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The leading quantum-gravitational correction to the black hole entropy is known to be a universal
logarithmic term. In this study, we investigate the logarithmic corrections for the black holes in the STU
supergravity models, which are a bosonic truncation into a specific class of U(1)?-charged Einstein-Maxwell-
dilaton theory. We demonstrate how the entire Kerr-Newman-AdS and Kerr-Newman family of black holes
can be recovered within the gauged and ungauged STU supergravity models as special embedding choices in
4D. Logarithmic corrections are computed using two distinct Euclidean quantum gravity setups for extremal
and nonextremal limits of all embedded rotating, static, charged, and neutral black holes. Our calculations
employ the on-shell heat kernel method based Seeley-DeWitt expansion computations. Notably, all the AdS,
results exhibit a confirmed nontopological nature as compared to the flat counterparts, offering a natural and
more comprehensive “infrared window into the microstates” of black holes.
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I. INTRODUCTION

In the realm of Einstein’s gravity, the entropy of black
holes is universally attributed as one-quarter of the horizon
area in the semiclassical limit [1,2]. This establishes the
seminal Bekenstein-Hawking area law (BHAL), depicted
as Spy in (1). However, the applicability of BHAL is not
solely restricted to Einstein’s gravity; it extends to any self-
consistent quantum gravity theory at the tree level, fol-
lowed by additional corrections emerging in the presence of
quantum fluctuations at the Planck scale.

The leading-order quantum-gravitational correction to
BHAL is universally found to be a logarithmic term of the
horizon area [3-38], as indicated by In Sy in (1). Over
the last few decades, these logarithmic corrections have
emerged as a gateway to quantum gravity, serving as a
trendy litmus test. This test asserts that the macroscopic
results of quantum-corrected black hole entropy, computed
in the low-energy effective theory of (super)gravity, i.e., the
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IR side, must be matched by any precise enumeration of the
microstate data, such as the Strominger-Vafa counting [39]
available within the corresponding UV-complete quantum
gravity candidate. Sen and collaborators have extensively
analyzed this test for various examples of asymptotically
flat Bogomol'nyi-Prasad-Sommerfield (BPS) black holes in
string theory, and all have passed the test with flying colors
[11-14,40]. To date, string theory has successfully enumer-
ated microstates underlying the entropy of a wide class
of asymptotically flat and asymptotically AdS black holes
[39-51]. Thus, the computation of logarithmic corrections
for all such cases, as well as future examples when available,
appears to be a robust “infrared window” into black hole
microstates for providing a nontrivial consistency check.
Conversely, one can also verify whether any concerned
(super)gravity model is indeed a low-energy effective limit
of the UV-complete microscopic counterpart. In this paper,
we aim to progress toward the macroscopic or IR end of the
aforementioned line.

Extensive studies [3—38] have shown that the quantum-
corrected entropy of black holes can be expressed in the
following general form (in natural units: ¢ = 7 = kp = 1):

1
Sbh(AH) - SBH +C|0g lnSBH + O(—) + .. ,

SBH
AH
SgH = ——, 1
BH 4Gy (1)
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where Ay refers to horizon area, Gy is Newton’s gravi-
tational constant, and Clog is a constant. The first term, Sgy,
corresponds to the Bekenstein-Hawking area law and
constitutes the leading tree-level contribution in the entropy
formula (1). The subsequent terms account for various
quantum gravitational corrections to the BHAL, stemming
from perturbative or nonperturbative frameworks [52].
These include the so-called logarithmic and power-
law corrections, denoted as the second and third terms,
respectively, capturing the perturbative contributions in
formula (1). These perturbative contributions correspond
to different-order quantum loop contributions (g,), arising
when evaluating the Euclidean gravitational path integral
considering quantum fluctuations around any generic black
hole saddle point:

A A\ ]
suuge=Ces(G2) + Ta(52) @

n>1

where n denotes the order of quantum loops and «,
represents constant values that control the relative strengths
of the loop or power-law corrections. In the case of quan-
tum fluctuations in a higher-derivative modified gravity
model, the saddle-point contribution extends the BHAL
into the Bekenstein-Hawking-Wald formula [61] by incor-
porating higher-derivative (') corrections. However, the
modified form of the perturbative correction formula (2)
remains the same. Remarkably, the logarithmic correc-
tion appears as a special class of one-loop contributions
explicitly induced from the two-derivative sector of the
theory and remains unaffected by the higher-derivative and
power-law corrections [11,16].

The logarithmic corrections have garnered significant
attention due to their intriguing properties, offering crucial
yet nontrivial insights into the nature of quantum gravity.
Their ubiquitous form o« In. Ay is not specific to any
particular model or theory; rather, it emerges universally
for all types of black holes evolving within the framework
of different quantum gravity approaches. These approaches
encompass conical singularity [3,4], quantum geometry
[5], Cardy formula [6], quantum tunneling [7-9], con-
formal anomaly [10], Euclidean effective action method
[11-31], supersymmetric index [32,33], nonlocal quantum
gravity [34-38], and more. In the context of (super)gravity
models being regarded as a low-energy limit of string
theory or other quantum gravity theories, it is convenient
to impose the so-called large-charge limit [62] on black
hole backgrounds, rendering BHAL a valid choice at the
leading order in black hole entropy (1). Consequently, the
logarithmic correction becomes the most dominant sub-
leading quantum correction contribution, suppressing the
power-law corrections. Hence, any true quantum gravity
candidate or microstate counting data that fails to reproduce
the leading-order logarithmic-corrected macroscopic
black hole entropy is deemed incorrect. Notably, the

quantum-gravity corrections to black hole entropy typically
depend on the specifics of the UV completion, i.e., the
contributions from various massive modes in the quantum
loops. Interestingly, the logarithmic corrections are inde-
pendent of the UV completion and can be computed using
the massless fluctuations (i.e., low-energy or infrared
modes) running in the one-loop [11-30].

The prefactor Cy,, is a dimensionless constant that
exhibits theory-specific behavior, unlike the universal
In Ay part in the logarithmic entropy correction. In a given
theory, the value and sign of C,, are completely determined
by the geometric parameters (such as mass, charge, angular
momentum, etc.) characterizing the relevant black hole,
as well as the quantum fluctuation data (e.g., conformal
anomaly, central charges, etc.) of the entire field content of
the theory. In general, C,, are found to be a complex
function of different dimensionless ratios of black hole
parameters [15,16,23-26,29,30]. However, in certain spe-
cial or limiting cases, as seen in [12-14,17,19-21], Clog
exhibits topological values (i.e., pure numbers), giving rise
to a fully universal logarithmic correction within the
specific theory of choice. Investigating such universal or
topological vs nontopological nature of Cy,, is not only
fascinating but also highly sensitive to microstate counting
data within the realm of quantum gravity. In this paper, we
aim to compute and analyze C,,, results for a well-studied
family of AdS and flat black holes embedded within the
so-called STU supergravity models in 4D.

Let us elucidate the motivation behind investigating
quantum black holes within the framework of STU super-
gravity models. Supergravities are the popular low-energy
(small curvature expansion) limit of superstring theories,
with one well-studied example of string theory compacti-
fications down to four dimensions being the N' = 8 super-
gravity [63,64]. They feature many U(1) gauge field
strengths and scalar moduli fields in their bosonic sector.
Although numerous truncations of A = 8 supergravity
have been reported over the last few decades in search of a
general family of black hole solutions, many of them have
proven elusive. However, there exists a consistent trunca-
tion of N = 8 supergravity (for both the ungauged and
gauged versions) into a model popularly known as the STU
supergravity (e.g., see [65,66]), which can be viewed as a
pure A/ =2 supergravity multiplet coupled with three
vector multiplets [66]. Notably, the equations of motion
in supergravity are technically more intricate than those in
general relativity, requiring sophisticated solving proce-
dures. However, STU solutions employ such a distinctive
procedure, which relies on global symmetries (i.e.,
U-dualities) inherent to string theory, generating the most
general black holes of A/ = 8 supergravity via truncation to
a system with only four U(1) gauge fields and three
complex scalar fields [67,68]. Moreover, STU supergravity
solutions find wide application in generating black holes
within all N > 2 supergravity theories [68]. Therefore,
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STU supergravity models serve as fundamental and uni-
versal building blocks to structure the central bosonic
sector of various low-energy effective superstring theories
or supergravities in four dimensions.

STU supergravity models admit a generalized yet non-
trivial family of black hole solutions with higher-
dimensional origins in string theory. In this study, our
objective is to recover their previously known general-
relativistic trivial subcases, specifically the simplest
four-dimensional Einstein-Maxwell (EM) and Einstein-
Maxwell-AdS (EM-AdS) backgrounds [69-72] within
STU models. This motivation stems from the intriguing
properties and broader implications of the EM solutions,
which already have a solid microscopic foundation within
string theory [11-14,40]. The four-dimensional EM theory
involves a single U(1) Maxwell field coupled minimally to
the metric field and is known to admit supersymmetric
black hole solutions by structuring the bosonic sector of
pure A = 2 supergravity [73]. However, while the STU
supergravity we focus on is a more generalized theory,
there is no direct and consistent truncation that reduces
STU models to the EM theory. In this paper, we detail how
the entire asymptotically AdS, and flat, counterparts of the
Kerr-Newman family of black holes can be systematically
recovered within the gauged and ungauged versions of
STU supergravity models as special embedding choices.
Notably, this EM embedding process is not straightforward,
but it is conceptually and technically well understood.

This work primarily regards the STU supergravity
models as a distinct class of U(1)*-charged Einstein-
Maxwell-dilaton (EMD) theory with four Maxwell and
three dilaton fields, admitting the generic four-charge black
hole solutions [74—79]. However, there exist two consistent
scenarios in which the U(1)*-charged EMD system,
intersecting with the bosonic sector of STU supergravity
models, can be further reduced to two distinct versions of
U(1)?>-charged EMD systems [75-77,80,81]. In these
truncated STU versions, a single dilaton is nonminimally
coupled to two Maxwell fields via two separate exponential
coupling functions [82], where the values of dilaton
coupling coefficients are fixed during the compactifica-
tion of superstring theories. The nonminimal nature of
Maxwell-dilaton couplings prevents all charged EM back-
grounds from directly solving the equations of motion
of U(1)?-charged EMD theories. However, we identify a
specific case where suitable constraints on the two U(1) or
Maxwell charges can effectively decouple the two non-
minimal Maxwell-dilaton couplings in the U(1)?-charged
EMD models. Consequently, the modified STU equations
of motion exhibit a vanishing dilaton background, thereby
reducing to the field equations governing a class of single-
charged black hole solutions within the EM theory.
Notably, the EM embedding procedure also extends to
U(1)2-charged EMD systems with a negative cosmo-
logical constant, which are referred to as U(1)?-charged

EMD-AdS theories. Following this approach, we
successfully embed the Kerr-Newman-AdS and Kerr-
Newman, Kerr-AdS and Kerr, Reissner-Nordstrom-AdS
and Reissner-Nordstrom, and Schwarzschild-AdS and
Schwarzschild black holes into U(1)?-charged EMD-
AdS and EMD theories intersecting with gauged and
ungauged STU supergravities in 4D. Ultimately, our goal
is to compute the logarithmic correction to the entropy of
all these embedded asymptotically AdS, and flat, black
holes in both their nonextremal and extremal temperature
limits.

