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Masses of the singly heavy baryons (SHBs), composed of a heavy quark and a light diquark, are studied
from the viewpoints of heavy-quark spin symmetry (HQSS) and chiral-symmetry restoration at finite
temperature. We consider the light diquarks with spin-parity J© = 0% and 1*. Medium corrections to the
SHBs are provided through the diquarks whereas the heavy quark is simply regarded as a spectator. The
chiral dynamics of the diquark are described by the Nambu-Jona-Lasinio (NJL) model having (pseudo)
scalar-type and (axial)vector-type four-point interactions and the six-point ones responsible for the U(1)
axial anomaly. The divergences are handled by means of the three-dimensional proper-time regularization
with both ultraviolet and infrared cutoffs included, in order to eliminate unphysical imaginary parts. As a
result, the mass degeneracies between the parity partners of all the SHBs are predicted in accordance with
the chiral restoration. In particular, the HQS-doublet SHBs exhibit clear mass degeneracies due to the
absence of the direct anomaly effects. We also predict a mass degeneracy of X, and €. above the
pseudocritical temperature T’ of chiral restoration, which results in a peculiar mass hierarchy for positive-
parity HQS-doublet SHBs where = becomes heavier than Q. Besides, it is found that the decay width of
%, — Az vanishes above T, reflecting a closing of the threshold. The predicted modifications of masses
and decay widths of the SHBs are expected to provide future heavy-ion collision experiments and lattice

simulations with useful information on chiral dynamics of the diquarks.

DOI: 10.1103/PhysRevD.111.074032

I. INTRODUCTION

A diquark, a cluster made of two quarks, is known as a
useful building block of hadrons. In particular, light
diquarks play a significant role in determining dynamical
properties of singly heavy baryons (SHBs) constructed
by two light quarks (i, d, s) and one heavy quark (c, b),
since the heavy quark can be regraded as a spectator due to
its heavy mass from the aspect of heavy-quark spin
symmetry (HQSS) [1,2]. Having focused on this advan-
tage of diquarks, e.g., theoretical analyses based on the
quark model [3.4] and the diquark—heavy-quark potential
model [5-9] have been conducted.
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It is well known that quantum chromodynamics (QCD)
has (approximate) chiral symmetry for light flavors, and
this symmetry is spontaneously broken in the vacuum.
Thus, it is inevitable to take chiral dynamics into account in
describing light hadrons from QCD point of view. In this
regard, pions and kaons are regarded as the Nambu-
Goldstone (NG) bosons associated with chiral symmetry
breaking. Thanks to those chiral-symmetry aspects, cou-
pling properties among the NG bosons and other light
hadrons are delineated in a rather systematic way [10,11].
In addition to the light hadrons, chiral symmetry governs
the dynamics of the diquarks in SHBs too. So far, mass
spectrum and decay properties of the SHBs [12-17]
including their pentaquark pictures [18-20] have been
investigated based on chiral models of the diquarks.

Chiral symmetry is a continuous symmetry in terms of
left-handed and right-handed quarks defined through the
parity eigenvalues. Hence, we are able to examine not only
the ground state but also the excited state carrying an
opposite parity, i.e., the parity partner or chiral partner, in
a unified way when the linear representation of chiral
symmetry is adopted [10,11]. The mass difference between
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these two states are generated by the spontaneous break-
down of chiral symmetry, and thus their masses tend to
become degenerate as chiral symmetry is restored. This
characteristic feature is often referred to as the chiral-
partner structure [21].

Another important symmetry aspect of QCD is the
nonconservation of the U(1) axial charge due to topologi-
cal gluon configurations, i.e., the U(1) axial anomaly [22].
For light hadrons this anomaly is essential to explain why
the 7’ meson is so heavy that it cannot be regarded as an NG
boson [23]. For diquarks, the direct anomaly effects were
found to lead to the so-called inverse mass hierarchy of 0~
diquarks; the mass of ud (07) diquark can be larger than
that of su (0~) [and sd (0)] diquark in contrast to the naive
expectation from their quark contents [15].

One useful testing ground to explore chiral dynamics of
hadrons in more detail is finite-temperature system, since in
such hot medium chiral symmetry tends to be restored
[24,25]. For instance, focusing on the chiral-partner struc-
ture our understanding of the mass origin of hadrons is
deepened. Moreover, this deeper understanding enables us
to shed light on coupling properties among the hadrons,
particularly with NG bosons, by virtue of the low-energy
theorems. The mass degeneracies between the chiral
partners in medium have been examined for various
hadrons [26-37] including open heavy systems [38—42].

In our previous paper [43], modifications of spin-0
diquark masses at finite temperature were investigated
based on a chiral model, the Nambu-Jona-Lasinio (NJL)
model, particularly focusing on the U(1) axial anomaly
effects and chiral restoration. As a result, the inverse mass
hierarchy driven by the U(1) axial anomaly was found to
persist at any temperatures. Furthermore, we found that the
anomaly effects delay the mass degeneracies between the
chiral partners of ud diquarks at high temperature.

In this paper, we extend the previous work by taking
spin-1 diquarks into account and present comprehensively
predictions of the mass corrections of the diquarks in
medium. In terms of multiplets of HQSS, the spin-0
diquarks and spin-1 diquarks lead to HQS-singlet SHBs
with J =1 and HQS-doublet ones with J =1 and 3,
respectively [44]. Therefore, we exhibit the mass modifi-
cations in terms of these SHBs as appropriate observables
in order to provide future heavy-ion collision experiments
and lattice simulations with useful information on chiral
properties of the diquarks.

In Refs. [8,9], it was predicted that the mass of Z. baryon
becomes smaller than that of A, baryon within the diquark—
heavy-quark potential description as chiral symmetry is
restored. This peculiar mass ordering were, however,
obtained by simply reducing the value of chiral conden-
sates, the order parameter of chiral-symmetry breaking,
although in more realistic situation medium effects give rise
to other corrections upon the SHB masses. Thus, in the
present work we also focus on the mass hierarchy of 2. and

A, and the fate of £. — A,z decays at high temperature
paying particular attentions to the threshold value.

This paper is organized as follows. In Sec. II we
introduce our NJL model toward describing the dynamics
of spin-0 and spin-1 diquarks. In Secs. III and 1V, we
explain our method to evaluate the diquark masses and to
regularize the divergences, respectively. Based on these
procedures, numerical results on the SHB masses at finite
temperature are presented in Sec. V. Some discussions on
the mass hierarchy of the spin-1 diquarks are provided in
Sec. VI. Moreover, the fate of the decay width of £. — A, 7z
at high temperature is examined in Sec. VII. Then, finally
we conclude the present study in Sec. VIII.

II. MODEL CONSTRUCTION
A. NJL Lagrangian

This paper is devoted to examining the mass corrections
of low-lying HQS-singlet and HQS-doublet SHBs at high
temperature based on a chiral model of the composing
diquarks. To this aim, in this subsection we introduce our
NJL model to describe both the spin-0 and spin-1 diquarks.

Our NJL model takes the following form:

ENJL - Ezq + ‘Ciq + EX(] + gr[l]om' (1)
The first term £,, includes the kinetic and mass terms of
constituent quarks

'C'Zq = l/_/(ld - M)W’ (2)

where w = (u, d, s) is the quark triplet and M is the 3 x 3
quark mass matrix. In the present work we assume the
SU(2) isospin symmetry so that M = diag(m,, m,, my).

The second and third pieces £3, and L}, in Eq. (1)

represent the (pseudo)scalar-type and (axial)vector-type
four-point interactions, respectively, which are given by [45]

L3, = Gs[(§afw)* + (wivshfw)’]
+ Holly" CIawl* + [w" Crsagadwl),  (3)
and
LY, = —Hylly" Crrasalw? + W' Cyrysitaf wl].  (4)

In these equations, Gy is a coupling constant controlling
the formation of spin-0 mesons, while Hy and Hy, are
those for spin-0 diquarks and spin-1 diquarks. C = iy?y°
is the charge-conjugation matrix. Besides, /155 and A¥ are
Hermitian 3 x 3 matrices in flavor and color spaces. Then,
the superscript X runs over X = 0-8 with /1}‘5? =(1/V3)1
and /155(?)1‘8 being the Gell-Mann matrices. The indices A (A”)
and S (§") take only the antisymmetric and symmetric parts
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TABLE 1. Each quantum number of the spin-0 and spin-1
diquark operators incorporated in the present NJL model.
Operator JP Flavor Color 2+,
WTCYsﬁ?/w/U/ 0" 3 3. 'S
w Cataty 0~ 3 3. 3Py
' Crasatw " 6; 3 38,
w! Crlysaf ity 1~ 3 3 Py

of X, respectively, more explicitly, A(A’) =2,5,7 and
S(8')=0,1,3,4,6,8. We note that these selections for
diquark channels are derived from the Pauli principle of
the quark bilinears, with which the allowed operators and
quantum numbers are summarized in Table I. We also note
that the spin-1 meson channels which could correct the
temperature dependences of the pion decay constant are
abbreviated in our present model so as to focus on the mass
spectrum of the diquarks, since such effects are expected to
be comparably suppressed. On the other hand, the spin-0
meson coupling is necessary to determine the chiral proper-
ties in both the vacuum and high temperature.

