical temperature Tpc. The enhancement at
T ∼ Tpc is more prominent for smaller K0.
In order to investigate this vanishing decay width in

detail, we also plot the temperature dependences of the
mass difference MΣc

−MΛc
and the pion mass Mπ in the

bottom panels of Fig. 6.5 The mass difference MΣc
−MΛc

gets enhanced around T ∼ Tpc reflecting the reduction of
MΛc

as displayed in the left panels of Fig. 3. After this
enhancement the mass difference monotonically decreases
due to the rather rapid increase of MΛc

at high-temperature
regime. Meanwhile the pion mass Mπ monotonically
increases especially above Tpc from thermal effects. As a
result, MΣc

−MΛc
< Mπ is satisfied, i.e., the threshold is

closed at a certain temperature, leading to the vanishing of
the decay width. We note that the enhancement of MΣc

−
MΛc

around T ∼ Tpc is more prominent for smaller values
of K0, since the smaller K0 we take the larger reduction of
MΛc

we obtain, as discussed in detail in Sec. V B. This is
also a reason why the threshold closing takes place at
higher temperature for the smaller K0.

4From the interpolating field (5), the chiral transformation law
of BLðRÞ is understood to be BLðRÞ → gLðRÞBLðRÞgTLðRÞ.

5The pion mass Mπ at finite temperature is determined in a
similar way to the diquark masses. For more detail see Ref. [43].
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As tabulated in Table II the Ξcð2645Þþ and Ξcð2645Þ0
baryons can possess finite decay widths due to
Ξ0
c → Ξcπ. In our present analysis unfortunately this

decay width cannot be reproduced since we have treated
spin-1=2 and spin-3=2 Ξ0

c baryons collectively by assum-
ing the HQSS, and moreover their masses have been
estimated to be 2.57 GeV in the vacuum, which leads to
vanishing of the Ξ0

c → Ξcπ decay. However, still one can
infer the fate of Ξ0

c → Ξcπ decay width at high temper-
ature by seeing the mass difference of MΞ0

c
−MΞc

. This
mass difference does not grow with increasing temper-
ature, while the pion mass Mπ monotonically evolves due
to the thermal effects above T ∼ Tpc. Hence, the decay
widths of Ξcð2645Þþ and Ξcð2645Þ0 driven by pion
emissions are also expected to be closed above Tpc

similarly to the widths of Σc baryons.
In the present analysis we have presented the results with

the averaged masses of Σc and Σ�
c based on the HQSS. Even

when we take into account its violation to estimate their
masses more precisely, the closing of the decay modes is
expected to occur for all the channels.

VIII. CONCLUSIONS

In this paper we have examined the mass corrections
of the HQS-singlet and HQS-doublet singly charmed
baryons at finite temperature from HQSS and the
restoration of chiral symmetry. Modifications and chiral
dynamics of the SHBs in medium are incorporated
through the composing diquarks by virtue of the
heavy-quark effective theory.

The diquarks are described by the NJL model which
includes (pseudo)scalar-type and (axial)vector-type
four-point interactions. Besides, the six-point interaction
violating only Uð1Þ axial symmetry is adopted to provide
the Uð1Þ axial anomaly effects on the spin-0 diquarks. The
divergences are handled by means of the three-dimensional
proper-time regularization including both the UV and IR
cutoffs, so as to eliminate imaginary parts which corre-
spond to unphysical processes for confined diquarks
inside SHBs.
The resultant mass spectrum of the HQS-singlet SHBs

shows that the inverse mass hierarchy where the mass of
Λcð−Þ becomes larger than that of Ξcð−Þ despite their
quark contents [15], is realized with more significant
anomaly effects, especially at high temperature regime.
These behaviors are consistent with the predictions in our
previous work [43] where different inputs were adopted.
For HQS-doublet SHBs carrying positive parities, a mass
degeneracy of Ωc and Σc has been predicted above the
pseudocritical temperature Tpc due to the common thermal
effects for those baryons. This remarkable mass degeneracy
leads to a new peculiar mass ordering where Ξ0

c gets heavier
than Ωc.
The mass degeneracies of the parity partners, i.e., the

chiral-partner structures, have been predicted for all the
SHBs. For HQS-singlet SHBs, the mass degeneracies of
Λc sector are found to be delayed when the anomaly
effects are sufficient, reflecting the slow reduction of
hs̄si. The mass degeneracies of the HQS-doublet SHBs
are always well realized reflecting the absence of the
anomaly effects.

FIG. 6. Top: temperature dependences of the normalized decay width ΓNorm
Σc→Λcπ

for K0 ¼ 5 GeV−5 and K0 ¼ 15 GeV−5 defined in
Eq. (61). Bottom: temperature dependences of the mass difference MΣc

−MΛc
and the pion mass Mπ .
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In addition, we have found that the decay width of
Σc → Λcπ is once enhanced around the pseudocritical
temperature Tpc and then converges to zero above Tpc.
Similarly we predict that the decay channel of Ξ0

c → Ξcπ
also gets closed at high temperature.
The predicted masses and fate of the decay widths

are expected to provide future heavy-ion collision experi-
ments and lattice simulations with useful information on
the chiral-symmetry properties of the spin-0 and spin-1
diquarks.
In what follows we give some comments on the

present work. In this paper we have employed the
three-dimensional integral form with the proper-time
regularization to regularize the one-loop functions. As
explained in Sec. III this scheme can barely respect the
WTIs derived from appropriate current (non)conserva-
tions in defining the masses of the spin-1 diquarks, since
at the rest frame the currents do not flow and the
identities trivially hold. On the other hand, the WTIs
are violated when we extend the analysis to the finite
momentum system due to the current flow for the spatial
components of the spin-1 diquark. Thus, it is inevitable to
improve this issue to generalize the examination for the
moving diquarks.
In three-color QCD that is corresponding to our real-life