We employ the traditional heat kernel method [83-86]
within the framework of Euclidean quantum gravity
[87,88] to compute the logarithmic entropy corrections
for the black holes addressed in this paper. Our method-
ology combines Sen’s quantum entropy function formalism
[89-91] with techniques developed in [16], allowing us to
extract the essential “logarithmic” component from the
Euclideanized one-loop quantum effective action associ-
ated with the entropy of extremal and nonextremal black
holes, respectively. The computation of the one-loop
effective action involves expressing it in terms of the heat
kernel of the kinetic operator governing only one-loop or
quadratic fluctuations and subsequently expanding it using
the well-known Seeley-DeWitt expansion [92-97]. The
working formula for logarithmic entropy corrections
involves integrating a specific Seeley-DeWitt coefficient
around the relevant part of the black hole geometries. For
the four-dimensional black holes considered in this study,
we only require to compute the third-order heat kernel
expansion coefficient, denoted as a4(x) in (17), which we
accomplish by following Gilkey’s approach [98]. This
approach proves to be highly efficient and universally
applicable, enabling us to investigate the quantum entropy
of any charged, neutral, static, rotating, nonsupersymmet-
ric, supersymmetric or BPS, extremal, and nonextremal
black holes within a unified framework without limitations.

In contrast, many other established approaches, such as
the eigenfunction expansion of the heat kernel operator
employed in [11-13,17,19,20,55], which are restricted
to the Bertotti-Robinson (AdS, x §?) type extremal
near-horizon background geometry featuring rotational
symmetry. On the contrary, the Euclidean gravity setup
considered in this study has achieved significant success
over the last decade by computing logarithmic corrections
for asymptotically flat black holes in various examples of
the FEinstein-Maxwell theory [15,16,27] and ungauged
N >1 supergravities [14,21,23-26,28]. More recently,
the same investigation has also been extended to a few
examples of asymptotically AdS black holes in the four-
dimensional gauged supergravity [29,31] and Einstein-
Maxwell-dilaton theory with a negative cosmological
constant [30]. Notably, the logarithmic corrections for
AdS black holes remain less explored till date, primarily
due to substantial technical challenges. In this paper,
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we advance along this trendy direction and test the
aforementioned Euclidean gravity setup on a specific class
of AdS, black holes, which are inherent to string theory via
the STU supergravity models.

The main technical contribution of this paper is twofold.
Firstly, we derive the expression for the heat kernel
coefficient a4(x) for two specific cases of U(1)?-charged
EMD-AJS theory, obtained as a consistent bosonic trun-
cation of the STU supergravity. In this process, we expand
the relevant bulk actions up to quadratic order to account
for small quantum fluctuations of the entire STU field
content. This quantization is performed around a generic
class of four-dimensional classical backgrounds featuring a
vanishing dilaton, yielding black hole solutions of a four-
dimensional EM theory embedded into the STU-truncated
systems. The considered heat kernel approach is entirely
on-shell, where we utilize the EM-embedded background
equations of motion to systematically manage the Seeley-
DeWitt coefficients exclusively in terms of invariants
induced by the background geometry and fields. In parti-
cular, we express the necessary a4(x) as a function of four-
derivative background invariants involving trace anomalies
such as the square of the four-dimensional Weyl tensor and
the Euler density, which are derived from the two-derivative
action of the truncated STU models. At any point, by
imposing appropriate flat-space limits on the U(1)*-
charged EMD-AdS backgrounds, one can obtain similar
heat kernel results in the counterpart of U(1)2-charged
EMD theory evolving with a vanishing cosmological
constant. The computed formulas for a4(x), in simplified
forms, are recorded in Eqgs. (78) and (79).

In the final part, the computed a4(x) relations are
integrated over black hole geometries, encompassing both
the full geometry and near-horizon configurations for
nonextremal and extremal limits, respectively. These inte-
grations yield the logarithmic corrections to the entropy
of all asymptotically AdS, and flat, members of Kerr-
Newman, Kerr, Reissner-Nordstrom, and Schwarzschild
black holes. The resulting formulas for the two cases of
truncated STU supergravity models are presented in
Egs. (136)—(159). Notably, our analysis reveals that the
AdS, results are all nontopological, exhibiting a much
richer and broader structure compared to the flat cases.
We provide a consistent explanation for this observation,
attributing the confirmed nontopological component in the
logarithmic entropy corrections as a natural and generic
contribution induced by the boundary of AdS black hole
backgrounds. In contrast, when the AdS boundary dis-
appears, as in the case of flat black hole backgrounds,
a vanishing charge ensures confirmed topological log-
arithmic correction results. Furthermore, the extremal or
zero temperature limit guarantees the same nature for the
charged but nonrotating background, whereas the charged-
rotating result remains nontopological. This observation
might set a stringent criterion for 4D supergravity models to

admit a UV completion, which is highly sensitive to the
microscopic analysis of the relevant black holes within the
framework of string theory counterparts.

The rest of this paper is outlined as follows. In Sec. II, we
provide a concise and efficient guide for applying the heat
kernel method to compute the logarithmic correction to
black hole entropy, with special emphasis on the treatment
of four-dimensional black hole backgrounds. In Sec. I1I, we
calculate the third-order Seeley-DeWitt coefficient ay(x)
for the interested EMD-truncated STU supergravity
models. Section IV utilizes the computed heat kernel data
to derive the logarithmic correction formulas for the entire
Kerr-Newman-AdS and Kerr-Newman families of black
holes embedded in the gauged and ungauged STU super-
gravity models, respectively. Finally, Sec. V concludes
this paper with a summary and relevant discussion, and
provides an outlook for future research directions. Given
the intricate nature of the current topic, we have included
Appendixes A and B to provide comprehensive details on
heat kernel computations and other relevant technical
aspects.

II. THE SETUP

This section aims to provide a comprehensive manual
for calculating the logarithmic correction to the entropy of
general black holes, considering both the extremal and
near-extremal limits of their Hawking temperature. We
explicitly evaluate the one-loop quantum effective action of
the relevant gravitational theory fluctuated around the black
hole backgrounds of interest. This manual is developed by
revisiting the Euclidean quantum gravity frameworks
proposed by Sen [16,89-91] and employs the Seeley-
DeWitt expansion of the heat kernel method [98].

A. Euclidean quantum gravity and heat kernel
expansion

We consider charge and rotating black hole solutions in a
generic class [99] of D-dimensional Einstein’s gravity
characterized by the following path integral:

Z= / Dlg-#exp (~Selgm-ol). ()

Here, D|g,,, ¢] is the measure of functional integration over
the set of all massless fields ¢ propagating through a
spacetime geometry described by the metric g,,, and
Sglgu- @] denotes the Wick-rotated action characterizing
the Euclidean continuation of black hole solutions within

the theory. To determine the entropy Sy,(M . é) of a

-

black hole with mass M, angular momenta J, and charges
0, we follow the saddle-point approximation in the
Gibbons and Hawking prescription [87], employing the
following Legendre transformation:
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-

Son(M.J.0) =In Z(B.&. i)+ pM + & - T +ji- 0. (4)

Here, Z(p, @, i) represents the path integral measure
defined in (3), evaluated at a stationary saddle point that
satisfies the classical equations of motion of the theory,
subject to appropriate asymptotic boundary conditions.
These boundary conditions are controlled by fixing a set
of three parameters: f, @, and ji, which respectively denote
the inverse temperature (or the period of Euclideanized
time), the angular velocities, and the electromagnetic
chemical potentials associated with the Euclidean saddle-
point solutions. Notably, in the definition provided in (4),
black holes are not directly referenced; rather, they are
manifested as Euclideanized saddle points. Their relevant

parameters M, J , and é are determined in terms of S, @,
and i through the relations

M onZ 7

== S
To evaluate the path integral partition function Z(f, , ji),
we follow the procedure outlined below. We begin by
considering fluctuations in the entire set of field content and
the metric describing gravity, denoted by ¢,, = {g,.. ¢},
around their classical background or saddle-point values

(G- @), such that %SE[QW, ] =0, ie.,

m

olnZ
0w

olnZ
oi

6=-220 )

9w = g/w + h/wv Q=0+ (6)
Here, ¢, = {h..p} denotes the entire set of small
quantum fluctuations that are in the Planck scale order.
Consequently, the effective action, defined as
W =—InZ(f,d,}i), can be expanded in different-order
quantum loop expansions,

W = Sg[Gu. @) = In / Dl

X exXp (— de\/det§~m’Hg;ﬁm> +-, (7)

Sy
5
quadratic field fluctuations appearing in the one-loop.
The first term Sg[g,,.p] corresponds to the classical or
on-shell action, which dominates the transformation (4) and
leads to the Bekenstein-Hawking area law [87,88], or its
Wald generalization [61] when higher-derivative terms are
integrated into Einstein’s framework,

where H =

is the kinetic operator controlling the

- o Ap(M.J. 0
SBH(MvJ’Q) _H(TNQ)_F.... (8)

On the other hand, the term next to the leading saddle-point
contribution in the setup (7) is the one-loop effective action

(OLEA). It involves a Gaussian integral over the quadratic
fluctuations with the kinetic operator { and can be
expressed as

Witoop =5 Indet H =2 TrIn 1, 9)
where Tr denotes the trace operation performed over
spacetime and all internal indices of the field fluctuations,
and y = +1 for bosonic and fermionic fluctuations, respec-
tively. With this setup, the quantum-corrected black hole
entropy up to one-loop is given by

Sbh(M"—i’ é) = SBH(M’j’ é) - Wl—loop +ﬁM
+&-J+]i-0. (10)

The entire problem is now centered on the evaluation of
Wlioop» @8 it yields the desired one-loop quantum correc-
tion to the black hole entropy. To address this purpose, we
employ the conventional heat kernel method [83-86,98]
and rewrite the OLEA as

y [~dr
-= —K
ZL T .

where 7 is an auxiliary proper time parameter with
dimensions of (length)?. K(z) is the heat kernel trace of
the quadratic operator H with the orthonormal eigenfunc-
tions { f;(x)} and eigenvalues {4, }, which can be expressed
in the following spectral decomposition form:

K(0)= [ Pr/detg 3 e (fi) =S e . (12)

i

Wl—loop = K(T) = Tr(e_TH)7 (11)

Notice that the heat kernel representation of the OLEA
given above suffers from a UV divergence as 7 — 0, which
is regulated by the UV cut-off parameter € introduced in
the lower integration limit. In a UV-regulated theory, € is
typically constrained by the square of the Planck length,
which is of the same order as the gravitational constant Gy
in the convention employed in this paper.

Further, the upper integration limit in (12) suggests
that the OLEA also suffers from an infrared divergence
induced due to the infinite volume spacetime. However,
Sen demonstrated in [16] that this infrared divergence could
be regulated by excluding the component of the OLEA that
accounts for the thermal gas contribution from all particles
in our theory, which remains in equilibrium with the black
hole saddle point. This approach aids in isolating the
precise portion of the OLEA exclusively associated with
the quantum entropy of the black hole, as required in the
formula (10). To achieve this, we confine a black hole of
radius R (such that the horizon area scales as Ay ~ RP~?)
inside a box of size L. The dominant contribution to the
OLEA from the thermal gas in equilibrium with the black

066016-5



KARAN, PUNIA, and BISWAS

PHYS. REV. D 111, 066016 (2025)

hole, characterized by inverse temperature [, angular
velocity @, and chemical potential j, is given by [16]

Wl—loop.gas = LD_lf(/}’ 67)7 ﬁ)’ (13)

where f is a function that scales as f(Af,®, M) =
APHf(B, @, ji) under the same scaling of the metric g,
and gauge fields Aﬂ, as well as the associated black hole
parameters, i.e.,

AM —nlAﬂ, M — AP3M,

J = aP-2]. (14)

f_};w - Azf_}yw

0 — P20,

Here, 1 represents a common length scale crucial for
logarithmic correction computations [16]. Moreover, the
scalings in (14) modify the black hole radius R (M, J, Q)
and its Bekenstein-Hawking entropy Sy (M, 7, é) by A
and AP~2, respectively.

