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Spectroscopic parameters and decays of the exotic tensor meson 7 with content bebé are explored in the
context of the diquark-antidiquark model. We treat it as a state built of axial-vector diquark »” Cy,c and
antidiquark by,Cé”, where C is the charge conjugation matrix. The mass m and current coupling A of this
tetraquark are extracted from two-point sum rules. Our result for m = (12.70 + 0.09) GeV proves that
T is unstable against strong dissociations to two-meson final states. Its dominant decay channels are
processes T — J/yY, n,n,., and BE*HBE*)_. Kinematically allowed transformations of 7" include also
decays T — D®)+ D)~ and D*)0D*)0, which are generated by bb annihilation inside of 7. The full width
of T is estimated by considering all of these channels. Their partial widths are calculated by invoking
methods of three-point sum rule approach, which are required to evaluate strong couplings at corresponding
tetraquark-meson-meson vertices. Our predictions for the mass and width I'; = (117.4 + 15.9) MeV of
the tensor state 7' provide useful information for experimental studies of fully heavy four-quark

exotic structures.
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I. INTRODUCTION

During the last years, investigation of fully heavy four-
quark mesons has become one of interesting and rapidly
growing branches of high energy physics. The main reason
for such interest, besides pure theoretical arguments, is
observation of four X structures with masses in a range
6.2-7.3 GeV by LHCb-ATLAS-CMS collaborations
[1-3]. According to overwhelming opinion they are scalar
resonances composed of cccc quarks, thought there exist
kinematical explanations of their origin as well.

These discoveries generated numerous and interesting
publications devoted to study of newly observed structures
[4—17]. The X resonances were explored also in the QCD
sum rule framework in our articles [18-21], in which we
modeled them as diquark-antidiquark and hadronic mol-
ecule states. This analysis allowed us to propose our
assignments for these resonances. Thus, some of them
were interpreted as a pure ground-level diquark-antidiquark
[18] and hadronic molecule [19] states, or as admixtures of
these two structures [20,21].
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Exotic mesons containing only heavy quarks were
objects of theoretical investigations starting from first days
of the quark model and quantum chromodynamics, which
do not forbid existence of hadrons containing four and five
quarks, pure gluon or quark-gluon systems. Experimental
achievements renewed and intensified interest to these
exotic particles. A class of hidden charm-bottom tetraquarks
bcbe are evidently among such hadrons. The structures
bebe were not discovered yet, but have real chances to be
seen in ongoing and future experiments [22,23].

Features of tetraquarks bchc with different spin-parities
were considered in the literature [10,24—31]. The masses of
tetraquarks bch ¢ are the main parameters calculated in
these articles using numerous methods. Information about
partial widths of their decay modes is either scarce or
absent. In other words, our knowledge about properties of
exotic mesons bch¢ is rather limited. These circumstances,
as well as discrepancies in predictions for the masses made
in the different publications, necessitate detailed studies of
the tetraquarks bche.

In Refs. [32,33], we investigated the scalar and axial-
vector particles bche and determined their masses and
widths. In the present paper, we extend our analysis by
considering the tensor tetraquark bchc with spin-parity
JP€ = 2% For simplicity, we label it 7 and calculate the
mass and full width of this exotic meson. To find the mass
m and current coupling A, we use the two-point sum rule
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(SR) method [34,35]. Partial widths of numerous decay
channels of T are computed by invoking the three-point
sum rule approach. This is necessary to estimate strong
couplings at relevant tetraquark-meson-meson vertices,
which determine widths of the processes under analysis.

There are a few types of decay modes of the tetraquark
T. Decays to pairs of quarkonia J/wY and #,7.., as well as
processes T — BXTB:~ and B B; are dissociations of the
initial particle to final-state mesons. These decays are
dominant channels of 7 in which four constituent quarks
form the final-state conventional mesons. The second kind
of processes is triggered by annihilation in T of bb quarks
to a pair of light quarks and subsequent generation of
DD mesons with suitable electric charges and spin-
parities. In the case of the tensor tetraquark, we limit
ourselves by investigation of four decays 7 — D)+ D)=
and DHODHO,

This work is composed of the following parts: In Sec. II,
we calculate the mass and current coupling of the tensor
state 7. Partial widths of decays T — J/wY and 5,5, are
computed in Sec. III. The processes with BE-*HBE-*)_ mesons
in final states are considered in the next Sec. IV. Partial
widths of the decays 7 — D™+ D™~ and D*ODH0 are
evaluated in Sec. V. In this section, we also find the full
width of the tensor tetraquark 7. We make our conclusions
in the last part of the paper Sec. VI.

II. MASS m AND CURRENT COUPLING A
OF THE TETRAQUARK T

Spectroscopic parameters of the tetraquark 7 are quan-
tities that characterize this particle and determine its
possible decay modes. The mass m and current coupling
A of a particle can be evaluated using different approaches.
One of the effective nonperturbative tools to find these
parameters is the two-point sum rule method [34,35].
Originally invented to study parameters of the ordinary
baryons and mesons, it can be successfully applied for
analysis of exotic hadrons as well [36,37].

In the framework of this method one has to extract SRs
for m and A, which can be done by considering the
correlation function

Muop(p) = i / e (O[T {7, (001, (0)}0), (1)

where J,,(x) is the interpolating current for the tensor
tetraquark and 7 is the time-ordered product of two
currents.

Analytical expression of J,,(x) depends on a diquark-
antidiquark model chosen for the particle. In the present
article, we consider 7 as a diquark-antidiquark state
composed of an axial-vector diquark b Cy,c and anti-
diquark by,Cc”. Accordingly, the interpolating current
J,u(x) has the following form:

Juw(x) = bl (x)Cy,cp(x) [b,(x)y,Ccl(x)
—by(x)y,Cel (x)]. (2)

Here, C is the charge conjugation matrix, whereas a and b
are the color indices. The current J,, describes the
tetraquark with spin-parities J* = 2.

