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We analyze the topological susceptibility and the axion properties in the presence of an external uniform
magnetic field, considering a three-flavor Nambu-Jona-Lasinio model that includes strong CP violation
through a ’t Hooft-like flavor mixing term. Both thermal and finite density effects are studied for magnetic
fields up to 1 GeV2, and the corresponding phase transitions are analyzed. To capture the inverse magnetic
catalysis effect at finite temperatures and densities, a magnetic-field-dependent coupling constant is
considered. Our analytical and numerical results are compared with those previously obtained from lattice
QCD, chiral perturbation theory, and other effective models.
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I. INTRODUCTION

As is well known, QCD contains gauge field configu-
rations that carry topological charge [1]. These configura-
tions interpolate between different vacua of the gluonic
sector, giving rise to the so-called “θ vacuum” [2]. At the
level of the QCD Lagrangian, this nontrivial nature of the
QCD vacuum implies the presence of a so-called θ term of
the form

Lθ ¼ θ0
g2

32π2
GμνG̃

μν; ð1Þ

where g is the strong coupling constant, and Gμν and G̃μν

stand for the gluon field tensor and its dual. In fact, in the
context of the full Standard Model, the coefficient θ0 can be
modified through a chiral rotation. Considering the weak
interaction sector, by diagonalizing the Yukawa-generated
quark mass matrix Mq, one has

θ0 → θ ¼ θ0 þ arg detMq: ð2Þ

The parameter θ (which can be taken to run from 0 to 2π,
due to the periodicity of the action) can be, in principle,

experimentally determined. Presently, measurements of the
neutron electric dipole moment lead to the constraint
jθj≲ 10−11. Since a nonzero value of θ would imply the
existence of CP violation in the strong interaction sector,
the measurement of such an unexpectedly low upper bound
for the value of jθj is known as the “strong CP problem.”
As proposed almost 50 years ago by Peccei and Quinn,

a possible solution for this puzzle can be achieved by
invoking the existence of an additional global U(1) chiral
symmetry [3,4]. The spontaneous breakdown of this sym-
metry leads to the presence of an associated Goldstone
boson, the axion, which implies an extra anomalous
contribution to the Lagrangian. Thus, the resulting effective
potential gets minimized for a nonzero vacuum expectation
value of the axion field, leading finally to a cancellation of
the θ term and solving the strong CP problem. In practice,
the above-described mechanism can be basically imple-
mented by promoting the parameter θ to a dynamical field
a, normalized by a dimensionful “decay constant” fa. The
effective potential will be given by a periodic function of
a=fa, becoming minimized for hai ¼ 0.
After the original introduction of the axion as a possible

solution for the strong CP problem, its relevance has also
been discussed in other contexts (for a recent review, see,
e.g., Ref. [5]). For example, since axions are expected to be
very light as well as weakly interacting particles (present
constraints on their properties can be found in Sec. 90 of
Ref. [6]), they have been proposed as candidates for cold
dark matter. In this sense, the temperature dependence of
the axion mass would play an important role in the esti-
mation of its cosmic abundance [7–9]. Axions might also
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play a key role in astrophysics, in particular for the ano-
malous cooling of neutron stars (see, e.g., Refs. [10,11]). In
this framework, the influence of nonzero density and back-
ground magnetic fields on the axion properties deserves
particular interest.
The strength of the topological charge fluctuations in the

QCD vacuum is quantified by the topological susceptibility
χt, which is defined as a second derivative of the QCD
partition function with respect to θ and is shown to be
proportional to the axion mass ma. Different approaches to
nonperturbative QCD have been used to determine this
quantity and other axion properties. In the context of
lattice QCD (LQCD), results for χt at zero and finite
temperature can be found in Refs. [12–14]. Within the
framework of effective models of the Nambu-Jona-Lasinio
(NJL) type, estimates of the topological susceptibility,
including its temperature dependence, have been obtained
in Refs. [15–17]. More recently, the effect of the chiral
phase transition on the axion mass and self-coupling within
this scheme was studied in Ref. [18]. Extension of those
analyses to finite chemical potential have been considered
in Refs. [19–23].
In addition, considerable attention has been paid to the

modifications of χt and axion properties induced by the
presence of strong magnetic fields. Besides its importance
within the above-mentioned astrophysical context, it has
been realized that the effect of magnetic fields on the
topological structure of the QCD vacuum can be significant
for the study of heavy ion collisions. In fact, the existence
of a chirality imbalance induced by topology, in the
presence of strong magnetic fields produced in a noncentral
heavy ion collision, can lead to the so-called chiral
magnetic effect, according to which positive and negative
charges get separated along the magnetic field direction
[24,25]. As discussed in Ref. [26], it is important to take
into account the effects of both the temperature and the
magnetic field on QCD vacuum fluctuations. These effects
have been analyzed using chiral perturbation theory (ChPT)
[27–29], which should be adequate for relatively low values
of the magnetic field. In addition, results have been
obtained using two-flavor versions of the local [30] and
nonlocal NJL model [31]. One of the aims of the present
work is to extend those studies by considering a three-
flavor version of the local NJL model. It is worth pointing
out that in the SU(3) chiral NJL model, the coupling that
controls the flavor mixing effects related to the Uð1ÞA
anomaly can be better determined, taking into account the
phenomenological values of meson masses. Moreover,
three-flavor models allow for a more consistent comparison
with very recent results obtained using LQCD simulations
with 2þ 1 flavors [32]. Another important purpose of our
work is to complement previous studies by analyzing
nonzero density effects, which, as already mentioned,
might become relevant when axions are considered in
astrophysical contexts.