On the other hand, we have assumed that.

The interactions (3) and (4) are constructed in a chiral
symmetric way. To see this, we introduce the following quark
composite operators whose flavor indices are uncontracted:

¢i; = Wr)i (W),
(WL)? = €ijk€”bc(ll/{)?c(l//L)i’
(nr)f = €ijk€abC(W£)?C(WR>Ii’
i = e wri Cryg ;. (5)
with ye) = 13;—}'51;/ being the right-handed (left-handed)

quark field, while i, j, - - - and a, b, - - - denote the flavor and
color indices, respectively. Since the quark field transforms
asWr() = IrL)WrL) With gr(r) € U(3)R(L) under U(3)g x
U(3), chiral transformation, the chiral transformation laws
of the bilinears in Eq. (5) read

7 = grii™" 9L

N% = Grllk- (6)

¢ = 9009k.
i = gLnis
Here, using the identities

1

twrlp'p] = 2 [(WAfw)? + (Firsifw)?],

nin + e = 5 [y CAAE WP + |y Crsafadw?),

telii] =

0| = | — 0|

lw” Crrasatwl + ' Cysyr a2t wll,
(7)

one can rewrite the four-point interactions (3) and (4) into
L5, = 8Gst[p'd] + 2Hs(niny +npng), — (8)

and
Ly, = sul]. )

which are indeed chiral symmetric from Eq. (6).

The last contribution in Eq. (1), Eg?]"m., is responsible for
the U(1) axial anomaly. That is, this term is invariant under
SU(3); x SU(3)y chiral transformation but violates U(1)
axial symmetry. In this work we employ the following

interactions:

anom __

by " = —8K(detg + detd’) + K'(np g + nkdpny)-
(10)

The first term is the so-called Kobayashi-Maskawa-’tHooft
(KMT) determinant interaction [46—49] while the second
one describes the anomalous coupling among the mesons
and diquarks [50,51].

The spontaneous breaking of chiral symmetry can be
expressed by generation of the vacuum expectation values
(VEVs) of yny. (We denote the VEVs by (O).) Under the
SU(2) isospin symmetry, these VEVs are given by
(¢) = diag((gq). (qq). (3s)). Then, by employing the
following approximation in the four-point and six-point
interactions in Eq. (1):

XY & XY + (X)Y 4+ (Y)X — (X)(Y),
XYZ ~ (X)YZ + (Y)XZ + (Z)XY + (X)(Y)Z
+ (N2)X +(Z)(X)Y -2(X)(Y)(Z), (1)

at the mean-field level the masses of ¢ (= u,d) and s
quarks read

M, = m, —4G4(4q) + 2K(q4q)(3s),
M, = m, —4G¢(5s) + 2K{Gq)?, (12)

respectively. From this formula one can see that the
anomalous K interactions provide (§s) contributions to
the u (d) quark masses while they only generate (Gqg) ones
to the s quark mass.

B. Kernel

The chiral symmetric interactions which is capable of
generating spin-0 mesons and spin-0 and spin-1 diquarks
have been introduced in Sec. IT A. Their masses are read off
by pole positions of the amplitude from the corresponding
composite operators [52]. The procedure for the meson
channels is already well-known, however, for the diquark
channels it would not be straightforward, particularly to
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find appropriate kernels in computing the amplitude, due to
constraints from the Pauli principle. For this reason, before
moving on to the evaluation of the scattering amplitudes, in
this subsection, we present proper diquark operators and
rewrite the interaction Lagrangians into a useful form to
find the corresponding kernels.

As for the spin-0 diquarks, the mass-eigenstate operators
are simply given by

1 1
()i = N (g —mL){ = %€ijk€“bcwf'bc}’5wi,
1 1
(n-)f = NG (ng +n)f = 7§€ijk€“bcll’,?'bcvfi7 (13)
thus, we define
€T T.b -
Muay = ﬁ(“ 7Cysd® —d" " Cysuc),
eabc , ) ,
Hﬁu]g = N (s"PCysu® —u""Cyss©),

eabc
n[“sd]g = % (ST‘bC}/5dC _ dT’bC}/SSC), (14)

and

abc

= (u™bCd® — d""Cuc),

m

(ST‘b Cuf — uT,b CSC) ,

abc

m

(sTPCde — d"0Cs°), (15)

May =

>

to refer to the scalar and pseudoscalar diquarks. Using
these operators the interaction terms in Eqgs. (8) and (10)
which are relevant to the scattering amplitude within the
approximation (11) read

‘Cﬁn = K[qq]g"]ﬁ,d]g‘z + K[sq]&("’][asu]ﬂz + |77Fsd]g|2>

+ K[qq]g|’7ﬁ4d]g|2 + K[sq];(m[asu]g >+ |’Iﬁd]3 *). (16)

where each kernel is defined by

/

K
IC[qq](f = 2HS + 7 <SS>,

/

K

The sign of K’ term incorporating the chiral condensates
differs for positive and negative diquarks which reflects the
chiral-partner structure; the kernels converge to the iden-
tical value when chiral symmetry is completely restored.

Besides, the (5s) and (gg) contribute to the kernels for ud
and su (sd) diquarks, respectively, hence, again one can
understand that the anomalous contributions generate the
“flavor-mixing” structure with respect to the kernels. These
properties significantly affect the attractive force to form
the diquarks and their masses.

The spin-1 diquarks are rather complicated since the
flavor structure is correlated with the parity. For this reason,
we separate the operator ﬁ?]?” in Eq. (5) as

T = 3 (76)i]" + 3 (73)i" (18)

where the flavor sextet and antitriplet matrices are given by

Mty 5y 3wl s
6" = | Bhwayy  Maay  Bear |
\i@n{m}; \/Lzrl{xd}fr M s}y
0 Tl S5\
5" = | sty 0 FMay | (19)
- %ﬂ[.su], - \/Lz”[sdh* 0

with the axial-vector- and vector-diquark operators being

() = ePeul > Cytuc,
(raay ) = ered" P Cyrde,
(os ) = ePesTPCptse,

abc

. € . .
(Tuay )" =5 (WP Cptd + AP Cptu),

abc

€ ‘
(ﬁ{su}f)a'ﬂ = \/§ (lflT’bC}/ﬂSC + ST’bC}’”uC),

abc
-4 a € C c
(say )™ = 7 (d"PCyts 4 sTPCyrde), (20)
and
eahc ) )
Ty )" =75 (! Crsyptd = d 0 Cysyac),
_ eabc , )
(s )+ = 7 (s"PCysytuc — u™ Cysy*s©),
eabc

#=—=(d""Cysyts® — sT0 Cysyhde), (1)

(ﬁ[sd]l’)a \/j

respectively. Hence, with these operators the interaction
terms are read off from Egs. (8) and (10) as
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Ll = =K (it P+ Vet P+ 0 4 10 P
+ 1l P+ i P+ i P+ - ). (22)
where the corresponding kernel
’C]i = 2HV (23)

is commonly applied to all the spin-1 channels. This
universality is due to the absence of the direct anomaly
effects on the spin-1 diquarks.

III. BETHE-SALPETER EQUATION

The proper interactions in terms of the diquark
composite operators have been obtained in Sec. IIB.
Based on them, here, we present the formula to evaluate
the diquark masses. In the following analysis, the color
indices will be omitted since SU(3) color symmetry is
trivial.

The amplitude 7 within the one-loop approximation
follows the Bethe-Salpeter equation

T=K+KJT <« T=(K'=-797 (24)
where K is the kernel derived in Eq. (17) or Eq. (23) for the
respective channels, and J is the corresponding one-loop
function. For instance, J for [qq|; diquark reads

4TZ / trysS,

within the imaginary-time formalism at arbitrary temper-
ature 7. In this equation, p’ = p+ g with py = iw,,
(@, = 2m+ 1)xT) and q¢ = i@, (&, =2nxT) being
the fermionic and bosonic Matsubara frequencies, res-
pectively [53]. The quark propagator S, (p) is defined
by the Fourier transformation of (0|Tu(x)i(0)|0) [or
(0|Td(x)d(0)|0)] which is given by

= Z (26)

‘I = papo

with EI(,q) = \/p* + M, where

j[qq] ( )VSS((jq)(P)]» (25)

Sig(p) =

EI(,q) + (Myyo+p-a)

A ) =
2By
E)y — (M .
A ) =B = Mato @), 27)
(q)
2E,

(ax = yoy) are the projection operators for positive-energy

and negative-energy components. Meanwhile, qu)( p) in

Eq. (25) is the charge-conjugated quark propagator defined
by the Fourier transform of (0|TuC(x)i(0)|0) [or
(0|Td" (x)d“(0)]0)] with u¢ = Ci" (d° = Cd") being the
charge-conjugated field. Using this definition one can
easily find Sf(n( p) coincides with S, (p):

SC,(p) = Sia)(p). (28)

This coincidence stems from the charge-conjugation sym-
metry of the system as long as we do not take chemical
potentials into account.