To find the sum rules for the mass m and current
coupling A, we first have to compute the correlation
function IT,,,45(p) using physical parameters of the tetra-
quark. For these purposes, we insert into Eq. (1) a full set of
states with the quark content and spin-parities of the
tetraquark 7, and integrate it over the variable x. Then
the correlator becomes equal to

Phys () (01, |T(p. €))(T(p. €)1 3/0)

uvaf e (3)

m? — p?

where the term in Eq. (3) is the contribution of the ground-

state particle 7', whereas the dots show contributions of

higher resonances and continuum states. Here, ¢ = e,(,’ly)( p)

is the polarization tensor of the tetraquark 7'. For further
calculations, it is convenient to introduce the matrix
element

(O1,u|T(p.e(p)) = Ae (p). (4)

To find HE%;( p) we substitute Eq. (4) into the correlator
Eq. (3) and perform summation over polarization tensor

using

A *(4 1 ~  ~ ~ o~ 1 ~ o~
Zeitu)(p)ea(ﬁ ) (P) = 5 (gﬂaglzﬁ + gﬂﬂgllll) - gg;wgaﬂ’ (5)
A
where
- PuPv
Guw = 9w + ;2 . (6)

Our computations yield

, A (1
Phys
Hﬂyzﬁ(p> - }1127—[?2 {5 (g/mgyﬂ =+ gﬂﬂgua)
+ other structures} + ..., (7)

with ellipses standing for contributions of other structures
as well as higher resonances and continuum states. Note
that, after application of Egs. (5) and (6) there appear
numerous Lorentz structures in the curly brackets. The term
proportional to (g,,9,s + Gup9..) contains contribution of
only spin-2 particle, whereas remaining components in
Eq. (7) are formed due to contributions of spin-0 and —1
states as well. Therefore, in our studies we restrict ourselves
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by exploring this term and corresponding invariant ampli-
tude TIPS (p?).

At next phase of investigations, we compute the corre-
lator IT,,,4(p) with some accuracy in the operator product
expansion (OPE). To this end, we have to insert the explicit
expression of the current J,,(x) into Eq. (1) and contract
relevant quark fields to obtain ITOPE

ap(P)- As a result, we
find

HS;%(p) = i/d4xeiprr[7/aS’g“/(x)yﬂSlC’bl(x)]
x {Trly, 27 (=x)rpSy (—x)] = Te[y, 8¢ (—x).
X 7Sy (=x)] + Tely, 8¢ (—x)y Sy (=)
= Tr[y, S2“(=x)rpS5 " (=)]}. (8)

where
Sy (x) = €8T, ()C. (9)

and Sj(.(x) are b and ¢ quarks’ propagators.

The massive quark propagator Sy(x) was calculated
using an external field method at the fixed-point gauge (for
details, see Ref. [38]). More recent expression for Sy (x)
can be found in Ref. [37], which contains terms ~g3G>. It
depends only on gluon fields, as a result, the correlator
H,?,f:g,( p) contains merely gluon vacuum condensates. In
our calculations we take into account nonperturbative
contributions ~{a,G?/x), therefore adopt the following
expression for the propagator S, (x)

sy [ L conflt o

4 2 2
27) k* —my
_ gsGZ/}j G(Iﬂ(k =+ mQ) + (k + mQ)Gaﬁ
: (2 =)’
202 2
.G k= +mok
+ 12 5[11) Q(k2 2Q)4 A (10)

Here, we have introduced the notations

GT=G"x /2, G = Gf}ﬁG‘j{ﬂ ,

A=1-8, (11)
with GZﬂ being the gluon field-strength tensor, and
A—Gell-Mann matrices.

Having extracted the structure (g,,9,p + 9up9.0) from
IO"(p) and labeled corresponding invariant amplitude by
[I9PE(p?), one can derive SRs for the mass and current
coupling of the tetraquark 7. In fact, the function TT"™s(p?)
can be expressed as the dispersion integral

o Phys d
HPhys(pZ) :/ P (S)ZS_I_...7 (12)
amr S—=p

where M? = (m;, + m,)? and the dots indicate subtraction
terms required to render finite TT""$(p2). The spectral
density p"™3(s) is equal to the imaginary part of TIPS (p?),

PV (s) =A28(s—m?) +p"(s)0(s—s50)  (13)

Here, 0(z) is the unit step function, and s, is the
continuum subtraction parameter. The contribution of
the ground-level particle in Eq. (13) is separated from
other effects and represented by the pole term.
Contributions to pP*(s) coming from higher resonances
and continuum states are characterized by an unknown
hadronic spectral density p"(s). It is clear that pP¥s(s)
leads to the expression

HPhys (pZ) —

A +/°°ph(s)ds. (14)

2
o STP

Theoretically, the amplitude TI°PE(p?) can be calculated
in deep Euclidean region p?> < 0 using the operator
product expansion. The coefficient functions in OPE could
be obtained using methods of perturbative QCD, whereas
nonperturbative information is contained in the gluon
condensate {a,G*/x).

Having continued TIOPE(p?) analytically to the
Minkowski domain and found its imaginary part, we get
the two-point spectral density pOPF (). In the region p? < 0
we apply the Borel transformation B to remove subtraction
terms in the dispersion integral and suppress contribu-
tions of higher resonances and continuum states. For
BIIPhys(p?), we obtain

BITPY (p?) = A2e~"/M* 4 /oo dsph(s)e=s/M* | (15)

So

where M? is the Borel parameter. One can write the
dispersion representation for the amplitude IT°7F(p?) using
pOPE(s) as well. Then, by equating the Borel transforma-
tions of TI*™3(p?) and TI°PE(p?) and applying the
assumption about hadron-parton duality p"(s) = pOPE(s)
in a duality region, we subtract the second term in Eq. (15)
from the QCD side of the obtained equality and get

AZe™m M — TI(M?2, 5). (16)
Here,
(M2, 59) = / U dspOPE(s)e= M L TI(M2).  (17)
4M?
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The nonperturbative function IT1(M?) is computed directly
from the correlator IT°PF(p) and contains contributions that
do not enter to the spectral density.

After simple manipulations, we get

I (M?
m2 = ( Z’SO), (18)
TI(M*, 59)
and
A2 = e IMII(M?, 5y), (19)

which are the sum rules for m and A, respectively. In
Eq. (18), we also use the short-hand notation IT'(M?, 5y) =
dl1(M?, s0)/d(—1/M?). The spectral density p°PE(s) con-
tains the perturbative pP*"(s) and nonperturbative pPm*(s)
terms. Explicit expressions for pP(s) and I1(M?) are
presented in the Appendix.

We need to specify the input parameters in Eqgs. (18)
and (19) to perform numerical computations. Some of them
are universal quantities and do not depend on a problem
under consideration. The masses of b and ¢ quarks and
gluon vacuum condensate (@,G>/x) are such parameters.
In the present work, we use the following values:

my, =4.18709 GeV,  m, = (1.27+0.02) GeV,
(a,G?/m) = (0.012 +0.004) GeV*. (20)

The m; and m, are the running quark masses in the
MS scheme [39]. The gluon vacuum condensate was
extracted from analysis of various hadronic processes in
Refs. [34,35].

Contrary, the Borel and continuum subtraction param-
eters M? and s are specific for each problem and should
satisfy some standard constraints of SR computations.
Dominance of the pole contribution (PC) in extracted
quantities and their stability upon variations of M? and
5o as well as convergence of the operator product expansion
are important conditions for correct SR analysis. To fulfill
these requirements, we impose on the parameters M2 and s,
the following restrictions. First, the pole contribution

H(Mz, S())

pC = =000
I(M?, 00)

(21)

should obey PC > 0.5. The convergence of OPE is second
important condition in the SR analysis. Because the
correlation function contains only the nonperturbative
dimension-4 term TTP™* (M2 5), we require fulfilment of
the constraint [[TP™* (M2, 50)| = 0.05T1(M?, s,), which
ensures the convergence of the operator product expansion.
It is worth noting that the maximum of the Borel parameter
is determined from Eq. (21), whereas convergence of OPE
allows us to fix its minimal value.