This article is organized as follows. Following Ref. [33],
in Sec. II Awe review the general formalism corresponding
to a three-flavor NJL model at finite temperature and
chemical potential in the presence of a constant magnetic
field, including the mentioned θ field. Then, in Sec. II B,
we derive the expressions needed to obtain the quantities of
interest related to the topological susceptibility and the
axion properties. Numerical results for these quantities are
discussed in Sec. III. Finally, in Sec. IV, we summarize our
results and present our main conclusions.

II. THEORETICAL FORMALISM

A. Effective NJL Lagrangian and mean field equations
at zero temperature

We consider a three-flavor NJL Lagrangian that includes
scalar and pseudoscalar chiral quark couplings as well as a
’t Hooft six-fermion interaction term, in the presence of an
external electromagnetic field Aμ. Moreover, we take into
account the coupling to a field θðxÞ ¼ aðxÞ=fa of the form
given by Eq. (1). This can be effectively done through
the ’t Hooft term [which accounts for the chiral Uð1ÞA
anomaly] by performing a chiral rotation of quark fields by
an angle θ. In this way, the effective Euclidean action is
given by [33,34]

SE ¼
Z

d4x

�
ψ̄ð−i =Dþ m̂Þψ

−G
X8
a¼0

�ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2
�

þ K
�
eiθdþ þ e−iθd−

��
; ð3Þ

where G and K are coupling constants, ψ ¼ ðψu;ψd;ψ sÞT
stands for a quark three-flavor vector, m̂ ¼
diagðmu;md;msÞ is the corresponding current quark mass
matrix, and d� ¼ det ½ψ̄ð1� γ5Þψ �. In addition, λa denote
the Gell-Mann matrices, with λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I, where I is

the unit matrix in the three-flavor space. The coupling
of quarks to the electromagnetic field is implemented
through the covariant derivative Dμ ¼ ∂μ − iQ̂Aμ, where
Q̂ ¼ diagðQu;Qd;QsÞ represents the quark electric charge
matrix, i.e., Qu=2 ¼ −Qd ¼ −Qs ¼ e=3, with e being the
proton electric charge. In the present work, we consider a
static and constant magnetic field in the 3-direction.
We proceed by bosonizing the action in terms of scalar

σaðxÞ and pseudoscalar πaðxÞ fields, also introducing
corresponding auxiliary saðxÞ and paðxÞ fields.
Following a standard procedure, we start from the partition
function

Z ¼
Z

Dψ̄Dψe−SE: ð4Þ
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By introducing functional delta functions, the scalar (ψ̄λaψ )
and pseudoscalar (ψ̄iγ5λaψ) currents in SE can be replaced
by saðxÞ and paðxÞ, and one can perform the functional
integration on the fermionic fields ψ and ψ̄ . Then, to carry
out the integration over the auxiliary fields, we use the
stationary phase approximation (SPA), keeping the func-
tions s̃aðxÞ and p̃aðxÞ that minimize the integrand of the
partition function. This yields a set of coupled equations
among the bosonic fields, from which one can take s̃aðxÞ
and p̃aðxÞ to be implicit functions of σaðxÞ and πaðxÞ.
Finally, we consider the mean field (MF) approximation,
expanding the bosonized action in powers of field fluctua-
tions around the corresponding translationally invariant
mean field values σ̄a and π̄a. Thus, we write σaðxÞ ¼
σ̄a þ δσaðxÞ and πaðxÞ ¼ π̄a þ δπaðxÞ, where, due to
charge conservation, only σ̄a and π̄a with a ¼ 0, 3, and 8
can be nonzero. For convenience, we introduce the nota-
tions σ̄ ¼ diagðσ̄u; σ̄d; σ̄sÞ ¼ λ0σ̄0 þ λ3σ̄3 þ λ8σ̄8 and π̄ ¼
diagðπ̄u; π̄d; π̄sÞ ¼ λ0π̄0 þ λ3π̄3 þ λ8π̄8.
At the mean field level, the Euclidean action per unit

volume reads

S̄bosE

Vð4Þ ¼ −
Nc

Vð4Þ
X
f

Z
d4xd4x0 trD ln

�
Sf
x;x0
�−1

−
1

2

X
f

�
σ̄f s̄f þ π̄fp̄f þ G

�
s̄2f þ p̄2f

��

þ K
4

�
cos θ

�
s̄us̄ds̄s − s̄up̄dp̄s − p̄us̄dp̄s − p̄up̄ds̄s

�
− sin θ

�
p̄up̄dp̄s − p̄us̄ds̄s − s̄up̄ds̄s − s̄us̄dp̄s

��
; ð5Þ

where trD stands for trace in Dirac space, while

ðSf
x;x0 Þ−1 ¼ δðx − x0Þ½−ið=∂ − iQf =AÞ þMsf þ iγ5Mpf� ð6Þ

is the inverse mean field quark propagator for each flavor.
Here, we have used the definitions Msf ¼ mf þ σ̄f and
Mpf ¼ π̄f. Moreover, in Eq. (5), s̄f are the values of
the auxiliary fields at the mean field level within the
SPA approximation, i.e., s̄f ¼ s̃fðσ̄aÞ. They satisfy the
conditions

σ̄iþ2Gs̄i−
K
4

X
jk

jϵijkj½ðs̄js̄k− p̄jp̄kÞcosθþ2s̄jp̄k sinθ� ¼ 0;

ð7Þ

π̄iþ2Gp̄i−
K
4

X
jk

jϵijkj½ðs̄js̄k− p̄jp̄kÞsinθ−2s̄jp̄k cosθ� ¼ 0;