After taking the Dirac trace in Eq. (25) with Eq. (26), the
loop function turns into

T = -4 [ LS~ i
ladly = | (27)? g/;pa l94ly
1
xTY (29)
= (Ph = e EX) (po — ncEy)

with 7,/, = £1, where the Kinetic part

Ti e = tlrsA? (0)rsA (p)]

EJE" +nen:p'p +M3) (30)
EYEY

represents the spin couplings among the quarks and diquark.
The information of thermal excitations is described by the
second line of Eq. (29) with the Matsubara summation. The
summation in Eq. (29) is straightforwardly performed with
the help of the identity [53]

1 ~ Jrle) = fr(€)
sz: (iwy, + id, — € )(iw, —€)  id,—€ +¢ ' (31)

to express the thermal contributions in terms of the Fermi-
Dirac distribution function

1

fr(e) ST (32)

Then, after the analytic continuation to the real time, finally
one can express J |, in the following useful way:

&p nen:(p' - p + Mg)
T == [ G 22 (1 ’)

() 7(9)
= EJE,
o 1 —fF(WcEz(zq)) —fF(ﬂg“’E,(,/q)) (33)
g0~ e B~ nEy!

From this loop function together with the kernel (17), the
scattering amplitude leading to the [¢q] diquark is evaluated
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from the Bethe-Salpeter equation (24). Then, finally the mass
of [qq]q diquark is numerically obtained by finding the pole
position of the amplitude at rest frame ¢ = 0. It should be
noted that the ultraviolet (UV) divergences in Eq. (33) are
regularized by inserting a regularization function as will be
explained in Sec. IV.

In a similar way, loop functions of the spin-1 diquarks,
e.g., {qq}] diquark: T (4q)+- can be evaluated. That is,
from the interaction Lagrangian (22) and the appropriate
operator (20), the loop function 7 gq}t reads

Ty =47 / Sl ()55 (). (34

Here, Using the charge-conjugation symmetry for the
propagator in Eq. (28) and calculating the trace of the
Dirac matrices, one can get

&p
j{qq}* - _4/ (27)3 g’gzp T

1—fF<n¢E ) = frlneEY)
0 —noEY — ncEy!

'C
{aq}

(35)

with the summation formula (31), where the kinetic part is
of the form

Ty = E(cnlE(q) £ (290 — 9")
p P
e E( (gﬂogl/j g u0) C’E;fq)l’/
x (¢g° + ¢°¢") = ngn:p" p! (¢ g
~-¢"g7 + ¢ g") —ngn:Myg"™]. (36)

: 00 0j
From these equations one sees that J {aa}? J {aq and

j {aa} differ from each other, reflecting the violation of

Lorentz covariance, even at zero temperature due to the
present three-dimensional integral form.

In the present study, we only focus on the mass of
diquarks defined by pole positions of the scattering
amplitudes at rest: ¢ = 0. In this limit, only the spatial
components of the spin-1 diquarks become physical so that

only the 7"/ laa}t contributes to mass evaluation. Moreover,

wheng =0, 7" {aq); must be proportional to 57, hence, the

matrix structure of the Bethe-Salpeter equation (24) is
reduced to a handleable form.

In a similar manner, all the one-loop functions are
evaluated within three-dimensional integrals that include
UV divergences. They are summarized in Appendix A. It is
important to see that the scalar diquark and the vector
diquark may mix through derivative couplings when the

flavor structure is identical. Although we take ¢ — 0 limit,
such mixing effects survive since the zeroth component ¢°
of the momentum is not vanishing. In other words, for
instance, J ;- and j 00 _ are correlated by the mixed loop

: 0
function J' {aa}Tud)s

decouples from evaluating the [gq]] diquark mass with
g — 0, it provides corrections to the [gg]; mass. Such
processes are also explicitly shown in Appendix A.

Another notable point is that the loop functions of the
diquarks can share the same structure with those of mesons.
In fact, from Eq. (25) together with Eq. (28), one can notice
that the loop function of [gq]J is essenually the same as the
pion’s one. ' The duality is summarized as’

1S q Therefore, although the 9o lqal-

0*diquark & 0~meson,
0~diquark < O0*meson,
1" diquark < 1~ meson,

1~diquark < 1" meson.

Finally, we comment on the “gauge invariance” of the
loop functions of (axial)vector diquarks. In association
with the above duality between diquarks and mesons,
the diquark one-loop functions should satisfy the Ward-
Takahashi identities (WTIs) derived from the current (non)
conservations. In fact, the loop structure of Eq. (34)
together with charge-conjugation symmetry (28) is found
to be identical to the familiar vector current-current
correlator as in quantum electrodynamics (QED) [56].
When we employ the expressions of three-dimensional
integrals as in the present work, the WTI for the spatial
components are violated due to regularization artifacts
at T = 0 More concretely, one sees in Appendix A

that 7" {a }+|T=0 leads to quadratic divergences with

a naive three-dimensional cutoff: 7 f{jqq}*h:o ~ 4687/
1

(3”2)A%JV +-

j {aa}? do not. Here, we note that when the rest frame

) . 00
, while the other parts, J (g} and

q =0 is adopted to estimate the diquark masses, the
current (non)conservation law becomes trivial since in this
limit there is no current flow. Thus, as long as we stick to

'"The loop function of pion is given by

—NTZ/

with N. = 3 [43]. Regardless of the overall factor stemming from
the color factor, indeed the structure is the same as 7,

*This duality applies to the kernels (couphng constants) as well
when the number of colors is N, = 2, i.e., in two-color QCD
(QC,D), owing to the so-called Pauli—Giirsey SU(4) symmetry
relating dynamics of mesons and diquarks [54,55].

l?ss(q) )l}/SS(q)(p)}’ (37)
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the rest frame, at least the WTIs derived from the current
(non)conservation are trivially satisfied despite the emer-
gence of the quadratic divergences. Besides, the temper-
ature-dependent parts of the loop functions which are the
main target of this work are not suffered by the regulari-
zation artifacts, since these contributions are always finite
due to the Boltzmann suppression factor. For these reason-
ings, in the present work, we proceed with the present
three-dimensional-integral form. For more detail, see
Appendix B. In this Appendix, realization of the WTIs
for T-dependent parts with general g, and ¢ is explicitly
shown in Eq. (B9).3

IV. REGULARIZATION

The UV divergences of the loop functions must be
regularized when computing the scattering amplitudes
numerically. In the present work we employ the three-
dimensional proper-time regularization which includes
both UV and infrared (IR) cutoffs, Ayy and p, as done
in our previous work [43].

As inferred from Eq. (33) or explicitly shown in
Appendix. A, the loop functions generally contain the g,
dependences of 1/(qy — 61/2’ — €, +i0), where we have

included a infinitesimal positive imaginary part +i0 to
manifestly represent the retarded propagation, due to the
analytic continuation from the imaginary-time formalism.
Our regularization is performed by replacing this piece as

1 R(qo — €, — €, +i0)
P (38)
qo— €y =€ + i0 qo—€y — € T i0
where the regulator is of the form
_ 1 _
R(x) =e v —e R, (39)

Equation (38) together with our proper-time regulator (39)
enables us to evaluate the imaginary part as

R(go—€, —€,)
P p/) Im . / /
PR . 0 inR(qo — €, — €,)8(q0 — €, — €).

(40)

Here, the delta function is dealt with by the p integral so
that the right-hand side of Eq. (40) vanishes since
R(0) = 0. In other words, our proper-time regularization
allows us to eliminate the imaginary parts of the loop
functions [52,57]. Hence, one can easily define the mass of
diquarks with no contamination from imaginary parts.
Besides, this fact seems to be rather suitable to describe

One plausible way to evaluate the gauge invariant loop
functions within the three-dimensional integral form is also
provided in Appendix C.

SHB in medium

:;yrrlg
°@

V

© @ @
diquarks are “confined”
—————— oq
X &g o’
diquark diquark

these processes unlikely occur

FIG. 1. A schematic picture that intuitively explains the absence
of the imaginary parts.

the diquarks confined in SHBs, since it is unlikely that
those diquarks decay into quarks or are annihilated by
antiquarks in medium due to a confining force from the
remaining heavy quark. For a schematic picture see Fig. 1.
The IR cutoff would originate from nonperturbative gluo-
dynamics at Agcp of several hundreds MeV.

