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Spectroscopic parameters and decays of the exotic tensor meson T with content bcb̄c̄ are explored in the
context of the diquark-antidiquark model. We treat it as a state built of axial-vector diquark bTCγμc and

antidiquark b̄γνCc̄T , where C is the charge conjugation matrix. The mass m and current coupling Λ of this
tetraquark are extracted from two-point sum rules. Our result for m ¼ ð12.70� 0.09Þ GeV proves that
T is unstable against strong dissociations to two-meson final states. Its dominant decay channels are

processes T → J=ψϒ, ηbηc, and Bð�Þþ
c Bð�Þ−

c . Kinematically allowed transformations of T include also
decays T → Dð�ÞþDð�Þ− and Dð�Þ0D̄ð�Þ0, which are generated by bb̄ annihilation inside of T. The full width
of T is estimated by considering all of these channels. Their partial widths are calculated by invoking
methods of three-point sum rule approach, which are required to evaluate strong couplings at corresponding
tetraquark-meson-meson vertices. Our predictions for the mass and width ΓT ¼ ð117.4� 15.9Þ MeV of
the tensor state T provide useful information for experimental studies of fully heavy four-quark
exotic structures.

DOI: 10.1103/PhysRevD.111.074025

I. INTRODUCTION

During the last years, investigation of fully heavy four-
quark mesons has become one of interesting and rapidly
growing branches of high energy physics. The main reason
for such interest, besides pure theoretical arguments, is
observation of four X structures with masses in a range
6.2–7.3 GeV by LHCb-ATLAS-CMS collaborations
[1–3]. According to overwhelming opinion they are scalar
resonances composed of ccc̄c̄ quarks, thought there exist
kinematical explanations of their origin as well.
These discoveries generated numerous and interesting

publications devoted to study of newly observed structures
[4–17]. The X resonances were explored also in the QCD
sum rule framework in our articles [18–21], in which we
modeled them as diquark-antidiquark and hadronic mol-
ecule states. This analysis allowed us to propose our
assignments for these resonances. Thus, some of them
were interpreted as a pure ground-level diquark-antidiquark
[18] and hadronic molecule [19] states, or as admixtures of
these two structures [20,21].

Exotic mesons containing only heavy quarks were
objects of theoretical investigations starting from first days
of the quark model and quantum chromodynamics, which
do not forbid existence of hadrons containing four and five
quarks, pure gluon or quark-gluon systems. Experimental
achievements renewed and intensified interest to these
exotic particles. A class of hidden charm-bottom tetraquarks
bcb̄c̄ are evidently among such hadrons. The structures
bcb̄c̄ were not discovered yet, but have real chances to be
seen in ongoing and future experiments [22,23].
Features of tetraquarks bcb̄c̄ with different spin-parities

were considered in the literature [10,24–31]. The masses of
tetraquarks bcb̄ c̄ are the main parameters calculated in
these articles using numerous methods. Information about
partial widths of their decay modes is either scarce or
absent. In other words, our knowledge about properties of
exotic mesons bcb̄c̄ is rather limited. These circumstances,
as well as discrepancies in predictions for the masses made
in the different publications, necessitate detailed studies of
the tetraquarks bcb̄c̄.
In Refs. [32,33], we investigated the scalar and axial-

vector particles bcb̄c̄ and determined their masses and
widths. In the present paper, we extend our analysis by
considering the tensor tetraquark bcb̄c̄ with spin-parity
JPC ¼ 2þ. For simplicity, we label it T and calculate the
mass and full width of this exotic meson. To find the mass
m and current coupling Λ, we use the two-point sum rule
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(SR) method [34,35]. Partial widths of numerous decay
channels of T are computed by invoking the three-point
sum rule approach. This is necessary to estimate strong
couplings at relevant tetraquark-meson-meson vertices,
which determine widths of the processes under analysis.
There are a few types of decay modes of the tetraquark

T. Decays to pairs of quarkonia J=ψϒ and ηbηc, as well as
processes T → B�þ

c B�−
c and Bþ

c B−
c are dissociations of the

initial particle to final-state mesons. These decays are
dominant channels of T in which four constituent quarks
form the final-state conventional mesons. The second kind
of processes is triggered by annihilation in T of bb̄ quarks
to a pair of light quarks and subsequent generation of
DD mesons with suitable electric charges and spin-
parities. In the case of the tensor tetraquark, we limit
ourselves by investigation of four decays T → Dð�ÞþDð�Þ−

and Dð�Þ0D̄ð�Þ0.
This work is composed of the following parts: In Sec. II,

we calculate the mass and current coupling of the tensor
state T. Partial widths of decays T → J=ψϒ and ηbηc are

computed in Sec. III. The processes with Bð�Þþ
c Bð�Þ−

c mesons
in final states are considered in the next Sec. IV. Partial
widths of the decays T → Dð�ÞþDð�Þ− and Dð�Þ0D̄ð�Þ0 are
evaluated in Sec. V. In this section, we also find the full
width of the tensor tetraquark T. We make our conclusions
in the last part of the paper Sec. VI.

II. MASS m AND CURRENT COUPLING Λ
OF THE TETRAQUARK T

Spectroscopic parameters of the tetraquark T are quan-
tities that characterize this particle and determine its
possible decay modes. The mass m and current coupling
Λ of a particle can be evaluated using different approaches.
One of the effective nonperturbative tools to find these
parameters is the two-point sum rule method [34,35].
Originally invented to study parameters of the ordinary
baryons and mesons, it can be successfully applied for
analysis of exotic hadrons as well [36,37].
In the framework of this method one has to extract SRs

for m and Λ, which can be done by considering the
correlation function

ΠμναβðpÞ ¼ i
Z

d4xeipxh0jT fJμνðxÞJ†αβð0Þgj0i; ð1Þ

where JμνðxÞ is the interpolating current for the tensor
tetraquark and T is the time-ordered product of two
currents.
Analytical expression of JμνðxÞ depends on a diquark-

antidiquark model chosen for the particle. In the present
article, we consider T as a diquark-antidiquark state
composed of an axial-vector diquark bTCγμc and anti-
diquark b̄γνCc̄T . Accordingly, the interpolating current
JμνðxÞ has the following form:

JμνðxÞ ¼ bTaðxÞCγμcbðxÞ½b̄aðxÞγνCc̄TbðxÞ
−b̄bðxÞγνCc̄TaðxÞ�: ð2Þ

Here, C is the charge conjugation matrix, whereas a and b
are the color indices. The current Jμν describes the
tetraquark with spin-parities JP ¼ 2þ.
To find the sum rules for the mass m and current

coupling Λ, we first have to compute the correlation
function ΠμναβðpÞ using physical parameters of the tetra-
quark. For these purposes, we insert into Eq. (1) a full set of
states with the quark content and spin-parities of the
tetraquark T, and integrate it over the variable x. Then
the correlator becomes equal to

ΠPhys
μναβðpÞ ¼

h0jJμνjTðp; ϵÞihTðp; ϵÞjJ†αβj0i
m2 − p2

þ � � � ; ð3Þ

where the term in Eq. (3) is the contribution of the ground-
state particle T, whereas the dots show contributions of

higher resonances and continuum states. Here, ϵ ¼ ϵðλÞμν ðpÞ
is the polarization tensor of the tetraquark T. For further
calculations, it is convenient to introduce the matrix
element

h0jJμνjTðp; ϵðpÞi ¼ ΛϵðλÞμν ðpÞ: ð4Þ

To find ΠPhys
μναβðpÞ we substitute Eq. (4) into the correlator

Eq. (3) and perform summation over polarization tensor
using

X
λ

ϵðλÞμν ðpÞϵ�ðλÞαβ ðpÞ ¼ 1

2
ðg̃μαg̃νβ þ g̃μβg̃ναÞ −

1

3
g̃μνg̃αβ; ð5Þ

where

g̃μν ¼ −gμν þ
pμpν

p2
: ð6Þ

Our computations yield

ΠPhys
μναβðpÞ ¼

Λ2

m2 − p2

�
1

2
ðgμαgνβ þ gμβgναÞ

þ other structures

�
þ…; ð7Þ

with ellipses standing for contributions of other structures
as well as higher resonances and continuum states. Note
that, after application of Eqs. (5) and (6) there appear
numerous Lorentz structures in the curly brackets. The term
proportional to ðgμαgνβ þ gμβgναÞ contains contribution of
only spin-2 particle, whereas remaining components in
Eq. (7) are formed due to contributions of spin-0 and −1
states as well. Therefore, in our studies we restrict ourselves
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by exploring this term and corresponding invariant ampli-
tude ΠPhysðp2Þ.
At next phase of investigations, we compute the corre-

lator ΠμναβðpÞ with some accuracy in the operator product
expansion (OPE). To this end, we have to insert the explicit
expression of the current JμνðxÞ into Eq. (1) and contract
relevant quark fields to obtain ΠOPE

μναβðpÞ. As a result, we
find

ΠOPE
μναβðpÞ ¼ i

Z
d4xeipxTr½γαS̃aa0b ðxÞγμSbb0c ðxÞ�

× fTr½γνS̃b0bc ð−xÞγβSa0ab ð−xÞ� − Tr½γνS̃a0bc ð−xÞ;
× γβSb

0a
b ð−xÞ� þ Tr½γνS̃a0ac ð−xÞγβSb0bb ð−xÞ�

− Tr½γνS̃b0ac ð−xÞγβSa0bb ð−xÞ�g; ð8Þ

where

S̃bðcÞðxÞ ¼ CSTbðcÞðxÞC; ð9Þ

and SbðcÞðxÞ are b and c quarks’ propagators.
The massive quark propagator SQðxÞ was calculated

using an external field method at the fixed-point gauge (for
details, see Ref. [38]). More recent expression for SQðxÞ
can be found in Ref. [37], which contains terms ∼g3sG3. It
depends only on gluon fields, as a result, the correlator
ΠOPE