world, the diquarks are not direct observables since they are
colorful, but the SHBs can be regarded as alternative color-
single observables. Meanwhile, in two-color QCD, QC2D,
the diquarks are counted as color-singlet baryons and their
intrinsic properties such as the masses are defined in a
proper way. Indeed, the lattice simulations have been
reporting numerical results on the hadron mass spectrum
including the diquark baryons [60,61]. In other words,
QC2D world has a great advantage in pursuing the diquark
dynamics. In fact, although in three-color QCD the Λcð−Þ
has not been experimentally observed, on the QC2D lattice
the mass of 0− diquark was indeed computed. In this
regard, numerical studies in QC2D together with theoretical
analyses based on chiral models [54,62–64] would also be
one of the promising approaches toward understanding the
diquarks and SHBs.
Our present NJL model analysis naturally predicts

Λcð−Þ and Ξcð−Þ as the chiral partners to the ground-
state Λc and Ξc, which play a key role in describing the
SHBs from the linear representation of chiral symmetry,
despite not being experimentally observed. For instance,
the main decay mode of Λcð−Þ is Λcð−Þ → ΛcðþÞη, the
threshold of which is 2834 MeV in the vacuum.
Meanwhile, as exhibited in Fig. 3 the predicted mass
of Λcð−Þ is largely dependent on the magnitude of the
anomaly effect K0. In particular, when the value of K0 is
sufficiently large, the decay width reads several hundred
of MeV which is hopeless to observed Λcð−Þ due to its
broad phase space. When we access finite temperature,
on the other hand, the mass difference between ΛcðþÞ

and Λcð−Þ gets small, resulting in the suppression of the
decay width, as analyzed in Ref. [43] in detail. Hence, it
would be possible to confirm the existence of Λcð−Þ in
such hot medium. We leave more phenomenological
analyses on this issue, together with the fate of decays
of the HQS-doublet SHBs, for future study.
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APPENDIX A: ONE-LOOP FUNCTIONS

In this appendix, we present one-loop functions of the
diquarks. Here, in order to keep rather general discussions,
we assume that the loop functions are generated by two
quarks whose masses are M1 and M2 where vertex
structures are appropriately provided.
We defined loop functions of the scalar-diquark, pseu-

doscalar-diquark, axial-vector-diquark, and vector-diquark
channels by J S, J PS, J AV, and J V, respectively. Those
with two different quarks are of the forms

J S ¼ −2T
X
m

Z
d3p
ð2πÞ3 tr½γ5S1ðp

0Þγ5SC2ðpÞ þ ð1↔ 2Þ�;

J PS ¼ 2T
X
m

Z
d3p
ð2πÞ3 tr½S1ðp

0ÞSC2ðpÞ þ ð1↔ 2Þ�;

JμνAV ¼ 2T
X
m

Z
d3p
ð2πÞ3 tr½γ

μS1ðp0ÞγνSC2ðpÞ þ ð1↔ 2Þ�;

JμνV ¼ 2T
X
m

Z
d3p
ð2πÞ3 tr½γ

μγ5S1ðp0Þγνγ5SC2ðpÞ þ ð1↔ 2Þ�;

ðA1Þ

within the imaginary-time formalism, where p0 ¼
pþ q and p0 ¼ iωm [ωm ¼ ð2mþ 1ÞπT] and q0 ¼ iω̄n
(ω̄n ¼ 2nπT). The quark propagators are

SfðpÞ ¼ F:T:h0jTψfðxÞψ̄fð0Þj0i

¼ i
X
ζ¼p;a

ΛðfÞ
ζ ðpÞ

p0 − EðfÞ
p

γ0ðf ¼ 1 or 2Þ; ðA2Þ

with the symbol “F.T.” standing for the Fourier trans-

formation and ΛðfÞ
ζ ðpÞ is a projection operator for the

positive-energy and negative-energy states
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ΛðfÞ
ζ ðpÞ ¼ EðfÞ

p þ ηζðMfγ0 þ p · αÞ
2EðfÞ

p

: ðA3Þ

EðfÞ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
is the single-particle energy of the quark

f, and ηp=a ¼ �1. In addition, as explained in the main text
the scalar diquarks can mix with the vector diquarks
through a derivative coupling when their flavor structures
are identical. Such a process is mediated by the following
transition loop function:

JμS−VðqÞ¼2T
X
m

Z
d3p
ð2πÞ3 tr½γ5S1ðp

0Þγμγ5SC2ðpÞþð1↔2Þ�:

ðA4Þ

Then, calculating the kinetic parts

Tζ0ζ
S ≡ tr½γ5Λð1Þ

ζ0 ðp0Þγ5Λð2Þ
ζ ðpÞ�

¼ 1þ ηζ0ηζðp0 · pþM1M2Þ
Eð1Þ
p0 E

ð2Þ
p

; ðA5Þ

Tζ0ζ
PS ≡ tr½Λð1Þ

ζ0 ðp0ÞΛð2Þ
ζ ðpÞ�

¼ 1þ ηζ0ηζðp0 · p −M1M2Þ
Eð1Þ
p0 E

ð2Þ
p

; ðA6Þ

Tζ0ζ;μν
AV ≡ tr½γμΛð1Þ

ζ0 ðp0Þγ5Λð2Þ
ζ ðpÞ�

¼ 1

Eð1Þ
p0 E

ð2Þ
p

½Eð1Þ
p0 E

ð2Þ
p ð2gμ0gν0 − gμνÞ þ ηζE

ð1Þ
p0 p

jðgμ0gνj þ gμjgν0Þ − ηζ0E
ð2Þ
p p0iðgμigν0 þ gμ0gνiÞ

− ηζ0ηζp0ipjðgμigνj − gμνgij þ gμjgiνÞ − ηζ0ηζM1M2gμν�; ðA7Þ

Tζ0ζ;μν
V ≡ tr½γμΛð1Þ

ζ0 ðp0Þγ5Λð2Þ
ζ ðpÞ�

¼ 1

Eð1Þ
p0 E

ð2Þ
p

½Eð1Þ
p0 E

ð2Þ
p ð2gμ0gν0 − gμνÞ þ ηζE

ð1Þ
p0 p

jðgμ0gνj þ gμjgν0Þ − ηζ0E
ð2Þ
p p0iðgμigν0 þ gμ0gνiÞ

− ηζ0ηζp0ipjðgμigνj − gμνgij þ gμjgiνÞ þ ηζ0ηζM1M2gμν�; ðA8Þ

Tζ0ζ;μ
S−V ≡ tr½γ5Λð1Þ

ζ0 ðp0Þγμγ5Λð2Þ
ζ ðpÞ�

¼ 1

Eð1Þ
p0 E

ð2Þ
p

½ðηζ0Eð2Þ
p M1 þ ηζE

ð1Þ
p0 M2Þgμ0 − ηζ0ηζðM2p0i −M1piÞgμi�; ðA9Þ

and employing the Matsubara summation formula

T
X
m

1

ðiωm þ iω̄n − ϵ0Þðiωm − ϵÞ ¼
fFðϵÞ − fFðϵ0Þ
iω̄n − ϵ0 þ ϵ

; ðA10Þ

with fFðϵÞ ¼ 1=ðeϵ=T þ 1Þ being the Fermi-Dirac distribution function, the respective one-loop functions are evaluated in
terms of the three-dimensional integral form as follows:

J S ¼ −4
Z

d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
1þ ηζ0ηζðpþ · p− þM1M2Þ

Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

; ðA11Þ

J PS ¼ −4
Z

d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
1þ ηζ0ηζðpþ · p− −M1M2Þ

Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

; ðA12Þ
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J 00
AV ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
1 −

ηζ0ηζðpþ · p− þM1M2Þ
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

J 0j
AV ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
ηζ0p

j
þ

Eð1Þ
pþ

−
ηζpj

−

Eð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

J ij
AV ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
δij −

ηζ0ηζðpiþpj
− þ pj

þpi
−Þ

Eð1Þ
pþ E

ð2Þ
p−

þ ηζ0ηζðpþ · p− þM1M2Þδij
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

ðA13Þ

J 00
V ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
1 −

ηζ0ηζðpþ · p− −M1M2Þ
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

J 0j
V ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
ηζ0p

j
þ

Eð1Þ
pþ

−
ηζpj

−

Eð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

J ij
V ¼ −4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
δij −

ηζ0ηζðpiþpj
− þ pj

þpi
−Þ

Eð1Þ
pþ E

ð2Þ
p−

þ ηζ0ηζðpþ · p− −M1M2Þδij
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

ðA14Þ

and

J 0
S−V ¼ 4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

�
ηζ0M1

Eð1Þ
pþ

þ ηζM2

Eð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

J i
S−V ¼ 4

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

ηζ0ηζðM2piþ −M1pi
−Þ

Eð1Þ
pþ E

ð2Þ
p−

1 − fFðηζEð2Þ
p− Þ − fFðηζ0Eð1Þ

pþ Þ
q0 − ηζ0E

ð1Þ
pþ − ηζE

ð2Þ
p−

; ðA15Þ

where the three-dimensional momentum has been shifted
such that the integrands are symmetrically expressed by
p� ¼ p� q=2.
The above one-loop functions enable us to evaluate the

scattering amplitudes T ¼ ðK−1 − J Þ−1 for the respec-
tive channels and their masses. Among them, in particular,
the mass of scalar diquark is evaluated by a pole position
of the amplitude at rest with a 2 × 2 kernel matrix

K ¼
�
KS 0

0 KV

�
ðA16Þ

and a loop-function matrix

J ¼
 

J S J 0
S−V

J 0
S−V J 00

V

!
; ðA17Þ

where KS and KV are the kernels for scalar and vector
diquarks, respectively.

APPENDIX B: WARD-TAKAHASHI IDENTITY

The one-loop functions of spin-1 diquarks are essentially
the same as the (axial)vector current-current correlators,
so that they should satisfy the WTIs derived from the
appropriate current (non)conservation laws. Here we show
their derivations.
As in Appendix A, let us start with a fermionic theory

with two flavors ψ ¼ ðψ1;ψ2Þ, the masses of which are
different:

Ltoy ¼ ψ̄ði=∂ −MÞψ þ LI; ðB1Þ

where M ¼ diagðM1;M2Þ. The second term LI is an
arbitrary interaction Lagrangian which is invariant under
a flavor Uð2Þ transformation: ψ → expð−iθaτaÞψ with τa

being Uð2Þ generators: τ0 ¼ 12×2 and τa¼1;2;3 is the
Pauli matrix. When we consider an infinitesimal rotation
generated by τ1 the Lagrangian (B1) transforms as
δLtoy ¼ −iθ1ψ̄ ½τ1;M�ψ ¼ θ1ðM2 −M1Þψ̄τ2ψ . Thus, from
the Noether’s theorem the corresponding current (non)
conservation law reads
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∂
μj1V;μ ¼ ðM2 −M1Þψ̄τ2ψ ; with j1V;μ ¼ ψ̄γμτ

1ψ : ðB2Þ

In a similar way, under an axial transformation gen-
erated by ψ → expð−iθ1γ5τ1Þψ the Noether’s theorem
yields