V. NUMERICAL RESULTS

In this section, we present numerical results on the
masses and decay widths of the SHBs, more concretely
the singly charmed baryons, at finite temperature, where
the temperature effects are upon the diquarks inside the
SHBs. Since the scalar and pseudoscalar diquraks carry
spin 0, the corresponding SHBs are HQS-singlet of
JP = %i, with appropriate flavor structures. Meanwhile,
the vector and axial-vector ones carry spin 1 so that they
contribute to form the HQS-doublet of J© = 1* and 3*. We
summarize experimental values of the masses and widths of
the singly charmed baryons in the vacuum collected in the
particle data group (PDG) in Table II.

In what follows we use a notation of A.(+) and E,(+) to
refer to the HQS-singlet SHBs carrying + parities. As for
the HQS-doublet ones, we use Z.(+), ZE.(+), Q.(+),
Al.(=), and E.(—). The parity eigenvalues will be omitted
when being trivially understood. There are two types of
orbital excitations of the SHBs; one stems from the relative
coordinate between a diquark and a heavy quark, and
the other one from the excitation insides the diquark. In a
quark-model language, the former and latter are called
A-mode and p-mode excitations, respectively, correspond-
ing to the Jacobi coordinates generally adopted [4]. Within
our present approximation (44), the A-mode excitations are
ignored, and hence only the p-mode excitations made of the
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TABLE II. The PDG values (central values) of mass and width
of singly charmed baryons in units of MeV [58].

Baryon Diquark  JF Mass Total width
AS [ud)§ 1/2%  2286.46 No strong decay
Ef [sulg 1/2* 246771 No strong decay
=9 [sd]$ 1/2% 2470.44 No strong decay
T.(2455)  {uu);  1/2  2453.97 1.89
$.(2455)  {ud}; 1/2% 245265 23
>.(2455)° {dd}'l" 1/2t 245375 1.83
$.(25200  {uw};  3/27 251841 14.78
$.(25200F  {ud}; 3/2% 25174 17.2
$.(2520)°  {dd}; 3/2" 251848 15.3

= {su}f ~1/2% 25782  No strong decay
=0 {sd}f ~1/2% 25787  No strong decay
E.(2645)" {su}y 3/2T  2645.10 2.14
E.(2645)°  {sd}f  3/2% 2646.16 2.35

Q. (s}t 172t 26962 ?
Q.(2770)° {ss}  3/2% 27659 ?

spin-1 diquarks (21) are examined. Those p-mode excita-
tions are regarded as the chiral partners to the ground
state. A.(+) and E.(+) within a chiral-model descrip-
tion. Experimentally observed {A.(2595), A.(2625)} and
{E.(2790), E.(2815) } would be dominated by the A-mode
excitations since those SHBs are always lighter than the
p-mode ones, whereas the p-mode ones, or the chiral-
partner A.(—) and E.(—), have not been observed.

A. Parameter determination

Toward examination of temperature dependences of the
SHB masses, here we determine the model parameters.

Our NJL model contains nine parameters: m,, my, Gg,
Hg, Hy, K, and K’ from the Lagrangian (1), and Ayy and
wr for the cutoffs. Among these parameters, m,, my, Gg,
K, Ayy, and pr are fixed solely by the meson sector and
temperature dependences of the chiral condensates. As
explained in Ref. [43] in detail, we choose the parameter
values to be

m; = 0.0761 GeV,
K =10.3 GeV~?, (41)

m, = 0.00258 GeV,
G = 1.15 GeV~2,

and

Ayy = 1.6 GeV, uir = 0.45 GeV. (42)
With these parameters, the decay constants f, =
0.0921 GeV, fx =0.110 GeV and the pseudoscalar-
meson masses m, = 0.138 GeV, mg = 0.496 GeV are
reproduced. The cutoff values (42) have been adjusted in
such a way that the pseudocritical temperature with respect
to chiral restoration reads 7', ~ 0.15 GeV, as depicted in

1.0

0.8}

0.6}

04}

0.2}

Chiral condensates

0.00 005 010 015 020 025 0.30

Masses [GeV]

0.0 s - s s s
0.00 005 010 015 020 025 0.30

T [GeV]

FIG. 2. Temperature dependences of the chiral condensates
(top) and of the constituent quark masses (bottom).

the top panel of Fig. 2. This pseudocritical temperature is
motivated by the lattice simulation results [24,25].

Temperature dependence of the constituent quark masses
is also depicted in the bottom panel of Fig. 2. The solid
curves denote M, and M, defined in Eq. (12), which
implies that the mass reductions of M, and M follow the
decrement of (gg) and (Ss), respectively. This coincidence
reflects a fact that K term driving the flavor-mixing effects
plays a minor role in the constituent quark masses. This
behavior is more clearly seen by examining the 7" depend-
ences of M 4 and M defined by subtracting K terms in the
masses

M, =M, —-2K(qq)(5s),
M, = M, - 2K(3q)*. (43)

Indeed, the dashed curves in the bottom panel of Fig. 2
qualitatively trace the solid curves. The degeneracies of
the M, and Mq (M, and M,) originate from the rapid
decrement of (gq) above T..

As for the remaining model parameters on the diquarks,
Hg, Hy, and K’, we will keep K’ to be a free parameter
so as to examine the U(1) axial anomaly effects on the
diquarks clearly. To fix Hg and Hy we adopt appropriate
mass differences among the experimentally observed singly
charmed baryons summarized in Table II. In the present
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TABLE III. The estimated values of Hg and Hy and the corresponding vacuum kernels, with K’ [GeV‘S] =0, 5, 10, and 15. The
kernel for spin-1 is commonly given by K+ = 2Hy, for all the channels.

K'[GeV™®] Hg[GeV™] Hy [GeV] Kjgge [GeV=2]  Kjgg- [GeV2]  Kifie [GeV=2] K- [GeV™2]  K: [GeV~2]
0 2.20 2.97 4.40 4.40 4.40 4.40 5.94

5 2.08 2.86 4.31 4.00 4.27 4.05 5.72

10 1.94 2.73 4.20 3.56 4.10 3.66 5.46

15 1.76 2.58 3.99 3.05 3.85 3.19 5.16

paper, the masses of SHBs, Mgyg, are assumed to be
determined by the following simple formula at any temper-
atures [1,2]:

Mgyp = MQ + Mdiquarkv (44)
by virtue of the heavy-quark effective theory. In this
formula M represents the mass of a constituent heavy
quark which is universal to the arbitrary accompanying
diquarks, while M giquark 1s the diquark mass evaluated by
the present NJL model. Hence, the mass differences are

simply provided by the corresponding ones among the
diquarks. For instance,

Am, = MY — pMyac — Mvac Mvac

I="e Ac [sqly lgaly”

— Agvac _ pgqvac _ pgvac  __ pgvac
Amy = My© — My = My, — My, (45)

hold. Here M{'® and MZ“ are read off straightforwardly
from Table II. Meanwhile, since Z.’s are isotriplet and
HQS-doublet of J” = 1T and 37, we need to take isospin
and spin averages to reasonably estimate My™. The isospin
average for spin-1/2 and spin-3/2 X. baryons are per-
formed by

e _ M3 o5y + My (a4ss) T M3 sy
5.(1/2%) 3 ,
MVaC + Mvac + MVaC
Mva(z 3/2) — I (2520)*F :(52520>+ >.(2520)° ’ (46)

respectively, and with these values the spin average yields

MV ac

5020 +3My]

z.(3/2)
) .

My© = (47)

Thus, from Table II M3 =2.50 GeV. From the above
estimation one can find

Am; = 0.183 GeV, Am, =0.215 GeV. (48)
In the following numerical analysis we will employ these
two mass differences as further inputs to fix Hg and Hy, for
a given K'.

The numerically estimated coupling constants Hg and
Hy and the corresponding vacuum kernels of the spin-0
diquarks for K’'[GeV~™>] = 0, 5, 10, and 15 are tabulated in
Table III. This table indicates that the four-point inter-
actions Hg and Hy get weakened as magnitude of the
anomaly effect K’ is enhanced, and so do the all diquark
kernels K’s. That is, the attractive force between the quarks
becomes weaker with the U(1) axial anomaly effect
increased. Accordingly, the diquarks become heavier for
larger K’ as the binding energy gets small, which is clearly
observed in Table IV. For the scalar diquarks the masses are
corrected by mixings with the time components of the
vector-diquark loop function so that those naive structure
would not hold easily. However, at least we have confirmed
numerically that such mixing corrections are approximately
universal for any choices of K’; the corrections commonly
increase the diquark masses by ~7% for any K’. We note
that the ratio of K[V;Z]S / ICEj‘qC]g is also almost the same for

all K’. Those universality would follow our inputs (48).

