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We present a microscopic dynamical model to study the formation, dissociation, and recombination
processes of charmonium states in a heat bath at constant temperature and volume. Within this classical
approach, heavy quarks are described as Brownian particles in a background medium of light constituents
and can therefore be modeled by a Fokker-Planck equation with constant transport coefficients, which is
then implemented through relativistic Langevin simulations. The heavy quarks interact classically via a
Coulomb-like screened potential to form a bound state if the relative energy of the pair becomes negative.
Dissociation of bound states is possible as a result of screening effects on the potential as well as through
scatterings with plasma particles. We demonstrate the full equilibration of the system and show that the
resulting equilibrium charmonium yields are in accordance with the Statistical Hadronization Model.
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I. INTRODUCTION

The investigation of heavy quarks and quarkonium
states has been considered an important probe to study
properties of the medium created in relativistic heavy-ion
collisions since the prediction of J=ψ suppression by
Matsui and Satz in 1986 [1]. They showed that under
sufficiently high densities or temperatures in order to
create a quark-gluon plasma (QGP), the interaction to
form a bound state of a charm and an anticharm quark is
suppressed due to the screening of the color charges of the
unconfined quarks and gluons in the medium. This effect
was experimentally observed and measured, first at the
Super Proton Synchrotron [2–4] and additionally later at
the Relativistic Heavy Ion Collider (RHIC) [5–7].
Pairs of heavy quarks and antiquarks are produced in

primordial hard scatterings, and their number is conserved
throughout the whole medium evolution. Therefore, infor-
mation about their interaction history with the QGP can be
obtained from measuring hadrons containing heavy

quarks. Additionally, dissociation of quarkonium states
may occur through quasielastic scatterings with medium
particles and, at sufficiently high collision energies, these
processes are possibly countered by regeneration of heavy
quarks and antiquarks during the medium evolution [8–21]
[for a summary of models and their comparison see
Refs. [22,23]]. A successful way to predict quarkonium
yields measured in experiments at the hadronization phase
boundary is the Statistical Hadronization Model (SHM)
[24–26]. This description neglects the dynamics that might
occur during the medium evolution after the initial
collision and instead focuses on describing the production
of hadrons at the freeze-out stage of the QGP in the
framework of statistical mechanics. This process is viewed
as an instantaneous phenomenon governed by the chemi-
cal freeze-out temperature and the baryochemical poten-
tial, under the assumption of a statistically equilibrated
source volume which can be described by a grand-
canonical ensemble.
In this work we propose a classical description of the

heavy-quark motion, starting from a Fokker-Planck equa-
tion which is derived from the Boltzmann equation of the
heavy-quark phase-space distribution and implemented
through relativistic Langevin simulations. Within this
approach the heavy quarks are approximated as Brownian
particles and their motion results from random kicks due to
quasielastic scatterings with light medium particles. The
heavy quarks interact over a complex potential of which the
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real screened Coulomb-like part describes an attractive force
between a heavy-quark-antiquark pair in order to form
bound states, while the imaginary part takes interactions
with the medium particles into account. In that way, the
formation of charmonia as well as dissociation and recom-
bination processes of bound states in the QGP can be
described.
The paper is organized as follows: In Sec. II the

formalism of the Fokker-Planck equation is introduced
and the realization of the heavy-quark motion in the form
of a Langevin equation is described. Afterward, Sec. III
explains the potential between heavy quarks and anti-
quarks, which is able to form bound states. This (complex)
potential can describe dissociation processes of bound
states via its imaginary part, from which the drag coef-
ficient is extracted. Section IV focuses on the formation of
bound states, the binding energy of a charmonium state
as well as the time evolution of the bound states under
different conditions. Furthermore, the relaxation time of
the charmonium states in connection with the drag coef-
ficient is studied in Sec. V. Finally, in Sec. VI the
charmonium yields resulting from our model are compared
to the predictions of the SHM. Finally, we present our
conclusions and outlook in Sec. VII.

II. FOKKER-PLANCK EQUATION
AND LANGEVIN SIMULATIONS

The dynamics of heavy quarks in a thermal bath can be
described by Brownian motion due to their large mass
relative to the masses and the typical momentum exchanges
with the light constituents of the QGP. The motion of heavy
particles is viewed as random kicks resulting from momen-
tum exchanges from quasielastic scatterings with light
particles of the background medium. Under the assumption
of local thermal equilibrium such an approach can be
realized with a Fokker-Planck equation, describing the time
evolution of the probability density of the heavy quarks
under the influence of a drag force and random forces. This
equation can be derived from the relativistic Boltzmann
equation for heavy-quark phase space distribution:�

∂

∂t
þ p
E
·
∂

∂x
þ F ·

∂

∂p

�
fQðt; p; xÞ ¼ C½fQ�; ð1Þ

where the left-hand side contains the advective term and the
forces acting on the heavy quark, while the collision
integral on the right-hand side represents the local inter-
actions of heavy quarks with the light particles of the
medium,