19—
13.5} 1
— 13.0F I ST
> : B R el -
9 TR AL llalers 1
o 12.5;,_\-\,‘\“_/--——' $o=175 GeV2
E 120 | | =e=sa- 5=180 Gev2 ]
115? v 59=185 GeV? ]
----- = $p=190 GeV?
"Mot——— e
8 10 12 14 16 18 20
M?*(GeV?)
FIG. 1. Mass m of the tetraquark 7 as a function of M? for fixed

so- The two vertical lines fix values of the Borel parameter, where
m is extracted.

Numerical calculations are performed over a wide range
of the parameters M2 and s,,. In Fig. 1, we plot the mass m
in the range M? = 8-20 GeV? at some fixed s,. Analysis
of these results allows us to fix the working windows for
M? and s,, where all aforementioned restrictions are
obeyed. We find that the regions

M? € [12, 14] GeV?, 50 €[180,185] GeV?  (22)

comply with these constraints. Indeed, on the average in
so at maximal and minimal M? the pole contribution is
PC = 0.56 and PC = 0.75, respectively. The nonperturba-
tive term is positive and at M?> = 12 GeV? forms less than
1% of the whole result. The dependence of PC on the Borel
parameter is plotted in Fig. 2, in which all curves exceed the
limit line PC = 0.5.

To extract m and A, we compute their mean values over
the regions Eq. (22) and find

10—
0.8}
0.6/
o Ol
o ]
0.4 $0=185.0 GeV? 1
. _ 2 ]
0.2} $0=182.5 GeV 1
, ni $0=180.0 GeV? ]
0.0 " " " " 1 " " " " 1 " " " " 1 " " " "
12.0 12.5 13.0 13.5 14.0
M?(GeV?)

FIG. 2. Dependence of PC on the Borel parameter M? at fixed
so. The horizontal green line corresponds to PC = 0.5. The red
triangle shows the point M? = 13 GeV? and s, = 182.5 GeV>.
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1400 e
50=185.0 GeV?
13.5F eeea- 50=182.5 GeV? 1
% L So=180.0 GeV?
°
£
12.0 : : :
12.0 12,5 13.0 13.5 14.0
M?(GeV?)
FIG. 3.

= (12.70 £ 0.09) GeV,

m
A = (2.16 £ 0.24) GeV?. (23)

Effectively, results in Eq. (23) are equal to SR predictions at
the point M? =13 GeV? and s, = 182.5 GeV?, where
PC = 0.65, which guarantees the dominance of PC in the
extracted parameters. Uncertainties in Eq. (23) are generated
mainly by the choices of M? and s,,. These theoretical errors
form only 40.7% of the mass m, which demonstrates the
high stability of the obtained prediction. Such accuracy
of the result is connected with the SR for m, Eq. (18),
which determines it as a ratio of the correlation functions.
Therefore, changes in the correlators due to M2, and s,
compensate each other in m and stabilize in this way the
numerical output. In the case of A errors amount to +11%
of the central value, but still remain within limits acceptable
for the sum rule analysis. In Fig. 3, we show m as a function
of M? and s,.

The mass of the tensor tetraquark 7 was evaluated in the
framework of different models and methods [10,24-30].
In the relativistic quark model the authors obtained
12.849 GeV [10]. A considerably larger result, i.e.,
13.59-13.599 GeV was found in the color-magnetic
interaction model [24]. The mass spectra of all-heavy
tetraquarks with different contents were investigated in
Ref. [25], in which for the tensor state bcb ¢ the authors
got 12.993-13.021 GeV. The nonrelativistic chiral quark
model led to 12.809 GeV [26]. In the relativized diquark
Hamiltonian model the mass of the tensor tetraquark 2+
depending on diquarks’ spins and total spin and orbital
angular momentum of the tetraquark changes from
12.576 GeV to 13.65 GeV [27]. Prediction 12.582 GeV
for m was made in Ref. [28]. In the extended chromo-
magnetic model [29] this tensor has the mass in the range
12.537 and 12.754 GeV. This problem was addressed also
in the SR framework [30]. Values for the mass of the tensor
tetraquarks bch ¢ modeled by a color antitriplet-triplet and
sextet-antisextet interpolating currents are equal to 12.30
and 12.35 GeV, respectively.

14.0 ; . . ,
» — M?=14 GeV?
135F  eeaas M?=13 GeV? 1
%‘ G M2=12 GeV2
O 130} ]
E ErmmTrrrar e n W n o DT Ta T
12.5 r R
12_0 L " P T P S S S SR SRS S S ST SR S S
180 181 182 183 184 185
so(GeVZ)

Mass m as a function of the Borel M? (left panel), and continuum threshold s, parameters (right panel).

III. DECAYS T — J/yY AND T — 5,1,

Information on the mass of the tensor state 7" permits us
to make conclusions about its decay channels. Decays to
quarkonium pairs J/yw Y and 75,7, are among kinematically
possible decay modes of 7. Indeed, thresholds for creation
of these final states are 12.558 GeV and 12.383 GeV,
respectively. In this section we study these decay channels
of T.

A. Process T — J/yY

Here, we consider the decay T — J/wY, the partial
width of which, apart from usual input parameters, is
determined by the strong coupling g; at the vertex 7.J /y Y.
The coupling g, can be evaluated using the form factor
91(¢*) at the mass shell g*> = mj,,.

We are going to derive the three-point sum rule for the

form factor g, (¢*) from analysis of the correlation function

Mop(p. pf) = 2 / dxdye? e (O T{IY ()

X I/ (0)17,(x)}[0). (24)

where J)Y(x) and J}"(x) are interpolating currents of
the vector quarkonia Y and J/y, respectively. They are
defined as

JZ(X) - Bi(x>yﬂbi(x)’ JI{/W(X) - Ej(x)yucj(x)? (25)

with 7 and j being the color indices.

To find the physical side of the sum rule HEBZ;( p.p), we
need to rewrite Eq. (24) using the involved particles’
physical parameters. By taking into account only contri-
butions of the ground-level states, we recast the correlator
I,,qs(p. p') into the form

074025-5
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s oy O €0)) O 1 /(g e2)
m/a/}(p’ p)= 7 _ 2 2_ 2
p my q mJ/y/

x (Y (p'.e)J/w(q.&)|T(p.€))

T(p,e Ji 0
S0

5 (26)
p-—m

where my = (9460.40 £ 0.09 £ 0.04) MeV and m,;, =
(3096.900 4 0.006) MeV are masses of the Y and J/y
mesons [39]. In the expression above, we denote by &; and
&, the polarization vectors of these quarkonia, respectively.