B. SHB masses at finite temperature

In this subsection, we present our main results on the fate
of SHB masses at finite temperature.

Depicted in Fig. 3 is the resultant 7" dependences of the
SHB masses for K/ =5 GeV™ and K’ = 15 GeV ™. The
left panels are the masses of HQS-singlet SHBs formed by
the (pseudo)scalar diquarks, while the right ones are those

TABLEIV. The computed diquark masses in the vacuum for K'[GeV™] = 0, 5, 10 and 15. The masses are displayed in a unit of GeV.

K'1GeV™l  Mig, MG, Mgy Mg M@, Mgy MG Mg M

0 0.197 0.379 0.412 0.485 0.534 0.425 0.573 0.636 0.748
5 0.281 0.463 0.496 0.560 0.605 0.619 0.716 0.706 0.809
10 0.375 0.558 0.590 0.639 0.681 0.827 0.877 0.787 0.881
I5 0.502 0.684 0.717 0.738 0.766 111 1.10 0.888 0.972
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FIG. 3.

of HQS-doublet SHBs by the (axial)vector diquarks. From
the left panel, one can see that the inverse mass ordering of
the negative-parity and HQS-singlet SHBs, particularly at
higher temperature, are realized for K’ = 15 GeV™>; the
A.(—) mass is heavier than the E.(—) mass in contrast to
our naive expectation from My > M, [15]. On the other
hand, the positive-parity and HQS-singlet SHBs exhibit
the naive mass ordering that is consistent with M > M.
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Temperature dependences of the SHB masses for K’ = 5 and 15 GeV™>.

The figure also indicates that the masses, particularly A,
mass, are once suppressed around 7 ~ T\, which simply
reflect the reduction of the constituent quark mass inside
the diquarks stemming from the abrupt chiral restoration, as
shown in Fig. 2. Above this temperature thermal effects
manifest themselves in addition to the chiral-restoration
effects and govern the fate of the SHB masses, so that the
SHB masses increase monotonically. The former mass

1.0
— 0.9}
0.8f-----=---L
0.7---------.L«3J5_.
0.6
0.5 = M,

0.00 0.05 0.10 0.15 0.20 0.25 0.30
T [GeV]

K' =5GeV?

Masses [GeV
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FIG. 4. Temperature dependences of the spin-0 (left) and the spin-1 (right) diquark masses for K’ = 5 and 15 GeV™.
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reduction of A, is more prominent for K’ = 5 GeV ™ since
the [gq]; diquark mass is smaller and the reduction of M,
affects considerably. Those characteristic temperature
dependences of the masses of the HQS-singlet SHBs were
indeed observed in our previous paper [43].

It should be noted that within the present setup, the [gqg];
diquark turns into a tachyonic mode around 7' ~ T, when a
small value of K’ is taken, resulting in the unphysical
instability of the ground state, and hence we have presented
the numerical results with K’ > 5 GeV~>. For complete-
ness we also depict temperature dependences of the spin-0
and spin-1 diquark masses in Fig. 4, despite being
essentially the same as Fig. 3.

The right panel of Fig. 3 shows the masses of the
HQS-doublet. It shows that the normal mass orderings
consistent with the quark contents, follow at lower temper-
ature for both the positive-parity and negative-parity SHBs,
although quantitatively the masses of the positive-parity
strange SHBs are underestimated. One reason to get this
ordinary mass hierarchy is that the direct U(1) axial
anomaly effects on spin-1 diquarks leading to mixing
different flavors are absent. Meanwhile, at higher temper-
ature above T, ~0.15 GeV, for the positive-parity SHBs,
the mass of Q. decreases to degenerate with X.. As a result,
notably a new peculiar mass ordering of the HQS-doublet
SHBs is predicted; =, gets heavier than Q. at high
temperature. The spin-1 diquark masses evaluated within
the NJL model will be analyzed in Sec. VI in detail.

Within the present treatment based on the approximation
of Eq. (44), the binding energy between a diquark and a
heavy quark cannot be estimated. For its evaluation,
the diquark—heavy-quark potential model as adopted in

0.30
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Temperature dependences of the mass differences of parity-partner SHBs for K’ = 5 and 15 GeV~>.

Refs. [7-9] is useful. Such improvement enables us to
describe the dissociation of SHBs at high temperatures in a
more realistic way. We leave these investigations for
future study.

C. Chiral-partner structures of the SHBs

The parity partners, hadrons carrying opposite parities,
can be regarded as a useful indicator of chiral-symmetry
restoration in medium, since their masses tend to be
degenerated as chiral symmetry is restored to exhibit the
so-called chiral-partner structure. To take a closer look at
this characteristic phenomenon, we depict mass differences
of the parity partners in Fig. 5 for K’ =5 GeV™ and
K’ =15 GeV~>. The left and right panels denote the mass
differences among the HQS-singlet and HQS-doublet
SHBs, respectively. Those figures indicate that the mass
degeneracies between the partners are well realized except
for the A, sector. This exceptional behavior stems from the
slow reduction of (§s) driven by the anomalous K’ term in
the kernel (17), as analyzed in Ref. [43] in detail. It should
be noted that the mass degeneracies of the HQS-doublet
SHBs are always well realized since the K’ term does not
contribute to them.

VI. DISCUSSIONS ON THE SPIN-1 DIQUARK
MASS SPECTRUM

In Sec. VB, we have found characteristic mass hier-
archies of the spin-1 diquarks; the small flavor dependence
of the axial-vector diquark masses, and the mass degen-
eracy of {gq}] and {ss}] diquarks at high temperature.
Here, we discuss these issues focusing on structures of the
loop functions analytically.
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First, we explain the small flavor dependences of the
axial-vector diquarks, by comparing to those of the vector
diquarks. Before proceeding with the arguments, we
remind that the spin-1 diquark masses are evaluated by
solving J(qo) = K~! = (constant) with respect to g,
from Eq. (24). In other words, the quark mass dependence
of the resultant diquark mass is obtained such that the loop
function J is always constant.

For simplicity, here we restrict ourselves at zero
temperature. In this limit, from the last equation in
Egs. (A13) and (A14), loop functions of the axial-vector
and vector diquarks generated by the identical quarks
(My=M, = M,) read

. [ dp 1 4
L —45i T2 2 .
b=~ g (o0l
(49)
and

. [ dp 1 4
T o —4i / s <P’ D(qo:p)  (50)
(2n)° (£ 3

at the rest frame ¢ = 0, respectively, with

1 1
a0 —2E) g +2E

D(qo:p) = (51)

The difference between axial-vector and vector diquark
channels are the sign of quark mass contributions, in such a
way as to leave ZM} only for 7 5y. Here, the loop functions
are governed by the excitations of p ~ 1 GeV for which the
contributions (51) are mostly negative. Hence, in order to
make the loop function constant, when we change the quark
mass My, a smaller variation of g, is enough for J,vy
compared to Jy due to the compensation from 2M in
Eq. (49). As an extreme situation, when we ignore the detail
of regularization and assume the integrands of Egs. (49)
and (50) themselves are constant, the following conditions
are obtained:

P +2M; ip?

——— 5~ Cv. ———5~C. (52
@~ 457 @ —4(E)

where C4y,Cy > 0 are constants, for a given p (~1 GeV).
These conditions yield

2
2 2 2 2

for the axial-vector and vector channels, respectively.
Therefore, a small correction of g, with respect to a change
of My is indeed obtained for the axial-vector diquarks.

Those structures essentially lead to the smaller flavor
dependence for the axial-vector diquarks, as indicated in
the right panel of Fig. 4, which would partly explain the
small mass splittings among the axial-vector diquarks.

We note that a similar argument follows for the spin-0
diquarks apart from the anomaly effects and mixings from
the spin-1 diquarks; From Egs. (A11) and (A12) one can
expect that the flavor dependence is smaller for the scalar
diquarks compared to the pseudoscalar ones, and in fact
these tendencies are reflected in our previous simplified
analysis [43]. The present computations are essentially the
same as those of the mesons as long as the one-loop
analysis within the NJL model is adopted. So we also note
that a similar small flavor dependence for the vector meson
masses is obtained, as done in, e.g., Ref. [59] where those
masses are underestimated.

Next, we explain the mass degeneracy of {gq}, and
{ss}] diquarks at higher temperature exhibited in the right
panel of Fig. 4. From Eq. (A13) the loop functions of
{qq}{ and {ss}{ diquark channels share the common

piece of 1 — 2f F(EI(,f )) (f = g, s) in their integrands. Those
contributions are mostly unity for all range of p due to the
rapid suppression of the distribution function, as long as
temperature is small compared to M. Hence, soft modes
which are sensitive to the mass difference of M, and M,
survive sizably so as to generate the mass difference of
{qq}{ and {ss}{ in such a cold system. Meanwhile, the

factor 1 —2f F(EI(,f >) is largely suppressed for the soft
modes, when temperature is adequately high, and thus
the variation from M, and M, is diminished. This sup-
pression results in the universality of the loop functions and
the masses of {gq}] and {ss}{ get degenerated. On the
other hand, the loop function of {s¢}{ includes additional

contributions proportional to f F(E;,q)) —f F(EI(,S>) from
Eq. (A13). Therefore, the mass of {sq}] (E.) always
deviates from those of {gq}; and {ss}] (£, and Q.) even
at higher temperature.