ð8Þ

where the values 1, 2, and 3 for indices i, j, and k are
equivalent to labels f ¼ u, d, and s, and jϵijkj is the

absolute value of the Levi-Civita tensor. From the con-
ditions δS̄bosE =δσ̄f ¼ 0 and δS̄bosE =δπ̄f ¼ 0, one can now get
the “gap equations”

s̄f ¼ 2hq̄fqfi; p̄f ¼ 2hq̄fiγ5qfi; ð9Þ

where the quark-antiquark condensates are given by

hq̄fqfi ¼ −
Nc

Vð4Þ

Z
d4x trD

�
Sf
x;x
�
;

hq̄fiγ5qfi ¼ −
Nc

Vð4Þ

Z
d4x trD

�
iγ5S

f
x;x
�
: ð10Þ

As is well known, the quark propagator can be written
in different ways [35,36]. For convenience, we use an
expression given by a product of a phase factor and a
translational invariant function, namely,

Sf
x;x0 ¼ eiΦfðx;x0Þ

Z
d4p
ð2πÞ4 e

ipðx−x0ÞS̃f
p: ð11Þ

Here, Φfðx; x0Þ is the so-called Schwinger phase, which
depends on the gauge chosen to specify the Aμ field, while
S̃f
p is a gauge invariant quantity. The latter can be expressed

in the Landau level form

S̃f
p ¼ 2e−p⃗

2⊥=Bf

X∞
k¼0

ð−1Þk
M2

sf þM2
pf þ p2

k þ 2kBf

×

��
Msf − iγ5Mpf − pk · γk

�
×

	
Γþ
f Lk



2p⃗2⊥
Bf

�
− Γ−

f Lk−1



2p⃗2⊥
Bf

��

þ 2p⃗⊥ · γ⃗⊥L1
k−1



2p⃗2⊥
Bf

��
; ð12Þ

where Lα
kðxÞ are generalized Laguerre polynomials, with

the convention Lα
−1ðxÞ ¼ 0. We have also introduced the

definitions sf ¼ signðQfBÞ and Bf ¼ jQfBj, together with
Γ�
f ¼ ð1� isfγ1γ2Þ=2. “Perpendicular” and “parallel”

gamma matrices have been collected into vectors γ⊥ ¼
ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, and, in the same way, we have
defined vectors p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. Note
that in our convention, fγμ; γνg ¼ −2δμν.
Since the propagators in Eq. (10) are evaluated at x ¼ x0,

Schwinger phases vanish and the condensates turn out to be
gauge-independent quantities. As usual, it is seen that the
resulting expressions for s̄f and p̄f are divergent and have to
be properly regularized. We use here the magnetic-field-
independent regularization (MFIR) scheme [37–44], in
which one subtracts from the unregulated integral the
B → 0 limit and then adds it in a regulated form. In this
way, we obtain
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s̄f ¼ −2NcMsfIB1f; p̄f ¼ −2NcMpfIB1f; ð13Þ

where

IB1f ¼ I01f þ Imag
1f : ð14Þ

For the quantity I01f, we use here a 3D cutoff regularization.
Thus, we have

I01f ¼ 1

2π2

	
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2

f þ Λ2
q

þ M̄2
f ln



M̄f

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2

f þ Λ2
q ��

;

ð15Þ

where M̄f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

sf þM2
pf

q
. On the other hand, the

“magnetic piece” Imag
1f is found to be given by

Imag
1f ¼ Bf

2π2

	
lnΓðxfÞ−



xf −

1

2

�
lnxf þ xf −

ln2π
2

�
; ð16Þ

where xf ¼ M̄2
f=ð2BfÞ and ΓðxÞ is the usual Gamma

function.
The associated Euclidean regularized action per unit

volume is given by

S̄bosE

Vð4Þ ¼
X
f

ωB
f −

1

2

X
i

�
σ̄is̄i þ π̄ip̄i þ G

�
s̄2i þ p̄2i

��

þ K
24

X
ijk

jϵijkj½cos θðs̄is̄js̄k − 3s̄ip̄jp̄kÞ

− sin θðp̄ip̄jp̄k − 3p̄is̄js̄kÞ�; ð17Þ

where

ωB
f ¼ ω0

f þ ωmag
f ; ð18Þ

with

ω0
f ¼ −

Nc

8π2

"
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2

f þ Λ2
q �

M̄2
f þ 2Λ2

�

þ M̄4
f ln

 
M̄f

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2

f þ Λ2
q

!#
; ð19Þ

ωmag
f ¼ −

NcB2
f

2π2

	
ζ0ð−1; xfÞ −

x2f − xf
2

ln xf þ
x2f
4

�
: ð20Þ

Here, ζ0ð−1; xfÞ stands for the derivative of the Hurwitz
zeta function.
Let us now consider the case of a system in equilibrium

at a finite temperature T and quark chemical potential μ.
We follow here a similar analysis as the one carried out in

Ref. [33]. The expressions for the mean field values s̄f
and p̄f can be written as in Eq. (13), replacing the function
IB1f with

IB;T;μ1f ¼ IB1f þ Imag;T;μ
1f ; ð21Þ

where

Imag;T;μ
1f ¼ Bf

4π2
X∞
k¼0

αk

Z
∞

−∞
dp

1

Ekpf

×
X
s¼�

1

1þ exp½ðEkpf þ sμÞ=T� ; ð22Þ

with αk ¼ 2 − δk0, Ekpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2kBf þ M̄2

f

q
.

In the same way, the associated regularized thermody-
namic potentialΩ can be expressed as in Eq. (17), replacing
ωB
f with ωB;T;μ

f , where

ωB;T;μ
f ¼ ωB

f þ ωmag;T;μ
f : ð23Þ

The T ¼ 0, μ ¼ 0 piece ωB
f is given by Eqs. (18)–(20),

while the finite T, μ piece reads

ωmag;T;μ
f ¼ −

NcT
4π2

X
f

Bf

X∞
k¼0

αk

Z
∞

−∞
dp

×
X
s¼�

lnf1þ exp½−ðEkpf þ sμÞ=T�g: ð24Þ

Notice that the mean field thermodynamical potential is
written in terms of the functions ωB;T;μ

f and the mean field
values s̄f and p̄f, which are gauge invariant quantities.