Then the key idea involves considering a new reference
black hole solution with a fixed radius R, confined within
an identical box of size Ly = LR/R. This new solution is
related to the original black hole solution through param-
eter rescaling depicted in (14) for 1 = R, /R. For this new
black hole system, it is straightforward to verify that the
dominant thermal gas contribution to the OLEA is given by
(L2)P=1£(BA, @, jiL), which is identical to the contribution
(13) in the original black hole system (for details, refer to
Appendix B of [16]). Thus, the subtraction of the OLEAs
between the original and rescaled black hole systems
effectively cancels out the leading thermal gas contribu-
tions, yielding the difference solely related to the black
holes. For simplicity, we will denote this thermal gas
regulated difference in the OLEAs of the original and
new black holes by AWW. Notably, the eigenvalues hl(-o) of
the kinetic operator for the new black hole system are
related to the eigenvalues #; of the original system via the
same scaling (14) with 4 = R;/R and are given by

nO = /2. (15)

Therefore, the specific form (11) of the OLEA, along with
the relations (12) and (15), allows us to express AWV as

_ x| [ede “hye dz —hye) 2
AW——E[/e 728 —[ 7:6 /
e/?2 d
- —g/ LK), (16)

T

where the final step is obtained by rescaling the second
integration variable 7/A*> — 7. The infrared cutoff at the
upper limit of the OLEA integration (16) results in a
dominant contribution within the range € < 7 < ¢/4> or
e/R? < 7/R? < ¢/R3. Within this interval, we need to

take the so-called large charge limit on both black holes by
setting R > /e and Ry > /e or 1> 1, given that /€ is
in the Planck length order. Consequently, we can utilize the
short-time asymptotic expansion at 7 — 0 of the heat kernel
trace K(7) as

K(7) T:O/ de\/detgi " %ay,(x), (17)
n=0

where the functions a,,(x) represent the well-known
Seeley-DeWitt coefficients [92-97].

It is noteworthy that opting for the large-charge limit
A> 1 allows us to carefully delineate massless fluctua-
tions within the existing scaling configuration, which is a
crucial fundamental in computing the logarithmic correc-
tions. The appearance of massive fluctuations necessarily
modulate the heat-trace expansion (17) by an additional
prefactor e’ (e.g., see [86]), where their mass m must
be scaled as m — m/J to accommodate the rescaling
7/2> — 7 in the step (16). Following the same prescription
as in [11-14,16,22], we utilize the limit A > 1 to define
“masslessness” as any fluctuation whose mass m is of the
order of 27! or less. This characteristic effectively sup-
presses the term e‘"”z, as if setting m = 0 from the outset,
thereby excluding all massive contributions from the
current heat kernel setup in computing logarithmic correc-
tions for all generic black holes [100].

We can now substitute the heat trace expansion (17) into
the OLEA form (16) and integrate it over z, yielding [101]

AW:/de\/m["OS;) (AP —1)

D

32<x) D=2 _
RN
+O(e™) + ap(x)In A+ (9(6)]. (18)

It is evident that a logarithmic term involving the Seeley-
DeWitt coefficient a,,(x) with n = £ emerges, which is a
robust result stemming from the e cut-off independent part
of the bulk effective action and is therefore regularization
scheme independent. Hence, we can disregard all divergent
and vanishing terms as ¢ — 0 and extract the leading
contribution in the explicit OLEA of the original black

hole with radius R as

W(ll—(;(g;())p =

dPx+/detgap(x) InR. (19)
Putting all this together, we find that the leading one-loop
quantum-gravitational effects on the black hole entropy
formula in D-dimensional theory are given by (with
AH ~ mD—Z)
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Sen(M.J. Q) = Sgu(M.T.0) + pM + & - T +ji- O
1
+—F= [/ dPx+/det gap(x)
(D - 2) BH geometry

+ czm] In <“é—]fv’> (20)

Here, it is important to address the inclusion of C,;, as an
additional prefactor of the logarithmic correction term
In Ay in (20). Primarily, C,,,, captures some global correc-
tions that are not accounted for into the local correction
term involving the integration of the Seeley-DeWitt coef-
ficient ap(x) over all spacetimes. One significant source of
such global contributions arises from the zero modes
present in the theory, identified when eigenvalues satisfy
h;i =0 or Hf;(x) =0 in the setup (12). When studying
quantum fluctuations around an asymptotic black hole
solution, these zero modes represent typical symmetries
(e.g., gauge transformations) that do not vanish even at
infinity. In their presence, the OLEA deviates from its
Gaussian integral form, as indicated in (7). Consequently,
the heat kernel methodology discussed cannot be used to
evaluate the correction to the OLEA arising from zero
modes. A systematic resolution of this issue involves
removing all zero-mode contributions from the heat kernel
(12) and adding them back in terms of an overall volume
factor associated with the asymptotic symmetry groups
responsible for inducing the zero modes. This procedure
contributes one part of the correction term C,,,, in (20).

Furthermore, the effective action in the current setup is
initially defined through the Euclidean path integral under
thermal boundary conditions and identified as the free
energy within the canonical ensemble. In contrast, the
quantum black hole entropy formulation occurs within the
microcanonical ensemble, where the black hole mass and
charges remain fixed. The transformation between these
ensembles has been accomplished via the Legendre trans-
form (4), which induces a logarithmic term and is even-
tually absorbed into C,,.

For a more detailed discussion of the nonlocal or global
corrections, readers are referred to [11-14,16,21,29,32,
102-104]. Additionally, the data regarding C,, for the
four-dimensional asymptotically flat and AdS black holes
of interest in this paper are well known and summarized in
Sec. II C and Table L.

B. Extremal black holes and quantum entropy
function formalism
We would like to highlight that the Euclidean quantum
gravity framework outlined in Sec. II A does not directly
accommodate extremal black holes. This limitation arises
because naively applying the extremal limit f — oo or
Ty, = (‘ZS#)‘] — 0 results in a divergent OLEA and quan-
tum black hole entropy in the setup (20). However, we can

TABLE I. C,, contributions to the logarithmic corrected black
hole entropy. The results are same for both the asymptotically flat
and AdS partners of each background geometry.

Black hole backgrounds C,m
Schwarzschild -3
Nonextremal Kerr -1
Nonextremal Reissner-Nordstrom -3
Nonextremal Kerr-Newman -1
Extremal Kerr near-horizon —4
Extremal Reissner-Nordstrom near-horizon -6
Extremal Kerr-Newman near-horizon —4

interpret extremality as the nonradiating stable “ground
state” of the nonextremal or finite temperature black hole
setup, where the divergence stemming from extremality can
be viewed as an infinite shift to the ground state energy. In
the analysis of this paper, we primarily employ the well-
established quantum entropy function (QEF) formalism
[89-91] to regulate these divergences and adjust the
quantum entropy formula (20) to account for extremal
black holes.

The near-horizon geometry (NHG) at extremality is
interpreted as the ground state limit on the nonextremal
horizon. This crucial feature is utilized in QEF formalism to
define the quantum entropy of extremal black holes solely
through the near-horizon analysis, thus bypassing the
need for detailed knowledge of the entire spacetime. The
extremal NHG is well defined and gives rise to a new class
of AdS, solutions [89]. Consequently, according to the
AdS/CFT correspondence, the entropy of extremal black
holes precisely corresponds to the entropy calculated from
the full partition function in AdS,, which is equivalent to
the partition function of the boundary CFTj,

ﬁhm ZAdSZ = ﬁhm ZCFTI' (21)

Here,  serves as an infrared regulator on both sides,
effectively regularizing the infinite volume of AdS, as well
as the infinite length of the CFT; boundary. On the CFT,
side, as f tends to infinity, only the ground state (with
energy E, and degeneracy d,) contributes to the partition
function,

/}lm ZCFT] = doe_ﬁEO . (22)

Consequently, computing entropy from the partition func-
tion (22) yields In dy), with d, interpreted as the microstate
degeneracy underlying the entropy of extremal black holes.
On the gravity or AdS, side, the trick is to choose
appropriate coordinates such that the regularized path
integral Z,4s, can be expressed in a similar form as (22),
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/}lm ZAd82 _ Zﬁnitee—ﬂCJrO(ﬁ*]). (23)

Here, the linear term involving a constant C in the
p-dependent part corresponds to an infinite shift in the
ground state energy. At any point, we can disregard this
divergent term, along with all other vanishing O(p!)
terms, in the limit f — oo and identify the cut-off inde-
pendent quantity Z" with d,,. This Z" piece is known
as the quantum entropy function [89-91], which describes
a macroscopic definition of the horizon degeneracy of
extremal black holes. By computing the logarithm of Zfinit¢
provides a finite and unambiguous result for the extremal
black hole entropy, which is independent of any regulari-
zation procedure.

Based on the quantum entropy function formalism
described above, we can refine the formulation of the
OLEA part in formula (20) as follows:

/ de\/detgaD(x)‘
BH geometry
finite
= </ dPx+/detgay (x)> . (24)
near-horizon

AdS,

p—o0

Here, the notation () represents the integration of the
coefficient ap(x) over the finite extremal NHG. This integ-
ration explicitly excludes any boundary independent terms
of the regulated AdS, after structuring the Euclideanized
extremal NHG into the form AdS, x KP~2, where K
denotes a (D — 2)-dimensional space fibered over the AdS,
part and encompasses all the compact or angular coordinates.
For more technical details, interested readers can refer
to [12-15,24-27].

C. Working formulas and computations
for 4D black holes

In this paper, the working formula for computing the
logarithmic correction to the entropy of black holes in a
four-dimensional theory is given by

1 A
ASBH = 5 (Clocal + sz) In (G_H> . (253)

N

The local contribution, denoted as Cj,, is identified as the
density of the Seeley-DeWitt coefficient a,(x) integrated
over the finite near-horizon and full geometries, respec-
tively, for extremal and nonextremal black holes,

Clocal = / d4x\/£t_§a4()€). (25b)
BH geometry

The global contribution C,,,, which captures corrections
from the available zero modes and the changes in ensemble,
has been extensively computed and analyzed in previous

works [11-14,16,21,29,102—-104]. We can consolidate the
available data and write a common but compact C,,
formula applicable for all 4D asymptotically flat and
AdS black holes as

Com = _(3 + K) + 38nonext + 2Npps. (25C)
Here, K takes the value 3 for spherically symmetric
nonrotating black holes and 1 for other cases. J,gex; 15 0
for extremal black holes and 1 otherwise, while Ngpg is 4
for black holes preserving supercharges (i.e., BPS black
holes) and O otherwise.

In the formula for C,,, (25¢), the —K contribution arises
from the change in the ensemble from canonical to micro-
canonical via the transition (4) and is related to the number
of unbroken rotational symmetries of the black hole. The
—3 contribution is associated with the SL(2, R) symmetry
of AdS, spaces characterizing the near-horizon geometry of
extremal black holes. This contribution is countered by the
additional 36, contribution when transitioning from the
near-horizon to the full geometry for nonextremal black
holes. Furthermore, the contribution 2Ngpg arises from the
fermionic generators of the PSU(1, 1—2) near-horizon
symmetry for BPS black holes in supergravity theories.