VII. DECAY WIDTH OF X, AT FINITE
TEMPERATURE

In Sec. V, mass modifications of the HQS-singlet and
HQS-doublet SHBs at finite temperature are comprehen-
sively predicted based on a chiral model for the correspond-
ing diquarks. In particular, the mass degeneracies of the
parity partners driven by the chiral restoration are clearly
delineated. Here, we focus on the fate of decays of £, — A,z
to present a clear signal of the predicted mass spectra.

A. Decay formula

An interaction Lagrangian which is capable of describ-
ing decays of £. — A,z is given by [19]

Ly = Gutr[Brd, X' Be" + B,9,2Bs + Hel,  (54)
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where (B (g));; ~ €ijx Q% (L(r)) denotes the HQS-singlet
SHBs while (Bf);; ~ Q“(7s);;" denotes the HQS-doublet
ones. More concretely

B, =—(B B
+ \/5( r F BL)
0 Ald) -E(H)
= _Ac(i) 0 Ec(i) ) (55)
E‘c(i) _Ec(i) 0
and
I.=1 1 v/ =0 1 = 1,=1/2
2 ﬁZC 755
_ 1 /=0 I,=—1 1 = 1.==1/2
Be=| 5Z z; HES=Y (56)
A mrr=1/2 1w l=-1/2
V2Te - @

where [ in Eq. (56) stands for the isospin third component.
Another 3 x3 matrix X in Eq. (54) is a scalar and
pseudoscalar meson nonet £ = S + iP in which the latter
is embedded as

Uz e

| V2
P = ﬁ T~ '7N\/_§”O KO . (57)
K- KO Ns

This nonet transforms under SU(3), x SU(3); as
P gLZgIQ. Hence, from the transformation laws (6) with
the decomposition (18) for the SHBs, chiral symmetry of
the interactions in Eq. (54) is obvious.* Moreover, this
interaction Lagrangian is invariant under SU(2) HQS
transformation since no gamma matrices driving spin
flippings of the heavy quarks are present.

From the Lagrangian (54), the interactions correspond-
ing to X. — A,z are read off to be

Line = iG4[A0n (£ ) = A.0,20(2E ")
_ L
~ Koot (2677 (5%)
Here, the HQS-doublet field (2{ ) contains a spin-1/2 and

spin-3/2 components, £ and (Zi’)*”. By separating these
components as

(T = (26)™ + % (" +orsZe, (59)

where »* is the four-velocity of the baryon, the decay
widths of £. — A,z are evaluated. The resultant decay
width reads [19]

*From the interpolating field (5), the chiral transformation law
of By g is understood to be B z) — gL(R)BL(R)gZ(R)-

_ G; (Ep + My )lp,l

— 60
Ze=Ar T on My (60)

c

for all the channels, where E, = /M3 + |p,|* is the
dispersion relation of the final-state A, and p, denotes the
momentum of the emitted pion that is simply given by
combinations of the hadron masses from energy-momen-
tum conservations. Assuming that the coupling manners
and dispersion relations do not change in medium signifi-
cantly, one can adopt Eq. (60) at any temperatures. In
particular, corrections of the decay width of £, — A,z at
finite temperature are examined by the following normal-
ized decay width

Norm  — F):c—’Ae” _ (EAL- + M/\c>|pﬂ|3 MEC (61)

> A - - . 4 ’
MUY A, (ER A M) PR M,

with no ambiguities in determining Gy,.

B. 57} , at high temperature

In this subsection, we examine the normalized decay
width Fgfi“}\cﬂ in Eq. (61) at finite temperature.

Depicted in the top panels of Fig. 6 denotes the
resultant 7' dependences of I3 . for K’ =5 GeV™>
and K’ = 15 GeV~>. From these figures one can see that
the decay width is once enhanced around T ~ T, and
then it falls to zero at T = 0.22 GeV and T =~ 0.19 GeV for
K' =5 GeV™ and K’ = 15 GeV >, respectively. That is, it
is shown that the decay width of £. — A,z vanishes above
the pseudocritical temperature 7. The enhancement at
T ~ T, is more prominent for smaller K.

In order to investigate this vanishing decay width in
detail, we also plot the temperature dependences of the
mass difference My — M, _and the pion mass M, in the
bottom panels of Fig. 6. The mass difference My — My,
gets enhanced around 7 ~ T, reflecting the reduction of
M, as displayed in the left panels of Fig. 3. After this
enhancement the mass difference monotonically decreases
due to the rather rapid increase of M, at high-temperature
regime. Meanwhile the pion mass M, monotonically
increases especially above T, from thermal effects. As a
result, My — M, < M, is satisfied, i.e., the threshold is
closed at a certain temperature, leading to the vanishing of
the decay width. We note that the enhancement of My —
M, around T ~ T\, is more prominent for smaller values
of K’, since the smaller K’ we take the larger reduction of
M A, WE obtain, as discussed in detail in Sec. V B. This is
also a reason why the threshold closing takes place at
higher temperature for the smaller K.

>The pion mass M, at finite temperature is determined in a
similar way to the diquark masses. For more detail see Ref. [43].
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FIG. 6. Top: temperature dependences of the normalized decay width Fgf’;“}\ﬂ for K’ =5 GeV™ and K’ = 15 GeV~> defined in
Egq. (61). Bottom: temperature dependences of the mass difference My — M, _and the pion mass M.

As tabulated in Table II the Z,(2645)" and E.(2645)°
baryons can possess finite decay widths due to
=, — 2.z. In our present analysis unfortunately this
decay width cannot be reproduced since we have treated
spin-1/2 and spin-3/2 E. baryons collectively by assum-
ing the HQSS, and moreover their masses have been
estimated to be 2.57 GeV in the vacuum, which leads to
vanishing of the E.. — E.x decay. However, still one can
infer the fate of =, — Z.x decay width at high temper-
ature by seeing the mass difference of Mz — Mz . This
mass difference does not grow with increasing temper-
ature, while the pion mass M, monotonically evolves due
to the thermal effects above T ~ Tp.. Hence, the decay
widths of Z.(2645)" and Z.(2645)° driven by pion
emissions are also expected to be closed above T
similarly to the widths of X. baryons.

In the present analysis we have presented the results with
the averaged masses of . and X} based on the HQSS. Even
when we take into account its violation to estimate their
masses more precisely, the closing of the decay modes is
expected to occur for all the channels.

VIII. CONCLUSIONS

In this paper we have examined the mass corrections
of the HQS-singlet and HQS-doublet singly charmed
baryons at finite temperature from HQSS and the
restoration of chiral symmetry. Modifications and chiral
dynamics of the SHBs in medium are incorporated
through the composing diquarks by virtue of the
heavy-quark effective theory.

The diquarks are described by the NJL model which
includes (pseudo)scalar-type and (axial)vector-type
four-point interactions. Besides, the six-point interaction
violating only U(1) axial symmetry is adopted to provide
the U(1) axial anomaly effects on the spin-0 diquarks. The
divergences are handled by means of the three-dimensional
proper-time regularization including both the UV and IR
cutoffs, so as to eliminate imaginary parts which corre-
spond to unphysical processes for confined diquarks
inside SHBs.

The resultant mass spectrum of the HQS-singlet SHBs
shows that the inverse mass hierarchy where the mass of
A.(=) becomes larger than that of E.(—) despite their
quark contents [15], is realized with more significant
anomaly effects, especially at high temperature regime.
These behaviors are consistent with the predictions in our
previous work [43] where different inputs were adopted.
For HQS-doublet SHBs carrying positive parities, a mass
degeneracy of Q. and X. has been predicted above the
pseudocritical temperature 7). due to the common thermal
effects for those baryons. This remarkable mass degeneracy
leads to a new peculiar mass ordering where E.. gets heavier
than Q..

The mass degeneracies of the parity partners, i.e., the
chiral-partner structures, have been predicted for all the
SHBs. For HQS-singlet SHBs, the mass degeneracies of
A, sector are found to be delayed when the anomaly
effects are sufficient, reflecting the slow reduction of
(5s). The mass degeneracies of the HQS-doublet SHBs
are always well realized reflecting the absence of the
anomaly effects.
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In addition, we have found that the decay width of
2. — A,z is once enhanced around the pseudocritical
temperature T}, and then converges to zero above T
Similarly we predlct that the decay channel of B, —» E.x
also gets closed at high temperature.