To further simplify Eq. (26), it is convenient to employ
the matrix elements of the mesons Y and J/y

<O|JZ‘Y(P/’ £1)) = meYgly(p/)7
O\ /w(q.€)) = Frpymippen(a).  (27)

Here, fy = (708 £8) MeV and f,,, = (411 £7) MeV
are decay constants of the mesons: Their experimental
values are borrowed from Ref. [40].

Besides, one should specify the matrix element
(Y(p'.e1)J/w(q.€)|T(p,e)) which can be done by
decomposing it in contributions of all possible Lorentz-
invariant terms made of the momenta and polarization
tensor and vectors of the particles 7, Y, and J/w and
corresponding form factors. Then, by requiring the gauge-
invariance of the matrix element it is possible to express
(Y(p',e1)J/w(q, &)|T(p,€)) using the independent form
factors (see, for instance, Ref. [41]). It turns out that a
tensor-vector-vector vertex, in general, contains three inde-
pendent form factors, which correspond to a pair of vector
mesons with helicities A = 0, &1, and +2 [41-44]. In two
photon decays of a tensor meson the main contribution to
the width of this process comes from the amplitude which
correspond to a state 4 = 2. Therefore, assuming that the
same is true also for the decay T — J/w Y, we consider here
a pure A =2 final state for which the relevant vertex
acquires the following form [42]:

(Y(p',e1)d/w(q,&)|T(p,€))
= g1(¢?)el) (] - q)es p”

+(&5-p)eTq” = (' - q)el ey — (e] - &5)p""q"].  (28)

Phys

As a result, for IT

(p, p’) we get the expression

Afymyfy,my
I, (p. p') = 91(¢?) AvInE
e (= m?)(p? = md) (g - mj,)
! A7 1 / 1 ! A7
X pﬂpag;w + Epyp(lgﬂy + Wp/}pypﬂpa
-+ other structures} +- (29)
For the QCD side of the sum rule, we obtain
%5 (5. ) = [ diadtyelve v {Tef, Sy = )
X 7ot (=), 82 (x)rS5 (x = y)]
= Trly, S (y — x)7, 8¢
X (=x)7, 8¢ (X)7pSp! (x = ¥)]}- (30)

We utilize the structures proportional to p,p,gs, in the
correlators and use  corresponding  amplitudes
1™ (p2, p2. %) and TIPE(p2, p. ¢?) to find SR for
the form factor g,(q?). After standard operations the
sum rule for g,(q?) reads

2(q2 - m‘%/y/) €m2/M

— 2 mZ/MZH 2 2
- te"™ MR (M2, s, ¢7).
Afymyf J M)y

(31)

In Eq. (31), I1;(M?2,s,, ¢°) is the Borel transformed and
subtracted function TIPE(p?, p2, ¢). It depends on the
parameters M? = (M3, M3) and s, = (s¢, s)) where the
pairs (M?,sy) and (M3, s;) correspond to the tetraquark
and Y channels, and is given by the following formula:

91 (qz)

s, Kt
H1(M2,So,(]2)_/ 0 dS/ Ods/Pl(s’s/"]z)
4M? 4m}27
X e—s/M%—S,/Mg +BH?im4(p2,p/2» qz) (32)

The explicit expressions of p;(s,s’,¢*) and IIP™(p?,
P, ¢*) can be found in the Appendix.

Requirements which should be satisfied by the auxiliary
parameters M? and s, are universal for all SR computations
and have been explained in the previous section. Numerical
analysis shows that the regions in Eq. (22) for the
parameters (M3, s,) and

M3 €[10,12] GeV?, s, €[98,100] GeV?  (33)
for (M3, s;) satisfy all these requirements. Because the
form factor g,(g*>) depends on the mass and current
coupling of the tetraquark T, this choice for (M2, s)
excludes also additional uncertainties in m and A, as well
as in g¢;(¢?), which may appear beyond the regions
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1_0"'"x""x""x""x""x""
[ QCD sum rule
0.8: v pp p‘a ng
= : [ ] pIB p'a gpv
S 06 = pgppuPa
8 [
= 0.4} N
o) L Fit Function
0.2: """" plu pla ng
ro ey PgPau
0.0' P S S S S B S B ‘p‘ﬁ‘pvlp‘u‘p‘a‘
-30 -20 -10 0 10 20 30
Q*(GeV?)
FIG. 4. Sum rule’s data and fit functions for g,(Q?). The
diamond fixes the point Q* =-mj, ~where g, has been
estimated.

Eq. (22). It is worth noting that s, is limited by the mass
my(as) = (10023.4 £0.5) MeV of the radially excited
state Y'(25), i.e., s{) < m%ms).

The SR method leads to reliable predictions for the form
factor g;(g*) in the Euclidean region ¢*> < 0. But g,(¢?)
determines the strong coupling g; at the mass shell
q* = m} sy~ Therefore, it is convenient to introduce the

function g,(Q?) with Q> = —¢* and use it in our analysis.
The results obtained for g, (Q?) are plotted in Fig. 4, where
Q? varies inside the limits Q% = 2-30 GeV?>.

As it has been emphasized above, the strong coupling g,
should be extracted at g* = m? Sy L€, at Q* = -m’ »
where the SR method does not work. Therefore,
we introduce the fit function G;(Q?) that at momenta
Q? > 0 gives the same SR data, but can be extrapolated to
the domain of negative Q2. For these purposes, we utilize
the function

G(0%) = goexp[cgw(ﬁz)} (34)

where GV, ¢!, and ¢? are fitted constants. Then, having
compared QCD output and Eq. (34), it is easy to find
G)=0.50 GeV~!, =410, and ¢?=-2.66. (35)
This function is also shown in Fig. 5, where a nice
agreement of G, (Q?) and QCD data is clear. For the strong
coupling ¢g;, we find

91 =Gi(-m};,) = (3.9£09)x 107 GeV~'.  (36)

The form factor g,(Q?) and coupling g; can also be
extracted from alternative SRs. To this end, we have used

20""'x""x""x""x""x""
> QCD sum rule
< 15f Fit Function
> I
4 [
o I
~ 107
o [
- F
x F
O 5
0""‘1““1““1““1““1““
-30 -20 -10 0 10 20 30
Q*(GeV?)
FIG. 5. Sum rule data and extrapolating function for the form

factor G,(Q?). The circle shows the point Q% = —m; ;.