∂
μj1A;μ ¼ iðM1 þM2Þψ̄τ1γ5ψ ; with j1A;μ ¼ ψ̄γμγ5τ

1ψ :

ðB3Þ

Those current (non)conservation laws hold at quan-
tum level as well due to the absence of quantum
anomalies.
From Eq. (A1) the loop functions J μν

V and J μν
A are, at

least within one-loop level, expressed in terms of the above
currents as

J μν
AV ¼ 2iF:T:h0jTj1;μV ðxÞj1;νV ð0Þj0i;

J μν
V ¼ 2iF:T:h0jTj1;μA ðxÞj1;νA ð0Þj0i; ðB4Þ

respectively. Therefore, with the help of the equal-time
anticommutation relation of ψ and ψ̄ , one can obtain the
following WTIs

qμJ
μν
AV ¼ Δν

AV;

qμJ
μν
V ¼ Δν

V; ðB5Þ

where Δν
AV and Δν

V are evaluated to be

Δν
AV ¼ 2iF:T:h0jTi∂xμj1;μV ðxÞj1;νV ð0Þj0i

¼ 2ðM1 −M2ÞF:T:h0jTψ̄ðxÞτ2ψðxÞj1;νV ð0Þj0i;

¼ 2ðM1 −M2ÞT
X
m

Z
d3p
ð2πÞ3

× tr½Sð1Þðp0ÞγνSð2ÞðpÞ − ð1 ↔ 2Þ�; ðB6Þ

and

Δν
V ¼ 2iF:T:h0jTi∂xμj1;μA ðxÞj1;νA ð0Þj0i
¼ −2iðM1 þM2ÞF:T:h0jTψ̄ðxÞτ1ψðxÞj1;νA ð0Þj0i;

¼ −2ðM1 þM2ÞT
X
m

Z
d3p
ð2πÞ3

× tr½γ5Sð1Þðp0Þγνγ5Sð2ÞðpÞ þ ð1 ↔ 2Þ�; ðB7Þ

respectively. In the last equalities we have adopted one-
loop approximations. Equation (B6) implies that when
M1 ¼ M2, Δν

AV is reduced to zero and qμJ
μν
AV ¼ 0 follows.

This is because the Lagrangian (B1) possesses the exact
flavor Uð2Þ symmetry in this case and the corresponding
current is conserved. On the other hand, even when
M1 ¼ M2, Δν

V does not converge to zero since the mass
term in Eq. (B1) always breaks the axial Uð2Þ symmetry.
Within the three-dimensional-integral form the current-

nonconservation measuresΔν
AV and Δν

V are calculated to be

Δν
AV ¼ 4ðM2 −M1Þ

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

��
ηζ0M1

Eð1Þ
pþ

−
ηζM2

Eð2Þ
p−

�
gν0 þ ηζ0ηζðM1pi

− þM2piþÞgνi
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

Δν
V ¼ −4ðM1 þM2Þ

Z
d3p
ð2πÞ3

X
ζ0;ζ¼p;a

��
ηζ0M1

Eð1Þ
pþ

þ ηζM2

Eð2Þ
p−

�
gν0 þ ηζ0ηζðM1pi

− −M2piþÞgνi
Eð1Þ
pþ E

ð2Þ
p−

�
1 − fFðηζEð2Þ

p− Þ − fFðηζ0Eð1Þ
pþ Þ

q0 − ηζ0E
ð1Þ
pþ − ηζE

ð2Þ
p−

;

ðB8Þ

respectively. Then, from the loop functions derived in
Appendix A and Eq. (B8), for ν ¼ 0 one can numerically
show that the WTIs in Eq. (B5) are indeed satisfied by
introducing a three-dimensional cutoff. On the other hand,
when ν ¼ j the identities are found not to be held, implying
that within the three-dimensional-cutoff form the regulari-
zation artifacts contaminate the spatial parts. As another
consequence of this partial violation, one can see that the
quadratic divergences only emerge in J ij

AV and J ij
V. It

should be noted that the temperature-dependent parts
satisfy the WTIs since their contributions are always finite
due to the Boltzmann suppression of high-momentum
modes. Indeed, we have checked it with naive three-
dimensional cutoffs by numerically confirming the identity

qjqμJ
μj
AVjT:dep: ¼ qjΔj

AVjT:dep:;
qjqμJ

μj
V jT:dep: ¼ qjΔj

VjT:dep:; ðB9Þ

derived from Eq. (B5).
It would be pedagogical to check the WTIs (B5)

analytically by employing a certain regularization, then
at the end of this appendix we calculate the loop functions
J μν

AVðVÞ and current-nonconservation measuresΔν
AVðVÞ with

the dimensional regularization. Here, we restrict ourselves
in the vacuum since only the diverging vacuum parts are
nontrivial. Within the dimensional regularization, J μν

AV,
J μν

V , Δν
AV, and Δν

V are evaluated to be
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J μν
AV ¼ 32

Z
1

0

dxX12ðx2 − xÞðq2gμν − qμqνÞ

þ 16

Z
1

0

dxX12ðM1 −M2Þ½ð1 − xÞM1 − xM2�gμν;

J μν
V ¼ 32

Z
1

0

dxX12ðx2 − xÞðq2gμν − qμqνÞ

þ 16

Z
1

0

dxX12ðM1 þM2Þ½ð1 − xÞM1 þ xM2�gμν;

Δν
AV ¼ 16

Z
1

0

dxX12ðM1 −M2Þ½ð1 − xÞM1 − xM2�qν;

Δν
V ¼ 16

Z
1

0

dxX12ðM1 þM2Þ½ð1 − xÞM1 þ xM2�qν;

ðB10Þ

where the logarithmic divergences are expressed as the
following d → 4 pole:

X12 ≡ 1

ð4πÞd=2
Γ½2 − d

2
�

Δ2−d=2
12

; ðB11Þ

with Δ12 ¼ ð1 − xÞM2
1 þ xM2

2 − xð1 − xÞq2. Note that the
quadratic divergences signaled by d → 2 poles have been
eliminated. Therefore, one can easily verify that the WTIs
(B5) indeed hold for both the axial-vector- and vector-
diquark channels.