The predicted masses and fate of the decay widths
are expected to provide future heavy-ion collision experi-
ments and lattice simulations with useful information on
the chiral-symmetry properties of the spin-0 and spin-1
diquarks.

In what follows we give some comments on the
present work. In this paper we have employed the
three-dimensional integral form with the proper-time
regularization to regularize the one-loop functions. As
explained in Sec. III this scheme can barely respect the
WTIs derived from appropriate current (non)conserva-
tions in defining the masses of the spin-1 diquarks, since
at the rest frame the currents do not flow and the
identities trivially hold. On the other hand, the WTIs
are violated when we extend the analysis to the finite
momentum system due to the current flow for the spatial
components of the spin-1 diquark. Thus, it is inevitable to
improve this issue to generalize the examination for the
moving diquarks.

In three-color QCD that is corresponding to our real-life
world, the diquarks are not direct observables since they are
colorful, but the SHBs can be regarded as alternative color-
single observables. Meanwhile, in two-color QCD, QC,D,
the diquarks are counted as color-singlet baryons and their
intrinsic properties such as the masses are defined in a
proper way. Indeed, the lattice simulations have been
reporting numerical results on the hadron mass spectrum
including the diquark baryons [60,61]. In other words,
QC,D world has a great advantage in pursuing the diquark
dynamics. In fact, although in three-color QCD the A.(—)
has not been experimentally observed, on the QC,D lattice
the mass of 0~ diquark was indeed computed. In this
regard, numerical studies in QC,D together with theoretical
analyses based on chiral models [54,62-64] would also be
one of the promising approaches toward understanding the
diquarks and SHBs.

Our present NJL model analysis naturally predicts
A.(=) and E.(—) as the chiral partners to the ground-
state A, and E,., which play a key role in describing the
SHBs from the linear representation of chiral symmetry,
despite not being experimentally observed. For instance,
the main decay mode of A.(=) is A.(=) = A (+)n, the
threshold of which is 2834 MeV in the vacuum.
Meanwhile, as exhibited in Fig. 3 the predicted mass
of A.(—) is largely dependent on the magnitude of the
anomaly effect K’. In particular, when the value of K’ is
sufficiently large, the decay width reads several hundred
of MeV which is hopeless to observed A.(—) due to its
broad phase space. When we access finite temperature,
on the other hand, the mass difference between A.(+)

and A.(—) gets small, resulting in the suppression of the
decay width, as analyzed in Ref. [43] in detail. Hence, it
would be possible to confirm the existence of A.(—) in
such hot medium. We leave more phenomenological
analyses on this issue, together with the fate of decays
of the HQS-doublet SHBs, for future study.
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APPENDIX A: ONE-LOOP FUNCTIONS

In this appendix, we present one-loop functions of the
diquarks. Here, in order to keep rather general discussions,
we assume that the loop functions are generated by two
quarks whose masses are M; and M, where vertex
structures are appropriately provided.

We defined loop functions of the scalar-diquark, pseu-
doscalar-diquark, axial-vector-diquark, and vector-diquark
channels by Js, Jps, Jav, and Jv, respectively. Those
with two different quarks are of the forms

To=-21Y / 3y s (P)rsS5(p) + (1.5 2)
2TZ/ f)’ P)SS(p) + (1< 2),
=Ty / el Sy ()7 S5(p) + (1 2)),

s =21y / el ()7 sSS(p) + (1 2)]
(A1)
within the imaginary-time formalism, where p’ =
p+gq and py = iw,, [0, = 2m+ 1)zT] and g, = i®,
(w, = 2nxT). The quark propagators are
Sy(p) = ET.(0Ty ¢ (x)y7£(0)[0)
(/)
— Ap)
= lz g‘g)}’o(f =lor2), (A2
- —E
(=p.aPo P

with the symbol “ET.” standing for the Fourier trans-
formation and Aéf )(p) is a projection operator for the
positive-energy and negative-energy states
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N f)(p) _ Ez(ff) +n:(Myyo+p - @) a3) Then, calculating the kinetic parts
¢ 2 glf)
P

/ 2
| 75" = ulpsAY (0)rsAy (p)]
EY = p*+ M7 is the single-particle energy of the quark nene(p' - p + MMy)

f>andn,,, = *1. In addition, as explained in the main text =1+ EWER) ’ (A5)
the scalar diquarks can mix with the vector diquarks v
through a derivative coupling when their flavor structures
are identical. Such a process is mediated by the following o 1) A 2)
transition loop function: Tps =tr [Ag' A ()]
ne(p'-p— MM
. :1+77C77§(p (f; 5 1 2)’ (A6)
Js_v(q) ZTZ tlysSi(p")r'ysSs(p) + (1< 2)]. E, Ep
(A4)
|
" __ 2)
T =l Ay ()75 )
1 (1) 7(2) v 1 j vj j U 2) i i 10 i
= E)EY 29000 — ¢%) + ncEy p (00 + 09 9”) = 0By p (g9 + 9°g)
p P
—nemep" pl (g9 = 997 + ¢ g"Y) = nem M Mo g™, (A7)
¢ uy 1 2
T =l Ay 0)rsh ()
! O ’ D) (O i 4 ot g 2) i i i
= 5 By Bs (29°9° = 9) + ncEy) (¢ + ¢7¢°) = no B p (90 + ¢0g)
EDE® P 4
p P
—nemep" P (99 — 997 + ¢ g") + neme M Mrg"], (A8)
! s _ 1 2
TES = wlysAY ()7 vsA L (p)]
1 2 1 i i\ i
= e [(’Ig’E;z )Ml + ﬂgEI(,/)Mz)Q”O —neme(Mayp™ = My p')g"], (A9)
p P
and employing the Matsubara summation formula
Z :fF(e)_fF(el) (AIO)
(iw,, —|—zw,1—€)(ia)m—€) id,—¢€ +e ’

with fr(e) =1/ (ee/ T +1) being the Fermi-Dirac distribution function, the respective one-loop functions are evaluated in
terms of the three-dimensional integral form as follows:

Ts = _4/ dp Z <1 n nene Py p- + M1M2)> fF('lc:Ep ) — fF(ﬂg/Ez(u)) (AL1)
pr— —3 9
(ZH) {'{=pa E1(11+)E1(72_) qdo — 77¢’E1(1+) - WgE(_)

Tps = _4/ d3P Z (1 +’7§”7§(l’+ "D- —M1M2)> 1 —fF(V](:EI(]%)) —fF(ﬂg’Ez(ri)) (A12)

3 1) (2 1 2 ’
= E§+)Ez(z_) 90 — ”C’El(u) - ’74Ez(7-)
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G dp (1 NP P- +M1M2>> L= frlncEy?) = fr(nEyp!)
AV © 3 - 1) -2 1 2 ’
(27) =, @j@) o —mE”—nﬁﬁ
Py dp nep nepi\ 1= frnEy)) = frlngEy)
AV (2n)3 2 ()~ g@ (1) @
{'.{=pa Ep; Ep” Go — e Ep. —neEp.
i _4/ dp Z (5’7 _ﬂ(”?é(ﬁipi +Pj+l7i—) neme (P P +M1M2)5ij> 1 —fF(’?gE ) fF(’7§’E1(1+>)
m 27 5. EyE} EyEy” G- noEp) —neEy)
(A13)
0 — _4/ & P (1 _ﬂg”?g(P+ P- —M1M2)> fF(’?r:Ep ) — fF(”lg“’EpE+>)
2 b
(27 c’c pa E)Ey” _’7§’E1('+> ~neEy)
JY% = 4 d’p 3 neph nepl\ 1= fr(nEy)) = fringEp)
v (2z)? D @ o ED g
{'{=pa P+ P qo —NgLp, —Nelp_
i 4 &p 3 <5ij_ncfﬂ¢(pip£+pip"_)+f1¢ff1¢(P+-p_—M1M2)5"’) 1= frlncEy)) = frlngEy))
A 3 1) ~(2 1) (2 ’
(22)° . Ey)Ey” E1(1+>E1<L) 90 — ’7§'E1(z+) - ngE,(z,)
(A14)
and
70 _4/ dp Z (ﬂg’M1+ﬂ§M2> fF(WgE ) fF(nC’Ep+)>
S-v — 3 1 P
(22)° =4 Ey) a0 — o Ey) — ncEy
i :4/ d% Z ﬂg”?g(M2P+ Mlp )l_fF( (Ep ) fF( g/Em)) (A15)
sV (2x)? EVED do— o ES) — e ED

{'.{=pa

where the three-dimensional momentum has been shifted
such that the integrands are symmetrically expressed by
p+=p+tq/2.