C½fQ� ¼
Z

d3k½ωðpþk;kÞfQðpþkÞ−ωðp;kÞfQðpÞ�; ð2Þ

with the transition rateωðp; kÞ of a scattering process where
the heavy-quark momentum changes from p to k, by either

gaining or losing additional momentum through inter-
actions with the medium particles.
In the limit of small exchanged momentum k as

compared to p, the collision integral can be expanded
reducing the Boltzmann equation to a Fokker-Planck
equation [27–30]. Assuming, in addition, homogeneity
and the absence of mean-field effects, one gets

∂

∂t
fQðp; tÞ ¼

∂

∂pi

�
AiðpÞfQðp; tÞ þ

∂

∂pj
½BijðpÞfQðp; tÞ�

�
;

ð3Þ

where i and j are spatial indices and the transport
coefficients AiðpÞ and BijðpÞ follow from the evaluation
of the first two moments of the collision integral,

AiðpÞ ¼
Z

d3kωðp; kÞki; ð4Þ

BijðpÞ ¼
1

2

Z
d3kωðp; kÞkikj; ð5Þ

called the drag force and diffusion coefficients, which
encode the forces acting on the heavy quark and its
interactions with the medium. Imposing that the solution
of the Fokker-Planck equation converges to the relativistic
Boltzmann-Jüttner distribution in equilibrium, the two
coefficients are connected via the dissipation-fluctuation
theorem [29]:

Aiðp; TÞ ¼ Bijðp; TÞ
1

T
∂EðpÞ
∂pj

−
∂Bijðp; TÞ

∂pj
; ð6Þ

where EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

c

p
is the relativistic energy of the

charm quark with mass Mc. This was first derived in [28]
for the nonrelativistic case.
In an isotropic medium the drag force and diff-

usion coefficients reduce to three scalar quantities,
Aðp; TÞ; B0ðp; TÞ and B1ðp; TÞ:

Aiðp; TÞ ¼ Aðp; TÞpi; ð7Þ

Bijðp; TÞ ¼ B0ðp; TÞ
�
δij −

pipj

p2

�
þ B1ðp; TÞ

pipj

p2
: ð8Þ

Following Ref. [27] we consider the static limit p → 0,
where the Fokker-Planck equation reduces to the Rayleigh
equation with a diagonal approximation of the diffusion
coefficient:

B0ðp; TÞ ¼ B1ðp; TÞ≡Dðp; TÞ: ð9Þ

Assuming these conditions, the fluctuation-dissipation
relation in (6) reduces to [29]:
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AðpÞ ¼ 1

EðpÞ
�
1

T
−

∂

∂E

�
D½EðpÞ�; ð10Þ

where the momentum dependence of the diffusion coef-
ficient enters through the particle energy. To ease the
notation, in the following we will omit the T argument
in the transport coefficients.
In our numerical approach, we consider a microscopical

description of the system. This is realized through the
relativistic Langevin equation [31,32], and serves as the
starting point for the practical simulation of heavy-quark
propagation. The stochastic equations of motion for the
heavy quarks are defined by the Langevin update steps,
describing the change of position and momentum dis-
cretized in a time interval due to random momentum kicks
from quasielastic scatterings with medium particles:

dxj ¼
pj

EðpÞ dt; ð11Þ

dpj ¼ −γðpÞpjdtþ
ffiffiffiffiffi
dt

p
CjkðpÞρk; ð12Þ

where repeated spatial indices must be summed over. γðpÞ
is the deterministic friction coefficient, and CjkðpÞ para-
metrizes the strength of the stochastic force. Such a noise is
represented by the random variable ρ following a Gaussian
normal distribution,

PðρÞ ¼ ð2πÞ−3
2e−

ρ2

2 ; ð13Þ

where its moments satisfy

hρki ¼ 0; hρjρki ¼ δjk; ð14Þ

describing what is called a white noise.
The numerical implementation of the random term in

Eq. (12) is not unambiguous, and one needs to specify
at which momentum step the covariance of the stochastic
force Cjk is applied. This is parametrized by a scalar
factor ζ,

Cjk → Cjkðpþ ζdpÞ; ð15Þ

with the typical choices ζ ¼ f0; 1
2
; 1g for pre-, mid- and

post-point realizations, respectively.
The phase-space distribution which follows from the

previous Langevin equation satisfies a Fokker-Planck
equation, which can be derived by computing the time
evolution of the average of the phase-space function. The
result from Ref. [30] is

∂fðt; pÞ
∂t

¼ ∂

∂pj

��
γðpÞpj − ζClkðpÞ

∂CjkðpÞ
∂pl

�
fðt; pÞ

�

þ 1

2

∂
2

∂pj∂pk
½CjlðpÞCklðpÞfðt; pÞ�: ð16Þ

At this point we can do the matching between Eq. (16)
and the form given in Eq. (3) that was obtained from the
Boltzmann equation. The relations between the two sets of
coefficients are [30]

AðpÞpj ¼ γðpÞpj − ζClkðpÞ
∂CjkðpÞ
∂pl

; ð17Þ

BjkðpÞ ¼
1

2
CjlðpÞCklðpÞ: ð18Þ

Equation (18) can be rewritten by applying the longi-
tudinal/transverse projections made in Eq. (8) for an
isotropic medium. One gets

CjkðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B0ðpÞ

p �
δjk−

pjpk

p2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B1ðpÞ

p pjpk

p2
: ð19Þ

Taking, in addition, the static limit (where B0ðpÞ ¼
B1ðpÞ → DðpÞ) we arrive at the simple relation

CjkðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½EðpÞ�

p
δjk: ð20Þ

Inserting Eq. (20) into Eq. (17), the equation that related
the drag and friction forces is simplified to

AðpÞ ¼ γðpÞ − ζ
1

EðpÞ
∂D½EðpÞ�

∂E
; ð21Þ

where we observe that for a general ζ, the relation depends
also on the diffusion coefficient DðpÞ.
Finally, wewill find a simple relation between the friction

force in the Langevin equation γðpÞ and the diffusion
coefficient DðpÞ by equating Eq. (21) to the fluctuation-
dissipation relation (10). We obtain [29]

γðpÞ ¼ 1

EðpÞ
�
D½EðpÞ�

T
− ð1 − ζÞ ∂D½EðpÞ�

∂E

�
; ð22Þ

which is a fluctuation-dissipation relation between the
friction force and the diffusion coefficient (in the static
limit).
In this work we adopt the post-point scheme (ζ ¼ 1),

allowing us to reduce Eq. (6) to Einstein’s relation:

D½EðpÞ� ¼ γEðpÞT: ð23Þ

We will assume a momentum-independent value of γ,
but a diffusion coefficient DðpÞ that carries a momentum
dependence.
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Using (20) and (23) we can finally write the specific
form of the Langevin update steps for the heavy quarks in
this description:

dxj ¼
pj

EðpÞ dt ð24Þ

dpj ¼ −γpj dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γEðpÞTdt

p
ρj: ð25Þ

While the coordinate update is straightforward, the
momentum update requires a two-step computation due
to the choice of the post-point scheme (ζ ¼ 1) for the
covariance matrix. In the first step, a preliminary momen-
tum increment, dpdrag

j , is computed using γ and DðpÞ.
Subsequently, the diffusion coefficient is recalculated at the
updated momentum, jpþ dpj, in order to evaluate
dpdiffusion

j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dtDðjpþ dpjÞp

ρj. Finally, the total momen-
tum increment for one full time step is obtained as the sum
of dpdiffusion

j and dpdrag
j [29,32,33].

In the end, Eq. (25) represents the well-known relativistic
Langevin equation,

dpμ

dt
¼ −γpμ þ ξμ; ð26Þ

with the friction coefficient γ and the stochastic force ξμ,
where the probability for the directions of a random kick is
isotropic and with zero average,

hξjðtÞi ¼ 0; ð27Þ

and the noise correlation is given by

hξðt1Þξðt2Þi ¼ 2γETδðt2 − t1Þ: ð28Þ

In principle, the white noise could be replaced by a
colored, non-Markovian noise with a nonlocal correlation
in time [34,35]. However, such standard Langevin equa-
tions are much more numerically involved, and thus, for our
present setting we will stay with the Markovian approxi-
mation, Eq. (26).

III. HEAVY QUARK POTENTIAL

The potential used to describe the interaction between a
heavy-quark pair allowing for bound-state formation is
adopted from the formalism by Blaizot et al. [36]. In this
approach the dynamics of the heavy quarks is described as
an Abelian plasma, where the mass difference between
heavy and light quarks is used to formulate an effective
theory in which it is possible to treat the heavy quarks as
nonrelativistic particles in a plasma of relativistic particles,
considering the plasma properties in the correlation func-
tions. To derive the effective potential for the heavy quark,
Ref. [36] makes use of the influence functional method, and

integrates out the medium degrees of freedom to derive an
effective complex potential between heavy particles,

VðrÞ ¼ −
g2

4π
mD −

g2

4π

expð−mDrÞ
r

− i
g2T
4π

ϕðmDrÞ; ð29Þ

where r is the relative distance between the heavy quark and
antiquark. In Eq. (29) the first term defines a self-energy
contribution, which amounts to a constant potential. The
real Coulomb-like second term contains the attractive
potential developing between a heavy-quark pair, screened
by the Debye mass mD of the light component of the gas,
while the imaginary part in the third complex term encodes
the momentum loss in the scatterings with medium par-
ticles. The function ϕðmDrÞ is given by