APPENDIX C: GAUGE INVARIANT
EXPRESSIONS WITH THREE-DIMENSIONAL

CUTOFFS

In the present paper, we have employed the loop
functions in Eqs. (A11)–(A15) which contain quadratic
divergences with the three-dimensional proper-time regu-
larization to eliminate the imaginary parts. As explained in
the main text, this procedure is suitable for treating the
confined diquarks inside SHBs although it also leads to
violation of the gauge invariance. However, it would be
helpful for readers to present the loop functions which is
capable of respecting theWTIs with naive three-dimensional
cutoffs, thus, here we derive them. We note that in this
appendix we stick to zero temperature.
Since the three-dimensional-integral form breaks the

Lorentz invariance even at zero temperature, the loop
function generally takes the form of

J μν
v ¼ Avðgμν − vμvνÞ þ Bvðq2gμν − qμqνÞ þ Cvgμν

þDvðvμqν þ vνqμÞ; ðC1Þ

with v ¼ AV or V. In this decomposition vμ ¼ gμ0 ¼ ð1; 0Þ
is introduced to separate the time and spatial components

explicitly. As explained in Appendix B the time compo-
nents of J μν

v always respect the WTIs: qμJ
μ0
v ¼ Δ0

v, within
the present three-dimensional cutoff scheme. Hence, by
multiplying qμ from the both sides of Eq. (C1) and setting
ν ¼ 0, one can find the following constraint for Cv:

Cv ¼
1

q0
Δ0

v −
q20 þ q2

q0
Dv: ðC2Þ

Inserting this into Eq. (C1) yields

J μν
v ¼ Avðgμν − vμvνÞ þ Bvðq2gμν − qμqνÞ

þDv

�
ðvμqν þ vνqμÞ − q20 þ q2

q0
gμν
�
þ Δ0

v

q0
gμν:

ðC3Þ

Then, the ν ¼ 0 component reads

J μ0
v ¼

�
Bv −

Dv

q0

�
ðq2gμ0 − qμq0Þ þ Δ0

v

q0
gμ0: ðC4Þ

When we further take μ ¼ 0 in this equation,

J 00
v ¼ −

�
Bv −

Dv

q0

�
q2 þ Δ0

v

q0
ðC5Þ

is found, so Eq. (C4) can be written in terms of only J 00
v

and Δ0
v as

J μ0
v ¼ −

1

q2

�
J 00

v −
Δ0

v

q0

�
ðq2gμ0 − qμq0Þ þ Δ0

v

q0
gμ0: ðC6Þ

Here, since J μ0
v does not violate the gauge invariance,

one can infer that in the vacuum Lorentz covariant
extension of Eq. (C6) is a “correct” expression of the loop
function. Therefore, by recovering the Lorentz covariance,

J̄ μν
v ≡ −

1

q2

�
J 00

v −
Δ0

v

q0

�
ðq2gμν − qμqνÞ þ Δ0

v

q0
gμν; ðC7Þ

or from qμJ
μ0
v ¼ Δ0

v

J̄ μν
v ¼ 1

q2
qiJ i0

v

q0
ðq2gμν − qμqνÞ þ Δ0

v

q0
gμν; ðC8Þ

can be a plausible gauge-invariant loop function within the
three-dimensional cutoff scheme. Equation (C7) or (C8)
implies that the correct loop function J̄ μν

v can be evaluated
by J 00

v (or J i0
v ) and Δ0

v solely and there is no need to
compute the problematic J ij

v as it should be.

FATE OF Σc, Ξ0
c AND Ωc … PHYS. REV. D 111, 074032 (2025)

074032-19



[1] Matthias Neubert, Heavy quark symmetry, Phys. Rep. 245,
259 (1994).

[2] A. V. Manohar, M. B. Wise, T. Ericson, and P. Y. Landshoff,
Heavy Quark Physics, Cambridge Monographs on Particle
Physics, Nuclear Physics and Cosmology (Cambridge
University Press, Cambridge, England, 2000).

[3] L. A. Copley, Nathan Isgur, and Gabriel Karl, Charmed
baryons in a quark model with hyperfine interactions, Phys.
Rev. D 20, 768 (1979); 23, 817(E) (1981).

[4] Tetsuya Yoshida, Emiko Hiyama, Atsushi Hosaka, Makoto
Oka, and Katsunori Sadato, Spectrum of heavy baryons in
the quark model, Phys. Rev. D 92, 114029 (2015).

[5] E. Santopinto, An Interacting quark-diquark model of
baryons, Phys. Rev. C 72, 022201 (2005).

[6] E. Santopinto, A. Giachino, J. Ferretti, H. García-
Tecocoatzi, M. A. Bedolla, R. Bijker, and E. Ortiz-
Pacheco, The Ωc-puzzle solved by means of quark model
predictions, Eur. Phys. J. C 79, 1012 (2019).

[7] Yonghee Kim, Emiko Hiyama, Makoto Oka, and Kei
Suzuki, Spectrum of singly heavy baryons from a chiral
effective theory of diquarks, Phys. Rev. D 102, 014004
(2020).