For the local piece (25b) in logarithmic correction, this
paper aims to follow the methodology outlined in [98] and
evaluate the heat kernel coefficient a,(x) solely in terms of
the background fields and covariant derivatives appearing
in the kinetic operator H characterizing the one-loop
fluctuations. The entire strategy is summarized as follows.
First, the quadratic fluctuated action needs to be adjusted as

Sl = / de/detgh, HIF . (26)

for the quantum fluctuations {¢,,} so that the differential
operator H takes the following Hermitian and Laplace-type
form:

—HI = (D,D)I + 2(w,D?)" + P, (27)

Here, m and n simultaneously label the types of fluc-
tuations as well as their tensor indices. D, represents
the covariant derivative with connections controlled by
the background metric. 7 serves as the identity operator
in the space of field fluctuations, which functions as an
effective metric or a projection operator for raising and
lowering the indices of relevant matrices, and defines the
trace operation in the central formula (33) [105]. Also, @,
and P are matrices induced from the background metric
and fields. More precisely, the matrix w, in the operator
form (27) is identified as a background gauged connection
determining the nonminimal coupling between fluctua-
tions. Consequently, we can reformulate the quadratic
operator H into a more generic form,
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M = (D,D’)T + E, (28)

where D, is a modified covariant derivative with the gauge
connection w,, defined as

,Dpa)m = ng)m + (wp)ffé%” Vm # n. (29)
Note that by definition, @, vanishes for any fluctuation that
is minimally coupled to the background gravity via y/det g
in the quadratic action form (26). Furthermore, there exists

an effective curvature €, associated with D,,, given by the
following relation:

g)m(gpﬂ)zl&m = g)m [Dp’ D6]$m
= a)m [Dp’ Dﬂ]a)m + a)mD[pwv]nmén
+ P, 0P (30)

where the brackets indicate commutation operations. In the
first part of (30), the covariant derivative commutation
[D,., D,] operating on scalars ®, vectors or gauge fields a,,
spin-1/2 Dirac fields y, spin-3/2 Rarita-Schwinger fields
w,, and metric or graviton fields h,, is defined by the
following standard relations:

[Dp’Da]q) =0, (31&)
[D,,D,]a, = RY .. (31b)
1 a . p
Dy Dol = 2 [r. Y| Rapo (31c)
v 1 a . p
[Dps Dol = Ry* s + 2 1" ¥ [Ragpowrys - (31d)
[Dp, Dg}hﬂ,j = Rﬂ“pghay + R,/a/,(,hﬂa, (316)

where the gamma matrices y* are associated with the
Clifford algebra describing the spinors. Next, the matrix
E introduced in the operator form (28) accounts for the
effective potential for the operator H via the following
expression:

flj)mEZ"&s" = J)mpnm&ﬁn - (Zm (D/1a)/))z1¢~5n
- &m(wp)mp(wp)pn&ﬁn' (32)
Finally, incorporating all the aforementioned matrix-valued

data, the Seeley-DeWitt coefficient a,(x) can be deter-
mined using the formula [98]

X ., 1 1
= Tr|zE*+—-RE+—Q,,°
a4(x) = J62 r{z T T e
+ L R, ,-R""° — R, R" + §R2 A (33)
180\ #*° e 2 '
where R, ,;, R,,, and R are the background Riemann and

Ricci curvature tensors and Ricci scalar, respectively. Here,
the Tr operation over a specific matrix is defined by
contracting them using the appropriate Z. In the analysis
of this paper, we shall ignore all the total derivative terms
while computing a,(x) since they appear as vanishing
boundary contributions to the integral (25b).

Furthermore, in order to incorporate fermionic fluctua-
tions into the current heat kernel setup, a specific adjust-
ment is necessary, as demonstrated in [13]. The quadratic
action of fermions ¥ is always characterized by a first-order
operator D,

S, ¥,] = [ d*x\/detg¥, pre¥", ¥, =(¥,)"

(34)

However, the fermionic operator /) can be bosonized into
the desired second-order Laplace-type form (27) by adjust-
ing the one-loop determinant form (9) as follows:

In det = In detP™ = %ln det H, H=D'D, (35
where the appearance of an additional factor of 1/2 needs
to be compensated by setting the y value as —1 and —1/2 in
the formula (33) for the case of complex Dirac and real
Majorana spinors, respectively. y is always set to +1 for all
bosons and scalars. Additionally, the signature of y must be
reversed for the ghost fields induced during the process of
gauge-fixing the theory. It is important to note that the
treatment outlined in (35) cannot accommodate Weyl
spinors with both left and right chirality states. For further
elaboration and examples regarding the heat kernel com-
putation of various elementary fermionic cases, readers are
encouraged to review [106].

The heat kernel approach offers a significant advantage:
after fluctuating the action around an arbitrary classical
background up to a quadratic order, we have systematic
steps and a straightforward formula to compute a4(x) only
in terms of background curvature invariants. This can be
particularly useful for determining the quantum entropy of
all black holes in the theory under consideration. For
example, please refer to Secs. III and IV.

III. SEELEY-DEWITT COEFFICIENT ay4(x)
IN STU SUPERGRAVITY

This section aims to revisit the model setup of STU
supergravity in terms of Einstein-Maxwell-dilaton (EMD)

066016-9



KARAN, PUNIA, and BISWAS

PHYS. REV. D 111, 066016 (2025)

systems, and subsequently embed the EM-AdS and EM
backgrounds [69-72] within it. We then demonstrate
systematic computations of the Seeley-DeWitt coefficient
ay(x) for the fluctuations of the STU content around the
embedded black hole backgrounds. This computation is
essential for deriving the logarithmic correction relation
presented in Sec. IV.

A. The model setup

Four-dimensional maximal A = 8 supergravity theory
originates from the 77 reduction of eleven-dimensional
supergravity, through ten-dimensional type ITA supergrav-
ity, where the bosonic content comprises the metric and a
large number of U(1) gauge fields as well as scalar fields
[63,64]. To generate a solution encompassing the most
general black hole in N = 8 supergravity, the global sym-
metries of the field equations (i.e., classical U-dualities)
indicate that reducing the theory to only four gauge fields
is sufficient [68]. This pertinent supergravity theory,
|

3 4
Sl A @] = d4x\/detg<R —2A=2 Z D'®,D,®; — Z f,(cﬁ)f,,,f’,‘”) ,
i=1 =1

where we have defined

f/((i))) = 6—261-'1)’ q_s = (¢l’¢27q)3)a

62:(1,—1,—1), &3:(—1,

where R = ¢**R,,, corresponds to the Ricci scalar charac-
terizing the Einstein sector and F,, = Dy, Ay, represents
the 2-form gauge field strengths that govern the four distinct
Maxwell sectors. The presence of negative cosmological
constant A induces the AdS,; backgrounds of boundary ¢
(such that #?> = —3/A) within the gauged version of STU
supergravity. At any point, we can set the limit £ — oo or
A = 0 in order to transition into the ungauged STU super-
gravity admitting the flat, black hole backgrounds.

The STU supergravity model (36) has the scope for
additional simplification, leading to irreducible U(1)*-
charged EMD systems including just a single dilaton
and two Maxwell or U(1) gauged fields [75-77,80,81].
This truncation gives rise to two distinct scenarios. The first
involves setting A;, = Ay, and A;, = A,,, while the
second scenario entails setting Ay, = Az, = Ay,. In both
cases, the relevant action form is formulated as

S[gﬂyaAlﬂ’Azluq)] - /d4X\/§(R —2A - 2Dﬂq)D'u®

= [1(®)Fy, Fi# = fo(P)F,,, F2t),
(37a)

commonly referred to as the STU model, represents N =
2 supergravity coupled with three vector multiplets [65,66].
In each vector multiplet, there exists a gauge field, a
dilaton, and an axion, while the fourth gauge field is part
of the N =2 supergravity multiplet. The scope of this
study is to nullify the influence of the three axionic scalars
and ensure the vanishing of their sources. To achieve this,
we explore field configurations where the four U(1)
or Maxwell field strengths exclusively exhibit electric
components without any magnetic components. Our focus
is solely on the bosonic sector, which provides black hole
solutions for STU supergravity and often viewed as a
U(1)*-charged EMD model, with the Einstein gravity
sector being nonminimally coupled to the three Maxwell
sectors through three dilaton fields [74—79]. The pertinent
field content comprises the metric g,,, four U(1) gauge or
Maxwell fields Alw and three dilatons ®;, where I = 1, 2,
3,4 and i =1, 2, 3. Their dynamics and equations of
motion are described by the following action [107]:

(36a)
a =(1,1,1), (36b)
1,-1),  d=(-1,-1,1), (36¢)

where the two Maxwell field strengths and dilaton coupling
functions are defined as

f1(®@) = e,
(37b)

F];w = D[;tAly]1
f2(@) = e,

FZ;w = D[uAZu] )

It is important to note that the dilaton coupling constants
(k1, k) must satisfy
NlKl +N2K'2 = O,

K1K2:—1, N1—|—N2:4’

(37¢)

which ensure the consistency of the U(1)?-charged
EMD model (37) as a consistent truncation of STU super-
gravity (36). There are only two special cases of the STU
truncations: (N, N,) = (2,2) and (1,3), which in turn
correspond to  (k,k,) = (1,—1) and (v/3,—=1/v/3),
respectively [77]. Notably, the former type directly inter-
sects with the exact bosonic sector of N' = 4 supergravity
[108-110]. These two U(1)>-charged systems hold par-
ticular significance within this paper, as they exhibit
considerably lower complexity compared to the complete
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STU model, while still preserving all fundamental character-
istics and offering an irreducible form of supergravity. It is
essential to note that the relevant U(1) gauge or Maxwell
fields, A;, and A,,, exclusively carry electric charges.

We are now interested in exploring the nature of the
equations of motion that govern STU supergravity. These
equations stem from the evolution of the action (37a) with
respect to all STU components in the context of an arbitrary
background solution denoted as (g,,.Aj,. A, ®). The
gravitational field equations are derived as follows:

1_ _ dil
R;w — = Tw R+ Agﬂy = l(41/1 aton)

2 +70". (38a)

where R, and R represent the background Ricci curvature
tensor and scalar, respectively. The total stress-energy
tensor consists of distinct dilaton and U(1)? or Maxwell
components:

di

; R
Tl — o <DM<I>DD¢> -3 gﬂDD,,QDD/’d)) : (38b)

U(1)? ® [ AE  E |
T;w( ) =e 2K1¢(2F1,upFlyp _EgﬂyFlpo'Flpo.>
2K, ® . F 1o = c
+ e 2F2;4/JF21/0 - Egm/FZ/)o’FZp ’ (38C)

where Fy,, = DAy, and F,,, = DAy, symbolize the
background Maxwell field strengths. The two sets of
Maxwell and Maxwell-Bianchi equations take the form

Finally, the dilaton evolution equation is expressed as

_ 1 - _ - _
D”D”(I) + 5 (K'le_ZKlq)Flm/Fllw + K2€_2K2¢F2W,F2”U) =0.
(40)

Notably, the aforementioned STU equations of motion,
together with their corresponding background solu-
tions, always remain unchanged under the following trans-
formations:

(Kvi2’(i)) - (—K17—’<27—‘i))v

{Ql — 0,,0,— Ql},

f1(®)— f2(®)—

L L (41)
[1(@) f2(®@)

where any change in the signature of dilaton coupling
constants necessitates a corresponding reversal in the sig-
nature of the background dilaton as well as its coupling
functions, and vice versa. This further suggests that the STU
background solutions remain invariant when electric charges

(01, 0,) associated with the background Maxwell fields
(Ay,.A,,) are interchanged. It is important to note that all the
above-mentioned equations of motion and identities hold
appropriately for the two cases of U(1)?>-charged STU
truncations when (k,x,) = (1,—=1) and (v/3,-1/V/3),
satisfying 1k, = —1.

B. Embedding of the Einstein-Maxwell backgrounds

The U(1)?>-charged STU supergravity model (37)
emerges as a natural extension of the Einstein-Maxwell
theory where the Einstein gravity sector is minimally
coupled to a single Maxwell sector described by the action

Slgu-A,) = [ d*x\/detg(R —2A = F, F™).  (42)

Within this EM framework, the well-known Kerr-Newman
family of black holes represents the general background
solutions, satisfying the following field equations:

_ I D
R/W - g/“’A = 2Fﬂ/7FDp B Egﬂpran67 R =4A,
DﬂFﬂI/ — O, D[IIF/)(F] = 0 (43)

This family of EM background solutions encompasses all
the four-dimensional asymptotically AdS and asymptoti-
cally flat counterparts of Schwarzschild (both stationary
and static), Reissner-Nordstrom (stationary with charge),
Kerr (static with rotation), and Kerr-Newman (both rotating
and charged) black holes. Our current goal is to system-
atically recover all of these EM backgrounds within the
STU supergravity model (37). This motivation stems from
the intriguing properties and broader implications of the
EM solutions, which already found a robust microscopic
foundation within string theory. The four-dimensional EM
theory (42) features a single U(1) Maxwell field coupled
minimally to the metric field and is known to admit
supersymmetric black hole solutions by structuring the
bosonic sector of a pure A = 2 supergravity [73]. How-
ever, while the STU supergravity we focus on is a more
generalized theory, there is no direct and consistent trunca-
tion that reduces STU models to the EM theory. We now
elucidate how the systematic recovery of the Kerr-Newman
family of black holes within STU supergravity models is
achievable through special embedding choices.