HPhys

the amplitudes that in the correlators ”mﬂ(p p') and

Hl?lf;%(p,p’) correspond to structures pﬂpag;w and
pﬁpypﬂ ! ph, respectively. Numerical predictions for

d,(0?) and ¢/ (Q?) found using these new SRs are depicted
in Fig. 4 as well. It is seen that, in the case of the structure
PyPagus the sum rule data almost coincide with ones

extracted above for g;(Q?). Consequently the parameters
of the extrapolating function G} (Q?), and ¢} = G/ (—m? /W)
with a high accuracy are identical to our results from
Egs. (35) and (36). The sum rule that corresponds to the
structure pyp,p),py leads for gj(g?) to different predic-
tions. These SR points can be extrapolated by employing
G/(Q?) with parameters GV =0.43 GeV~!, c}” = 1.90,
and ¢2” = 1.72. Though QCD data differ from each other
the flttlng function G/(Q?) gives at the mass shell

2 __
Q mJ Jy

gl =Gl(-m3,,) = (3.84£0.9) x 107 GeV~',  (37)

which is very close to Eq. (36). In other words,
three different structures in the correlation functions

HE%;( p.p') and TIOPL(p, p'), and corresponding SRs lead
almost to the same result for the strong coupling g, at the
vertex T.JJ/yw Y. Because uncertainty in g; generated by a
choice of the different structures is considerably smaller
than theoretical errors of the SR method itself, it can be
safely neglected.

The partial width of the decay T — J/y Y is determined

by the expression

T - J/yY] = ¢> —- 2
[_)/l/,] gl40ﬂm2

M, |7, (38)

where
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1
1] :W["ﬁ/w +m§,, (m* —4my) +(m* —m3)?

X (6m*+3m*m3. +m3) +mj, (m* —m*m3 +6my)

M, [

— %, (OmS = 3dm i P -4m§). (39)

and Ay = A(m, my,my,,)

x4yt 2 =28y + a2 P
Ax,y,z)= \/ éx ) (40)

Then, we obtain

[T - J/wY] = (27.7£9.1) MeV. (41)

B. Decay T — n1,

The partial width of the process T — 7,1, is governed by
the strong coupling g, at the vertex 77,7,.. In the framework
of the SR method the relevant form factor g,(g*) can be
obtained from analysis of the correlator

IL,(p.p') =i / d*xd*ye'?Y e~ P (0| T {J™ ()

The interpolating currents of the quarkonia 7. and 7, in
Eq. (42) are

Je(x) = &i(x)irsei(x), I (x) = b;(x)iyshy(x).  (43)

The matrix elements

Fo
0l Jm AN ) ’7;;7
(O () =52
2
m
0| — Ll e 44
(0% [n.(q)) 2, (44)
Phys

are necessary to calculate IT,,” (p, p') with f, , m, , and
fy.» my, being the decay constants and masses of the
mesons #;,, and 7., respectively. The vertex Tn,n, is given
by the expression [44]

(P (@) T(p.€)) = 92(?)el) (p)p*p™. (45)

+
x J"(0)J,u(x) }0). (42) " For the correlator HE‘JYS( p,p'), we find
|
Fhys no_ 2 Af’?bm%bfrlcmic 1 m* — 2’”2(’"%1, +q*) + (m%,, -q*)?
124 (p1 V4 ) - 92(q )4mbm (p2 _ m2>(p/2 _ m2 ) (qg _ m2 ) 12m2 gﬂu
c b Me

+ p,p, + other terms|.

The QCD side of the sum rule II)Y®(p, p’) has the form

MOPE(p. pf) = i / dhxdye ™ P {TrlysSis(y — x)

X 7,82 (=x)ysS¢ (x)7, 8¢ (x — y)]
— TrlysSi(y — x)7, 57

x (=x)ysS (X7, S5 (x = y)]}- (47)

The functions I1;,**(p, p’) and TIQPE(p, p') have the same
Lorentz structures. We consider terms ~p,p, and use
corresponding invariant amplitudes IT,"™*(p?, p2, ¢*) and

I9PE(p?, p”2, ¢*) to derive the sum rule for the form factor
92(‘12)

2 2
( 2) _ 4mcmh(q - mﬂ(-) emz/M%emsb/M%
9\q A 2 2
VIR IR

X Hz(Mz,So, qz), (48)

(46)

I
where I1,(M?, s, ¢%) is the amplitude TISPE(p?, p”2, ¢?)
after Borel transformations and continuum subtractions.

The remaining manipulations are usual prescriptions
of the SR method, which have been explained above.
In numerical computations, for the masses of the quarkonia
n. and n,, we use m, = (2984.1 £0.4) MeV, m, =
(9398.7 +2.0) MeV from PDG [39]. The decay constant
fy. = (421 £35) MeV was extracted from SR analysis
[45], whereas for f, we employ 724 MeV. We have
utilized also the following windows for M3, and s; in the 7,
channel

M2€(10,12] GeV2, s, €[95.99] GeV2. (49)

The extrapolating function G,(Q?) and parameters
Gy =33.63 GeV~!, ¢} =831, and ¢3 = —13.55 lead to
reasonable agreement with SR data. Then the strong
coupling g, amounts to
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9 =Go(-m2) = (204 £4.9) GeV~'.  (50)

The partial width of this process is equal to

A
rr = ¢? M,|?, 51
T = mie] = 93 35— 1M> (51)
where
|M |2 _ [m4 + (m%b - m%c)z - 2m2(m,%b + m’%c)]z (52)
2 24m* ’
and A, = A(m,m,,,m, ).
The width of the decay T — .1, is
[T - nyn.] = (21.1 £7.2) MeV. (53)

IV. MODES T — B:*B:~ AND B} B;

Here, we consider decays of the tensor tetraquark 7 to
BB~ and B} B; final states. It is known that exper-
imental information about B. mesons is limited by the mass
of BF and its first radial excitation B (2S) [39]. Therefore,
for parameters of the c¢bh (h¢) mesons with other spin-
parities one should use theoretical predictions. In the case
of the vector meson B+, for its mass and decay constant we
employ

mpg: = 6338 MeV, fp: =471 MeV (54)
from Refs. [46,47], respectively. We also utilize the
experimental value mp_ = (6274.47 4+ 0.27 £0.17) MeV
for the mass of BY and decay constant f 5, = (371 &
37) MeV from Ref. [48]. It is not difficult to see that the
processes T — B:*B:~ and BB, are permitted decay
modes of the tensor diquark-antidiquark state 7', because
thresholds for production of the B:* B}~ and B} B; final-
states 12.68 GeV and 12.55 GeV are below its mass m.