ϕðxÞ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þ2
�
1 −

sinðzxÞ
zx

�
: ð30Þ

Within the potential in Eq. (29) dissociation processes
are possible resulting on one hand from the screening of
the potential, and on the other hand from collisions with
the plasma particles. To regularize the singularity of the
potential at small distances, we apply a cutoff Λ ¼ 4 GeV
in the momentum integral of the real part of the potential,
as proposed in Ref. [36]. The strong coupling is para-
metrized by

g2ðTÞ ¼ 4παsðTÞ ¼
4παsðTcÞ

1þ C ln ðT=TcÞ
; ð31Þ

with C ¼ 0.76 and Tc ¼ 160 MeV.
Typically, a value of αsðTcÞ ≃ 0.5 is chosen for the strong

coupling [36]. However, in this work we use αs ¼ 0.7 as
will be argued in Sec. VI. The mass of the charm quark is
chosen to be Mc ¼ 1.8 GeV, because this will eventually
lead to a J=Ψ physical mass of 3.1 GeV, when a heavy-
quark pair is bound.
In Fig. 1 the real part of the potential (29) is displayed as

a function of the relative distance of the heavy-quark pair
for four different temperatures. Upon comparison of the
curves at different temperatures, the screening effects of the
potential become apparent, leading to a decreasing depth of
the potential for higher temperatures, where the screening
of the unconfined color charges in the medium hinders the
formation of bound states. Therefore, the interaction lead-
ing to the formation of bound states is enhanced at lower
temperatures and we expect a higher fraction of bound
states.
The drag coefficient γ that appears in the Langevin

equation of the charm quarks describes how the average
momentum equilibrates through scatterings and can there-
fore also be interpreted as a thermal relaxation rate. It is
possible to define a relaxation time τR ¼ γ−1 which is
the characteristic time for a heavy particle to acquire a
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thermal momentum. In Ref. [36], γ follows from the
derivative of the imaginary part of the potential (29), and it
is, in principle, a function of the relative distance of
the pair. However, in our simulation this dependence
will be neglected and we use a constant drag coefficient
instead [36]:

γ ¼ g2

McT
δij

∂
2

∂ri∂rj

�
−
Z

Λ dk
ð2πÞ3 e

ik·r πm2
DT

kðk2 þm2
DÞ2

�
r¼0

¼ m2
Dg

2

24πMc

"
ln

�
1þ Λ2

m2
D

�
−

Λ2

m2
D

Λ2

m2
D
þ 1

#
: ð32Þ

The upper panel of Fig. 2 shows the drag coefficient γ
for different temperatures, illustrating an enhancement
with increasing temperatures. Compared with other
heavy-quark drag force determinations in the literature,
our values are in the same physical range [37]. In this
figure specifically, we compare the drag coefficient result-
ing from the employed potential model with the results of
the Texas A&M model [38] based on a T-matrix calcu-
lation using the heavy-quark internal energy from lattice-
QCD as a potential, and the Catania quasiparticle model
[18] extracted from simulations based on the Langevin
(LV) or Boltzmann (BM) equation. In the lower panel, the
spatial diffusion coefficient Ds of the charm quarks is
displayed, which is directly related to the mean-square
displacement according to

hr2ðtÞi ¼ 6Dst: ð33Þ

Hence, Ds quantifies how quickly the charm quarks spread
out spatially over time due to random thermal fluctuations
and interactions with the medium and is connected with
the drag coefficient via

Ds ¼
T

Mcγ
: ð34Þ

The spatial diffusion coefficient in our simulation, which
results from the drag force proposed in [36], appears to be
smaller than the models we are comparing to, while the
most recent data from lattice QCD [39] supports smaller
values of Ds. Possible reasons for the small magnitudes of
Ds are the application of a stronger coupling αs, as
mentioned above, as well as using a charm-quark mass

FIG. 2. Upper panel: drag coefficient as a function of temper-
ature compared to results from the Texas A&M model [38] and
the Catania quasiparticle model [18]. Lower panel: spatial
diffusion coefficient of the charm quarks as a function of the
temperature (Tc ¼ 160 MeV) compared to the same models and
to results from the Dynamical Quasiparticle Model [42], as well
as data from lattice QCD [39,43] and pQCD calculations [40,41].

FIG. 1. Real part of the complex potential from Ref. [36] as a
function of the relative distance of the heavy-quark pair for
different temperatures. Notice that the potential is qualitatively
similar to the one in Ref. [36], but since the strong-coupling αs is
modified (as explained in Sec. VI), it leads to a deeper potential
for all considered temperatures.
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of Mc ¼ 1.8 GeV, as opposed to the pQCD calculations
[40,41] which were obtained using Mc ¼ 1.4 GeV and
Mc ¼ 1.5 GeV, respectively.
We note that the results for Ds from the Catania group

are not calculated using the drag force (34) like in our case,
but in an independent way using Ds ¼ T2=Dð0Þ, with the
diffusion coefficient in momentum space DðpÞ of Eq. (20).
The differences between the two methods are described
in Ref. [44].
Adding the force term resulting from the potential (29)—

allowing for the formation of bound states—the Langevin
update steps for a heavy quark and a heavy antiquark
correspondingly read:

rα
iþ1

2

¼ rαi þ
pαi

EðpαÞ
Δt
2
; ð35Þ

pαiþ1 ¼ pαi − Fðrα
iþ1

2

; r̄α
iþ1

2

ÞΔt ð36Þ

− γpαiΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ETγΔt

p
ρα

riiþ1 ¼ rα
iþ1

2

þ pαiþ1

EðpαÞ
Δt
2
; ð37Þ

where i denotes a time step dt, α∈ fQ; Q̄g and analogous
for multiple heavy-quark pairs. Using these expressions,
the dynamics of the selected number of charm-anticharm
quark pairs are simulated, where the quark and antiquark
always interact pairwise.
With this prescription one can now analyze in detail the

microscopic formation, dissociation, dynamical equilibra-
tion and thermal population of charmonium states. We note
that such a microscopic model has already been proposed
originally by Shuryak and Young [45,46] and also in [36].