B. Mean field topological susceptibility, axion mass,
and axion self-coupling

As stated, the topological susceptibility χt is useful to
analyze how the manifestations of the chiral anomaly are
affected by the temperature and the external magnetic field.
This quantity is given by

χt ¼
Z

d4xh0jTQðxÞQð0Þj0i; ð25Þ

where QðxÞ is the topological charge

QðxÞ ¼ g2

32π2
GμνðxÞG̃μνðxÞ: ð26Þ

In the framework of the above-introduced effective NJL
model, χt can be simply calculated by taking the second
derivative of the thermodynamic potential with respect to θ,
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χt ¼
d2Ω
dθ2






θ¼0

: ð27Þ

The evaluation of the first derivative of Ω with respect to
θ can be obtained by taking into account the SPA equations

∂Ω
∂s̄f

¼ ∂Ω
∂p̄f

¼ 0; ð28Þ

together with the MF conditions

∂Ω
∂σ̄f

¼ ∂Ω
∂π̄f

¼ 0: ð29Þ

Following the steps sketched in the Appendix, from these
equations one gets

dΩ
dθ

¼ −
1

2
mfp̄f; ð30Þ

where f can be either u, d, or s.
Notice that if any of the current quark masses (e.g., mu)

are taken to be equal to zero, one immediately obtains
dΩ=dθ ¼ 0, i.e., the Lagrangian in Eq. (3) becomes inde-
pendent of θ. This is due to the existence of an additional
U(1) global symmetry. In this limit, the value of θ becomes
unobservable, and, as is well known, the strong CP
problem vanishes.
From Eqs. (13), (30), and (A1), it is seen that, as required

by the Peccei-Quinn mechanism, the minimization con-
dition dΩ=dθ ¼ 0 leads to the mean field values π̄f ¼ 0

and θ̄ ¼ 0. On the other hand, at the mean field level, the
second derivative of the action with respect to a ¼ faθ is
nothing but the axion mass squared. Thus, the topological
susceptibility and the axion mass are simply related by

f2am2
a ¼

d2Ω
dθ2






θ¼θ̄¼0

¼ χt: ð31Þ

As discussed in the Appendix, after some calculation we
obtain

χt ¼ −
1

2

	
2

Ks̄us̄ds̄s
þ
X
k

1

mks̄k

�
−1
: ð32Þ

We recall that s̄f is equal to twice the scalar conden-
sate hq̄fqfi.
The above expression can be compared to previous

results obtained in the approximate chiral limit, where
current masses are taken to be relatively small. At the
lowest order in m−1

f , one has

χt ≃ −
1

2

 X
k

1

mks̄k

!−1

: ð33Þ

Moreover, assuming s̄u ≃ s̄d ≃ s̄s, one can approximate

χt ≃ −
1
2

P
k
s̄k
mk�P

k
1
mk

�
2
þO

�
Δ2

su;ΔduΔsu;Δ2
du

�
; ð34Þ

where Δfu ¼ ðs̄f − s̄uÞ=s̄u. This in agreement with the
expressions found in Refs. [29,45,46] in the contexts of
ChPT and a linear sigma model, respectively. In the limit
s̄u ¼ s̄d ¼ s̄s, the above expressions for χt reduce to the
lowest-order ChPT Leutwyler-Smilga relation [47]

χt ≃ −
s̄f
2

 X
k

1

mk

!−1

: ð35Þ

Finally, it is also interesting to study the axion self-
coupling arising from the θ-dependent effective potential.
It is usual to focus on the θ4 [i.e., ða=faÞ4] term in the
effective action, defining the coupling parameter λa as

λa ¼
1

f4a

d4Ω
dθ4






θ¼0

: ð36Þ

III. RESULTS

A. Model parameters

Before presenting the numerical results for the topologi-
cal susceptibility, we introduce the parametrization that has
been chosen for the above-discussed three-flavor version
of the NJL model. Following Refs. [48,49], we adopt the
parameter set mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV,
Λ ¼ 602.3 MeV, GΛ2 ¼ 1.835, and KΛ5 ¼ 12.36. This
set has been determined in such a way that for B ¼ T ¼ 0,
one obtains meson masses mπ ¼ 135 MeV, mK ¼
497.7 MeV, and mη0 ¼ 957.8 MeV, together with a pion
decay constant fπ ¼ 92.4 MeV.
It is well known that local NJL-like models fail to

reproduce the inverse magnetic catalysis (IMC) effect at
finite temperature. To address this issue, the possibility of
allowing the coupling constant G to depend on the mag-
netic field has been considered [50–52]. Taking into
account the analysis carried out in Ref. [50], we consider
a functional form

GðBÞ ¼ G

	
1þ aðeB=Λ2

QCDÞ2 þ bðeB=Λ2
QCDÞ3

1þ cðeB=Λ2
QCDÞ2 þ dðeB=Λ2

QCDÞ4
�
; ð37Þ

where the parameters a, b, c, and d are determined by
fitting the B dependence of the pseudocritical chiral
transition temperatures to those obtained through LQCD
calculations [53]. The values of the parameters are [50]
a ¼ 0.0108805, b ¼ −1.0133 × 10−4, c ¼ 0.02228, and
d ¼ 1.84558 × 10−4, with ΛQCD ¼ 300 MeV. The effect
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on the pseudocritical chiral restoration temperatures Tc (at
zero baryon chemical potential) is shown in Fig. 1, where
we plot Tc—normalized to TcðB ¼ 0Þ—as a function of
the magnetic field, considering the case of a constant
coupling G and the case in which one has a B-dependent
coupling GðBÞ, as in Eq. (37) [50]. For comparison, the B
dependence of the normalized pseudocritical temperatures
obtained from lattice QCD calculations is also shown (gray
band in the figure) [53]. The normalization temperature in
our model is found to be TcðB ¼ 0Þ ¼ 173 MeV, some-
what larger than the critical value obtained from LQCD
calculations, TcðB ¼ 0Þ ¼ 156 MeV [54].