[8] Yonghee Kim, Yan-Rui Liu, Makoto Oka, and Kei Suzuki,
Heavy baryon spectrum with chiral multiplets of scalar and
vector diquarks, Phys. Rev. D 104, 054012 (2021).

[9] Yonghee Kim, Makoto Oka, Daiki Suenaga, and Kei
Suzuki, Strong decays of singly heavy baryons from a
chiral effective theory of diquarks, Phys. Rev. D 107,
074015 (2023).

[10] T. P. Cheng and L. F. Li, Gauge Theory of Elementary
Particle Physics (OUP, Oxford, 1994).

[11] S. Weinberg, The Quantum Theory of Fields: Volume 2,
Modern Applications (Cambridge University Press,
Cambridge, England, 1996).

[12] Dietmar Ebert, Thorsten Feldmann, Christiane Kettner, and
Hugo Reinhardt, A diquark model for baryons containing
one heavy quark, Z. Phys. C 71, 329 (1996).

[13] Yohei Kawakami and Masayasu Harada, Analysis of
Λcð2595Þ, Λcð2625Þ, Λbð5912Þ, Λbð5920Þ based on a chiral
partner structure, Phys. Rev. D 97, 114024 (2018).

[14] Yohei Kawakami and Masayasu Harada, Singly heavy
baryons with chiral partner structure in a three-flavor chiral
model, Phys. Rev. D 99, 094016 (2019).

[15] Masayasu Harada, Yan-Rui Liu, Makoto Oka, and Kei
Suzuki, Chiral effective theory of diquarks and the UAð1Þ
anomaly, Phys. Rev. D 101, 054038 (2020).

[16] V. Dmitrašinović and Hua-Xing Chen, Chiral SULð3Þ ×
SURð3Þ symmetry of baryons with one charmed quark,
Phys. Rev. D 101, 114016 (2020).

[17] Yohei Kawakami, Masayasu Harada, Makoto Oka, and Kei
Suzuki, Suppression of decay widths in singly heavy
baryons induced by the UAð1Þ anomaly, Phys. Rev. D
102, 114004 (2020).

[18] Daiki Suenaga and Atsushi Hosaka, Novel pentaquark
picture for singly heavy baryons from chiral symmetry,
Phys. Rev. D 104, 034009 (2021).

[19] Daiki Suenaga and Atsushi Hosaka, Decays of Roper-like
singly heavy baryons in a chiral model, Phys. Rev. D 105,
074036 (2022).

[20] Hiroto Takada, Daiki Suenaga, Masayasu Harada, Atsushi
Hosaka, and Makoto Oka, Axial anomaly effect on three-
quark and five-quark singly heavy baryons, Phys. Rev. D
108, 054033 (2023).

[21] Tetsuo Hatsuda and Teiji Kunihiro, QCD phenomenology
based on a chiral effective Lagrangian, Phys. Rep. 247, 221
(1994).

[22] Gerard ’t Hooft, How instantons solve the U(1) problem,
Phys. Rep. 142, 357 (1986).

[23] Steven Weinberg, The U(1) problem, Phys. Rev. D 11, 3583
(1975).

[24] Y. Aoki, Szabolcs Borsanyi, Stephan Durr, Zoltan Fodor,
Sandor D. Katz, Stefan Krieg, and Kalman K. Szabo, The
QCD transition temperature: Results with physical masses
in the continuum limit II, J. High Energy Phys. 06 (2009)
088.

[25] A. Bazavov et al. (HotQCD Collaboration), Chiral cross-
over in QCD at zero and non-zero chemical potentials, Phys.
Lett. B 795, 15 (2019).

[26] S. Chiku and T. Hatsuda, Soft modes associated with
chiral transition at finite temperature, Phys. Rev. D 57, 6
(1998).

[27] Masayasu Harada and Koichi Yamawaki, Hidden local
symmetry at loop: A new perspective of composite
gauge boson and chiral phase transition, Phys. Rep. 381,
1 (2003).

[28] Mara Grahl, Elina Seel, Francesco Giacosa, and Dirk H.
Rischke, O(2) model in polar coordinates at nonzero
temperature, Phys. Rev. D 87, 096014 (2013).

[29] A. Gomez Nicola, J. Ruiz de Elvira, and R. Torres Andres,
Chiral symmetry restoration and scalar-pseudoscalar part-
ners in QCD, Phys. Rev. D 88, 076007 (2013).

[30] Philipp Gubler, Teiji Kunihiro, and Su Houng Lee, A novel
probe of chiral restoration in nuclear medium, Phys. Lett. B
767, 336 (2017).

[31] Daiki Suenaga and Phillip Lakaschus, Comprehensive study
of mass modifications of light mesons in nuclear matter in
the three-flavor extended linear σ model, Phys. Rev. C 101,
035209 (2020).

[32] Yin-Zhen Xu, Si-Xue Qin, and Hong-Shi Zong, Chiral
symmetry restoration and properties of Goldstone bosons at
finite temperature, Chin. Phys. C 47, 033107 (2023).

[33] Carleton E. Detar and Teiji Kunihiro, Linear σ model with
parity doubling, Phys. Rev. D 39, 2805 (1989).

[34] D. Jido, Y. Nemoto, M. Oka, and A. Hosaka, Chiral
symmetry for positive and negative parity nucleons, Nucl.
Phys. A671, 471 (2000).

[35] D. Zschiesche, L. Tolos, Jurgen Schaffner-Bielich, and
Robert D. Pisarski, Cold, dense nuclear matter in a SU(2)
parity doublet model, Phys. Rev. C 75, 055202 (2007).

[36] Yuichi Motohiro, Youngman Kim, and Masayasu Harada,
Asymmetric nuclear matter in a parity doublet model with
hidden local symmetry, Phys. Rev. C 92, 025201 (2015); 95,
059903(E) (2017).