μναβðpÞ contains merely gluon vacuum condensates. In
our calculations we take into account nonperturbative
contributions ∼hαsG2=πi, therefore adopt the following
expression for the propagator SQðxÞ

SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
�
δabð=kþmQÞ
k2 −m2

Q

−
gsG

αβ
ab

4

σαβð=kþmQÞ þ ð=kþmQÞσαβ
ðk2 −m2

QÞ2

þ g2sG2

12
δabmQ

k2 þmQ=k

ðk2 −m2
QÞ4

þ � � �
�
: ð10Þ

Here, we have introduced the notations

Gαβ
ab ≡Gαβ

A λAab=2; G2 ¼ GA
αβG

αβ
A ; A¼ 1− 8; ð11Þ

with Gαβ
A being the gluon field-strength tensor, and

λA–Gell-Mann matrices.
Having extracted the structure ðgμαgνβ þ gμβgναÞ from

ΠOPE
μναβðpÞ and labeled corresponding invariant amplitude by

ΠOPEðp2Þ, one can derive SRs for the mass and current
coupling of the tetraquark T. In fact, the function ΠPhysðp2Þ
can be expressed as the dispersion integral

ΠPhysðp2Þ ¼
Z

∞

4M2

ρPhysðsÞds
s − p2

þ � � � ; ð12Þ

whereM2 ¼ ðmb þmcÞ2 and the dots indicate subtraction
terms required to render finite ΠPhysðp2Þ. The spectral
density ρPhysðsÞ is equal to the imaginary part of ΠPhysðp2Þ,

ρPhysðsÞ¼Λ2δðs−m2ÞþρhðsÞθðs− s0Þ ð13Þ

Here, θðzÞ is the unit step function, and s0 is the
continuum subtraction parameter. The contribution of
the ground-level particle in Eq. (13) is separated from
other effects and represented by the pole term.
Contributions to ρPhysðsÞ coming from higher resonances
and continuum states are characterized by an unknown
hadronic spectral density ρhðsÞ. It is clear that ρPhysðsÞ
leads to the expression

ΠPhysðp2Þ ¼ Λ2

m2 − p2
þ
Z

∞

s0

ρhðsÞds
s − p2

: ð14Þ

Theoretically, the amplitude ΠOPEðp2Þ can be calculated
in deep Euclidean region p2 ≪ 0 using the operator
product expansion. The coefficient functions in OPE could
be obtained using methods of perturbative QCD, whereas
nonperturbative information is contained in the gluon
condensate hαsG2=πi.
Having continued ΠOPEðp2Þ analytically to the

Minkowski domain and found its imaginary part, we get
the two-point spectral density ρOPEðsÞ. In the region p2 ≪ 0
we apply the Borel transformation B to remove subtraction
terms in the dispersion integral and suppress contribu-
tions of higher resonances and continuum states. For
BΠPhysðp2Þ, we obtain

BΠPhysðp2Þ ¼ Λ2e−m
2=M2 þ

Z
∞

s0

dsρhðsÞe−s=M2

; ð15Þ

where M2 is the Borel parameter. One can write the
dispersion representation for the amplitude ΠOPEðp2Þ using
ρOPEðsÞ as well. Then, by equating the Borel transforma-
tions of ΠPhysðp2Þ and ΠOPEðp2Þ and applying the
assumption about hadron-parton duality ρhðsÞ ≃ ρOPEðsÞ
in a duality region, we subtract the second term in Eq. (15)
from the QCD side of the obtained equality and get

Λ2e−m
2=M2 ¼ ΠðM2; s0Þ: ð16Þ

Here,

ΠðM2; s0Þ ¼
Z

s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ. ð17Þ
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The nonperturbative function ΠðM2Þ is computed directly
from the correlator ΠOPEðpÞ and contains contributions that
do not enter to the spectral density.
After simple manipulations, we get

m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

; ð18Þ

and

Λ2 ¼ em
2=M2ΠðM2; s0Þ; ð19Þ

which are the sum rules for m and Λ, respectively. In
Eq. (18), we also use the short-hand notation Π0ðM2; s0Þ ¼
dΠðM2; s0Þ=dð−1=M2Þ. The spectral density ρOPEðsÞ con-
tains the perturbative ρpertðsÞ and nonperturbative ρDim4ðsÞ
terms. Explicit expressions for ρpertðsÞ and ΠðM2Þ are
presented in the Appendix.
We need to specify the input parameters in Eqs. (18)

and (19) to perform numerical computations. Some of them
are universal quantities and do not depend on a problem
under consideration. The masses of b and c quarks and
gluon vacuum condensate hαsG2=πi are such parameters.
In the present work, we use the following values:

mb ¼ 4.18þ0.03
−0.02 GeV; mc ¼ ð1.27� 0.02Þ GeV;

hαsG2=πi ¼ ð0.012� 0.004Þ GeV4: ð20Þ

The mb and mc are the running quark masses in the
MS scheme [39]. The gluon vacuum condensate was
extracted from analysis of various hadronic processes in
Refs. [34,35].
Contrary, the Borel and continuum subtraction param-

eters M2 and s0 are specific for each problem and should
satisfy some standard constraints of SR computations.
Dominance of the pole contribution (PC) in extracted
quantities and their stability upon variations of M2 and
s0 as well as convergence of the operator product expansion
are important conditions for correct SR analysis. To fulfill
these requirements, we impose on the parametersM2 and s0
the following restrictions. First, the pole contribution

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ; ð21Þ

should obey PC ≥ 0.5. The convergence of OPE is second
important condition in the SR analysis. Because the
correlation function contains only the nonperturbative
dimension-4 term ΠDim4ðM2; s0Þ, we require fulfilment of
the constraint jΠDim4ðM2; s0Þj ¼ 0.05ΠðM2; s0Þ, which
ensures the convergence of the operator product expansion.
It is worth noting that the maximum of the Borel parameter
is determined from Eq. (21), whereas convergence of OPE
allows us to fix its minimal value.

Numerical calculations are performed over a wide range
of the parameters M2 and s0. In Fig. 1, we plot the mass m
in the range M2 ¼ 8–20 GeV2 at some fixed s0. Analysis
of these results allows us to fix the working windows for
M2 and s0, where all aforementioned restrictions are
obeyed. We find that the regions

M2 ∈ ½12; 14� GeV2; s0 ∈ ½180; 185� GeV2 ð22Þ

comply with these constraints. Indeed, on the average in
s0 at maximal and minimal M2 the pole contribution is
PC ≈ 0.56 and PC ≈ 0.75, respectively. The nonperturba-
tive term is positive and at M2 ¼ 12 GeV2 forms less than
1% of the whole result. The dependence of PC on the Borel
parameter is plotted in Fig. 2, in which all curves exceed the
limit line PC ¼ 0.5.
To extract m and Λ, we compute their mean values over

the regions Eq. (22) and find

FIG. 1. Massm of the tetraquark T as a function ofM2 for fixed
s0. The two vertical lines fix values of the Borel parameter, where
m is extracted.

FIG. 2. Dependence of PC on the Borel parameter M2 at fixed
s0. The horizontal green line corresponds to PC ¼ 0.5. The red
triangle shows the point M2 ¼ 13 GeV2 and s0 ¼ 182.5 GeV2.
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m ¼ ð12.70� 0.09Þ GeV;
Λ ¼ ð2.16� 0.24Þ GeV5: ð23Þ

Effectively, results in Eq. (23) are equal to SR predictions at
the point M2 ¼ 13 GeV2 and s0 ¼ 182.5 GeV2, where
PC ≈ 0.65, which guarantees the dominance of PC in the
extracted parameters. Uncertainties in Eq. (23) are generated
mainly by the choices ofM2 and s0. These theoretical errors
form only �0.7% of the mass m, which demonstrates the
high stability of the obtained prediction. Such accuracy
of the result is connected with the SR for m, Eq. (18),
which determines it as a ratio of the correlation functions.
Therefore, changes in the correlators due to M2, and s0
compensate each other in m and stabilize in this way the
numerical output. In the case of Λ errors amount to �11%
of the central value, but still remain within limits acceptable
for the sum rule analysis. In Fig. 3, we showm as a function
of M2 and s0.
The mass of the tensor tetraquark T was evaluated in the

framework of different models and methods [10,24–30].
In the relativistic quark model the authors obtained
12.849 GeV [10]. A considerably larger result, i.e.,
13.59–13.599 GeV was found in the color-magnetic
interaction model [24]. The mass spectra of all-heavy
tetraquarks with different contents were investigated in
Ref. [25], in which for the tensor state bcb̄ c̄ the authors
got 12.993–13.021 GeV. The nonrelativistic chiral quark
model led to 12.809 GeV [26]. In the relativized diquark
Hamiltonian model the mass of the tensor tetraquark 2þþ
depending on diquarks’ spins and total spin and orbital
angular momentum of the tetraquark changes from
12.576 GeV to 13.65 GeV [27]. Prediction 12.582 GeV
for m was made in Ref. [28]. In the extended chromo-
magnetic model [29] this tensor has the mass in the range
12.537 and 12.754 GeV. This problem was addressed also
in the SR framework [30]. Values for the mass of the tensor
tetraquarks bcb̄ c̄ modeled by a color antitriplet-triplet and
sextet-antisextet interpolating currents are equal to 12.30
and 12.35 GeV, respectively.