A.T - B:*B;~
Analysis of this decay goes in line with a scheme
presented and explained above. Therefore, we write down
principal formulas and final results.
The correlation function to derive SR for the form factor

31(q*) responsible for strong interaction at the vertex
TB: B~ is

Myap(p.p') = 12 / d*xd*yet?yePx (0T {J5 ()
X I (0)73(x)}[0). (55)

*+ = . .
Here, ]5" and J2 are the interpolating currents of Bi™
and B}~ mesons, which are determined by the expressions

T () =Bi(0rei(x). I () = &by, (56)

In terms of the physical parameters of the particles,
I1,,.5(p. p') acquires the following form:

ot —
fls(p. p) = (O [BEH(p',21)) (O |Bi (g, €5))
uvap\rs pa _ m%z qz _ m%?t»

X <Bi+<p/’ 51>Bz_((l, 82)‘T(p7 €)>
(Tl

2 2

T (57)
p-—m

Subsequent calculations are carried out using the matrix
elements

(0|74
(v

B (p'.e1)) = fpmpe(p'),
B (q.€7)) = fp:mp-£2,(q), (58)

where ¢, (p’) and &, (¢) are the polarization vectors of B;*
and B;~, respectively. The vertex TB:* B}~ is considered in
the form Eq. (28) with replacement g,(¢%) = 7,(¢?).

Then ﬁﬁ%;( p, p') in terms of the physical parameters of
the tetraquark 7 and mesons B;* reads

l=[Phys (p p,) _ gl(qz)Af%}jm%?j 1 |:lp p/ p
et PP = o ) (i) () (2P
m* +my —q*
Tl)ﬂpagﬁv
+ p’ﬂpf,gm—i-other structures] +--. (59)

The function f[ﬂmﬁ( p, p') computed in terms of the quark
propagators is equal to

OO (p.p') =i / d*xd*ye?Y e P {Trly, S} (y — x)
X 1aSE (=x)7, 81 (x)758% (x = y)]
= Trly,Sie (v — x)7. S8
X (=x)7, 8, (x)yS% (x = y)]}. (60)

The sum rule for §,(q?)

2_ 2
a(q*) = A = m,) /M M
Af%}jm%j
x 1, (M2, 80, ¢%) (61)

is derived using invariant amplitudes I1;"*(p2, p’2, ¢*) and
TIPPE(p?, p, ¢*), which correspond to terms ~p, plg, in
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the correlators HP%;( p. p') and TIOP% (p. p'), respectively.

Above I1,(M?,s,, ¢%) is the amplitude TIPPE(p?, p2, ¢°)
obtained after relevant transformations.

Numerical computations have been carried out by
employing the following values for the parameters M3
and s in the B;" channel

2e[6.5,7.5] GeV?, L€ [49,51] GeV2.  (62)

The constants of the function G,(Q?) are equal to
G) =031 GeV™', ¢} =0.19, and & =3.37. We find
for the strong coupling §;

=Gi(-m}.) = (3.6 £0.9) x 107! GeV~'.  (63)
The partial width of the decay T — B:' B~ is equal to

T
807m?

[T - BB | = (m* = 3m*my. + 6my.), (64)

where 4; = A(m, mg., mg.). Alternatively, the width of this
decay can be obtained from Egs. (38) and (39) upon
replacement m;;, = my — mp:.
Numerical calculations yield
I'[T - B;"B:"] = (20.1 £ 6.6) MeV. (65)
B.T - B}B]

The process T — B/ B_ is investigated in analogous
manner. We consider the correlation function

M, (p.p') = iz/d4Xd4ye"plye_ipx<0|T{J3?(y)

x J7(0)J(x)}[0). (66)

with JB¢ (x) and J< (x) being the interpolating currents of
the B} and B mesons

I () = by(x)iysei(x),

The matrix elements of the BX mesons are

2
S, (68)

(015 |BE) =
my, + m,

The vertex (BY (p')B:(q)|T(p,¢€)) has the form

(BE(1)BZ(q)IT(p.€)) = 1n(q?)el) ()PP, (69)

The I1,"%(p. p') obtained using these matrix elements
after some substitutions [, and m; — mg , 4m.m;, —
(my, 4+ m,)?, etc.] is given by Eq. (46), whereas the QCD
side of SR is defined by Eq. (47). The SR for the form
factor §,(q?) is

(my +m.)*(q* —mj )
Af,mi,

ﬁz(Mz’S()yqz)- (70)

n(q?) = " M3 g M

In numerical analysis, we have used the following
parameters:

2€[6.5.7.5) GeV?, | €[45,47) GeV2.  (71)
Computations of the form factor §,(¢?) and coupling §,
lead to the prediction

9o =0o(-m} ) = (266 £6.4) GeV~!,  (72)
where G,(Q?) is the fitting function with parameters
39 =29.89 GeV~!, &} = 0.95, and &} = 1.90.

The width of the decay T — B B can be computed by
means of the expression

7
[T - BfBZ] = 52— 2
[I'= BiBe] = gen

(m? — 4m%‘:)2, (73)

where 1, = A(m, mp ,mg ). This formula in the limit m,,
and m, — mp can be obtained from Eq. (52). Our
computations yield

[T — BiB:] = (20.1 £6.9) MeV.  (74)

V. DECAYS DUE TO bb ANNIHILATIONS

It has been emphasized above that the tetraquark 7 can
transform to conventional mesons also due to annihilation
of bb to light quark-antiquark pairs [7,8,49] and creation of
DD mesons with required electric charges and spin-
parities. Here, we consider decays of the tetraquark 7" to
DD DODO D*tD*= and DT D~ mesons.

It is clear that these decays are kinematically possible
modes for transformation of the tetraquark 7 to ordinary
mesons. We study these processes in the same context of
the three-point sum rule approach. But here we encounter a
situation when relevant correlation functions contain bb
quarks’ vacuum matrix element (hb) [49]. In calculations,
we replace this matrix element with known value of the
gluon condensate {a,G>/x).
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A. Decays T — D**D** and DD’

Let us analyze the process T — D**D*. To find the
coupling G, of particles at the vertex TD**D*, we start
from the correlation function

Mas(p. p') = 12 / d*xd*ye?V e Px (0| T{J” (y)

x J0"(0)775(x)}[0). (75)

where J2”(x) and JP" (x) are interpolating currents for the

mesons D* and D**

IR () = (i), I (x) = i;(x)y,e;(x). (76)
The expression of the correlation function IT wap(D> D)

in terms of T, D*°, and D* particles’ parameters reads

D0 7y * *
[ehys (p.p) = <0|J;14) D O(P/781)> <0|J£)0 D O(q,52)>
prap i pr—ml, g —m?,

< (D*(p',1)D*(q.&)|T(p.€))
T(p,€)|J5]0
pr—m
where mpo = (2006.85 +0.05) MeV is the mass of
the mesons D** and D*°, whereas ¢, and &, are their
polarization vectors.

The matrix elements which are required to calculate

Ph
HWZ;}(p p') are

<O|J;?*n D*O(P'a 81)> = fD*mD*Oglﬂ(p/),

(02" D (q. €2)) = formpoea(q). (78)
with  fp = (252.2 +£22.66) MeV  being the decay
constant of the mesons D*® and Dj). The vertex

(D*(p',&,)D*(q, &)|T(p,€)) is modeled in the form
of Eq. (28).