[37] Daiki Suenaga, Examination of N�ð1535Þ as a probe to
observe the partial restoration of chiral symmetry in nuclear
matter, Phys. Rev. C 97, 045203 (2018).

[38] Daiki Suenaga, Bing-Ran He, Yong-Liang Ma, and
Masayasu Harada, Mass degeneracy of heavy-light mesons

DAIKI SUENAGA and MAKOTO OKA PHYS. REV. D 111, 074032 (2025)

074032-20

https://doi.org/10.1016/0370-1573(94)90091-4
https://doi.org/10.1016/0370-1573(94)90091-4
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1103/PhysRevD.23.817.3
https://doi.org/10.1103/PhysRevD.92.114029
https://doi.org/10.1103/PhysRevC.72.022201
https://doi.org/10.1140/epjc/s10052-019-7527-4
https://doi.org/10.1103/PhysRevD.102.014004
https://doi.org/10.1103/PhysRevD.102.014004
https://doi.org/10.1103/PhysRevD.104.054012
https://doi.org/10.1103/PhysRevD.107.074015
https://doi.org/10.1103/PhysRevD.107.074015
https://doi.org/10.1007/s002880050178
https://doi.org/10.1103/PhysRevD.97.114024
https://doi.org/10.1103/PhysRevD.99.094016
https://doi.org/10.1103/PhysRevD.101.054038
https://doi.org/10.1103/PhysRevD.101.114016
https://doi.org/10.1103/PhysRevD.102.114004
https://doi.org/10.1103/PhysRevD.102.114004
https://doi.org/10.1103/PhysRevD.104.034009
https://doi.org/10.1103/PhysRevD.105.074036
https://doi.org/10.1103/PhysRevD.105.074036
https://doi.org/10.1103/PhysRevD.108.054033
https://doi.org/10.1103/PhysRevD.108.054033
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/0370-1573(86)90117-1
https://doi.org/10.1103/PhysRevD.11.3583
https://doi.org/10.1103/PhysRevD.11.3583
https://doi.org/10.1088/1126-6708/2009/06/088
https://doi.org/10.1088/1126-6708/2009/06/088
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevB.57.6
https://doi.org/10.1103/PhysRevB.57.6
https://doi.org/10.1016/S0370-1573(03)00139-X
https://doi.org/10.1016/S0370-1573(03)00139-X
https://doi.org/10.1103/PhysRevD.87.096014
https://doi.org/10.1103/PhysRevD.88.076007
https://doi.org/10.1016/j.physletb.2017.01.077
https://doi.org/10.1016/j.physletb.2017.01.077
https://doi.org/10.1103/PhysRevC.101.035209
https://doi.org/10.1103/PhysRevC.101.035209
https://doi.org/10.1088/1674-1137/acaf26
https://doi.org/10.1103/PhysRevD.39.2805
https://doi.org/10.1016/S0375-9474(99)00844-1
https://doi.org/10.1016/S0375-9474(99)00844-1
https://doi.org/10.1103/PhysRevC.75.055202
https://doi.org/10.1103/PhysRevC.92.025201
https://doi.org/10.1103/PhysRevC.95.059903
https://doi.org/10.1103/PhysRevC.95.059903
https://doi.org/10.1103/PhysRevC.97.045203


with chiral partner structure in the half-Skyrmion phase,
Phys. Rev. D 91, 036001 (2015).

[39] Chihiro Sasaki, Fate of charmed mesons near chiral sym-
metry restoration in hot matter, Phys. Rev. D 90, 114007
(2014).

[40] Masayasu Harada, Yong-Liang Ma, Daiki Suenaga, and
Yusuke Takeda, Relation between the mass modification
of heavy–light mesons and the chiral symmetry structure
in dense matter, Prog. Theor. Exp. Phys. 2017, 113D01
(2017).

[41] Daiki Suenaga, Shigehiro Yasui, and Masayasu Harada,
Spectral functions for D̄ and D̄�

0 mesons in nuclear matter
with partial restoration of chiral symmetry, Phys. Rev. C 96,
015204 (2017).

[42] K. Azizi and A. Türkan, S-wave single heavy baryons with
spin-3=2 at finite temperature, Eur. Phys. J. C 80, 425
(2020).

[43] Daiki Suenaga and Makoto Oka, Axial anomaly effect on
the chiral-partner structure of diquarks at high temperature,
Phys. Rev. D 108, 014030 (2023).

[44] Adam F. Falk, Hadrons of arbitrary spin in the heavy quark
effective theory, Nucl. Phys. B378, 79 (1992).

[45] Michael Buballa, NJL model analysis of quark matter at
large density, Phys. Rep. 407, 205 (2005).

[46] M. Kobayashi and T. Maskawa, Chiral symmetry and η-x
mixing, Prog. Theor. Phys. 44, 1422 (1970).

[47] M. Kobayashi, H. Kondo, and T. Maskawa, Symmetry
breaking of the chiral uð3Þ × uð3Þ and the quark model,
Prog. Theor. Phys. 45, 1955 (1971).

[48] Gerard ’t Hooft, Computation of the quantum effects due to
a four-dimensional pseudoparticle, Phys. Rev. D 14, 3432
(1976); 18, 2199(E) (1978).

[49] Gerard ’t Hooft, Symmetry breaking through Bell-Jackiw
anomalies, Phys. Rev. Lett. 37, 8 (1976).

[50] Naoki Yamamoto, Motoi Tachibana, Tetsuo Hatsuda, and
Gordon Baym, Phase structure, collective modes, and the
axial anomaly in dense QCD, Phys. Rev. D 76, 074001
(2007).