III. DECAYS T → J=ψϒ AND T → ηbηc

Information on the mass of the tensor state T permits us
to make conclusions about its decay channels. Decays to
quarkonium pairs J=ψϒ and ηbηc are among kinematically
possible decay modes of T. Indeed, thresholds for creation
of these final states are 12.558 GeV and 12.383 GeV,
respectively. In this section we study these decay channels
of T.

A. Process T → J=ψϒ
Here, we consider the decay T → J=ψϒ, the partial

width of which, apart from usual input parameters, is
determined by the strong coupling g1 at the vertex TJ=ψϒ.
The coupling g1 can be evaluated using the form factor
g1ðq2Þ at the mass shell q2 ¼ m2

J=ψ .
We are going to derive the three-point sum rule for the

form factor g1ðq2Þ from analysis of the correlation function

Πμναβðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJϒμ ðyÞ

× JJ=ψν ð0ÞJ†αβðxÞgj0i; ð24Þ

where Jϒμ ðxÞ and JJ=ψν ðxÞ are interpolating currents of
the vector quarkonia ϒ and J=ψ , respectively. They are
defined as

Jϒμ ðxÞ ¼ b̄iðxÞγμbiðxÞ; JJ=ψν ðxÞ ¼ c̄jðxÞγνcjðxÞ; ð25Þ

with i and j being the color indices.
To find the physical side of the sum ruleΠPhys

μναβðp; p0Þ, we
need to rewrite Eq. (24) using the involved particles’
physical parameters. By taking into account only contri-
butions of the ground-level states, we recast the correlator
Πμναβðp; p0Þ into the form

FIG. 3. Mass m as a function of the Borel M2 (left panel), and continuum threshold s0 parameters (right panel).
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ΠPhys
μναβðp; p0Þ ¼ h0jJϒμ jϒðp0; ε1Þi

p02 −m2
ϒ

h0jJJ=ψν jJ=ψðq; ε2Þi
q2 −m2

J=ψ

× hϒðp0; ε1ÞJ=ψðq; ε2ÞjTðp; ϵÞi

×
hTðp; εÞjJ†αβj0i

p2 −m2
þ � � � ; ð26Þ

where mϒ ¼ ð9460.40� 0.09� 0.04Þ MeV and mJ=ψ ¼
ð3096.900� 0.006Þ MeV are masses of the ϒ and J=ψ
mesons [39]. In the expression above, we denote by ε1 and
ε2 the polarization vectors of these quarkonia, respectively.
To further simplify Eq. (26), it is convenient to employ

the matrix elements of the mesons ϒ and J=ψ

h0jJϒμ jϒðp0; ε1Þi ¼ fϒmϒε1μðp0Þ;
h0jJJ=ψν jJ=ψðq; ε2Þi ¼ fJ=ψmJ=ψε2νðqÞ: ð27Þ

Here, fϒ ¼ ð708� 8Þ MeV and fJ=ψ ¼ ð411� 7Þ MeV
are decay constants of the mesons: Their experimental
values are borrowed from Ref. [40].
Besides, one should specify the matrix element

hϒðp0; ε1ÞJ=ψðq; ε2ÞjTðp; ϵÞi which can be done by
decomposing it in contributions of all possible Lorentz-
invariant terms made of the momenta and polarization
tensor and vectors of the particles T, ϒ, and J=ψ and
corresponding form factors. Then, by requiring the gauge-
invariance of the matrix element it is possible to express
hϒðp0; ε1ÞJ=ψðq; ε2ÞjTðp; ϵÞi using the independent form
factors (see, for instance, Ref. [41]). It turns out that a
tensor-vector-vector vertex, in general, contains three inde-
pendent form factors, which correspond to a pair of vector
mesons with helicities λ ¼ 0, �1, and �2 [41–44]. In two
photon decays of a tensor meson the main contribution to
the width of this process comes from the amplitude which
correspond to a state λ ¼ 2. Therefore, assuming that the
same is true also for the decay T → J=ψϒ, we consider here
a pure λ ¼ 2 final state for which the relevant vertex
acquires the following form [42]:

hϒðp0; ε1ÞJ=ψðq; ε2ÞjTðp; ϵÞi
¼ g1ðq2ÞϵðλÞτρ ½ðε�1 · qÞετ�2 p0ρ

þ ðε�2 · p0Þε�τ1 qρ − ðp0 · qÞετ�1 ερ�2 − ðε�1 · ε�2Þp0τqρ�: ð28Þ

As a result, for ΠPhys
μναβðp; p0Þ we get the expression

ΠPhys
μναβðp; p0Þ ¼ g1ðq2Þ

ΛfϒmϒfJ=ψmJ=ψ

ðp2 −m2Þðp02 −m2
ϒÞðq2 −m2

J=ψÞ

×

�
p0
βp

0
αgμν þ

1

2
pμp0

αgβν þ
1

2m2
pβpνp0

μp0
α

þ other structures

�
þ � � � : ð29Þ

For the QCD side of the sum rule, we obtain

ΠOPE
μναβðp; p0Þ ¼

Z
d4xd4yeip

0ye−ipxfTr½γμSiab ðy − xÞ

× γαS̃
jb
c ð−xÞγνS̃bjc ðxÞγβSaib ðx − yÞ�

− Tr½γμSiab ðy − xÞγαS̃jbc
× ð−xÞγνS̃ajc ðxÞγβSbib ðx − yÞ�g: ð30Þ

We utilize the structures proportional to pμp0
αgβν in the

correlators and use corresponding amplitudes
ΠPhys

1 ðp2; p02; q2Þ and ΠOPE
1 ðp2; p02; q2Þ to find SR for

the form factor g1ðq2Þ. After standard operations the
sum rule for g1ðq2Þ reads

g1ðq2Þ ¼
2ðq2 −m2

J=ψ Þ
ΛfϒmϒfJ=ψmJ=ψ

em
2=M2

1em
2
ϒ=M

2
2Π1ðM2; s0; q2Þ:

ð31Þ

In Eq. (31), Π1ðM2; s0; q2Þ is the Borel transformed and
subtracted function ΠOPE

1 ðp2; p02; q2Þ. It depends on the
parameters M2 ¼ ðM2

1;M
2
2Þ and s0 ¼ ðs0; s00Þ where the

pairs ðM2
1; s0Þ and ðM2

2; s
0
0Þ correspond to the tetraquark

and ϒ channels, and is given by the following formula:

Π1ðM2;s0;q2Þ¼
Z

s0

4M2

ds
Z

s0

4m2
b

ds0ρ1ðs;s0;q2Þ

×e−s=M
2
1
−s0=M2

2 þBΠDim4
1 ðp2;p02;q2Þ: ð32Þ

The explicit expressions of ρ1ðs; s0; q2Þ and ΠDim4
1 ðp2;

p02; q2Þ can be found in the Appendix.
Requirements which should be satisfied by the auxiliary

parametersM2 and s0 are universal for all SR computations
and have been explained in the previous section. Numerical
analysis shows that the regions in Eq. (22) for the
parameters ðM2

1; s0Þ and

M2
2 ∈ ½10; 12� GeV2; s00 ∈ ½98; 100� GeV2 ð33Þ

for ðM2
2; s

0
0Þ satisfy all these requirements. Because the

form factor g1ðq2Þ depends on the mass and current
coupling of the tetraquark T, this choice for ðM2

1; s0Þ
excludes also additional uncertainties in m and Λ, as well
as in g1ðq2Þ, which may appear beyond the regions
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Eq. (22). It is worth noting that s00 is limited by the mass
mϒð2SÞ ¼ ð10023.4� 0.5Þ MeV of the radially excited
state ϒð2SÞ, i.e., s00 < m2

ϒð2SÞ.
The SR method leads to reliable predictions for the form

factor g1ðq2Þ in the Euclidean region q2 < 0. But g1ðq2Þ
determines the strong coupling g1 at the mass shell
q2 ¼ m2

J=ψ . Therefore, it is convenient to introduce the

function g1ðQ2Þ with Q2 ¼ −q2 and use it in our analysis.
The results obtained for g1ðQ2Þ are plotted in Fig. 4, where
Q2 varies inside the limits Q2 ¼ 2–30 GeV2.
As it has been emphasized above, the strong coupling g1

should be extracted at q2 ¼ m2
J=ψ , i.e., at Q2 ¼ −m2

J=ψ

where the SR method does not work. Therefore,
we introduce the fit function G1ðQ2Þ that at momenta
Q2 > 0 gives the same SR data, but can be extrapolated to
the domain of negative Q2. For these purposes, we utilize
the function

GiðQ2Þ ¼ G0
i exp

�
c1i

Q2

m2
þ c2i

�
Q2

m2

�
2
�
; ð34Þ

where G0
i , c

1
i , and c2i are fitted constants. Then, having

compared QCD output and Eq. (34), it is easy to find

G0
1 ¼ 0.50 GeV−1; c11 ¼ 4.10; and c21 ¼−2.66: ð35Þ

This function is also shown in Fig. 5, where a nice
agreement of G1ðQ2Þ and QCD data is clear. For the strong
coupling g1, we find

g1 ≡ G1ð−m2
J=ψÞ ¼ ð3.9� 0.9Þ × 10−1 GeV−1: ð36Þ

The form factor g1ðQ2Þ and coupling g1 can also be
extracted from alternative SRs. To this end, we have used

the amplitudes that in the correlators ΠPhys
μναβðp; p0Þ and

ΠOPE
μναβðp; p0Þ correspond to structures p0

βp
0
αgμν and

pβpνp0
μp0

α, respectively. Numerical predictions for
g01ðQ2Þ and g001ðQ2Þ found using these new SRs are depicted
in Fig. 4 as well. It is seen that, in the case of the structure
p0
βp