B. Zero chemical potential

Let us start by quoting our numerical results for both
zero quark chemical potential and zero temperature. In
Fig. 2, we show the values of the topological susceptibility
χt (upper panel) and the axion self-coupling parameter λa
(lower panel) as functions of the magnetic field, normalized
by the corresponding values at B¼ 0, namely, χtðB ¼ 0Þ ¼
78 MeV and λaðB ¼ 0Þ ¼ 0.85 × 10−5 GeV4=f4a.
Black dashed and solid lines in Fig. 2 correspond to

G ¼ constant and G ¼ GðBÞ, respectively. It can be seen
that in both cases, χt and λa show an enhancement with the
magnetic field. Within errors, our results for the topological
susceptibility are shown to be in agreement with those
obtained from LQCD calculations (blue squares) [32] for a
temperature T ≃ 110 MeV (which is well below the critical
temperature and, therefore, the value of χt should be rather
close to the one at T ¼ 0). In addition, we include for
comparison the curves for χt corresponding to a two-flavor
NJL model, taken from Ref. [30], both for constant and
B-dependent couplings (red dashed and solid lines, respec-
tively). The above-mentioned value for χt at B ¼ 0
obtained within our model can be compared with the
results obtained from ChPT [55] and LQCD [12] analyses,

which lead to χtðB ¼ 0Þ ≃ 75.5 MeV. In the case of the
axion self-coupling, from ChPT the estimation λa ≃ 1.12 ×
10−5 GeV4=f4a is obtained [56].
The behavior of the above quantities for nonzero temper-

atures is shown in Fig. 3, where we show the numerical
results for χ1=4t and λaf4a as functions of T=TcðBÞ for three
representative values of the magnetic field. According to
Eq. (22), here, a sum over Landau levels is required. For
low temperatures, we find that our numerical calculations
for s̄f and p̄f get convergence by taking a relatively low
number of levels, even for low values of the magnetic field
(about 30 levels guarantee an accuracy better than 0.01%
for eB≳ 0.03 GeV2). Though the required number of
levels gets somewhat increased for larger temperatures,
it is found to be numerically manageable for the full
considered temperature range. The pseudocritical chiral
transition temperatures TcðBÞ have been defined, taking
the maximum values of the slopes ds̄l=dT, where s̄l ¼
ðs̄u þ s̄dÞ=2, for each value of the magnetic field. Left and
right panels correspond to the results for constant and
B-dependent couplings, respectively. As expected, one
finds a sudden drop of both χ1=4t and λa at T ¼ Tc, signaling
the restoration of chiral symmetry in the light quark sector.
Notice that the curves for λa tend to show a peak located at
T ¼ Tc, and this feature has also been observed in the
context of NJL-like models in Refs. [20,21,30].

FIG. 1. Normalized values of the pseudocritical chiral restora-
tion temperatures as functions of the magnetic field, for constant
and B-dependent G [50]. Lattice QCD results from Ref. [53] are
included for comparison.

FIG. 2. Normalized values of χt and λa as functions of eB
for μ ¼ T ¼ 0. The cases G ¼ cons × tan t and G ¼ GðBÞ are
considered. Results from a two-flavor NJL model [30] and
LQCD [32] are shown for comparison.
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In Fig. 4, we compare the results for χ1=4t obtained within
our model, Eq. (32) (solid lines), with those arising from
the approximate expressions in Eqs. (33) and (34) (dashed
and dotted lines, respectively). The curves correspond to
the case G ¼ GðBÞ, for eB ¼ 0, 0.5 GeV2, and 1 GeV2. It
can be seen that up to T ≃ Tc, all expressions are approx-
imately equivalent for the considered values of the mag-
netic field. Beyond the chiral restoration transition, the
curves corresponding to the approximate expressions in
Eqs. (33) and (34) show some deviation with respect to the
full result in Eq. (32). This difference is mainly due to the
fact that the first term into the brackets, on the right-hand
side of Eq. (32), becomes non-negligible in this region.

Our numerical results for the temperature dependence
of χt can also be compared with those recently obtained
from LQCD calculations, see Ref. [32]. To perform
the comparison, we consider the normalized quantity
Rχ ≡ χtðB; TÞ=χtð0; TÞ introduced in that work. In
Fig. 5, we show our results (black curves) together with
those quoted in Ref. [32] (shaded bands) for eB ¼ 0.5 and
0.8 GeV2. We include in the figure just the curves that
correspond to the case of the B-dependent coupling GðBÞ,
which, as stated, is the one consistent with LQCD results
for IMC. Once again, it is seen that the predictions of
the NJL model show qualitative agreement with LQCD
calculations.

×

×

×

×

FIG. 3. Values of χ1=4t and λaf4a as functions of T=TcðBÞ for some representative values of the magnetic field.

FIG. 4. Values of χ1=4t , as calculated within our model, Eq. (32), compared with the results arising from the approximate expressions in
Eqs. (33) and (34), for three different values of the magnetic field. The curves correspond to the case G ¼ GðBÞ.
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In Fig. 6, we go back to our results for χ1=4t and λa as
functions of the temperature, this time normalizing λa to the
corresponding value at T ¼ 0 and taking the magnetic field
values eB ¼ 0 and eB ¼ 0.4 GeV2, in order to compare
our results (black solid lines) with those obtained within the
two-flavor NJL model studied in Ref. [30] (red dashed
lines). As in Fig. 5, our results correspond to G ¼ GðBÞ,
given by Eq. (37). The values of the temperature have been
normalized to the critical temperatures TcðBÞ, which are
somewhat different for both models. This is in part due to
the fact that in Ref. [30], an explicit dependence on both B
and T has been assumed for the coupling G. It is seen that
for the two-flavor model, the peak of λa at T ¼ Tc is
slightly higher, while the fall of both χ1=4t and λa for T > Tc
is less pronounced than in the case of the three-flavor
NJL model. Nonetheless, it could be said that the behavior

of χ1=4t and λa is found to be qualitatively similar for both
models.