While the STU model (37) is indeed a natural extension of
the EM theory (42), the recovery of the EM theory through
a trivial truncation is not feasible due to the presence of
nonminimal dilaton coupling functions f(®) = e~>'® and
f2(®) = e=22®, Even when considering a vanishing dilaton
background (® = 0), the EM backgrounds do not conform
to the STU evolution equations (38)—(40). However, a
special scenario exists where the EM backgrounds can be
revived by constraining the STU equations of motion with
K1 F 1, F\" + Ky Fo,, F2* = 0 for any nonvanishing dilaton
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TABLE II. The choice of constraints on two cases of U(1)2-
charged STU truncations (37) for embedding Einstein-Maxwell
black hole backgrounds.

Types of U(1)?-charged Constraints on background U(1)

STU supergravity models charges and field strengths
Case I (k; = L,ky = —1) Q) = Qs F F" = Fy, Fo
Case II (Kl = \/§7K2 = _%) Q] :%Q27F1/WF1”U :%FZ/WFQIW

coupling constants k| and «,. This particular EM embedding
is achievable by appropriately scaling the charges of two
background U(1) or Maxwell fields in STU supergravity. In
the context of two specific U(1)2-truncated STU cases, the
EM embedding conditions can be summarized as follows
(also see Table II),

Ql EMembedding - o Ky = o

O, =K0 =——7——> ), F)""=——F, F/",
K> STU supergravity Ky

®=0, (44)

where (Q, Q,) represent the electric charges for the back-
ground U(1) or Maxwell fields (A,,, A,,). Technically, the
aforementioned embedding choice effectively decouples all
the nonminimal ‘“Maxwell-dilaton” background terms and
interprets ® = 0 as a nontrivial solution of the STU field
equations. As a result, the dilaton contribution (38b) of the
stress-energy tensor disappears, while the Maxwell compo-
nent (38c) undergoes modification to represent an effective

background U(1) field with a net charge of \/Q? + Q3.
This further enforces all STU evolution equations (38)—(40)
to truncate into the exact Einstein-Maxwell background
equations (43), subject to the following definitions (also refer
to Sec. IVA 1):

Fﬂ/)Fuﬂ = Flﬂ/)Flpu + F2;4/)F2/)w

FﬂDFﬂD = FlﬂDFlﬂb + FZ;WFZMD
= K%FIMDFI/M + K%FZMDFZMD' (45)

The above analysis further substantiates the concept of “EM
embedding” and ensures the emergence of dilaton-free EM
backgrounds as solutions within the framework of the
U(1)?-charged STU model in supergravity [111]. In sum-
mary, this approach employs the embedding constraint (44)
to transform the general two-charged STU background
solutions (g,,.Ay,.Ay,, @) into the single-charged Kerr-
Newman family of black holes (both asymptotically flat and
AdS) satisfying the EM equations of motion (43). Notably,
while the Kerr and Schwarzschild black holes do not
necessitate this specific embedding due to being charge
neutral, the charged Kerr-Newman and Reissner-Nordstrom
black holes strictly require the prescribed scalings as detailed
in Table II in order to be uplifted within the STU models.

Before delving into the computation of the Seeley-
DeWitt coefficient a4(x) and the logarithmic correction
to the entropy of black holes within EM-embedded STU
supergravity models, it is important to clarify a crucial
point. There is no need for concern when implementing a
vanishing dilaton background, ® = 0, within the STU
framework using the embedding choice (44). This choice
simply entails a modification of the STU equations of
motion to accommodate dilaton-free EM black hole back-
grounds. However, throughout this study, we consistently
work with the complete STU supergravity model (37),
where the nonminimal Maxwell-dilaton couplings are
always active that are expressed through exponential
functions f(®) and f,(®). In fact, the subsequent section
delves into the quantization of the STU model by expand-
ing the dilaton coupling functions through a perturbative
expansion for a small quantum fluctuation denoted as @
around the embedded EM background with & = 0. This
expansion takes the form

- . - - df (D
F1(® + @)lacg = 11@)omy + 81
¥ e00) L
2 dd? |5, ' -
(46)

Our objective is to explore the quadratic fluctuations of the
complete STU content, including the dilaton, with the aim
of evaluating the a,(x) coefficient and determining the
contributions of logarithmic entropy corrections.

C. Quadratic fluctuations: Background matrices
and a4(x) computation

As discussed in Sec. III A, the bosonic sector of STU
supergravity directly intersects with the U(1)?-charged
Einstein-Maxwell-dilaton theory, encompassing the grav-
iton g,,, two Maxwell fields (A;,,A,,), and a dilaton ®.
This alignment is established for two specific choices
of the dilaton coupling constants (ki,x,) = (1,—1) and
(v/3,=1/+/3). The corresponding interactions are detailed
within the action form (37). Our present focus lies in
exploring the quadratic fluctuations around the embedded
Einstein-Maxwell backgrounds and then follow the heat
kernel treatment elucidated in Sec. IIC to compute the
Seeley-DeWitt coefficient a4(x). Throughout, we aim to
provide systematic details of the relevant background
matrices and their traces, expressed in terms of the arbitrary
dilaton couplings «; and «,. Finally, we present simplified
a,(x) results for the two distinct STU cases.

We consider the following perturbations around the EM
background (g,,.A,,Ay,) embedded within the STU
supergravity models for small quantum fluctuations of

metric or graviton h}w, two Maxwell fields u and Aoy
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and dilaton @:

1

gﬂy:g;w—l_\/ih/w’ A]# :A1;¢+§alyv

1.

- 1
AZ/J = A2/4 + Eazﬂ, d=0 + Eq), (473)

where

_ 1
Flyu:FI;w +§f1;41/7 f]/w:D[yalv]? I=1.2 (47b)

The graviton and Maxwell fluctuations are adjusted using a
specific normalization factor, following the convention
employed by Sen et al. in [15]. Additionally, the dilaton
fluctuation has been scaled by a % factor. This collective
normalization choice will be advantageous in ensuring that
|

all the effective kinetic components are in the same state of
normalization within the Laplace-type operator form (58).
It is important to note that the dilaton acts as its own
fluctuation, while simultaneously sharing the common EM
background with the graviton and Maxwell fluctuations.
We then proceed with expanding the STU action (37) in
terms of the fluctuations (47). We specifically focus on the
quadratic part of the contribution, as required by the one-
loop quantum correction setup in Sec. II. We ascertained
that this quadratic contribution entails several terms with
complicated nonminimal couplings via the background
Maxwell field strengths Fy,, and F,,. By considering
terms up to total derivatives and making use of the
expansion (46), we systematically decouple the quadratic
fluctuated STU action into the following “Einstein-dilaton”
and “Maxwell-dilaton” sectors:

1
8% (y/detg(R — 2A = 2D*®D,®)) = 5 Vdetg [hﬂ,,DpD/’h”” - h*,D,D’ ¥, — 2h** D, D, h* , + 2h**D,D, h*,

~ ~ 1
+®D,D/P — (R = 2A) 1 + 2R, (2HPHE, = 1) + = (R = 2A) (%,)? |.

(48a)

1 - - -
& (=y/detg(f1(P®)F, Fi*™ + fo(@)Fo, Fo*)) = —/det L_‘ (Frwf 1" + Founf2") + 2(F 1 F1ap + Fou Fagp)**h*?

+ 4(1_:1/41/}_71”& + FZﬂyFZﬂa)hyﬁhaﬂ - 2(F1;wplay + FZ;WFZay)hpphﬂa

1

[\

- - 1
- _( ];wF]lw + FZ/UJFQMD) (ha/}haﬁ - E (hﬂp)2>

V2

- 2\/§(F1Wf1a” + Fzﬂyfzay)h”a + 7 (Fl;wflw + F2ﬂvf2ﬂy)hpp

1 - - - ~ - - o
+ E(Klellelﬂy + K22F2/HJF2”D)¢)2 - (KlFl;wfllw + K2F2;4uf2m/)q)

+ 2\/§(K1F1ﬂy1}1au + ko F oy Fol ) O

V2o .
- T(KlFl/wFlm/ + KZFZMDFZﬂD)(Dhaa ’

(48b)

where the respective kinetic parts of Maxwell fluctuations need to be identified from the terms f,, f1** and f,,, f>** using

the following relations:

1 _
_Eflﬂufl}w = ay(9"D,D’ — R")ay, + (Dﬂalﬂ)z’

We continue with the objective of formulating the desired
Laplace-type structure (27) for the differential operator that
governs the quadratic STU fluctuations. To achieve this, we
carried out a series of adjustments on the fluctuated action

form (48) that are in the following order.
(1) The heat kernel treatment II C necessitates that there
be a distinct kinetic term corresponding to each

I=1.2. (48c)

off-shell degree of freedom or fluctuation present in
the theory of interest. However, the quadratic action
form (48) includes a few redundant components in
the kinetic contributions of both the graviton and
Maxwell fluctuations. To address this, we adopt the
conventional practice of gauge-fixing the fluctuated
theory by incorporating the gauge-fixing term,
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(@)

1 1 1
_ d4x\/det§[<D/‘hﬂp — EDphaa> (D,,h”p _ 5Dphﬂﬂ) + 5 ((D”alﬂ)z + (Dﬂazﬂ)z)} ,

where the graviton and Maxwell modes are accom-
modated through the choice of harmonic gauge
D*h,,, —1D,h*, =0 and Lorentz gauge D*a;, = 0,
DFa,, = 0, respectively. The gauge-fixing (49) is
applicable to both the asymptotically flat and AdS
cases, as the presence of the cosmological term
always preserves the gauge invariance under the
considered background field transformations. The
introduction of this gauge-fixing procedure gives
rise to an additional ghost term [11],

/d4x\/det§[2b,ﬂ(§””Dpr’ + R™)cy,
+ 2by, (7D, D’ 4 R*)cy,
+2b,D,D’¢; +2b,D,D’c,

- 4b1F/’”D/,cly - 4b2l_7f’”D,,c2D]. (50)

This term involves two sets of vector ghosts (blﬂ,
by, C1y» €2,) and scalar ghosts (by, by, ¢y, ¢3), aris-
ing respectively from the diffeomorphism and gauge
invariance of the graviton and Maxwell fluctuations.
This ghost term is minimal and remains non-
interacting with the gauge-fixed component. Con-
sequently, we have the flexibility to treat and
evaluate the heat kernel contribution of the ghost
part (50) separately.