0
αgμν, the sum rule data almost coincide with ones

extracted above for g1ðQ2Þ. Consequently the parameters
of the extrapolating function G0

1ðQ2Þ, and g01 ¼ G0
1ð−m2

J=ψÞ
with a high accuracy are identical to our results from
Eqs. (35) and (36). The sum rule that corresponds to the
structure pβpνp0

μp0
α leads for g001ðq2Þ to different predic-

tions. These SR points can be extrapolated by employing
G00
1ðQ2Þ with parameters G000

1 ¼ 0.43 GeV−1; c1001 ¼ 1.90,
and c2001 ¼ 1.72. Though QCD data differ from each other
the fitting function G00

1ðQ2Þ gives at the mass shell
Q2 ¼ −m2

J=ψ

g001 ≡ G00
1ð−m2

J=ψ Þ ¼ ð3.8� 0.9Þ × 10−1 GeV−1; ð37Þ

which is very close to Eq. (36). In other words,
three different structures in the correlation functions
ΠPhys

μναβðp; p0Þ and ΠOPE
μναβðp; p0Þ, and corresponding SRs lead

almost to the same result for the strong coupling g1 at the
vertex TJ=ψϒ. Because uncertainty in g1 generated by a
choice of the different structures is considerably smaller
than theoretical errors of the SR method itself, it can be
safely neglected.
The partial width of the decay T → J=ψϒ is determined

by the expression

Γ½T → J=ψϒ� ¼ g21
λ1

40πm2
jM1j2; ð38Þ

where

FIG. 4. Sum rule’s data and fit functions for g1ðQ2Þ. The
diamond fixes the point Q2 ¼ −m2

J=ψ where g1 has been
estimated.

FIG. 5. Sum rule data and extrapolating function for the form
factor G1ðQ2Þ. The circle shows the point Q2 ¼ −m2

D�0 .
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jM1j2¼
1

6m4
½m8

J=ψ þm6
J=ψðm2−4m2

ϒÞþðm2−m2
ϒÞ2

×ð6m4þ3m2m2
ϒþm4

ϒÞþm4
J=ψðm4−m2m2

ϒþ6m4
ϒÞ

−m2
J=ψð9m6−34m4m2

ϒþm2m4
ϒþ4m6

ϒÞ�; ð39Þ

and λ1 ¼ λðm;mϒ; mJ=ψÞ

λðx;y;zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4þ y4þ z4 − 2ðx2y2þ x2z2þ y2z2Þ

p
2x

: ð40Þ

Then, we obtain

Γ½T → J=ψϒ� ¼ ð27.7� 9.1Þ MeV: ð41Þ

B. Decay T → ηbηc
The partial width of the process T → ηbηc is governed by

the strong coupling g2 at the vertex Tηbηc. In the framework
of the SR method the relevant form factor g2ðq2Þ can be
obtained from analysis of the correlator

Πμνðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJηbðyÞ

× Jηcð0ÞJ†μνðxÞgj0i: ð42Þ

The interpolating currents of the quarkonia ηc and ηb in
Eq. (42) are

JηcðxÞ ¼ c̄iðxÞiγ5ciðxÞ; JηbðxÞ ¼ b̄jðxÞiγ5bjðxÞ: ð43Þ

The matrix elements

h0jJηb jηbðp0Þi ¼ fηbm
2
ηb

2mb
;

h0jJηc jηcðqÞi ¼
fηcm

2
ηc

2mc
ð44Þ

are necessary to calculate ΠPhys
μν ðp; p0Þ with fηb , mηb , and

fηc , mηc being the decay constants and masses of the
mesons ηb and ηc, respectively. The vertex Tηbηc is given
by the expression [44]

hηbðp0ÞηcðqÞjTðp; ϵÞi ¼ g2ðq2ÞϵðλÞαβ ðpÞp0αp0β: ð45Þ

For the correlator ΠPhys
μν ðp; p0Þ, we find

ΠPhys
μν ðp; p0Þ ¼ g2ðq2Þ

Λfηbm
2
ηbfηcm

2
ηc

4mbmcðp2 −m2Þðp02 −m2
ηbÞ

1

ðq2 −m2
ηcÞ

�
m4 − 2m2ðm2

ηb þ q2Þ þ ðm2
ηb − q2Þ2

12m2
gμν

þ p0
μp0

ν þ other terms

�
: ð46Þ

The QCD side of the sum rule ΠOPE
μν ðp; p0Þ has the form

ΠOPE
μν ðp; p0Þ ¼ i

Z
d4xd4yeip

0ye−ipxfTr½γ5Siab ðy − xÞ

× γμS̃
jb
c ð−xÞγ5S̃bjc ðxÞγνSaib ðx − yÞ�

− Tr½γ5Siab ðy − xÞγμS̃jbc
× ð−xÞγ5S̃ajc ðxÞγνSbib ðx − yÞ�g: ð47Þ

The functions ΠPhys
μν ðp; p0Þ and ΠOPE

μν ðp; p0Þ have the same
Lorentz structures. We consider terms ∼p0

μp0
ν and use

corresponding invariant amplitudes ΠPhys
2 ðp2; p02; q2Þ and

ΠOPE
2 ðp2; p02; q2Þ to derive the sum rule for the form factor

g2ðq2Þ

g2ðq2Þ ¼
4mcmbðq2 −m2

ηcÞ
Λfηcm

2
ηcfηbm

2
ηb

em
2=M2

1em
2
ηb
=M2

2

× Π2ðM2; s0; q2Þ; ð48Þ

where Π2ðM2; s0; q2Þ is the amplitude ΠOPE
2 ðp2; p02; q2Þ

after Borel transformations and continuum subtractions.
The remaining manipulations are usual prescriptions

of the SR method, which have been explained above.
In numerical computations, for the masses of the quarkonia
ηc and ηb, we use mηc ¼ ð2984.1� 0.4Þ MeV, mηb ¼
ð9398.7� 2.0Þ MeV from PDG [39]. The decay constant
fηc ¼ ð421� 35Þ MeV was extracted from SR analysis
[45], whereas for fηb we employ 724 MeV. We have
utilized also the following windows forM2

2, and s
0
0 in the ηb

channel

M2
2 ∈ ½10; 12� GeV2; s00 ∈ ½95; 99� GeV2: ð49Þ

The extrapolating function G2ðQ2Þ and parameters
G0
2 ¼ 33.63 GeV−1, c12 ¼ 8.31, and c22 ¼ −13.55 lead to

reasonable agreement with SR data. Then the strong
coupling g2 amounts to
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g2 ≡ G2ð−m2
ηcÞ ¼ ð20.4� 4.9Þ GeV−1: ð50Þ

The partial width of this process is equal to

Γ½T → ηbηc� ¼ g22
λ2

40πm2
jM2j2; ð51Þ

where

jM2j2 ¼
½m4 þ ðm2

ηb −m2
ηcÞ2 − 2m2ðm2

ηb þm2
ηcÞ�2

24m4
; ð52Þ

and λ2 ¼ λðm;mηb ; mηcÞ.
The width of the decay T → ηbηc is

Γ½T → ηbηc� ¼ ð21.1� 7.2Þ MeV: ð53Þ

IV. MODES T → B�+
c B� −

c AND B+
c B−

c

Here, we consider decays of the tensor tetraquark T to
B�þ
c B�−

c and Bþ
c B−

c final states. It is known that exper-
imental information about Bc mesons is limited by the mass
of B�

c and its first radial excitation B�
c ð2SÞ [39]. Therefore,

for parameters of the cb̄ (bc̄) mesons with other spin-
parities one should use theoretical predictions. In the case
of the vector meson B��

c , for its mass and decay constant we
employ

mB�
c
¼ 6338 MeV; fB�

c
¼ 471 MeV ð54Þ

from Refs. [46,47], respectively. We also utilize the
experimental value mBc

¼ ð6274.47� 0.27� 0.17Þ MeV
for the mass of B�

c and decay constant fBc
¼ ð371�

37Þ MeV from Ref. [48]. It is not difficult to see that the
processes T → B�þ

c B�−
c and Bþ

c B−
c are permitted decay

modes of the tensor diquark-antidiquark state T, because
thresholds for production of the B�þ

c B�−
c and Bþ

c B−
c final-

states 12.68 GeV and 12.55 GeV are below its mass m.