[51] Hiroaki Abuki, Gordon Baym, Tetsuo Hatsuda, and Naoki
Yamamoto, The NJL model of dense three-flavor matter
with axial anomaly: The low temperature critical point and
BEC-BCS diquark crossover, Phys. Rev. D 81, 125010
(2010).

[52] G. Hellstern, Reinhard Alkofer, and H. Reinhardt, Diquark
confinement in an extended NJL model, Nucl. Phys. A625,
697 (1997).

[53] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory:
Principles and Applications, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2006).

[54] J. B. Kogut, Misha A. Stephanov, and D. Toublan, On two
color QCD with baryon chemical potential, Phys. Lett. B
464, 183 (1999).

[55] J. B. Kogut, Misha A. Stephanov, D. Toublan, J. J. M.
Verbaarschot, and A. Zhitnitsky, QCD—like theories at
finite baryon density, Nucl. Phys. B582, 477 (2000).

[56] M. E. Peskin, An Introduction to Quantum Field Theory
(CRC Press, Boca Raton, Florida, 2018).

[57] Dietmar Ebert, Thorsten Feldmann, and Hugo Reinhardt,
Extended NJL model for light and heavy mesons without
q—anti-q thresholds, Phys. Lett. B 388, 154 (1996).

[58] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[59] M. Takizawa, K. Tsushima, Y. Kohyama, and K. Kubodera,
Study of meson properties and quark condensates in the
Nambu-Jona-Lasinio model with instanton effects, Nucl.
Phys. A507, 611 (1990).

[60] Simon Hands, Peter Sitch, and Jon-Ivar Skullerud, Hadron
spectrum in a two-colour baryon-rich medium, Phys. Lett. B
662, 405 (2008).

[61] Kotaro Murakami, Daiki Suenaga, Kei Iida, and Etsuko
Itou, Measurement of hadron masses in 2-color finite
density QCD, Proc. Sci. LATTICE2022 (2023) 154
[arXiv:2211.13472].

[62] Claudia Ratti and WolframWeise, Thermodynamics of two-
colour QCD and the Nambu Jona-Lasinio model, Phys. Rev.
D 70, 054013 (2004).

[63] Daiki Suenaga, Kotaro Murakami, Etsuko Itou, and Kei
Iida, Probing the hadron mass spectrum in dense two-color
QCD with the linear sigma model, Phys. Rev. D 107,
054001 (2023).

[64] Daiki Suenaga, Kotaro Murakami, Etsuko Itou, and Kei
Iida, Mass spectrum of spin-one hadrons in dense two-color
QCD: Novel predictions by extended linear sigma model,
Phys. Rev. D 109, 074031 (2024).

FATE OF Σc, Ξ0
c AND Ωc … PHYS. REV. D 111, 074032 (2025)

074032-21

https://doi.org/10.1103/PhysRevD.91.036001
https://doi.org/10.1103/PhysRevD.90.114007
https://doi.org/10.1103/PhysRevD.90.114007
https://doi.org/10.1093/ptep/ptx140
https://doi.org/10.1093/ptep/ptx140
https://doi.org/10.1103/PhysRevC.96.015204
https://doi.org/10.1103/PhysRevC.96.015204
https://doi.org/10.1140/epjc/s10052-020-7931-9
https://doi.org/10.1140/epjc/s10052-020-7931-9
https://doi.org/10.1103/PhysRevD.108.014030
https://doi.org/10.1016/0550-3213(92)90004-U
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1143/PTP.44.1422
https://doi.org/10.1143/PTP.45.1955
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.18.2199.3
https://doi.org/10.1103/PhysRevLett.37.8
https://doi.org/10.1103/PhysRevD.76.074001
https://doi.org/10.1103/PhysRevD.76.074001
https://doi.org/10.1103/PhysRevD.81.125010
https://doi.org/10.1103/PhysRevD.81.125010
https://doi.org/10.1016/S0375-9474(97)00412-0
https://doi.org/10.1016/S0375-9474(97)00412-0
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1016/0370-2693(96)01158-6
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/0375-9474(90)90173-J
https://doi.org/10.1016/0375-9474(90)90173-J
https://doi.org/10.1016/j.physletb.2008.01.078
https://doi.org/10.1016/j.physletb.2008.01.078
https://doi.org/10.22323/1.430.0154
https://arXiv.org/abs/2211.13472
https://doi.org/10.1103/PhysRevD.70.054013
https://doi.org/10.1103/PhysRevD.70.054013
https://doi.org/10.1103/PhysRevD.107.054001
https://doi.org/10.1103/PhysRevD.107.054001
https://doi.org/10.1103/PhysRevD.109.074031

	Fate of &Sigma;c, &Xi;c&prime; and &Omega;c baryons at high temperature with chiral-symmetry restoration
	I. INTRODUCTION
	II. MODEL CONSTRUCTION
	A. NJL Lagrangian
	B. Kernel

	III. BETHE-SALPETER EQUATION
	IV. REGULARIZATION
	V. NUMERICAL RESULTS
	A. Parameter determination
	B. SHB masses at finite temperature
	C. Chiral-partner structures of the SHBs

	VI. DISCUSSIONS ON THE SPIN-1 DIQUARK MASS SPECTRUM
	VII. DECAY WIDTH OF &Sigma;c AT FINITE TEMPERATURE
	A. Decay formula
	B. &Gamma;&Sigma;c&rarr;&Lambda;c&pi;Norm at high temperature

	VIII. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: ONE-LOOP FUNCTIONS
	APPENDIX B: WARD-TAKAHASHI IDENTITY
	APPENDIX C: GAUGE INVARIANT EXPRESSIONS WITH THREE-DIMENSIONAL CUTOFFS
	References