The preceding gauge-fixing procedure needs to be
complemented by an appropriate treatment of the
trace mode of the graviton for the remaining kinetic
component #*,D,D?h*,. Readers familiar with the
literature (e.g., see [112—-114]) may recognize the
standard treatment of decomposing the graviton into
its trace h = h*, = g h,,, and a symmetric traceless
part }Az/w = hy, — ;{gﬂyh. This decomposition enables
to effectively treat the trace h and traceless fzﬂ,,
graviton components as distinct fluctuations that
transform under the irreducible representations of

SL(2,C). As a consequence, the gauge-fixed kinetic
portion of the graviton can be reformulated as

1
hu D, D" W =S 1, D, DI,
PO A 1
_ gh;,bha/;hWDpDﬂhaﬁ — ZthD/’h, (51)

where the inner product between traceless
graviton modes is defined by the following DeWitt
metric [115]:

066016-14

(49)

3

- 1/_ _ e 1_ _
gh”bh,,/; — 5 (gﬂagzz/)’ + gﬂ/igu(l _ 2gﬂyg(1/)’) . (52)

The operator G"w"# serves as an effective metric that
projects onto the symmetric and traceless piece of
the graviton, containing 10 — 1 = 9 off-shell degrees
of freedom after gauge-fixing the STU theory.
Consequently, in the subsequent heat kernel treat-
ment of this study, G"»"» must be utilized as a
projection operator to contract the pairs of indices
for any matrix acting on fz,w. For instance, if M is an

arbitrary matrix associated with the fluctuations of
the traceless graviton component, i.e.,

PuMyp" = by, M b, (53)
then the expression for M? is given by
(Mz)i';w]:laﬂ — gil i[ Milyp]:\l/){rMilyrS]/:'a/i' (54)

pollys

Moreover, the trace operations on M and M? are
defined as

Tr(M) = G; i MMwha,

g

Te(M?) = G, i, G, i, Moo M los.(55)

My
The revised kinetic contribution of the graviton, as
presented in Eq. (51), still requires further refine-
ment. Notably, the graviton trace component in-
volves a negative signature, treating 7 as a ghost
field. This scenario highlights the familiar conformal
factor problem in gravity, resulting in a divergent
and ill-defined contribution to the Euclideanized
one-loop path integral (7). To address this issue,
we adopt the conventional procedure outlined by
Gibbons et al. [116,117] by implementing a con-
formal rotation along the imaginary axis with a new
real graviton trace component 7, i.e.,

A i

h= > h.

(56)
It is important to note that the introduction of an
additional 1/2 factor serves the purpose of aligning
the kinetic contribution of the graviton trace with the
same normalization state as that of the traceless
component and Maxwell fluctuations [please refer
to Eq. (58)].



LOGARITHMIC CORRECTION TO THE ENTROPY OF A ...

PHYS. REV. D 111, 066016 (2025)

(4) As a subsequent step, we need to modify the
quadratic fluctuated STU action to ensure its self-
adjoint properties in the desired operator form (51).
This technical requirement necessitates adjusting
the quadratic action to incorporate the Hermitian
counterpart of each term. To achieve this, we
identify appropriate terms with fluctuations ¢,, =
{lAlW, h,a, s Aoy ®} and then extract their Hermitian
partners using the following schematic approach
involving arbitrary matrices N and K*:

GuN"" Py, + by (K)"" Db,
I~ 1

— _ Nmn — D K/) mn K[) mnD
(N Sy ey,

b
1~ 1
+ §¢n (Nmn _ E (Dpr>rnn _ Kp)mnD >

o HIP" =

It is important to note that the above relations are
derived by utilizing the commutative properties of
the bosonic fluctuations and disregarding all the total
derivative terms. This adjustment up to total deriv-
atives is crucial since they lead to boundary terms
that do not contribute to the integrations (48) around
asymptotically flat and AdS backgrounds.

1. Gauge-fixed contribution

With incorporating the above rectifications, we finally
arrive at the desired form of quadratic fluctuated STU
theory [without including the ghost contribution (50)],

~ A - 1 - -
Sl e s @) = 5 / dx\/det g, HI' P, (58a)

where the simplified Laplace-type operator H is expressed
into the following components:

_ _ _ _ 1 - - - - N
{gh/ﬂ'hﬂ/fD D/)h(lﬂ + 2 (Rﬂay/i _ gﬂ(lRl/ﬁ _ 2F1/4(1Fl up _ 2F2/,taF2u/} _ 5g/mguﬁ(F‘I/){;F'l,{m' + FZ/)O'FZIM _ 2/\)) h(l[)’

_2i(F1ﬂaFlya+F2”aF2ya)]/:l_\/E(DDFlﬂa)ala_\/E(DDF2”a)a2a_zﬂ(KlFlﬂaFlya+K2F2”(IF2D(1)&)

+M<W1W—gmM)(zJpam)+M<zfﬂF2ﬂa—gwﬁzmwpazg)}

+h{D,D’h+2Ah—2i(F\*F,

Da + FZ”(IFZD(I)]’:[;W} + &){D D/}(i) -

(KIZFIWFI”D +K22F2ny2”D)‘i>

_2\/§(K1FIM(IF1U(I+K2F2ﬂal_72ya)h +2K1F /)a(D al(l)+2K2F2/)(1(D/)a211)}
+a,,{g"D,D" a5~ R%a 5~ V2(D*F#)hy, — 2, F (D, ®) =2V 2(37 F\** = 3 F ) (D, b, ) }

+Cl2a{gaﬁDpra2ﬁ—Ra/jazﬁ_ \/E(Dbpzﬂa)i\llw

The above operator form represents different intricate
interactions between the quadratic fluctuations of the
STU model through the Einstein-Maxwell backgrounds.
These interactions are noticed to be distributed among
various nonminimal blocks that are determined by the
background metric, curvature, and Maxwell strengths. To
better organize these blocks, we have further restructured
them in (58) to pair each quadratic term symmetrically by
interchanging indices within each traceless graviton fzw
and also with its quadratic counterpart (lAzW, flaﬁ). During
this process, one may make use of the background Einstein
equation (38), the Maxwell equation (39), and the embed-
ding condition (44) to facilitate necessary simplifications at
appropriate steps. This adjustment is crucial to ensure
correct trace results using the relations in (55). At this
stage, we are well-prepared to conduct the heat kernel
treatment as outlined in Sec. II C, where we compare the
Laplace-type operator H for STU theory with the schematic
representation in (27) and proceed to extract the required
background heat kernel matrices.

_ZKZFZpa(Dp(i) _zﬁ(guppzﬂa_gUaF2ﬂp)(Dpiluu)}'

S

(58b)

The effective projection or identity matrices for individ-
ual off-shell STU fluctuations are read off as

&mzmn&ﬁn = ]:\lﬂygil’wil“ﬁi:laﬂ + i:l i:l +alﬂg’wa1v
+ azﬂg’“’azy + (i) (i) . (59)

Notice that the traceless graviton employs the DeWitt metric
Ghwha as an identity operator for the specific form given in
Eq. (52), whereas the same is replaced solely by the four-
dimensional background metric g** for the U(1) or Maxwell
fluctuations. When we calculate the trace of (59), we find a
total of nineteen off-shell degrees of freedom for the current
gauged-fixed STU fluctuations {¢,, }: nine stemming from
the traceless graviton h > four from each Maxwell mode a;,
and a,,, and one from each scalar field h and &, providing

TH(Z) =9+ 1+4+4+1=19. (60)

Additionally, we derived the gauge-connection matrix
@” by analyzing the nonminimal (i.e., linear-derivative)
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terms in the operator form (58) as

&m (a}p)mn&sn = \/72

2

+ K (alarP:l(M)(ND - ¢~)F‘_l {l/)ala) + K2 (612{11':2(1/){D - qN)FZ{l/)aZa)'

The relation above confirms the existence of only two
primary sources of nonminimal couplings within the
current quadratic fluctuation framework of the STU model.
These couplings directly govern the interactions of two
Maxwell fluctuations (a4, a»,) with the traceless graviton
il;w and the dilaton ®. From a technical perspective, this
interaction pattern gives rise to an indirect nonminimal
coupling between a;, and a,,, subsequently leading to the
emergence of relevant components within the £ and Q,,
matrices when derived using the relation (61) (for details,
|

V2.

iluu(?‘pF_lm+§”’”F1W—§WF1W—QWF_lﬂp)a1a+7hm(§WFzm+§”p152”a—§”a1‘:2”p—Qmﬁzﬂp)aza

2 = — — — ~ 2 — — — — ~
Y O = = )y §a2(,<wzm FPES =G =3y

(61)

|
please refer to Appendix A). Furthermore, it is worth noting
that the components of @” are antisymmetric with respect to
the relevant fluctuations. This particular characteristic is
consistent with findings from previously reported similar
heat kernel treatments, offering primary validation for the
Laplace-type operator form derived in (58).

Similarly, we read off the matrix P from the derivative-
free or minimal part of the operator form (58). The relevant
components are expressed as follows:

~ ~ ~ 1 _ _ _ _ _ _
PP by = by (R”W RV~ (R 4 FORY + GRS PRI = 2F\F 4 FOF g e Ey

+ FZM/}FZWI) _

N[ =

+ Kzzpzﬂupz’w)‘i’ —a,R"ay, — ay R ay, — 2i(F\"F*, + FZ”aF2Da)(ilﬂl/il +h

—2V2(k F\FF P + K2F2”(1F2y(l)(ilﬂl/(i + ®h

V2

- 7 (D”FZDOC + DuF2ﬂa)(iIﬂua2a + aZail/w)'

From here, our objective involves utilizing all the matrix-
valued data recorded in Egs. (59), (61), and (62) to derive
the components of the desired matrices £ and €,,,, which
encode the complete details of all quadratic STU inter-
actions in terms of the background metric and Maxwell
fields. This process requires the formulation of additional
terms that involve contraction and commutation operations

between the connection w, and the covariant derivative

;w)

(FI,DGFIIM + FZ,/)rrFZW7 - 2A) (gﬂagyﬂ + gp/igm)) ],:[a/i + ZilA]:l - q~)<K12Fl;wFIW

=

/41/)

V2

- 7 (D”FIMI + DDFlﬂ(l)(l,;luyala + al(li:l/,w)

(62)

Subsequently, we calculate the traces Tr(E), Tr(E?), and
Tr(L,,€7) over all relevant components. Although these
calculations are highly intricate and laborious, they may
provide valuable insights to interested readers. We have
provided a systematic outline of the underlying steps in
Appendix A. The computed trace results are summarized as
follows:

P — — — -
D,, as delineated by the formulas in Egs. (30)-(32). Tr(E) = —12A + T(F 1 V" + Fou F2*),  (63)
|
2 UUPO 23 2K% uv 8K% 2 I Ui po L' Wig po
Tr(E ) = 3RﬂD/)6R - Z—’_(K‘?TU Rﬂl/R -+ 31 +m A +3R/w/)(r(F1 Fl +F2 F2 )
37 - il T, L uv\2 % T il T, Ty
+Z(F1/4DF1M + FZ/UJFZ} ) - A 18 +(471 (FI/M/FIM + F2ﬂl/F2” )v (64)
ki +1)
Tr(Q,,°) = —8R,,,R"*° + <£ + 4—K%>R RW — <226 + ]6K% >A2 — 18R (FI””FIW + Fz"”sz")
" NCESAS i+ 1)

111

8k

- T (FIWFIW + F2;4DF2W)2 =+ A<60 + m) (Fllwpllw + FQMDF2W>.
1

2
(65)
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The aforementioned trace relations are simplified by incor-
porating appropriate on-shell identities (see Appendix A 1),
expressing them solely in terms of distinct irreducible
invariants of Einstein-Maxwell backgrounds for the two
U(1)?-charged STU models with «,x, = —1. However, it
has been observed that nearly all invariants involving back-
ground Maxwell field strengths in the specific trace data
are precisely canceled out within the a,(x) formula (33).

|

311 ZK%

169
4 2, gauge-fixed — -~
(47) a4 () 180 3(x{+1)

= R, R
180"+ +(

where we have set y = 1 for the graviton and U(1) or
Maxwell fluctuations. It is worth noting some insightful
remarks about the Seeley-DeWitt result (66). The coeffi-
cient of R,,,,R***° remains robust for a theory with fixed
off-shell degrees of freedom. In contrast, the specific
coefficients for R,,R*, R* and RF,,F* are not funda-
mental but rather sensitive to the type of nonminimal
couplings and gauge interactions that are effective between
fluctuations. Moreover, their respective contributions can
be interchanged through the one-shell Einstein equa-
tion (43). Therefore, at any stage, it is never advisable to
disregard the background invariants proportional to F L
and F 2u» Which were present in the trace data obtained in
Egs. (63)—(65) but canceled out inside the final result (66).