A. T → B�+
c B� −

c

Analysis of this decay goes in line with a scheme
presented and explained above. Therefore, we write down
principal formulas and final results.
The correlation function to derive SR for the form factor

g̃1ðq2Þ responsible for strong interaction at the vertex
TB�þ

c B�−
c is

Π̃μναβðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJB�þ

c
μ ðyÞ

× JB
�−
c

ν ð0ÞJ†αβðxÞgj0i: ð55Þ

Here, JB
�þ
c

μ and JB
�−
c

ν are the interpolating currents of B�þ
c

and B�−
c mesons, which are determined by the expressions

JB
�þ
c

μ ðxÞ ¼ b̄iðxÞγμciðxÞ; JB
�−
c

ν ðxÞ ¼ c̄jðxÞγνbjðxÞ: ð56Þ

In terms of the physical parameters of the particles,
Π̃μναβðp; p0Þ acquires the following form:

Π̃μναβðp; p0Þ ¼ h0jJB�þ
c

μ jB�þ
c ðp0; ε1Þi

p02 −m2
B�
c

h0jJB�−
c

ν jB�−
c ðq; ε2Þi

q2 −m2
B�
c

× hB�þ
c ðp0; ε1ÞB�−

c ðq; ε2ÞjTðp; ϵÞi

×
hTðp; ϵÞjJ†αβj0i

p2 −m2
þ � � � : ð57Þ

Subsequent calculations are carried out using the matrix
elements

h0jJB�þ
c

μ jB�þ
c ðp0; ε1Þi ¼ fB�

c
mB�

c
ε1μðp0Þ;

h0jJB�−
c

ν jB�−
c ðq; ε2Þi ¼ fB�

c
mB�

c
ε2νðqÞ; ð58Þ

where ε1μðp0Þ and ε2νðqÞ are the polarization vectors of B�þ
c

and B�−
c , respectively. The vertex TB�þ

c B�−
c is considered in

the form Eq. (28) with replacement g1ðq2Þ → g̃1ðq2Þ.
Then Π̃Phys

μναβðp; p0Þ in terms of the physical parameters of
the tetraquark T and mesons B��

c reads

Π̃Phys
μναβðp;p0Þ ¼ g̃1ðq2ÞΛf2B�

c
m2

B�
c

ðp2−m2Þðp02−m2
B�
c
Þ

1

ðq2−m2
B�
c
Þ
�
1

2
pμp0

αgνβ

þm2þm2
B�
c
−q2

4m2
p0
μpαgβν

þp0
βp

0
αgμνþ other structures

�
þ� � � : ð59Þ

The function Π̃μναβðp; p0Þ computed in terms of the quark
propagators is equal to

Π̃OPE
μναβðp; p0Þ ¼ i

Z
d4xd4yeip

0ye−ipxfTr½γμSiab ðy − xÞ

× γαS̃
jb
c ð−xÞγνS̃ajb ðxÞγβSbic ðx − yÞ�

− Tr½γμSiab ðy − xÞγαS̃jbc
× ð−xÞγνS̃bjb ðxÞγβSaic ðx − yÞ�g: ð60Þ

The sum rule for g̃1ðq2Þ

g̃1ðq2Þ ¼
2ðq2 −m2

ηcÞ
Λf2B�

c
m2

B�
c

em
2=M2

1e
m2

B�c
=M2

2

× Π̃1ðM2; s0; q2Þ ð61Þ

is derived using invariant amplitudes Π̃Phys
1 ðp2; p02; q2Þ and

Π̃OPE
1 ðp2; p02; q2Þ, which correspond to terms ∼pμp0

αgνβ in
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the correlators Π̃Phys
μναβðp; p0Þ and Π̃OPE

μναβðp; p0Þ, respectively.
Above Π̃1ðM2; s0; q2Þ is the amplitude Π̃OPE

1 ðp2; p02; q2Þ
obtained after relevant transformations.
Numerical computations have been carried out by

employing the following values for the parameters M2
2

and s00 in the B�þ
c channel

M2
2 ∈ ½6.5; 7.5� GeV2; s00 ∈ ½49; 51� GeV2: ð62Þ

The constants of the function G̃1ðQ2Þ are equal to
G̃0
1 ¼ 0.31 GeV−1, c̃11 ¼ 0.19, and c̃21 ¼ 3.37. We find

for the strong coupling g̃1

g̃1 ≡ G̃1ð−m2
B�
c
Þ ¼ ð3.6� 0.9Þ × 10−1 GeV−1: ð63Þ

The partial width of the decay T → B�þ
c B�−

c is equal to

Γ½T → B�þ
c B�−

c � ¼ g̃21λ̃1
80πm2

ðm4 − 3m2m2
B�
c
þ 6m4

B�
c
Þ; ð64Þ

where λ̃1 ¼ λðm;mB�
c
; mB�

c
Þ. Alternatively, the width of this

decay can be obtained from Eqs. (38) and (39) upon
replacement mJ=ψ ¼ mϒ → mB�

c
.

Numerical calculations yield

Γ½T → B�þ
c B�−

c � ¼ ð20.1� 6.6Þ MeV: ð65Þ

B. T → B+
c B−

c

The process T → Bþ
c B−

c is investigated in analogous
manner. We consider the correlation function

Π̃μνðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJBþ

c ðyÞ

× JB
−
c ð0ÞJ†μνðxÞgj0i; ð66Þ

with JB
þ
c ðxÞ and JB

−
c ðxÞ being the interpolating currents of

the Bþ
c and B−

c mesons

JB
þ
c ðxÞ ¼ b̄iðxÞiγ5ciðxÞ; JB

−
c ðxÞ ¼ c̄jðxÞiγ5bjðxÞ: ð67Þ

The matrix elements of the B�
c mesons are

h0jJB�
c jB�

c i ¼
fBc

m2
Bc

mb þmc
: ð68Þ

The vertex hBþ
c ðp0ÞB−

c ðqÞjTðp; ϵÞi has the form

hBþ
c ðp0ÞB−

c ðqÞjTðp; ϵÞi ¼ g̃2ðq2ÞϵðλÞαβ ðpÞp0αp0β: ð69Þ

The Π̃Phys
μν ðp; p0Þ obtained using these matrix elements

after some substitutions [m2
ηb and m2

ηc → m2
Bc
, 4mcmb →

ðmb þmcÞ2, etc.] is given by Eq. (46), whereas the QCD
side of SR is defined by Eq. (47). The SR for the form
factor g̃2ðq2Þ is

g̃2ðq2Þ ¼
ðmb þmcÞ2ðq2 −m2

Bc
Þ

Λf2Bc
m4

Bc

em
2=M2

1em
2
Bc
=M2

2

× Π̃2ðM2; s0; q2Þ: ð70Þ

In numerical analysis, we have used the following
parameters:

M2
2 ∈ ½6.5; 7.5� GeV2; s00 ∈ ½45; 47� GeV2: ð71Þ

Computations of the form factor g̃2ðq2Þ and coupling g̃2
lead to the prediction

g̃2 ≡ G̃2ð−m2
Bc
Þ ¼ ð26.6� 6.4Þ GeV−1; ð72Þ

where G̃2ðQ2Þ is the fitting function with parameters
G̃0
2 ¼ 29.89 GeV−1, c̃12 ¼ 0.95, and c̃22 ¼ 1.90.
The width of the decay T → Bþ

c B−
c can be computed by

means of the expression

Γ½T → Bþ
c B−

c � ¼ g̃22
λ̃2

960πm2
ðm2 − 4m2

Bc
Þ2; ð73Þ

where λ̃2 ¼ λðm;mBc
; mBc

Þ. This formula in the limit mηb
and mηc → mBc

can be obtained from Eq. (52). Our
computations yield

Γ½T → Bþ
c B−

c � ¼ ð20.1� 6.9Þ MeV: ð74Þ

V. DECAYS DUE TO bb̄ ANNIHILATIONS

It has been emphasized above that the tetraquark T can
transform to conventional mesons also due to annihilation
of bb̄ to light quark-antiquark pairs [7,8,49] and creation of
DD mesons with required electric charges and spin-
parities. Here, we consider decays of the tetraquark T to
D�0D̄�0, D0D̄0, D�þD�−, and DþD− mesons.
It is clear that these decays are kinematically possible

modes for transformation of the tetraquark T to ordinary
mesons. We study these processes in the same context of
the three-point sum rule approach. But here we encounter a
situation when relevant correlation functions contain b̄b
quarks’ vacuum matrix element hb̄bi [49]. In calculations,
we replace this matrix element with known value of the
gluon condensate hαsG2=πi.
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A. Decays T → D�0D̄�0 and D0D̄0

Let us analyze the process T → D�0D̄�0. To find the
coupling G1 of particles at the vertex TD�0D̄�0, we start
from the correlation function

Π̂μναβðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJD̄�0

μ ðyÞ

× JD
�0

ν ð0ÞJ†αβðxÞgj0i; ð75Þ

where JD̄
�0

μ ðxÞ and JD�0
ν ðxÞ are interpolating currents for the

mesons D̄�0 and D�0

JD̄
�0

μ ðxÞ ¼ c̄iðxÞγμuiðxÞ; JD
�0

ν ðxÞ ¼ ūjðxÞγνcjðxÞ: ð76Þ

The expression of the correlation function Π̂μναβðp; p0Þ
in terms of T, D�0, and D̄�0 particles’ parameters reads

Π̂Phys
μναβðp; p0Þ ¼ h0jJD̄�0

μ jD̄�0ðp0; ε1Þi
p02 −m2

D�0

h0jJD�0
ν jD�0ðq; ε2Þi
q2 −m2

D�0

× hD̄�0ðp0; ε1ÞD�0ðq; ε2ÞjTðp; ϵÞi

×
hTðp; ϵÞjJ†μj0i

p2 −m2
þ � � � ; ð77Þ

where mD�0 ¼ ð2006.85� 0.05Þ MeV is the mass of
the mesons D̄�0 and D�0, whereas ε1μ and ε2ν are their
polarization vectors.
The matrix elements which are required to calculate

Π̂Phys
μναβðp; p0Þ are

h0jJD̄�0
μ jD̄�0ðp0; ε1Þi ¼ fD�mD�0ε1μðp0Þ;

h0jJD�0
ν jD�0ðq; ε2Þi ¼ fD�mD�0ε2νðqÞ; ð78Þ

with fD� ¼ ð252.2� 22.66Þ MeV being the decay
constant of the mesons D�0 and D̄�0

D . The vertex
hD̄�0ðp0; ε1ÞD�0ðq; ε2ÞjTðp; ϵÞi is modeled in the form
of Eq. (28).
The correlator Π̂Phys

μναβðp; p0Þ is a sum of different com-
ponents. The SR for the form factor G1ðq2Þ is obtained by
employing the invariant amplitude Π̂Phys