C. Finite chemical potential

We turn now to discuss our numerical results for systems
at nonzero quark chemical potential μ. For a better
comprehension, we start by briefly reviewing the phase
diagrams in the μ-T plane, shown in Fig. 7. As expected, for
low temperatures, the system undergoes a first-order chiral
restoration transition at given critical chemical potentials
μcðB; TÞ. In the figure, we show the corresponding tran-
sition lines (solid lines in the figure) for some representative
values of the magnetic field. These first-order transition
lines finish at some critical end points (CEPs), whose
positions depend on the external magnetic field. For higher
values of the temperature, the transitions turn into smooth
crossovers (dashed lines in the figure), as discussed for the
systems at μ ¼ 0.
Left and right panels of Fig. 7 correspond to constant and

B-dependentG, respectively. As stated, the assumption of a
B dependence, such as the one in Eq. (37), leads to IMC,
implying a significant change in the phase diagrams with
respect to those obtained for the G ¼ constant case. On the
other hand, the behavior of the CEP with the magnetic field
is known to be strongly model-dependent. It is seen that our
results for the case G ¼ GðBÞ are found to be qualitatively
similar to those obtained in Ref. [57], where a three-flavor
Polyakov-NJL model with a B-dependent coupling is
studied; however, the behavior of the CEP is shown to
be different from the one found in Ref. [58], where a
nonlocal NJL-like model is considered (notice that in this
type of model, IMC is naturally obtained [59,60]).

FIG. 5. χtðB; TÞ=χtð0; TÞ as a function of T for the case
G ¼ GðBÞ. The shaded bands correspond to lattice QCD results
from Ref. [32].

FIG. 6. χ1=4ðB; TÞ (left) and λaðT; BÞ=λað0; BÞ (right) as functions of T at μ ¼ 0 for the case of G ¼ GðBÞ. Our results (black solid
lines) are compared with those obtained within a two-flavor NJL model in Ref. [30] (red dashed lines).
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In Fig. 8, we show the behavior of χ1=4t as a function of
the temperature, taking some representative values of the
chemical potential and the magnetic field. The curves
clearly show the first-order and crossover transitions, both
for the cases of G ¼ constant (left panels) and G ¼ GðBÞ

(right panels). We have also verified that for nonzero μ, the
expressions in Eqs. (33) and (34) still approximate with
good accuracy (≲1%) the exact result in Eq. (32), for
temperatures that lie below the chiral transition. Then, in
Fig. 9, we show the behavior of the axion self-coupling λa

FIG. 7. μ-T phase diagrams for several values of the magnetic field. Solid (dashed) lines correspond to first-order (crossover)
transitions, while critical end points are indicated by the fat dots. Left and right panels correspond to G ¼ constant and G ¼ GðBÞ,
respectively.

FIG. 8. χ1=4t as a function of T for various values of the quark chemical potential and the magnetic field. Left and right panels
correspond to G ¼ constant and G ¼ GðBÞ, respectively.
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(times the dimensionful scale f4a) for the same values of μ
and eB. It is seen that the peak in λa—which at μ ¼ 0 was
found to occur at the pseudocritical temperature—goes to
infinity when the transition reaches the CEP, and turns into
a first-order transition jump beyond the CEP. This feature
has also been observed (for the B ¼ 0 case) in Ref. [21]. As
mentioned in Ref. [20], there is no evident physical reason
from which one can infer the presence of this peak—in that
reference, it is argued that it could just arise as a conse-
quence of working at the mean field level. In any case, our
numerical results show that at the transition, the coupling λa
behaves like the derivative of an order parameter; hence, it
seems that within our approximations, the position of the
peak could be used to define the pseudocritical transi-
tion temperature related to the restoration of the Uð1ÞA
symmetry.
To conclude this section, we discuss the numerical

results obtained for zero temperature and finite quark
chemical potential. In Fig. 10, we show the behavior of
the critical chemical potential μcðB; 0Þ as a function of the
magnetic field, both for constant and B-dependent cou-
plings. The values are normalized to μcð0; 0Þ. It is interest-
ing to notice that for B≲ 0.3 GeV2, the models show again

an IMC-like effect, i.e., a decrease of the critical chemical
potential for increasing values of the magnetic field. This
effect has been observed in various effective approaches to

×

×

×

×

×

×

×

×

×

×

×

×

FIG. 9. λaf4a as a function of T for various values of the quark chemical potential and the magnetic field. Left and right panels
correspond to G ¼ constant and G ¼ GðBÞ, respectively.