2. Ghost contribution

Now, we need to proceed with a similar heat kernel
computation for the ghost term (50), which further refines
the gauge-fixed contribution (66) of the Seeley-DeWitt
coefficient a4(x). To begin, we can express the ghost
action as

The final Seeley-DeWitt result involves only AFy,, F*
and AF,, Fy*, specifically for the case (kj.ky) =
(\/§ ,—1/ \/5) in the STU truncation. These can be collec-
tively encoded inside the effective invariant RF,, F**,
where R = 4A, in accordance with the choice of the

embedding condition (45). All of this leads to the following
result:

2 (=1 _
— 1 \R24 L RF FM, 66
1)> +6 SN D R (66)

where d;; and ;¢ are the Kronecker deltas with indices 1,
J, K =1, 2 enumerating all the ghost fields correspond to
the two U(1) gauge or Maxwell species. Clearly, the kinetic
terms need to be diagonalized to make use of the Laplace-
type quadratic operator for the heat kernel methodology.
A convenient approach is to introduce the following
redefinitions between the ghost species:

V2 . .
Iu - 7 (cly - lblﬂ)’ CIM - 7 (Clﬂ + lbl;t)7
> 3
by — \g_(c, _ib), ¢ — \2[((;, +ib)). (68)

This allows us to extract the desired form of the kinetic
operator (up to quadratic order) operating on the six ghost
fluctuations ¢,, = {by,.c;,.b;. c;} as

FSunow = [ d*xy/det g, Hrd", (69a)
/ d*xy/ detQ[me(Q’”’DﬂD/’ + R*™)c;,6.,
+ 2b1DprC15[J - 4b]F§DDPCKV5]JK], (67) where
|
b HIP" = b, (3"D,D? + R*™)b 61y + ¢, (¢ D,D” + R*)c;,61y + byD,D’b;6;; + ¢;D,D’c;6;,
+ bIﬂF‘;;ﬂ(prK + iDpCK)éllK + C[MF?‘(DPCK - iprK)(S[]K - b]Fgﬂ(prKﬂ - iDpCK,u)élJK
— C]Fgﬂ(DpC](ﬂ + iprK”)énK. (69b)

From here, the task is to write the forms of the following necessary heat kernel matrices (as defined in Sec. II C):
GnI™ P, = b, (§"617)by, + c1,(F 1) cy + b1(817)by + ¢1(815)cy, (70)

%umn(%n = blﬂ(RIw(sIJ)va + Clﬂ(leélj)cjw (71)
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~ ~ 1 - 1 - 1 .= 1 .= 1 -
G(@”)" P, = Ebly(FljwélJK)bK - Ebl(FgﬂéllK)be + Eblﬂ(ngﬂéllK)cK ~3 ci(iF} 61k )by, + 3 cru(F'8px)ck

1 _ 1 . 1 =
3 CI(F§”5IJK)CK,4 + ECI/;(ZF/J)”(SIJK)I?K - Ebl(lFl;ﬂ)CK;t’ (72)

which further provides

qszmn(;sn = blu (Rﬂbélj)b.lv + Clu (Rﬂyél.l)cjw (73)

g)m(gpa)mng)n = bl;t (R”ypﬂéll)bh/ + c]}l (R’wpaéll)clu -

1 - 1 _
3 by (D'F 1,501k )bg + 5 by(D*F ;,,61,k) bk,

1 - | 1 s r .-
- Eblﬂ(ZDﬂFJpo'éllK)CK + 3 c;(iD*F ;501 k )bk, + 3 Cru(iD"F 1,501k )bk — EbI(ZDﬂFJpaéHK)CKﬂ

1 _ 1 _
~ 5 Cl (D"F 1,561k )Ck + 5S¢ (D"F 1,661k ) Ckp- (74)

It is essential to recognize that all other matrix components
that are technically valid but nullified by the application of
the equations of motion (38) to (40) for our specific choice
of EM background embedded STU supergravity model.
Taking into account the derived components for the
matrices Z, E and €,,, we can determine the following
traces for the ghosts:

Te(T) = 46, + 45, + 8y + 631 = 20,
Te(E) — R(S,, + RSy = 16A,
Tr(E?) = 2R, R*6;,6, = 4R, R,
Tr(QMQ”(’) = —2R,,,cR*""°61;6; = —4R,,,,RMP°. (75)

This trace data is sufficient to determine the ghost con-
tribution to the third-order Seeley-DeWitt coefficient a, (x),

2 17 17
(47)?a, 8% (x) = 9R,wpaR””’M — ?R RM — ERZ (76)
One must note that this result incorporates y = —1 in the

formula (33) due to the inclusion of bosonic ghosts where
the negative signature arises as the ghosts follow a reverse
spin-statistics compared to the physical fields.

D. Results

In gravitational theories with quantum fluctuations, the
logarithmic correction to black hole entropy induced by the
one-loop effective action is well known to be associated
with trace anomalies (e.g., see [19,35,118]). Within the
framework of effective action formulated by the heat kernel
expansion and the background field formalism (as detailed
in Sec. II), the trace anomalies explicitly appear as terms
within the heat expansion coefficients and depend on the
background curvature invariants. Specifically, the trace
anomalies are encoded within the third-order Seeley-
DeWitt coefficient a4(x) for four-dimensional theories.

[

Our current objective is to unveil trace anomalies within
a,(x) for the ongoing analysis of the quantized STU
supergravity model around Einstein-Maxwell-AdS back-
grounds. Specifically, we will demonstrate that the square
of the Weyl tensor W,,,,,W#*? and the four-dimensional
Euler-Gauss-Bonnet density E,, respectively, appear as the
type-B and type-A trace anomalies, defined as

W e WHP? =

Hvpc

1
RyupoR7 = 2R, R + 2 R,

Ey = Ry, 0 R —

wwpo 4R, R" + R*. (77)
We need to combine the computed gauge-fixed contribu-
tion (66) and ghost contribution (76). These contributions
are computed separately since the ghosts do not interact
with the gauge-fixed sector of the theory containing
physical modes. The combination of gauge-fixed and ghost

parts is straightforward, resulting in
(47)2a, "V (x)

209 29 213
=" R, R — —L— R, R™
180" #7° (180+3(K1+1>> "

25 K2 (k2 —1)2
([ =—-—FL1 __|R? 17RF F’“’. 78
(18 6(K‘}+1)> TR (78)

For the solution of the STU supergravity model embedded

with Einstein-Maxwell backgrounds in AdS space (or with

a negative cosmological constant A), the Seeley-DeWitt

coefficient a4(x) can be decomposed in terms of a sum of

four-derivative background terms, including the trace
anomalies:

(47[)2614STU( ) = CWﬂWMW’wﬂU - (IE4 —+ 51R2

+ bzRFWF””, (79a)

where the coefficients ¢, a, b;, and b, can be extracted from

the relation (78), derived using the two-derivative action of
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the present theory. The coefficients ¢ and a, respectively
multiplying W,,,,W¥?? and E4, are recognized as the two
central charges of the conformal anomaly in 4D. The results

of the coefficients in (79a) are summarized as follows:

1/269 i3
“5(%‘4“)’ (790)

17389 &2
“—i(m‘ml)’ (79¢)
b, =~ (194" (79d)
T K‘I‘—&—l’

(k7 = 1)
b 79
2 6(K‘l‘+1) (79¢)

It is important to note that the absence of the dilaton
coupling constant x, from the results presented in Egs. (78),
(79), and (66) should not raise concerns. The x, contribu-
tions are consistently taken into account in all relevant
places. We substituted them using the specific choice x, =
—1/ky in order to simplify the forms of the heat kernel
results computed for the two truncation cases of the STU
model, i.e., when (k,k,) = (1,—1) and (v/3,-1//3)
(refer to Sec. III B). While it is feasible to rewrite the
results in terms of relatively complex forms involving both
k1 and k, at any point, such a task is not straightforward and
requires the use of trace data and identities provided in
Appendixes A3 and A 1.

The derived trace anomaly data (39) is specific to the
chosen theory, relying entirely on the one-loop fluctuations
and embedded asymptotically AdS EM background in
the STU supergravity model. Equivalent results for the
U(1)?>-charged STU model in asymptotically flat EM
backgrounds can be easily obtained by setting the cosmo-
logical constant to zero, A = 0. In this flat space limit,
terms such as R and RF,, F* vanish, and the relation (78)
for a4(x) is solely governed by the Weyl anomaly
W,peWH?? and the Euler density Ey4, with nonvanishing
coefficients ¢ and a. Moreover, the a4(x) coefficient in the
flat-space limit becomes invariant under electromagnetic
duality, as it is independent of terms proportional to the
effective field strength F w las defined in Eq. (45)].
Interestingly, this property persists even when transitioning
beyond the flat limit and considering AdS backgrounds
embedded in the (k,k,) = (1, —1) case of the STU theory,
resulting in a vanishing b,. However, the STU model with

(k1.%,) = (v/3,—1/1/3) breaks the electromagnetic dual-
ity invariant nature of a4(x) due to the induction of a
nonzero b,.

Before delving into the implications of the heat kernel
and trace anomaly data for computing the logarithmic
correction to the entropy of embedded black holes (refer to

Sec. IV), it is essential to assess their consistency with
existing literature. While the current STU super-
gravity model stands as the most natural and nontrivial
generalization of previously explored bosonic super-
gravity models (for example, refer to the reviews
[13,15,16,19,21,23,24,26,27,29,30]), there is no direct path
leading to these available results by setting appropriate
limits in the relations presented in Eqgs. (78) and (79).
Technically, this is because the dilaton-coupling-indepen-
dent terms in the heat kernel or trace anomaly data are
sensitive to the specific off-shell degrees of freedom and
their nonminimal interactions within the theory, making
them less controllable. Nevertheless, we have conducted
meticulous checks, starting with the original form of
trace data recorded in Appendix A3 and proceeding
with top-down manipulations. This approach has yielded
exact results for the fluctuated Einstein-Maxwell theory
[15,16,27] or the boson sector of A =2 supergravity
(for k; =k, =0) [13,19,21,24,26,29], the Kaluza-Klein
system (for x; = V3, Kk, = 0,A =0) [23], and Einstein-
Maxwell-dilaton models (for «; =1, \/§ 1/ \/§ and
kK, = 0) [30]. Each of these emerges as a distinct and
consistent limiting case of the current STU model (37) heat
kernel results obtained in Eqgs. (78) and (79).

IV. LOGARITHMIC CORRECTIONS TO ADS,
AND FLAT,; BLACK HOLE ENTROPY

In this section, we delve into the derivation of the log-
arithmic correction to the entropy of black holes embedded
in the truncated four-dimensional STU supergravity models
discussed in Sec. II. These backgrounds encompass all the
Kerr-Newman-AdS, Reissner-Nordstrom-AdS, Kerr-AdS,
and Schwarzschild-AdS black holes, along with the Kerr-
Newman, Reissner-Nordstrom, Kerr, and Schwarzschild
black holes, which are generic solutions of the Einstein-
Maxwell theory evolving with and without a negative
cosmological constant, respectively. Here, we interpret or
uplift them as the background solutions of the U(1)*-
charged EMD-AdS and EMD theories intersecting with the
gauged and ungauged STU supergravities in four spacetime
dimensions.