1 ðp2; p02; q2Þ that
corresponds to the structure pμp0

αgβν. The same correlation
function Π̂μναβðp; p0Þ computed using the heavy and light
quark propagators is

Π̂OPE
μναβðp; p0Þ ¼ 2

3
hb̄bi

Z
d4xd4yeip

0ye−ipx

× Tr½γμSiju ðyÞγνSjbc ð−xÞγαγβSbic ðx − yÞ�;
ð79Þ

where SuðxÞ is the u quark’s propagator [37]. In what
follows, the function Π̂OPE

1 ðp2; p02; q2Þ is the invariant
amplitude that corresponds in Π̂OPE

μναβðp; p0Þ to the term
pμp0

αgβν.
For further studies, we make use of the relation between

condensates

hb̄bi ¼ −
1

12mb

	
αsG2

π



ð80Þ

derived in Ref. [34] from the sum rule analysis. This
expression was obtained at the leading order of the
perturbative QCD and is valid as far as higher order
corrections in m−1

b are very small.
The SR for the coupling G1ðq2Þ reads

G1ðq2Þ ¼
2ðq2 −m2

D�0Þ
Λf2D�m2

D�0
em

2=M2
1em

2

D�0=M
2
2

× Π̂1ðM2; s0; q2Þ; ð81Þ

where Π̂1ðM2; s0; q2Þ is the amplitude Π̂OPE
1 ðp2; p02; q2Þ

undergone to Borel transformations and continuum
subtractions.
To extract G1ðq2Þ from this SR, we carry out standard

manipulations and skip further details: In the D̄�0 meson
channel, we have used the parameters

M2
2 ∈ ½2; 3� GeV2; s00 ∈ ½5.7; 5.8� GeV2: ð82Þ

The coupling G1 has been evaluated by employing
SR data for Q2 ¼ 2–30 GeV2 and the extrapolating func-
tion with parameters Ĝ0

1 ¼ 0.06 GeV−1, ĉ11 ¼ 10.67, and
ĉ21 ¼ −25.14. The SR data and fit function Ĝ1ðQ2Þ are
plotted in Fig. 5. The couplingG1 has been computed at the
mass shell q2 ¼ m2

D�0 and amounts to

G1 ≡ Ĝ1ð−m2
D�0Þ ¼ ð4.62� 1.11Þ × 10−2 GeV−1: ð83Þ

The width of the decay T → D�0D̄�0 is

Γ½T → D�0D̄�0� ¼ ð7.7� 2.6Þ MeV: ð84Þ

The second process T → D0D̄0 is considered starting
from the correlator

Π̂μνðp; p0Þ ¼ i2
Z

d4xd4yeip
0ye−ipxh0jT fJD̄0ðyÞ

× JD
0ð0ÞJ†μνðxÞgj0i; ð85Þ

where the currents JD̄
0ðxÞ and JD

0ðxÞ are defined by
expressions
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JD̄
0ðxÞ ¼ c̄iðxÞiγ5uiðxÞ; JD

0ðxÞ ¼ ūjðxÞiγ5cjðxÞ: ð86Þ

To get the sum rule for the form factor G2ðq2Þ responsible
for strong interaction of particles at the vertex TD0D̄0, we
calculate Π̂Phys

μν ðp; p0Þ and Π̂OPE
μν ðp; p0Þ.

We determine Π̂Phys
μν ðp; p0Þ using the following matrix

elements:

h0jJD̄0 jD̄0i ¼ h0jJD0 jD0i ¼ fDm2
D0

mc
; ð87Þ

and

hD̄0ðp0ÞD0ðqÞjTðp; ϵÞi ¼ G2ðq2ÞϵðλÞαβ ðpÞp0αp0β; ð88Þ

with mD0 ¼ ð1864.84� 0.05Þ MeV and fD ¼ ð211.9�
1.1Þ MeV being the mass and decay constant of mesons
D0 and D̄0 [39,50]. As a result, we obtain

Π̂Phys
μν ðp; p0Þ ¼ G2ðq2ÞΛf2Dm4

D0

m2
cðp2 −m2Þðp02 −m2

D0Þðq2 −m2
D0Þ

×
�
m4 − 2m2ðm2

D0 þ q2Þ þ ðm2
D0 − q2Þ2

12m2
gμν

þ p0
μp0

ν −
m2 þm2

D0 − q2

2m2
pμp0

ν

þ other terms
�
: ð89Þ

For Π̂OPE
μν ðp; p0Þ, we find

Π̂OPE
μν ðp;p0Þ ¼ 2

3
hb̄bi

Z
d4xd4yeip

0ye−ipx

×Tr½γ5Siju ðyÞγ5Sjbc ð−xÞγμγνSbic ðx−yÞ�: ð90Þ

We extract SR for G2ðq2Þ using the amplitudes
Π̂Phys

2 ðp2; p02; q2Þ and Π̂OPE
2 ðp2; p02; q2Þ corresponding to

structures p0
μp0

ν and get

G2ðq2Þ ¼
m2

cðq2 −m2
D0Þ

Λf2Dm4
D0

em
2=M2

1em
2

D0
=M2

2

× Π̂2ðM2; s0; q2Þ; ð91Þ

with Π̂2ðM2; s0; q2Þ being the transformed function
Π̂OPE

2 ðp2; p02; q2Þ.
In numerical calculations we employed the parameters

M2
2 ∈ ½1.5; 3� GeV2; s00 ∈ ½5; 5.2� GeV2: ð92Þ

We have found the coupling G2 by means of the of the
function Ĝ2ðQ2Þ with Ĝ0

2 ¼ 0.20 GeV−1, ĉ12 ¼ 10.72, and
ĉ22 ¼ −26.80

G2 ≡ Ĝ2ð−m2
D0Þ ¼ ð0.16� 0.04Þ GeV−1: ð93Þ

The partial width of the decay T → D0D̄0 is equal to

Γ½T → D0D̄0� ¼ ð6.5� 2.3Þ MeV: ð94Þ

B. Processes T → D� +D�− and D +D−

The modes T → D�þD�− and DþD− are explored in
accordance with the scheme explained above. Let us
analyze the process T → D�þD�−. The strong form factor
G3ðq2Þ at the vertex TD�þD�− is extracted from the
correlation function

Π0
μναβðp; p0Þ ¼ i2

Z
d4xd4yeip

0ye−ipxh0jT fJD�þ
μ ðyÞ

× JD
�−

ν ð0ÞJ†αβðxÞgj0i; ð95Þ

where currents for the mesons D�þ and D�− are given by
the formulas

JD
�þ

μ ðxÞ ¼ d̄iðxÞγμciðxÞ; JD
�−

ν ðxÞ ¼ d̄jðxÞγνdjðxÞ: ð96Þ

The matrix elements of these particles and the vertex are
similar to ones introduced above. Therefore, we omit these
expressions and write down the QCD side of the SR

Π̄0OPE
μναβ ðp;p0Þ¼−

i
18mb

	
αsG2

π


Z
d4xd4yeip

0ye−ipx

×Tr½γμSijd ðyÞγνSjbc ð−xÞγαγβSbjc ðx−yÞ�: ð97Þ

As usual, we utilize invariant amplitudes corresponding
to the structures pμp0

αgβν. In numerical calculations the
Borel and continuum subtraction parameters in the D�þ

channel are fixed as in Eq. (82). The mass ofD�� mesons is
mD� ¼ ð2010.26� 0.05Þ MeV, whereas for their decay
constants we use fD� ¼ ð252.2� 22.66Þ MeV.
The function Ĝ3ðQ2Þ with the constants Ĝ0

3 ¼
0.06 GeV−1, ĉ13 ¼ 10.65, and ĉ23 ¼ −25.11 leads to cou-
pling G3

G3 ≡ Ĝ3ð−m2
D� Þ ¼ ð4.63� 1.11Þ × 10−2 GeV−1: ð98Þ

For the partial width of the mode T → D�þD�−, we get

Γ½T → D�þD�−� ¼ ð7.7� 2.7Þ MeV: ð99Þ

The process T → DþD− is explored in similar way. The
coupling G4 describing the strong interaction of the
particles at the vertex TDþD− is

G4 ≡ G̃4ð−m2
DÞ ¼ ð0.16� 0.04Þ GeV−1: ð100Þ
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For the width of this decay, we find

Γ½T → DþD−� ¼ ð6.5� 2.3Þ MeV: ð101Þ

Computations performed in present paper allow us to
estimate the full width of the axial-vector tetraquark T with
content bcb̄ c̄. As a result, we obtain

Γ½T� ¼ ð117.4� 15.9Þ MeV: ð102Þ

VI. CONCLUSIONS

In present article, we have calculated the mass and full
width of the tensor tetraquark bcb̄ c̄. Analyses have been
performed in the framework of QCD sum rule method. To
evaluate the mass of T, we have applied the two-point SR
method, whereas its decays have been studied by invoking
the three-point SR approach.
The mass m of the tensor tetraquark T was evaluated

in different articles, sometimes with contradictory results
[10,24–30]. Our prediction m ¼ ð12.70� 0.09Þ GeV is
smaller than those reported in publications [10,24–26].
In Refs. [27–30] the authors found the mass of this state
in most of cases below m. Thus, m evaluated in the
present work is somewhere between these two groups of
predictions.
The results of current paper demonstrate that the tensor

state T can decay to ordinary mesons through the strong
fall-apart mechanism. In almost all articles cited above
authors made similar conclusions: Only in Ref. [30] T was
predicted to be stable against two-meson strong dissocia-
tions. But let us emphasize that structures bcb̄ c̄, due to bb̄
and cc̄ annihilations and generations of ordinary heavy-light
mesons, are always strong-interaction unstable particles.
We have calculated partial widths of the four processes