IV. DYNAMICAL BOUND STATE FORMATION

In order to identify a charmonium state we use a classical
definition in which a charm-anticharm pair is bound if the
relative energy of the pair is smaller than zero. This binding
energy is calculated by subtracting the total energy of the
pair to the sum of the individual charm and anticharm
quarks as well as the potential acting between them:

Ecc̄ ¼ Ec þ Ec̄ þ Vðjrc − rc̄jÞ − Etot

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ p2c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c̄ þ p2c̄

q
þ Vðjrc − rc̄jÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc þmc̄Þ2 þ ðpc þ pc̄Þ2

q
: ð38Þ

This is checked at every time step, and for every pair
combination. Once the system has thermalized, the dis-
tribution of the relative energy is expected to be given by
the classical density of states, multiplied with the
Boltzmann factor in order to obtain the thermal distribution
of states,

dNcc̄

dEcc̄
¼ gðEcc̄Þ exp

�
−
Ecc̄

T

�

¼
Z

d3rd3p
ð2πℏÞ3 δ

�
E −

p2
rel

2μ
− VðrÞ

�
exp

�
−
Ecc̄

T

�

¼ ð4πÞ2ð2μÞ32C
Z

R

0

drr2 exp

�
−
Ecc̄

T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ecc̄ − VðrÞ

p
;

ð39Þ

where μ ¼ Mc=2,C is a normalization constant (fixed to the
total number of pairs Npair) and VðrÞ ¼ ReVðrÞ, cf. Fig. 1.
The upper boundary of the integral R corresponds to the
radius of a sphere with the same volume as the box of our
simulation. In order to investigate whether our description
leads to the right equilibrium density of states, we perform
box simulations (Nevent ¼ 4 × 104) with a single heavy-
quark pair (Npair ¼ 1) at a constant temperature and volume.
The heavy quarks follow the Langevin equation with
T ¼ 160 MeV in a cubic box of volume V ¼ ð8 fmÞ3
and periodic boundary conditions. Figure 3 shows the
comparison between the simulation in the long-time limit,
t ¼ 700 fm, and the theoretical expectation of Eq. (39),

10-5
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10-1

100
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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E
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l[
G
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-1
]
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analytic
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/d
E
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G
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-1
]
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FIG. 3. Upper panel: simulation of the distribution of the
relative energy of the heavy-quark pair in a cubic box with side
length 10 fm at T ¼ 160 MeV compared the analytic expectation
(39). Lower panel: comparison of the results of the simulation of
the relative energy for different temperatures.
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which demonstrates a nearly perfect agreement: The
first bump in the left side of the plot corresponds to
bound states, where the relative energy of the charm-
anticharm-quark pair is negative. Clearly, only a small
fraction of bound states occurs, with the strongest bound
state at approximately 1GeV binding energy. Accordingly,
the right side peak, with positive values of the relative
energy, displays the distribution of free charm and anti-
charm quarks. Consequently, a charmonium state is
identified as a state in the negative energy side of the
distribution. The lower panel of Fig. 3 compares the
distribution of the relative energy of simulations with
different temperatures of the system. Here once again the
screening of the potential becomes apparent as the bump
on the left side, corresponding to the bound states,
decreases with increasing temperatures. Therefore, poten-
tial bound states become less likely, as expected.
In order to confirm that Eq. (38) is a suitable criterion for

identifying charmonium states, we consider the probability
distribution of the relative distance of the charm-anticharm
quark pairs. In Fig. 4 we compare the distribution of all
pairs, regardless of their relative energy (solid blue line)
with the case where only pairs with a negative relative
energy are included (dashed orange line). The comparison
reveals that in both cases, a narrow peak at small distances
emerges, corresponding to the relative distance between a
quark and antiquark within a bound state. At larger
distances, the potential between the heavy quarks becomes
negligible, leading to a distance distribution depending
on the box size, which is represented by the second peak of
the blue line. Since this second peak is absent when only
considering pairs with a negative relative energy, we
conclude that Eq. (38) is a suitable benchmark for only

pairs with a reasonably small relative distance as bound
states with within our model.
When more than one heavy-quark pair is present in the

system, it is possible for a single quark to have a negative
relative energy with more than one antiquark. Since we do
not allow for more than two charm quarks to bind, we need
to ensure that one quark can only form a bound state with
one antiquark at a certain time step. Therefore, the relative
energy between every quark and antiquark is calculated at a
time step and stored. The pair with the lowest binding
energy is selected as the first bound state and all other
entries containing one of the partners are deleted. Now, the
pair with the next lower energy is identified and selected.
This procedure is continued until the following entry is one
with a positive binding energy. In that case, all bound states
at the respective time step have been found and identified,
and the simulation continues to the next time step. In this
way, we can monitor the number of bound states along
the time evolution of the simulation. We perform this
study in a somewhat larger box (since we will also add a
higher number of heavy-quark pairs, Npair) with volume of
V ¼ ð10 fmÞ3 at T ¼ 160 MeV.
The heavy quarks are placed randomly inside the cubic