FIG. 10. Critical chemical potentials as functions of eB for zero
temperature. Values are normalized to μcðB ¼ 0Þ ¼ 359 MeV.
Solid and dashed lines correspond to G ¼ constant and
G ¼ GðBÞ, respectively.
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low-energy QCD, including local and nonlocal NJL-like
models [42,61–64]. For G ¼ GðBÞ, it is seen that the IMC
extends to larger values of the magnetic field, while for
constant G the values of μc reach a minimum and then get
increased. This growth is consistent with the results in
Ref. [63], where a constant value ofG is assumed, while the
persistent IMC behavior is similar to the one obtained in
nonlocal NJL models [64], where nonlocality leads to an
effective dependence of the couplings on the magnetic
field [60].
In Fig. 11, we show the behavior of χ1=4t and λa=λaðμ ¼ 0;

B ¼ 0Þ as functions of the chemical potential for three
representative values of eB. Left and right panels corre-
spond to constant and B-dependent couplings, respectively.
The first-order chiral transitions can be clearly observed.
Moreover, it can be seen that beyond these transitions, there
is a second discontinuity, which corresponds to the partial
chiral symmetry restoration related to the s-quark-antiquark
condensate. Finally, in Fig. 12, we show the behavior of
χ1=4t and λa=λaðμ ¼ 0; B ¼ 0Þ as functions of the magnetic
field for some selected values of μ. Here, we use a log-
arithmic scale, in order to focus on the region of low eB,
and we just include the results forG ¼ GðBÞ (the curves for
G ¼ constant are similar for values of eB up to about
0.3 GeV2). As one can see from Fig. 10, for low values of μ
the system lies in the chiral symmetry broken phase for all
considered values of eB. Then, for μ ≳ 230 MeV, a first-
order transition is found at some intermediate value of eB,
while for values of μ beyond μcð0; 0Þ ¼ 359 MeV the
system lies in the partially restored chiral symmetry phase.

Typically, in this region, one finds for T ¼ 0 a series of
magnetic oscillations related to the van Alphen–de Haas
effect [37]. In fact, as shown in the figure, one finds a
sequence of first-order transitions that correspond to the
values of μ that satisfy the relation μ2 ¼ 2kBf þ M̄2

f

FIG. 11. Values of χ1=4t and λaðμ; BÞ=λað0; 0Þ as functions of μ for some representative values of the magnetic field. Left and right
panels correspond to G ¼ constant and G ¼ GðBÞ, respectively.

FIG. 12. Values of χ1=4 and λaðμ; BÞ=λað0; 0Þ as functions of eB
for some representative values of the quark chemical potential.
The curves correspond to the case G ¼ GðBÞ.
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(f ¼ u, d) for integer k. The value of χ1=4t is found to be
relatively large for μ right above μc at low values of the
magnetic field, and becomes significantly reduced when eB
is increased up to ∼1 GeV2.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have analyzed the topological
susceptibility and the axion properties in the presence
of a strong magnetic field, considering a three-flavor
NJL model that includes strong CP violation through a
’t Hooft-like flavor mixing term. The behavior of the
relevant quantities for systems at finite temperature and
quark chemical potential have been studied.
As is well known, when the scalar/pseudoscalar coupling

G is kept constant (i.e., when it does not depend on the
magnetic field), local NJL models are not able to reproduce
the inverse magnetic catalysis effect at finite temperature.
Therefore, we have considered both the case of a constant
G and the one in which one assumes a B-dependent coup-
lingG ¼ GðBÞ, chosen in such a way that the model is able
to adequately reproduce the B dependence of the critical
chiral transition temperatures obtained in lattice QCD.
We have shown that within these three-flavor NJL

models, the topological susceptibility has a rather simple
expression [see Eq. (32)] in terms of the quark condensates,
the current quark masses, and the strength of the flavor
mixing term. In addition, we have shown that close to the
chiral limit, this expression reduces to the one obtained
in other approaches to nonperturbative QCD, such as
chiral perturbation theory [29,45] and the linear sigma
model [46].
At T ¼ μ ¼ 0, using standard values of model param-

eters, we obtain, for the vanishing external magnetic field,
χt ¼ 78 MeV and λa ¼ 0.85 × 10−5 GeV4=f4a, in reason-
able agreement with values obtained from LQCD and/or
ChPT [65]. For the nonzero magnetic field, in agreement
with previous analyses, we find that the topological
susceptibility gets increased with B. Clearly, this can be
understood by noticing that, according to the previously
mentioned theoretical expressions, χt is approximately
proportional to the quark condensates, which exhibit the
well-known magnetic catalysis effect. Moreover, we find
that the axion self-coupling λa also increases with the
magnetic field.
For the case of both nonzero temperature and magnetic

field, we find that, as expected, χt and λa remain approx-
imately constant as functions of T, up to the critical
temperatures TcðBÞ. Beyond these values, we find for both
quantities a sudden drop, signaling the restoration of the
Uð1ÞA symmetry in the light quark sector. We also note that
the curves for λa tend to show a peak located at T ¼ Tc.
When comparing our results with those of the SU(2) NJL

model analyzed in Ref. [30], it is seen that for the two-
flavor model, the peak of λa at T ¼ Tc is slightly higher,
while the fall of both χ1=4t and λa observed for T > Tc is
less pronounced than in the case of the three-flavor model.
In any case, it could be said that the behavior of χ1=4t and λa
is found to be qualitatively similar for both models.
Regarding the comparison with finite temperature
LQCD, our predictions for Rχ ¼ χtðB; TÞ=χtð0; TÞ in the
case of the B-dependent coupling GðBÞ show qualitative
agreement with those obtained from LQCD calculations.
As stated, we have completed our analysis by consid-

ering systems at nonzero quark chemical potential. Curves
showing the behavior of χt and λa as functions of the
temperature are given for various values of the chemical
potential, showing both crossover and first-order transi-
tions. It is found that the approximate expressions for χt in
Eqs. (33) and (34) work very well (within ≃2%) in the
chirally broken phase (i.e., at low temperatures and/or
chemical potentials), whereas they show some deviation
in the restored phase. In the case of crossover transitions,
it is seen that λa behaves like the derivative of an order
parameter; thus, the position of the corresponding peak can
be used to define the pseudocritical transition temperature
associated with the restoration of Uð1ÞA symmetry. At zero
temperature and finite μ, it is seen that for G ¼ GðBÞ, the
critical chemical potentials exhibit inverse magnetic cataly-
sis, showing a similar behavior as the one observed in
nonlocal NJL-like models. In the chirally restored phase,
for T ¼ 0 and low magnetic fields, we observe a pattern of
magnetic oscillations in the values of both λa and χt, related
to the well-known van Alphen–de Haas effect.
In general, it is seen that the case in which G ¼ GðBÞ,