The correlator Hﬂmﬂ(p p') is a sum of different com-
ponents. The SR for the form factor G, (q>
employing the invariant amplitude T1}™%(p?, p’2, ¢?) that
corresponds to the structure p, p,gp,. The same correlation
function ﬁ”mﬁ( p, p') computed using the heavy and light
quark propagators is

Phys

) is obtained by

2 ip'y ,—ipx
H,?lf;%(p P = 3<bb>/d4xd4yelllye p

Ty, Si ()12 (=x) 7oy 82 (x = ¥)].
(79)

where S,(x) is the u quark’s propagator [37]. In what
follows, the function TIOPE(p2, p2,4?) is the invariant
amplitude that corresponds in Hﬂmﬂ(p p') to the term
pypagﬂy'

For further studies, we make use of the relation between
condensates

58) =~ (25 (50)

12my, \ =

derived in Ref. [34] from the sum rule analysis. This
expression was obtained at the leading order of the
perturbative QCD and is valid as far as higher order
corrections in mbl are very small.

The SR for the coupling G,(q?) reads
2_ 0
Gl (qz) _ Z(q - mD*O) emz/M%emmO/Mg
AfD*mD*O
XHI(M ,So,qz), (81)

where T, (M2, s, ¢?) is the amplitude TI9E(p?, p2, ¢?)
undergone to Borel transformations and continuum
subtractions.

To extract G,(g?) from this SR, we carry out standard
manipulations and skip further details: In the D** meson
channel, we have used the parameters

2e[2,3] GeV?, L E€[5.7,5.8] GeV2. (82)
The coupling G; has been evaluated by employing
SR data for Q% = 2-30 GeV? and the extrapolating func-
tion with parameters G} = 0.06 GeV~', & = 10.67, and
¢? = —25.14. The SR data and fit functlon G1(0?) are
plotted in Fig. 5. The coupling G, has been computed at the

mass shell ¢g*> = mf)*o and amounts to

G, =G (-m D*O) (4.62 £ 1.11) x 1072 GeV~1. (83)
The width of the decay T — D*°D*0 is
[T - DD = (7.7+£2.6) MeV.  (84)

The second process T — D°D° is considered starting
from the correlator

ﬁllv(p, p/) - i2 / d4xd4yeil7/)’e—ipx<O|T{JD0 (y)
x JP'(0)J},(x)}0), (85)

where the currents J?'(x) and J?"(x) are defined by
expressions
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JP’ (x) = & (x)iysu;(x), JDO(X):L_‘j(X)iYSCj(x)- (86)

To get the sum rule for the form factor G,(g?) responsible
for strong interaction of particles at the vertex 7DD, we

calculate TT;,”*(p, p') and ﬁBFE(P, P

We determine f[,lj,l}ys(p, p') using the following matrix
elements:

0 0 fszo
(017" D%) = (o7 D) =722 (g7)
and
(D°(p")D°(q)|T(p. €)) = Ga(q?)el) (p)p"“p”.  (88)

with mpo = (1864.84 +0.05) MeV and fp = (211.9 +
1.1) MeV being the mass and decay constant of mesons
DY and DY [39,50]. As a result, we obtain

> (p.p') =

Gy(q 2)Af%m4
mi(p* —m?)(p* —m2,)(q* — m2,)
y [m4 —2m*(m2, + ¢*) + (m2, —
2

q’)
12m I
m? + m? 0o~ qz
+ PP - Pl
+ other terms] . (89)

For ﬁng(p, p'), we find
ﬁOPE / _2 Bb d4 d4 ip'y ,—ipx
v (pvp)_§< > Xxa'ye e
X Tr[ysSi (v)rsSE (=x)7,7,8% (x=)]. (90)

We extract SR for G,(q*) using the amplitudes
"™ (p2, p? 4 2) and TI9PE(p2, p”2, ¢?) corresponding to
structures p, p, and get

m%(QZ - szg) ¢
Af2Dm2‘)o
x IL,(M2,s0. ¢°). (91)

2 2
Gy(q*) = m? /M3 g0/ M

with T1,(M2,s,,¢?) being the transformed function
fl(szE(pz p/2 qZ)‘
In numerical calculations we employed the parameters

M3 €[1.5,3] GeV?, spE€[5,5.2] GeV2.  (92)

We have found the coupling G, by means of the of the

functlon QZ(QZ) with GJ = 0.20 GeV~ I, ¢} =10.72, and
= -26.80

= Gy(—m2,) = (0.16 £0.04) GeV~".  (93)

The partial width of the decay T — D°D" is equal to

T[T - D°D"] = (6.5 +2.3) MeV. (94)

B. Processes T — D**D*~ and D*D~

The modes T — D**D*~ and D™D~ are explored in
accordance with the scheme explained above. Let us
analyze the process T — D*TD*~. The strong form factor
G;(q?) at the vertex TD**D*~ is extracted from the
correlation function

H;“/aﬁ(p’pl) =i’ / d4xd4yeip’ye‘ipx<0|T{J£*+ (y)
x J”D*i(o)‘]z:/}(x)}‘o% (95)

where currents for the mesons D*t and D*~ are given by
the formulas

= d;(x)y,ci(x), =d;(x),d;(x). (96)

The matrix elements of these particles and the vertex are
similar to ones introduced above. Therefore, we omit these
expressions and write down the QCD side of the SR

H 2
t a,G \/d4xd4yeiplye—ipx
18my;, \ =

X Tty S (V)72 (=x)7arpS¢ (x=¥)]. (97)

I ()

“ TP (x)

wors(p.p')=—

As usual, we utilize invariant amplitudes corresponding
to the structures p,ppgp. In numerical calculations the
Borel and continuum subtraction parameters in the D**
channel are fixed as in Eq. (82). The mass of D** mesons is
mp+ = (2010.26 £ 0.05) MeV, whereas for their decay
constants we use fp = (252.2 +22.66) MeV.

The function G;(Q%) with the constants &3 =
0.06 GeV~!, ¢1 =10.65, and ¢5 = —25.11 leads to cou-
pling G;

Gy = Gy(—m3).) = (4.63+ 1.11) x 1072 GeV~'.  (98)
For the partial width of the mode T — D**D*~, we get
[T = D**D*] = (1.7+2.7) MeV.  (99)

The process T — D+ D~ is explored in similar way. The
coupling G, describing the strong interaction of the
particles at the vertex TD" D~ is

Gy= 64(—’"%)) =

(0.16 £ 0.04) GeV~'.  (100)
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For the width of this decay, we find

[T - D*D~] = (6.5+2.3) MeV. (101)

Computations performed in present paper allow us to
estimate the full width of the axial-vector tetraquark 7" with
content beb ¢. As a result, we obtain

7] = (117.4 £ 15.9) MeV. (102)

VI. CONCLUSIONS

In present article, we have calculated the mass and full
width of the tensor tetraquark bch €. Analyses have been
performed in the framework of QCD sum rule method. To
evaluate the mass of 7, we have applied the two-point SR
method, whereas its decays have been studied by invoking
the three-point SR approach.