T → J=ψϒ, ηbηc and Bð�Þþ
c Bð�Þ−

c , which are dominant
decay channels of T. We have evaluated also widths of
modes triggered by bb̄ annihilations inside of T and
containing at the final states Dð�ÞþDð�Þ− and Dð�Þ0D̄ð�Þ0
mesons. It is worth noting that the contribution of these
processes is not small and forms approximately 24% of the
T tetraquark’s full width.
Our predictions characterize T as a wide diquark-

antidiquark state, which can decay to two-meson final
states through both fall-apart and bb̄ annihilation mecha-
nisms. The tensor tetraquark T, as well as the scalar and

axial-vector tetraquarks bcb̄ c̄, establish a family of fully
heavy exotic mesons with different spin-parities. Having
compared m with masses of the scalar and axial-vector
states mS ¼ ð12.697� 0.090Þ GeV and mAV ¼ ð12.715�
0.090Þ GeV [32,33], one sees that they form almost a
degenerate system of particles.
Heavy tetraquarks are an inseparable part of the exotic

hadron spectroscopy. Structures bcb̄ c̄ were not observed
yet, but they can be seen in the future runs of the LHC and
Future Circular Collider [22,23]. Publications devoted to
fully heavy four-quark states are concentrated on analysis
of their masses. Decays of these states, including bcb̄ c̄
ones, did not become objects of detailed investigations. But
besides masses, all conclusions about nature of discovered
resonances have to be also based on knowledge about their
decay channels and widths: This information is required for
reliable interpretation of collected data and for planning
new measurements.

DATA AVAILABILITY

No data were created or analyzed in this study.

APPENDIX: THE CORRELATION FUNCTIONS
ΠðM2;s0Þ AND Π1ðM2;s0;q2Þ

This appendix contains the correlation functions
ΠðM2; s0Þ and Π1ðM2; s0; q2Þ, which have been applied
to compute the mass of the tensor tetraquark T and partial
width of the decay T → J=ψϒ.
The correlation functionΠðM2; s0Þ, which appears in the

SRs has been presented in Eq. (17),

ΠðM2; s0Þ ¼
Z

s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ:

The components of the spectral density ρOPEðsÞ are given
by the general expression

ρðsÞ ¼
Z

1

0

dα
Z

1−α

0

dβ
Z

1−α−β

0

dγρðs; α; β; γÞ; ðA1Þ

where α, β, and γ are the Feynman parameters. The function
ΠðM2Þ is also determined by an Eq. (A1)-type formula with
the integrand ΠðM2; α; β; γÞ.
The perturbative function ρpertðs; α; β; γÞ is given by the

formula

ρpertðs; α; β; γÞ ¼ N2θðNÞ
512C4A4π6

f12C2L3
1s

2α3β3γ3 þ 4A2Csαβγð3BCmbmc − 4L2
1NαβγÞ

þ A4ð−4Cmbmcð3Cmbmc þ NαβÞ þ NγL1ð4Cmbmc þ NαβÞÞg: ðA2Þ

Here
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N ¼ −C½sαβγL1 þ Aðm2
cL3 −m2

bðβ þ γÞÞ�=A2; ðA3Þ

and

A ¼ βγL3 þ α2ðβ þ γÞ þ α½βðβ þ 2γ − 1Þ þ γðγ − 1Þ�; B ¼ α2ðβ − γÞ − γL2
3

þ αðβ2 − 2γðγ − 1Þ − βðγ þ 1ÞÞ; C ¼ αβ þ αγ þ βγ: ðA4Þ

We also use the notations

L1 ¼ αþ β þ γ − 1; L2 ¼ αþ β − 1; L3 ¼ β þ γ − 1; L4 ¼ αþ γ − 1: ðA5Þ

The function ΠðM2; α; β; γÞ has the following form:

ΠðM2; α; β; γÞ ¼ −
hαsG2=πiC
384A4L1π

4βγ
exp

�
−
Aðm2

bðβ þ γÞ − L3m2
cÞ

M2L1αβγ

�
½m2

bðβ þ γÞ − L3m2
c�2

× ðL2
3m

4
cL1βγðL2

3 þ 3L3αþ 3α2Þ þ L1m4
bβγ

4ðβ þ γÞ −m2
bm

2
cβγL1ðβðβ − 1Þð2α2 þ 2αðL2 − αÞ

þ ðβ − 1Þ2Þ þ γððβ − 1Þ2ð3β − 1Þ þ α2ð5β − 2Þ þ αðβ − 1Þð7β − 2ÞÞ þ γ2ð3 − 5αþ 3α2

þ 8βðα − 1Þ þ 5β2Þ þ γ3ð−4þ 3αþ 5βÞ þ 2γ4Þ þm3
bmcβγðα3ðβ þ γÞ2 þ L3αγðβ þ γÞð−3þ 3β þ 2γÞ

þ α2L3ðβ þ γÞðβ þ 3γÞ þ γL3ðβðβ − 1Þ2 þ γ þ βγð2β − 3Þ þ γ2ð2β − 1ÞÞÞ
−mbm3

cðL2
3αβðβðβ − 1Þ2 þ γ þ βγð6β − 7Þ þ γ2ð9β − 5Þ þ 2γ3Þ þ α2ðβ2ðα2 þ 2αðL2 − αÞ

þ 2ðβ − 1Þ2Þð−2þ αþ 2βÞ þ βð2α3 þ 7αðβ − 1Þð3β − 1Þ þ 2α2ð5β − 3Þ þ 4ðβ − 1Þ2ð5β − 1ÞÞγ
þ ðαþ α3 þ 2α2ð4β − 1Þ þ 4βðβ − 1Þð9β − 4Þ þ αβð25β − 18ÞÞγ2 þ ð2αðα − 1Þ þ βð11α − 19Þ
þ 27β2Þγ3 þ γ4ðαþ 7βÞÞ þ L3

3βγð−γ þ βð−1þ β þ 2γÞÞÞÞ: ðA6Þ

An explicit formula for ρDim4ðs; α; β; γÞ is rather cumbersome, therefore we do not write down it here.
The correlator Π1ðM2; s0; q2Þ is given by the formula Eq. (32)

Π1ðM2; s0; q2Þ ¼
Z

s0

4M2

ds
Z

s0

4m2
b

ds0ρ1ðs; s0; q2Þe−s=M2
1
−s0=M2

2 þ BΠDim4
1 ðp2; p02; q2Þ: ðA7Þ

Here, the function ρðs; s0; q2Þ is determined by the expression

ρ1ðs; s0; q2Þ ¼
3mbmc

32π4

Z
1

0

dα
Z

1−α

0

dβ
Z

1−α−β

0

dγ
θðΔÞ

ðαþ γÞ2L2
4

; ðA8Þ

where

Δ ¼ −m2
b −

1

L4

�
q2

αγ

αþ γ
þm2

cðαþ γÞ − s0βL1

�
: ðA9Þ

The dimension 4 function ΠDim4
1 ðp2; p02; q2Þ is given by the formula

ΠDim4
1 ðp2; p02; q2Þ ¼ hαsG2=πimbmc

192π2

Z
1

0

dα
Z

1−α

0

dβ
Z

1−α−β

0

dγ
Δ3L8

4ðαþ γÞ5 f−ΔL
2
4ðαþ γÞ2

× ½2α4 þ 6β4 þ αð12β3 þ 30β2ðγ − 1Þ þ 27βðγ − 1Þ2 þ 8ðγ − 1Þ3Þ þ 12β3ðγ − 1Þ þ 15β2ðγ − 1Þ2
þ 9βðγ − 1Þ3 þ 2ðγ − 1Þ4 þ 3L3α

2ð5β þ 4γ − 4Þ þ α3ð9β þ 8γ − 8Þ� þ 2ðαþ γÞ3L1β½m2
bL

2
4

− p02L1β�½2L3αþ α2 þ 2β2 þ 2βðγ − 1Þ þ ðγ − 1Þ2� þ 2L3
4αγðq2αγ þm2

cðαþ γÞ2Þg: ðA10Þ

S. S. AGAEV, K. AZIZI, and H. SUNDU PHYS. REV. D 111, 074025 (2025)

074025-14



[1] LHCb Collaboration, Sci. Bull. 65, 1983 (2020).
[2] E. Bouhova-Thacker (ATLAS Collaboration), Proc. Sci.

ICHEP2022 (2022) 806.
[3] A. Hayrapetyan et al. (CMS Collaboration), Phys. Rev. Lett.

132, 111901 (2024).
[4] J. R. Zhang, Phys. Rev. D 103, 014018 (2021).
[5] R. M. Albuquerque, S. Narison, A. Rabemananjara, D.

Rabetiarivony, and G. Randriamanatrika, Phys. Rev. D
102, 094001 (2020).

[6] B. C. Yang, L. Tang, and C. F. Qiao, Eur. Phys. J. C 81, 324
(2021).

[7] C. Becchi, A. Giachino, L. Maiani, and E. Santopinto, Phys.
Lett. B 806, 135495 (2020).

[8] C. Becchi, A. Giachino, L. Maiani, and E. Santopinto, Phys.
Lett. B 811, 135952 (2020).

[9] Z. G. Wang, Nucl. Phys. B985, 115983 (2022).
[10] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Sym-

metry 14, 2504 (2022).
[11] P. Niu, Z. Zhang, Q. Wang, and M. L. Du, Sci. Bull. 68, 800

(2023).
[12] W. C. Dong and Z. G. Wang, Phys. Rev. D 107, 074010

(2023).
[13] G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu, and M. Yan, Eur. Phys.