which (by construction) exhibits inverse magnetic catalysis
at finite temperature, provides the best agreement with
results from LQCD at zero chemical potential and yields a
phase diagram that is consistent with the expected phe-
nomenology at finite chemical potential. We find that the
behavior of λaðT; μ; BÞ and χtðT; μ; BÞ is predominantly
determined by the light quark condensates, i.e., by the
chiral SU(2) symmetry restoration, and shows reasonable
agreement with other effective models, including approxi-
mate results from chiral perturbation theory.
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APPENDIX

In this appendix, we sketch the steps followed to obtain
our main analytical results, given by Eqs. (30) and (32).
From Eq. (5), together with the conditions in Eqs. (28) and
(29), one has

dΩ
dθ

¼ ∂Ω
∂θ

¼ −
K
24

X
ijk

jϵijkj
�
sin θðs̄is̄js̄k − 3s̄ip̄jp̄kÞ

þ cos θðp̄ip̄jp̄k − 3p̄is̄js̄kÞ
�
: ðA1Þ

Using Eqs. (7) and (8), and noting that s̄fMpf ¼ p̄fMsf

[see Eq. (13)], one gets

dΩ
dθ

¼ −
1

6

X
f

mfp̄f; ðA2Þ

where mf are the current quark masses.
Now it can be shown that the terms in the above sum over

flavors are equal to each other. Indeed, from Eqs. (7) and
(8), one has

mip̄i ¼
K
4

X
jk

jϵijkj½p̄ip̄jp̄k cos θþ s̄is̄js̄k sin θ

− ðp̄is̄js̄k þ 2s̄ip̄js̄kÞ cos θ − ðs̄ip̄jp̄k þ 2p̄is̄jp̄kÞ sin θ�

¼ K
12

X
ljk

jϵljkj½p̄lðp̄jp̄k − 3s̄js̄kÞ cos θ

þ s̄lðs̄js̄k − 3p̄jp̄kÞ sin θ�; ðA3Þ

where the last expression does not depend on i. To derive
the second equality, we have used the propertyX

jk

jϵijkjðaibjbk þ 2biajbkÞ ¼
X
ljk

jϵljkjalbjbk: ðA4Þ

Since mup̄u ¼ mdp̄d ¼ msp̄s, Eq. (A2) can be written as

dΩ
dθ

¼ −
1

2
mfp̄f; ðA5Þ

where f can be either u, d, or s.

We turn now to evaluate the second derivative in
Eqs. (27) and (31). According to the above expression
for dΩ=dθ, we need to determine dp̄f=dθ. We have

dp̄f
dθ

¼ ∂p̄f
∂σ̄f

∂σ̄f
∂θ

þ ∂p̄f
∂π̄f

∂π̄f
∂θ

: ðA6Þ

The expressions for ∂p̄f=∂σ̄f and ∂p̄f=∂π̄f can be readily
obtained from Eq. (13) and the subsequent expressions of
the functions I1f for zero and nonzero temperature. On the
other hand, the partial derivatives of σ̄f and π̄f with respect
to θ can be calculated by solving the coupled equations

∂σ̄i
∂θ

þ
X
ϕ¼σ̄;π̄

	
2G

∂s̄i
∂ϕi

∂ϕi

∂θ
−
K
2

X
jk

jϵijkj

×



∂s̄j
∂ϕj

s̄θ;k −
∂p̄j
∂ϕj

p̄θ;k

�
∂ϕj

∂θ

�
¼ −π̄i − 2Gp̄i; ðA7Þ

∂π̄i
∂θ

þ
X
ϕ¼σ̄;π̄

	
2G

∂p̄i
∂ϕi

∂ϕi

∂θ
þ K

2

X
jk

jϵijkj

×



∂s̄j
∂ϕj

p̄θ;k þ
∂p̄j
∂ϕj

s̄θ;k

�
∂ϕj

∂θ

�
¼ σ̄i þ 2Gs̄i; ðA8Þ

where we have introduced the shorthand notation

s̄θ;k ¼ s̄k cos θ þ p̄k sin θ; p̄θ;k ¼ p̄k cos θ − s̄k sin θ:

ðA9Þ

The calculation of the topological susceptibility χt
requires the evaluation of d2Ω=dθ2 in the limit θ ¼ 0,
where the equations get simplified. One has, in this case,

p̄f ¼ 0; π̄f ¼ 0;
∂p̄f
∂σ̄f

¼ 0;
∂p̄f
∂π̄f

¼ s̄f
Msf

: ðA10Þ

Moreover, from Eq. (A8), we get

∂π̄i
∂θ

	
1þ 2Gs̄i

Msi
þ Kmis̄i

2Msi

X
jk

jϵijkj
∂s̄k
mj

�
¼ σ̄i þ 2Gs̄i; ðA11Þ

where we have made use of the fact that the product

mf
dp̄f
dθ

¼ mf s̄f
Msf

∂π̄f
∂θ

ðA12Þ

does not depend on the flavor f. From Eqs. (7) and (A11),
using the property in Eq. (A4) and the relation
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s̄i
X
jk

jϵijkjs̄js̄k ¼ 2s̄us̄ds̄s; ðA13Þ

one arrives at the result in Eq. (32), namely,

χt ¼
d2Ω
dθ2






θ¼0

¼ −
1

2

	
2

Ks̄us̄ds̄s
þ
X
k

1

mks̄k

�
−1
: ðA14Þ
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