box, and therefore, there is a chance that two of them are
placed close enough together in order to form a bound state
directly at t ¼ 0, which is reflected by the nonzero initial
values of each curve of Fig. 5. With increasing time,
recombination and dissociation processes take place until
the potential equilibrium limit is reached, where the number
of dissociation is equal to the number of recombination
processes. When a larger number of pairs are present in the
box, the probability to form a bound state increases due to
the higher density of heavy quarks, which becomes
apparent in Fig. 5 in the fact that the equilibrium value
of the fraction of bound states increases with the number of

FIG. 4. Probability distribution of the relative distance between
a charm-anticharm quark pair, calculated with the same param-
eters as in Fig. 3. The solid blue line depicts the distribution for all
pairs, regardless of their relative energy, and the orange dashed
line corresponds to bound states, i.e., pairs with a negative
relative energy.

FIG. 5. Time evolution of the fraction of bound states in box
simulations with Npair ¼ 1, 2, 5 and 10 initial heavy-quark
pairs at constant temperature T ¼ 180 MeV and volume V ¼
ð10 fmÞ3.
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pairs, i.e., NJ=ψ ∝ N2
c · 1V. This dependence will be analyzed

in more detail later.
For the next analysis, the dependence of the temperature

of the system on the formation of bound states can be
investigated. In the upper panel of Fig. 6 the time
evolution of the bound-state formation is depicted for
three different temperatures. It can be directly seen from
the graph that at higher temperatures the formation of
bound states is suppressed due to the screening of the
potential. Correspondingly, the highest charmonium yield
is obtained at T ¼ 160 MeV. Furthermore, the scaling of
the charmonium yield with the medium temperature is
summarized in the right panel of Fig. 6, where we show
the numerical result of the simulation for three temper-
atures, T ¼ 160, 180, 200 MeV, together with the theo-
retical equilibrium multiplicities coming from the energy
integration of Eq. (39),

Ncc̄ ¼
Z

0

Ecc̄;min

dEcc̄
dNcc̄

dEcc̄
: ð40Þ

We find an excellent agreement between the theoretical
expectation and the simulations.
Finally, the effect of the system’s size on the regeneration

probability can by studied by varying the side length of
the box.
Figure 7 shows the time evolution of the fraction of

bound states for boxes with side lengths 8, 10 and 12 fm.
As expected, the equilibrium value of the fraction of bound
states is higher for a smaller box volume, since the
probability for a charm to encounter an anticharm quark
and therefore interact to form a bound state is enhanced in a
reduced system size.
Finally, we can demonstrate that the same equilibrium

charmonium yield is obtained, regardless of whether the
charm-anticharm pair is initially bound or free. Figure 8
shows the time evolution of the fraction of bound states for
various temperatures for both cases. In the case of initially
bound pairs the time to reach the equilibrium limit is larger
than that for the free quarks, but for all three considered

FIG. 6. Temperature dependence of the formation of charmo-
nium bound states in a box calculation at constant volume of
V ¼ ð10 fmÞ3 and Npair ¼ 1. Upper panel: fraction of bound
states as a function of time for three different temperatures. Lower
panel: equilibrium charmonium fraction as a function of temper-
ature. Results from numerical simulations versus theoretical
expectation from Eq. (40).

FIG. 7. Time evolution of the fraction of bound states for
different box volumes at a constant temperature of T ¼ 180 MeV
in simulations with a single charm-anticharm pair.

FIG. 8. Comparison of the bound-state time evolution of
initially free and bound pairs for different temperatures with a
single charm-anticharm pair in a box of volume V ¼ ð10 fmÞ3.
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temperatures the same value is reached in the long-time
limit, assuring that dissociation and regeneration processes
occur in a detailed balance and demonstrating the thermal
equilibration of bound states.

V. MOMENTUM RELAXATION AND CHEMICAL
EQUILIBRATION TIME

As mentioned before, the drag force quantifies the
amount of interactions of the heavy quarks with the
surrounding medium. Therefore it determines the relaxation
rate of the average particle’s momentum to its equilibrium
value. The chemical equilibration time of the system—to
form the final charmonia states—should depend inversely
on the drag coefficient in the Langevin equation and is of the
same order as τR. In order to study the influence of the drag
coefficient on the equilibration time, different simulations
with a single charm-anticharm pair are run with the
parameter γ scaled up by a factor k ¼ 2, 3 and 5. The
results for the situation of one charm-quark pair are depicted
in Fig. 9.
From the analysis of the curves it can be concluded that a

higher drag coefficient leads to a somewhat faster chemical
equilibration of the system. This might be expected since to
achieve equilibration, particles need to relax their momen-
tum first, which they do in time scales of the order of the
inverse of the drag coefficient, τR ¼ γ−1. However, full
chemical equilibration—understood as achieving a time-
independent number of bound states—is dominated by a
much slower process, the genuine two-body dynamics
that governs the eventual generation of charmonia, and
dominated by the time scales of the pairwise potential
VðrÞ. Both effects, momentum relaxation and chemical
equilibration, are accounted for in the Langevin equation.
To quantify the latter, we apply an exponential ansatz of
the form