The above one-loop functions enable us to evaluate the
scattering amplitudes 7 = (K~! — 7)~! for the respec-
tive channels and their masses. Among them, in particular,
the mass of scalar diquark is evaluated by a pole position
of the amplitude at rest with a 2 x 2 kernel matrix

K 0
K= ( OS . ) (A16)
v
and a loop-function matrix
J = ( s jg‘v> (A17)
Ty IV )

where g and Ky are the kernels for scalar and vector
diquarks, respectively.

APPENDIX B: WARD-TAKAHASHI IDENTITY

The one-loop functions of spin-1 diquarks are essentially
the same as the (axial)vector current-current correlators,
so that they should satisfy the WTIs derived from the
appropriate current (non)conservation laws. Here we show
their derivations.

As in Appendix A, let us start with a fermionic theory
with two flavors yw = (w,y;), the masses of which are
different:

['toy :V?(ld_M)l//"'Eb (Bl)
where M = diag(M, M,). The second term L; is an
arbitrary interaction Lagrangian which is invariant under
a flavor U(2) transformation: y — exp(—i6“7*)y with 7¢
being U(2) generators: 7° = 1,,, and 797'%3 is the
Pauli matrix. When we consider an infinitesimal rotation
generated by 7' the Lagrangian (B1) transforms as
8Ly = —i0"y[z', My = 6' (M, — M )ysr*y. Thus, from
the Noether’s theorem the corresponding current (non)
conservation law reads
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aﬂj%/,y - (MZ - Ml)lp‘[zl//v with j%/,y = 1/7}//4111//, <B2)
In a similar way, under an axial transformation gen-
erated by y — exp(—if'yst')y the Noether’s theorem

yields

WY,sT Y.
(B3)

Fjy, = i(My + My)pe'ysy, with j =

Those current (non)conservation laws hold at quan-
tum level as well due to the absence of quantum
anomalies.

From Eq. (Al) the loop functions 7%/ and [J\ are, at
least within one-loop level, expressed in terms of the above
currents as

Jh = 2ET.(0[Tj" (x)(0)[0).

JY = 2iF.T.(0[Tjy" (x)j;*(0) 0), (B4)

respectively. Therefore, with the help of the equal-time

anticommutation relation of y and v, one can obtain the
following WTIs

4Ty = Ay
4Ty = Ay,

where A%y, and Af; are evaluated to be

A4y = 2iE.T.(0|Tid} ji (x) ji* (0)]0)

= 2(M, — My)F.T.(0| T (x) 72y (x) 7 (0)[0),
&
x t[S1 (p")*S@ (p) = (1 < 2)], (B6)
and
A% = 2iF.T.(0[TigL " (x)5*(0)[0)
= —2i(M + My)E.T.(0|Tyr(x)z'w(x) ;" (0)[0),
d3
_2(M1+M2)TZ/(2EI))3
x trlysSW (p')r'ysS@(p) + (1 < 2)]. (B7)

respectively. In the last equalities we have adopted one-
loop approximations. Equation (B6) implies that when
M, = M,, A4, is reduced to zero and g, 7%, = 0 follows.
This is because the Lagrangian (B1) possesses the exact
flavor U(2) symmetry in this case and the corresponding
current is conserved. On the other hand, even when
M, = M,, A}, does not converge to zero since the mass
term in Eq. (B1) always breaks the axial U(2) symmetry.

Within the three-dimensional-integral form the current-
nonconservation measures A4, and Af; are calculated to be

ALy = 4(

&p K'Ig’M1
M, —-M /—
2 1) (27)? g/;”a EI()L)

d3p Z

neM, 77¢M2 0+
(2n)’ E(” EY
' {=p.a P+ P-

Ay = —4(M, +M2)/

respectively. Then, from the loop functions derived in
Appendix A and Eq. (B8), for v = 0 one can numerically
show that the WTIs in Eq. (B5) are indeed satisfied by
introducing a three-dimensional cutoff. On the other hand,
when v = j the identities are found not to be held, implying
that within the three-dimensional-cutoff form the regulari-
zation artifacts contaminate the spatial parts. As another
consequence of this partial violation, one can see that the
quadratic divergences only emerge in J4y, and Jy. It
should be noted that the temperature-dependent parts
satisfy the WTIs since their contributions are always finite
due to the Boltzmann suppression of high-momentum
modes. Indeed, we have checked it with naive three-
dimensional cutoffs by numerically confirming the identity

’7§M2 U
B E<2’)g !
p_

’7{”1§<M1P + Myp')g ”} 1 —fF<’1§E ) fF(né’EP+)
EyEy” g0 —ne By —ncEy)
e (Mipt — szi)g”] 1= frncEy) = fr(ngBy))
Ey By g0 —noEy) —ncEy
(B3)
[
q’ 4, IX§|T.dep. =q A{\V|T4dep.’
79TV 11.aep. = €' B 7.0cp. (B9)

derived from Eq. (BS).

It would be pedagogical to check the WTIs (BS5)
analytically by employing a certain regularization, then
at the end of this appendix we calculate the loop functions
T ”” and current-nonconservation measures A% ,, W) with

the dlmenswnal regularization. Here, we restrict ourselves
in the vacuum since only the diverging vacuum parts are
nontrivial. Within the dimensional regularization, J%Y,

JY s A4y, and A% are evaluated to be
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1
jAV = / dxXlz(x2 - x)(ngw - 6]”‘]”)

1
+ 16/ dxX (M — M)[(1 = x)M| — xM,)g*,
0

1
v =32 A dxX 1, (x* = x)(¢*9" - q"q")
1
+ 16/ dxXlz(Ml +M2)[(1 —)C)Ml +XM2]9”D,
0

1
ALAV = 16A dxXlz(Ml —M2)[(1 —X)Ml —XMz]qU,

1
& =16 [ dXia (0, + M) (1 = )M, + g
0
(B10)

where the logarithmic divergences are expressed as the
following d — 4 pole:

__ 1 -9

Xn= Ww , (B11)
with A}, = (1 — x)M? + xM3 — x(1 — x)g*. Note that the
quadratic divergences signaled by d — 2 poles have been
eliminated. Therefore, one can easily verify that the WTIs
(B5) indeed hold for both the axial-vector- and vector-
diquark channels.

APPENDIX C: GAUGE INVARIANT
EXPRESSIONS WITH THREE-DIMENSIONAL
CUTOFFS

In the present paper, we have employed the loop
functions in Egs. (A11)-(A15) which contain quadratic
divergences with the three-dimensional proper-time regu-
larization to eliminate the imaginary parts. As explained in
the main text, this procedure is suitable for treating the
confined diquarks inside SHBs although it also leads to
violation of the gauge invariance. However, it would be
helpful for readers to present the loop functions which is
capable of respecting the WTIs with naive three-dimensional
cutoffs, thus, here we derive them. We note that in this
appendix we stick to zero temperature.

Since the three-dimensional-integral form breaks the
Lorentz invariance even at zero temperature, the loop
function generally takes the form of

TV =A,(¢" — v"1*) + B,(¢* 9" — ¢"¢") + C,g"

+ D, (v'q” + v"q"), (C1)

with v = AV or V. In this decomposition 1# = ¢#° = (1,0)
is introduced to separate the time and spatial components

explicitly. As explained in Appendix B the time compo-
nents of 74" always respect the WTIs: g, 7 40— A9, within
the present three-dimensional cutoff scheme. Hence, by
multiplying g, from the both sides of Eq. (C1) and setting
v = 0, one can find the following constraint for C,:

1 95+

Cv = —A(L) - Dv' (CZ)
90 q0
Inserting this into Eq. (C1) yields
jﬂvy _ Al(g;w _ 1)”’[]”) —FBU( 29;41/ _ qy I-/)
AO
+D, [(v”q” +17g") - %*+q g+ —g"
6]0
(C3)

Then, the v = 0 component reads
#0 D, 2 40 Ag 0
Ty = B, —— ( g _qﬂ )+_gﬂ (C4)
q0 qo0

When we further take u = 0 in this equation,

D AY
j20:_<Bi;__U>q2+_v (CS)
90 90
is found, so Eq. (C4) can be written in terms of only 7%
and AY as

w_ _ 1 (200 Aj 2 40 0
\.7 __q2 \.711 _q() ( gﬂ )+ gﬂ (C6)

Here, since J ’,‘;0 does not violate the gauge invariance,
one can infer that in the vacuum Lorentz covariant
extension of Eq. (C6) is a “correct” expression of the loop
function. Therefore, by recovering the Lorentz covariance,

_ 1 AO
fzvz—q—z(ﬂo qo)wgﬂv—qﬂ )+ gﬂv )

or from qﬂj’f,o =AY

_ i0 AO
V= 14y — (9" - q"¢") +—g".  (C8)
¢I 90 90

can be a plausible gauge-invariant loop function within the
three-dimensional cutoff scheme. Equation (C7) or (C8)
implies that the correct loop function J* can be evaluated
by J% (or J©) and AY solely and there is no need to
compute the problematic 7% as it should be.
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