J. C 83, 416 (2023).
[14] S. Q. Kuang, Q. Zhou, D. Guo, Q. H. Yang, and L. Y. Dai,

Eur. Phys. J. C 83, 383 (2023).
[15] Z. G. Wang and X. S. Yang, AAPPS Bull. 34, 5 (2024).
[16] X. K. Dong, V. Baru, F. K. Guo, C. Hanhart, and A.

Nefediev, Phys. Rev. Lett. 126, 132001 (2021); 127,
119901(E) (2021).

[17] Z. R. Liang, X. Y. Wu, and D. L. Yao, Phys. Rev. D 104,
034034 (2021).

[18] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Phys. Lett.
B 844, 138089 (2023).

[19] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Eur. Phys.
J. Plus 138, 935 (2023).

[20] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Nucl.
Phys. A1041, 122768 (2024).

[21] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Eur. Phys.
J. C 83, 994 (2023).

[22] F. Carvalho, E. R. Cazaroto, V. P. Gonsalves, and F. S.
Navarra, Phys. Rev. D 93, 034004 (2016).

[23] L. M. Abreu, F. Carvalho, J. V. C. Cerquera, and V. P.
Goncalves, Eur. Phys. J. C 84, 470 (2024).

[24] J. Wu, Y. R. Liu, K. Chen, X. Liu, and S. L. Zhu, Phys. Rev.
D 97, 094015 (2018).

[25] M. S. Liu, Q. F. Lü, X. H. Zhang, and Q. Zhao, Phys. Rev. D
100, 016006 (2019).

[26] X. Chen, Phys. Rev. D 100, 094009 (2019).
[27] M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto,

Eur. Phys. J. C 80, 1004 (2020).
[28] M. C. Gordillo, F. De Soto, and J. Segovia, Phys. Rev. D

102, 114007 (2020).
[29] X. Z. Weng, X. L. Chen, W. Z. Deng, and S. L. Zhu, Phys.

Rev. D 103, 034001 (2021).
[30] Z. H. Yang, Q. N. Wang, W. Chen, and H. X. Chen, Phys.

Rev. D 104, 014003 (2021).
[31] J. Hoffer, G. Eichmann, and C. S. Fischer, Phys. Rev. D 109,

074025 (2024).
[32] S. S. Agaev, K. Azizi, and H. Sundu, Phys. Lett. B 858,

139042 (2024).
[33] S. S. Agaev, K. Azizi, and H. Sundu, Phys. Lett. B 864,

139404 (2025).
[34] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B147, 385 (1979).
[35] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B147, 448 (1979).
[36] R. M. Albuquerque, J. M. Dias, K. P. Khemchandani, A.

Martinez Torres, F. S. Navarra, M. Nielsen, and C. M.
Zanetti, J. Phys. G 46, 093002 (2019).

[37] S. S. Agaev, K. Azizi, and H. Sundu, Turk. J. Phys. 44, 95
(2020).

[38] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[39] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[40] O. Lakhina and E. S. Swanson, Phys. Rev. D 74, 014012
(2006).

[41] T. M. Aliev and M. Savcı, Phys. Rev. D 99, 015020 (2019).
[42] P. Singer, Phys. Lett. 124B, 531 (1983).
[43] V. M. Braun and N. Kivel, Phys. Lett. 501B, 48 (2001).
[44] S. S. Agaev, K. Azizi, and H. Sundu, Phys. Lett. B 856,

138886 (2024).
[45] E. V. Veliev, K. Azizi, H. Sundu, and N. Aksit, J. Phys. G

39, 015002 (2012).
[46] S. Godfrey, Phys. Rev. D 70, 054017 (2004).
[47] E. J. Eichten and C. Quigg, Phys. Rev. D 99, 054025 (2019).
[48] Z. G. Wang, Chin. Phys. C 48, 103104 (2024).
[49] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Phys. Rev.

D 109, 014006 (2024).
[50] J. L. Rosner, S. Stone, and R. S. Van de Water, arXiv:

1509.02220.

PROPERTIES OF THE TENSOR STATE … PHYS. REV. D 111, 074025 (2025)

074025-15

https://doi.org/10.1016/j.scib.2020.08.032
https://doi.org/10.22323/1.414.0806
https://doi.org/10.22323/1.414.0806
https://doi.org/10.1103/PhysRevLett.132.111901
https://doi.org/10.1103/PhysRevLett.132.111901
https://doi.org/10.1103/PhysRevD.103.014018
https://doi.org/10.1103/PhysRevD.102.094001
https://doi.org/10.1103/PhysRevD.102.094001
https://doi.org/10.1140/epjc/s10052-021-09096-7
https://doi.org/10.1140/epjc/s10052-021-09096-7
https://doi.org/10.1016/j.physletb.2020.135495
https://doi.org/10.1016/j.physletb.2020.135495
https://doi.org/10.1016/j.physletb.2020.135952
https://doi.org/10.1016/j.physletb.2020.135952
https://doi.org/10.1016/j.nuclphysb.2022.115983
https://doi.org/10.3390/sym14122504
https://doi.org/10.3390/sym14122504
https://doi.org/10.1016/j.scib.2023.03.025
https://doi.org/10.1016/j.scib.2023.03.025
https://doi.org/10.1103/PhysRevD.107.074010
https://doi.org/10.1103/PhysRevD.107.074010
https://doi.org/10.1140/epjc/s10052-023-11445-7
https://doi.org/10.1140/epjc/s10052-023-11445-7
https://doi.org/10.1140/epjc/s10052-023-11473-3
https://doi.org/10.1007/s43673-023-00112-4
https://doi.org/10.1103/PhysRevLett.126.132001
https://doi.org/10.1103/PhysRevLett.127.119901
https://doi.org/10.1103/PhysRevLett.127.119901
https://doi.org/10.1103/PhysRevD.104.034034
https://doi.org/10.1103/PhysRevD.104.034034
https://doi.org/10.1016/j.physletb.2023.138089
https://doi.org/10.1016/j.physletb.2023.138089
https://doi.org/10.1140/epjp/s13360-023-04562-5
https://doi.org/10.1140/epjp/s13360-023-04562-5
https://doi.org/10.1016/j.nuclphysa.2023.122768
https://doi.org/10.1016/j.nuclphysa.2023.122768
https://doi.org/10.1140/epjc/s10052-023-12145-y
https://doi.org/10.1140/epjc/s10052-023-12145-y
https://doi.org/10.1103/PhysRevD.93.034004
https://doi.org/10.1140/epjc/s10052-024-12847-x
https://doi.org/10.1103/PhysRevD.97.094015
https://doi.org/10.1103/PhysRevD.97.094015
https://doi.org/10.1103/PhysRevD.100.016006
https://doi.org/10.1103/PhysRevD.100.016006
https://doi.org/10.1103/PhysRevD.100.094009
https://doi.org/10.1140/epjc/s10052-020-08579-3
https://doi.org/10.1103/PhysRevD.102.114007
https://doi.org/10.1103/PhysRevD.102.114007
https://doi.org/10.1103/PhysRevD.103.034001
https://doi.org/10.1103/PhysRevD.103.034001
https://doi.org/10.1103/PhysRevD.104.014003
https://doi.org/10.1103/PhysRevD.104.014003
https://doi.org/10.1103/PhysRevD.109.074025
https://doi.org/10.1103/PhysRevD.109.074025
https://doi.org/10.1016/j.physletb.2024.139042
https://doi.org/10.1016/j.physletb.2024.139042
https://doi.org/10.1016/j.physletb.2025.139404
https://doi.org/10.1016/j.physletb.2025.139404
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1088/1361-6471/ab2678
https://doi.org/10.3906/fiz-2003-15
https://doi.org/10.3906/fiz-2003-15
https://doi.org/10.1016/0370-1573(85)90065-1
https://doi.org/10.1016/0370-1573(85)90065-1
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.74.014012
https://doi.org/10.1103/PhysRevD.74.014012
https://doi.org/10.1103/PhysRevD.99.015020
https://doi.org/10.1016/0370-2693(83)91568-X
https://doi.org/10.1016/S0370-2693(01)00095-8
https://doi.org/10.1016/j.physletb.2024.138886
https://doi.org/10.1016/j.physletb.2024.138886
https://doi.org/10.1088/0954-3899/39/1/015002
https://doi.org/10.1088/0954-3899/39/1/015002
https://doi.org/10.1103/PhysRevD.70.054017
https://doi.org/10.1103/PhysRevD.99.054025
https://doi.org/10.1088/1674-1137/ad5a71
https://doi.org/10.1103/PhysRevD.109.014006
https://doi.org/10.1103/PhysRevD.109.014006
https://arXiv.org/abs/1509.02220
https://arXiv.org/abs/1509.02220

	Properties of the tensor state bcb&macr;c&macr;
	I. INTRODUCTION
	II. MASS m AND CURRENT COUPLING &Lambda; OF THE TETRAQUARK T
	III. DECAYS T&rarr;J/&psi;&Upsi; AND T&rarr;nbnc
	A. Process T&rarr;J/&psi;&Upsi;
	B. Decay T&rarr;nbnc

	IV. MODES T&rarr;Bc*+Bc*- AND Bc+Bc-
	A. T&rarr;Bc*+Bc*-
	B. T&rarr;Bc+Bc-

	V. DECAYS DUE TO bb&macr; ANNIHILATIONS
	A. Decays T&rarr;D*0D&macr;*0 and D0D&macr;0
	B. Processes T&rarr;D*+D*- and D+D-

	VI. CONCLUSIONS
	DATA AVAILABILITY
	APPENDIX: THE CORRELATION FUNCTIONS &Pi;(M2,s0) AND &Pi;1(M2,s0,q2)
	References