Ncc̄ðtÞ ¼ Ncc̄;eqð1 − Ae−t=τeqÞ ð41Þ

to the time evolution curves of Fig. 9. The resulting
chemical equilibration times—together with their respective
relaxation times—are shown in Table I. From the values of
this table it is clear that there is a separation of time scales in
the heavy-quark thermalization. While the relaxation time
(given by the inverse drag coefficient) is rather fast, the final
pair formation takes much more time to equilibrate towards
the final charmonium multiplicities. However, one cannot
naively conclude that this comes from very distinct time
scales in the imaginary and real parts of the potential since,
as we will see, the equilibration rate is strongly dependent
on the temperature. To further quantify this effect, the
calculation can be repeated for various temperature. The
results are summarized in Table II. The general trend is
similar as before, but we also notice the fast decrease of the
equilibration time toward higher temperatures and the large
difference in time scales between T ¼ 160 MeV and higher
temperatures. This reflects the strong binding force of the
potential at this particular temperature, as depicted in Fig. 1.
At low temperatures, it is difficult for a bound pair to escape
from the bottom of a deeper potential with random kicks
that are of less intensity than at high temperatures, where the
potential is also less bound and pair melting is more
favorable. For the regeneration of bound states, the strength
of random kicks is larger at higher temperatures and that
helps bring the two particles together, while at lower
temperatures the noise is much weaker and the pair needs
more time to roll down the potential.

FIG. 9. Time evolution of the fraction of bound states for
different scalings of the drag coefficient kγ within box simu-
lations with a single charm-anticharm pair, at constant temper-
ature T ¼ 160 MeV and volume V ¼ ð10 fmÞ3.

TABLE I. Comparison of the relaxation and chemical equili-
bration times for each of the curves in Fig. 9 with different scaling
factors of the drag force coefficient (kγ) used in the simulation at
T ¼ 160 MeV.

k τR (fm) τeq (fm)

1 3.3 133.78
2 1.7 89.31
3 1.1 78.89
5 0.7 70.75

TABLE II. Relaxation time for different scaling coefficients of
the drag coefficient kγ at different temperatures.

τeq (fm)

k T ¼ 160 MeV 180 MeV 200 MeV 250 MeV

1 133.78 43.88 22.25 5.87
2 89.31 30.60 14.22 4.88
3 78.89 28.82 13.68 4.80
5 70.75 24.42 9.78 4.37
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VI. EQUILIBRIUM YIELDS AND COMPARISON
TO STATISTICAL HADRONIZATION MODEL

To investigate further whether our results are in accor-
dance with a thermodynamically equilibrated system, the
final charmonium yield in equilibrium can be compared to
the SHM [25], where the statistically equilibrated source
volume can be described in terms of a grand-canonical
ensemble (GCE). Therefore, we can verify if our results can
be made consistent with the SHM by calculating the number
of charmonium states in the GCE. Apart from the charmo-
nium ground state J=ψ we take into account further
charmonium states, namely ηc, χc and ψð2SÞ, since one
cannot distinguish one from another in the classical sim-
ulation, and only a continuum of bound states are generated
dynamically. The average particle number of a certain
species in the GCE can be calculated using the quantum
mechanical partition function according to

N ¼ T

�
∂ lnZ
∂μ

�
T
; ð42Þ

with

lnZ ¼ a
X
α

ln

�
1þ a exp

�
−
Eα − μα

T

��
; ð43Þ

where a ¼ �1, depending on whether the particles are
Fermi-Dirac or Bose-Einstein particles; and α is the sum
over the different states of the ensemble. In the non-
relativistic and classical limit one has the following expres-
sion for the computation of the particle number, i.e., charm
and anticharm quarks:

Nc ¼ λcgcV

�
McT
2π

�
3=2

e−
Mc
T ; ð44Þ

with λc being the fugacity factor λc ¼ eμc=T, V being the
volume of the system, and gc being the particle degeneracy.
Since the number of charm quarks in our simulation is

fixed, we can calculate the charm fugacity from this
expression. The process of recombination and dissociation
of a J=ψ -meson, for example, is similar to a reaction in
chemical equilibrium,

cþ c̄ðþgÞ ↔ J=ψðþgÞ; ð45Þ

where the gluons represent the random kicks from the
system which the charm and anticharm quarks experience.
In this reaction, the chemical potentials of the reactant and
the product are connected through the relation μcc̄ ¼ 2μc,
leading to λcc̄ ¼ λ2c for the fugacity.
Hence, the charmonium multiplicity at a certain temper-

ature and volume can be calculated according to the
following expression:

Ncc̄ ¼ V
X
α

λ2cgα

�
MαT
2π

�
3=2

expð−Mα=TÞ;