The mass m of the tensor tetraquark 7 was evaluated
in different articles, sometimes with contradictory results
[10,24-30]. Our prediction m = (12.70 £ 0.09) GeV is
smaller than those reported in publications [10,24-26].
In Refs. [27-30] the authors found the mass of this state
in most of cases below m. Thus, m evaluated in the
present work is somewhere between these two groups of
predictions.

The results of current paper demonstrate that the tensor
state 7" can decay to ordinary mesons through the strong
fall-apart mechanism. In almost all articles cited above
authors made similar conclusions: Only in Ref. [30] T was
predicted to be stable against two-meson strong dissocia-
tions. But let us emphasize that structures bcb ¢, due to bb
and cc annihilations and generations of ordinary heavy-light
mesons, are always strong-interaction unstable particles.

We have calculated partial widths of the four processes
T — J/wY, nyn. and BB, which are dominant
decay channels of 7. We have evaluated also widths of
modes triggered by bb annihilations inside of 7 and
containing at the final states D®*)*D®*)~ and D*)0D(*)0
mesons. It is worth noting that the contribution of these
processes is not small and forms approximately 24% of the
T tetraquark’s full width.

Our predictions characterize 7 as a wide diquark-
antidiquark state, which can decay to two-meson final
states through both fall-apart and bb annihilation mecha-
nisms. The tensor tetraquark 7, as well as the scalar and

N20(N)
P @ P ) = St

+ A*(=4Cmym.(3Cmym, + Nap) + NyL,(4Cm,m, + Nap))}.

Here

axial-vector tetraquarks bcb ¢, establish a family of fully
heavy exotic mesons with different spin-parities. Having
compared m with masses of the scalar and axial-vector
states mg = (12.697 £ 0.090) GeV and m,y = (12.715 +
0.090) GeV [32,33], one sees that they form almost a
degenerate system of particles.

Heavy tetraquarks are an inseparable part of the exotic
hadron spectroscopy. Structures bch ¢ were not observed
yet, but they can be seen in the future runs of the LHC and
Future Circular Collider [22,23]. Publications devoted to
fully heavy four-quark states are concentrated on analysis
of their masses. Decays of these states, including bch ¢
ones, did not become objects of detailed investigations. But
besides masses, all conclusions about nature of discovered
resonances have to be also based on knowledge about their
decay channels and widths: This information is required for
reliable interpretation of collected data and for planning
new measurements.

DATA AVAILABILITY

No data were created or analyzed in this study.

APPENDIX: THE CORRELATION FUNCTIONS
l-[(M2 ,So) AND Hl (MZ ,So,qz)

This appendix contains the correlation functions
[1(M?,s,) and I1,(M?,s,, ¢*), which have been applied
to compute the mass of the tensor tetraquark 7" and partial
width of the decay T — J/yY.

The correlation function TT(M?, s,), which appears in the
SRs has been presented in Eq. (17),

dspOPE(s)e/M* 4 T1(M?).

o s) = [

4M?

The components of the spectral density p°PE(s) are given
by the general expression

o) = [ [ap [T arptsiapn). (an)

where a, 3, and y are the Feynman parameters. The function
I1(M?) is also determined by an Eq. (A 1)-type formula with
the integrand TI(M?, @, B, 7).

The perturbative function pP*'(s, a, 5, 7) is given by the
formula

{12C*L3s*a* BPy® + 4A2Csapy(3BCmym, — 4ALINafy)

(A2)
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N = —ClsapyL, + A(m2Ls — m3(B +7))] /A%,
and

A=prLy+aB+y)+alpB+2r—1)+y(r-1]. B=ad*(f-y)—vL3
+a(fP-2r(y-1)-pr+1). C=ap+ar+pr.

We also use the notations
Li=a+p+y-1, Ly=a+p-1, Ly=p+y-1, Ly=a+y-1

The function TI(M?, a, 3, 7) has the following form:

H(Mz’a’ﬂ’ 7/) - _Mexp _A(m%(ﬂ+y) _L3m%) [

20 — L2
384AL 7' By ML, afiy my (B +7) = Lym]

x (L3mdLBy(L3 + 3Laa +302) + Lim3Br* (B + 1) — mim2ByLy (BB — 1)(2a* + 2a(L; -
(= 1) + (- 120G~ 1)+ (Sp=2) +al(f— 1)(Tf = 2)) +7*(3 - Sa + 3a?

(A3)

+8f(a—=1) +56%) 4y’ (=4 + 3a + 58) + 2¢*) + mym py(&? (B +y)* + Laay (B +7)(=3 + 36 +27)

+ @ Ly(B+7)(B+37) +rLs(B(B—1)* + v+ pr(26 = 3) +y* (26 - 1)))

— mym}(L3ap(B(f —1)> +y + Pr(6p —=T) + > (98 = 5) + 21°) + &2 (f*(o® + 2a(L, -
+2(B=1)2)(=2+a+2B) +pRa*>+Ta(B—1)3F—1)+2a>(5=3) +4(B—-1)2(56—- 1))y
+ (a+a® + 2024 — 1)+ 45— 1)(95 — 4) + ap(25 — 18))y2 + (2a(a— 1) + p(11a — 19)

+ 27827 + v (a+p)) + Lifr(=y + B(=1 + f +27)))).

An explicit formula for pP™ (s, @, B, y) is rather cumbersome, therefore we do not write down it here.

The correlator I1;(M?, s, ¢*) is given by the formula Eq. (32)
Ry N 2 :
I, (MP. 50, ¢%) = / 0 ds/ L ds'pi(s, 87, g?)em M IME L BIIDI (2, 2, ).
4M? mi

Here, the function p(s, s’, g%) is determined by the expression

( 3mbm / /1 a /l a—/} )
p(s. ' 47) 327* a—l—y)sz’

1
4

where

¢+ mia+7) - PLy
a+y

The dimension 4 function TTP™*(p2, p2, ¢?) is given by the formula

, G? /7r mym, —a —a—p
HD1m4 2’ /2’ 2 a / / d / ALZ
PP PR ) = B T a+y)5{ ila+y)

X 2% + 6p* + a(12° +30p%*(y — 1) + 278(y = 1)> + 8(y = 1)3) + 1283 (y = 1) + 156%(y —
+98(y = 1> +2(y = 1)* + 3L30% (5 + 4y — 4) + &> (98 + 8y — 8)] + 2(a + y)*L flm} L3
— pPLifI2Lsa+ o + 2% +2B(y — 1) + (v — 1)*] + 2L3ay(¢*ay + mZ(a + 7))}

074025-14
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