α ¼ fJ=ψ ; ηc; χc;ψð2SÞg: ð46Þ

Inserting Eq. (44) for λc leads to

Ncc̄ ¼
X
α

N2
c

V
gα
g2c

�
2π

T

�
3=2M3=2

α

M3
c
e
2Mc−mα

T ; ð47Þ

with the respective values for the masses and degeneracies
of the considered charmonium states from the Particle Data
Group [47] (see Table III).
In order to set a common baseline with the results from

the SHM we need to scale up the strong coupling constant
αsðTcÞ. This explains why we needed to deviate from the
value used in [36]. For a larger value of αs the potential in
Fig. 1 becomes deeper; therefore, an increased formation
number of bound states is expected. The chosen value of
αs ¼ 0.5 in Ref. [36] leads to final multiplicities which
would underestimate the yields from the SHM. Hence, one
has to choose a slightly larger value of αs ¼ 0.7 in order to
match to the SHM. In Fig. 10 as well as in Table IV we
show the charmonium yields calculated for a box of

TABLE III. Table of masses and spin degeneracies of the
charmonium states considered for the calculated final charmo-
nium yield. Properties taken from Ref. [47].

α mα (MeV) gα

J=ψ 3097 3
ηc 2984 1
χc0 3415 1
ψð2SÞ 3686 3

FIG. 10. Scaling of the equilibrium charmonium yield with the
number of initial pairs squared, compared to predictions from the
SHM. Lines are drawn to guide the eye.
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volume V ¼ 103 fm3 and T ¼ 160 MeV ¼ Tc in com-
parison with the results from our simulation.
As can be seen in Fig. 10, the total charmonium yield

scales with the number of charm-anticharm quark pairs
squared. This behavior is expected, since every charm-quark
can form a charmonium state with every anticharm-quark.
With a more closer inspection of Table IV one recognizes
that for Npair ¼ 1, 2 the simulation manifests slightly larger
values than the SHM calculation. It has to be noted that the
gauging to the theoretical prediction has been done for a
large number of charm-anticharm-pairs, Npair ¼ 10, mim-
icking a grand canonical description of the situation, as in
the SHM description. On the other hand, if the number of
pairs is small, the exact conservation of charm-anticharm
pairs becomes relevant. In this case, the effect of canonical
suppression has to be considered [48,49].

VII. CONCLUSIONS AND OUTLOOK

We have developed a classical microscopic model with
the goal to describe the propagation and interactions of
heavy quarks in the QGP, especially the formation of bound
states to account for the dissociation and regeneration of
charmonia. For that purpose, a relativistic Langevin equa-
tion has been used in numerical simulations to model the
Brownian motion of the heavy quarks, which move through
the medium under the influence of drag and diffusion
coefficients. We have implemented a Coulomb-like poten-
tial between heavy particles which allows the formation of
charmonium states under the condition of a negative relative
energy of a charm-anticharm quark pair. The combined
dynamics allows us to monitor in real time the recombina-
tion and dissociation of bound states. While these processes
compete with each other, we have demonstrated that a
complete thermodynamic equilibrium limit is reached
eventually, in time scales dominated by the pairwise
potential between the heavy particles. After tuning the
strong coupling constant, the charmonium multiplicities
obtained in equilibrium are in accordance with the pre-
diction of the SHM for the low-lying charmonium states at
the critical crossover temperature. Furthermore, we have

investigated the influence of the temperature, the box
volume as well as the magnitude of the drag coefficient
on the formation of bound states.
After having passed all the tests within box simulations

and ensuring that the correct chemical equilibrium limit is
reached and the bound state formation, dissociation and
regeneration occurs in the expected manner, we can now
move forward and adapt our model to a situation of a
realistic heavy-ion collision. In the future we will embed our
model in an expanding medium, modeled by a blast-wave-
like elliptic fireball. Within this dynamical description the
heavy quarks will initially be placed according to the
Glauber model and with an initial momentum distribution
given by PYTHIA. Using this setup, we can now further-
more study the elliptic flow of charm quarks and charmonia
as well as the nuclear modification factor at RHIC and LHC
energies. Since up to this point only regenerated charmo-
nium states have been included in the description, it should
be considered to additionally include primordial J=ψ to be
able to better compare to experimental data. This is
especially important at RHIC energies, where regeneration
processes are believed to be negligible and the dominant
effect is the dissociation and suppression of initial bound
states. This is work in progress. Furthermore, this descrip-
tion allows expansion to the bottom sector and the botto-
monium formation, as well as Bc states. Finally, since the
complete description of a heavy-ion collision should also
account for the hadronic medium evolution [50], the whole
framework could also be applied to the confined phase to
describe D and D̄ mesons in a bath of light constituents,
with the possibility of the Xð3872Þ formation or other
molecular states at finite temperature [51].
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TABLE IV. Comparison of the final charmonium yield of our
simulation with the SHM for different numbers of initial charm-
anticharm pairs.

Npair Nsimulated
cc̄ NSHM

cc̄

1 0.0143 0.0059
2 0.0376 0.0236
5 0.1626 0.1476
10 0.5677 0.5904
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