At this stage, we apply the framework established in
Sec. II, which necessitates the utilization of the Seeley-
DeWitt coefficient a,(x) calculated in Secs. III C and III D.
Specifically, our current objective is to provide the trace
anomaly form (79) of a,(x) as a precursor for determining
the logarithmic corrections for both nonextremal and
extremal black holes embedded in the STU models. In
the local contribution C,.,, all the four-derivative back-
ground invariants, including the W,,,,WH?? and E,
anomalies, need to be integrated over the appropriate part
of the geometry of the concerned black hole backgrounds.
This leads us to the following general formula for obtaining
the local part of logarithmic entropy corrections:
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Clocal 16 2/d4x\/_ I,{l//)gW wep G—F d4X\/_E4
b, o
T d*x\/GR? + d*x/GRE,, F*,
(80)

where the coefficients a, ¢, by, and b, do not affect the
integrations since their values, as obtained in Eq. (79b), are
constants fixed by the choice of theory. For nonextremal or
finite-temperature AdS, and flat, black holes, the integra-
tions need to be performed over the entire background
geometry g,,. Meanwhile, for extremal black holes, we
observe that the contributions to Cj,., remain the same
whether the integration (80) is executed over the full
geometry or only the finite piece of near-horizon geometry.
In the following subsections, we systematically derive
specific relations for computing contributions to Cj,., in
STU models. These relations are expressed in terms of
various dimensionless ratios involving different black hole
parameters and the anomaly coefficients a, ¢, b; and b,.
Throughout this process, our primary focus is on evaluating
the curvature invariant integrations, as detailed in rela-
tion (80), for the most generic nonextremal background
of a four-dimensional Kerr-Newman-AdS black hole.
Subsequently, we emphasize on the extremal and near-
horizon cases, along with their asymptotically flat limits.
Furthermore, the same analysis is extended to other AdS,
and flat, counterparts of Reissner-Nordstrom, Kerr, and
Schwarzschild black holes. As a final output, we present
the explicit results for the logarithmic correction to the
entropy of all black holes embedded in both the gauged and
ungauged versions of the STU supergravity theory.

A. Black hole backgrounds in STU supergravity
and C,,., contributions

1. Kerr-Newman-AdS, black hole

We start with a four-dimensional nonextremal Kerr-
Newman-AdS (KNAJS) black hole, representing the most
interesting and generic Einstein-Maxwell background in
our chosen STU models. In terms of the standard Boyer-
Lindquist type coordinates, the metric for this charged and
rotating background is given by [71]

A asm29 p? p?
G, dxtdx’ = —— | dt — d —d 2 4+ de?
et s ( ¢> A - Ay

Aysin?6
4220 <adt—r +a d¢) (81)

p

where we set Gy = 1. The parameters A,, Ay, p, and E are
related to the physical mass M, angular momentum J, and
electric charge Q of the black hole, as well as the boundary
radius Z of AdS4 space, via

2

m ma q _ a
M=% J=g =5 E=l-5
2
A, = (r’ +a%) <1 +ﬁ> —2mr + ¢,
2
Apg=1- %00520, p?* = r? + a*cos?0. (82)

It is important to note that this background setup is valid
only when the rotational parameter a satisfies a*> < #2 and
becomes singular in the limit a> = #?. Throughout our
analysis, we consider a > 0, and obtain all interested results
by replacing a — |a| everywhere without any loss of
generality. Furthermore, we consistently turn off terms
related to the magnetic charge parameters in order to embed
the charged EM backgrounds into the current STU super-
gravity models. The metric (81) satisﬁes the background
EM field equations (43) for R = 4A = — ﬁ 2 with an electri-

cally charged vector potential Aﬂ and an associated

Maxwell field strength tensor F,,, given respectively by

>
_ qr as1n29
Am=(dr- dgp (83)
and
Fofw — _L( — 6a’r*cos?0 + a*cos*0)
H (r? + a’cos?6)* '

(84)

As per the specific embedding choices (44) and (45), the
KNAdJS background is interpreted as a solution of the
truncated STU models (37) for an effective electric charge
parameter,

g=\/al+q or Q=1/0}+03  (85)

where ¢, and ¢, represent the respective charge parameters
of the two U(1) gauge fields, satisfying (83) and (84). If the
outer event horizon of the KNAdS black hole (81) is
located at r = r, then one obtains r by finding the largest
real root of gy = A, = 0 and fixing the mass parameter as

2 az + qz 1”2
m= 1+—+ + —*) : (86)
2 ( A 2 A

At this level, it is standard practice to consider the
analytical continuation of the Lorentzian metric (81) by
t — it and a — ia for obtaining the Euclidean structure of
the KNAdS black hole. The associated Bekenstein-
Hawking entropy is given by
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(3 +a)
(1-5)

Also, the regularity at » = r requires identifying = ~ = + f where inverse of f is a measure of the Hawking temperature of
the black hole,

SBH =dr (87)

r a> 32 a*+ q2
T = -1 = -+ 1 — —__ . 88
b =/ 4n(r2 + a?) < + 2 + 2 r’ ) (88)

With the above setup, the four curvature invariants necessary for (80) in the electrically charged and rotating KNAdJS black
hole case are expressed as follows:

48
W, WHP? = T o) [8r4(q* = 2mr)* = m*(r? + a*cos?0)® — 8r%(q* — 3mr)(q* — 2mr)(r* 4 a*cos*0)
+ (¢* = 10mrq® + 18m*r?)(r* + a*cos?6)?], (89a)
E,= s + 8 [48r*(q* — 2mr)* — 6m*(r? 4 a*cos®0)® — 48r%(q* — 3mr)(q* — 2mr)(r* + a*cos*0)
4 (r* + a*cos?0)®
+ (5¢* — 60mrg* + 108m>r*)(r* + a*cos®0)?], (89b)
144
R2 = 7 s (89C)
7 2447 4 202 4. b
RF, F" = 7 (r* = 6a”rcos’0 + a*cos*6). (89d)

£%(r? + a*cos?0)
Next, we proceed to integrate all the aforementioned invariants over the Euclideanized KNAdS, black hole geometry.
However, these integrations pose challenges due to divergence caused by the infinite volume of AdS,. In this paper, we

address this issue by employing holographic renormalization principles [119]. Specifically, we introduce a cutoff at r = r,
on the boundary of the KNAdS, geometry (81). Following this, we introduce a holographic counterterm,

CHCT = / d3y dety(cl + CzR). (90)
d(AdS,)

Here, R represents the Ricci scalar associated with the metric y,, characterizing the KNAdS, boundary geometry,

Ar 3 29 2 2 A,si 29 2 2 2
Vwdy'dy” = —— (idr + 22 d¢> + 2 g0 4 ﬁ <ia dr + L1 d¢> : (91a)
Pe = A@ Pe =
where
r’
A, =(r:+a% <1 + 7;) —2mr. + q¢*, p.t = r2 + a*cos?é. (91b)

For this boundary geometry, we determine

1 2
dety = = [qz —2mr, + (r2 + a2)<1 +%>}p%sin29, (92a)
R=2|44 (22 2 420520 1 % (2(1 — 5¢0526) — 3alcos'0)? 92b
=— re + (r; = 2mr, + g*)a*cos +?(r6( — 5cos°0) — 3a*cos*0)pz |, (92b)

and derive the following form of the holographic counterterm (90):
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4 1
Crcr :g cire + tea (c1(4a*> +38%)¢% + 4, (3¢% = 2a°))r. — cymé?* | + O(r7t). (93)

The integration range is defined as 0 <7 < 4,0 <0 < 7, and 0 < ¢ < 2z. Subsequently, the boundary term (93) needs to
be combined with the bulk Cj,, term (80), involving integrations over the KNAdS, background invariants. The resulting
bulk-boundary combinations contain O(r;!) order terms that vanish as r. — co. The next step involves appropriately
setting the coefficients ¢, and ¢, to cancel the > and r, divergences. This procedure yields a finite contribution of all the
integrated background invariants, leading to a regularized C,, given by

Ciocal = hm [16 / dr/ dr/ dH/ dp/detgay(z, r,0,¢) + Cycr| - (94)
e n?

Here, the Seeley-DeWitt coefficient ay(z, r, 0, ¢) appears as a function of the invariants W,,,,,,W*°, E4, R, and RF,, F*
around the Euclideanized KNAdS, geometry (81). The integrated invariants, as required in (80), take the following

particular forms:

W
d*x\/detgW Wi = W + W, + —2 95
1677,’2 X € Hvpo 1 +ﬁ 2 + ﬂ ( a)
16 — [ d*x\/detgE, = 4, (95b)
d4.X'\/ dethz = R1 +ﬂR2, (950)
m d4x dethFWF”” = Fl +ﬁF2, (95(1)
T

where the pieces W, R;, and F; are isolated based on their dependency on the inverse temperature parameter f. In particular,
they are expressed as

(@ +1r1) 400 _ 2 22,2 2 2,4
Wl :m (3(1 (f —r+)—|—4a 4 r+—3(f +3r+)r+)ar+
= T
—3( = a) (@ (2 = ) = (€% +3r2)F )arctan( a )] , (95¢)
ry
1
W, = 6rES A (2 T ) [361 (2= r2)2r, —4d’(3rd + 122772 + 4
+2a°(5r% — 14212 + 4. — 4a* (¢4 = 9r4)r]. + 3a(¢? + 3r2)%F
—3(r4 —a*)(a@® + ) (@ (? = 12) = (£2 + 3r2)r2 )2 arctan (iﬂ : (95f)
Iy
n(a@® +1r3) 4 2.2 4 4 _ (22 a
W3 = = ar, (3a* +2a*ri +3r}) = 3(r} — a*)(a* + r7) arctan — (95g)
+
24 12r
Ry =—=7(r +a), RzzﬂE—L;(ferri), (95h)
2472 6r .
F,=- Ef;’ F, :m[%ﬁ—k(ﬂﬁ-az)ri—azﬂ]. (95i)

The regularization procedure outlined above is applicable to all background geometries considered in this paper. The
holographic renormalization prescription employed is natural, producing consistent and unambiguous results by isolating
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the finite piece of the bulk effective action from divergent terms. In contrast, any naive regularization treatment that merely
removes the divergent term would fail to yield physically sensible results, as demonstrated in Egs. (94) and (95). As an
illustrative example, consider verifying the Euler characteristic for AdS, spacetime obtained through this holographic

renormalization procedure:

y = lim

Fe—>00

where ¢; = — % and ¢, = %. Remarkably, this result aligns
precisely with the prediction from the integrated four-
dimensional Euler density E; using the Gauss-Bonnet-
Chern theorem [120]. This alignment validates the current
renormalization procedure, and for more discussions, we
refer the reader to [29,30].

Finally, the integration of the invariants (95) culminates
in the ultimate expression for Cj,., for the nonextremal
Kerr-Newman-AdS, black hole in STU models,

C(KN-AdS) _ W3
local ﬂ
+ B(eW, + bRy + by F5), (97)

- (40 - CW] - blRl - 62F1>

where the nontopological terms W;, R; and F; are
expressed in terms of different black hole parameters, as
detailed in Eq. (95¢). Notably, the relation (97) precisely
aligns with the results obtained in [29] for vanishing
magnetic charges on the KNAdS, background. Further-
more, we verify the consistency of the C,., contributions
derived for the other black hole backgrounds considered in
this paper as distinct special cases.

2. Reissner-Nordstrom-AdS, black hole

The background metric for a 4D nonextremal Reissner-
Nordstrom-AdS (RNAdS,) black hole solution of the STU
field equations (38) is expressed as follows:

—f(r)de® + % + r2(d6” + sin’0dg?),

A=A,)dt = -2ar,
r

G dxtdx” =
(98a)

where the function f(r) is expressed in terms of black hole
mass parameter m, effective electric charge ¢ [refer to (85)]
and AdS, radius 7,

2 2 2
f)=1-"24 440

=4+ —. 8b
r r2+f2 (98b)

Upon Euclidean continuation (¢ — it), the corresponding
Hawking temperature is given by

1 q> 372
T — -1 = — 1 —_— —+ s 99
o =F Amr, ( ri + 2 ) (99)

1 1
— d*x+/detgE, + —
{327[ [(NAcls4 rydetghs + 3272

/ Py /dety(c, +c27z)} —2, (96)
A(KNAdS,)

I
where r, represents the outer horizon radius at which
goo(ry) = f(ry) = 0. This yields the mass parameter as

r, L
= 1
m 2( + —I—fz)

For the Euclideanized background geometry (98), the
required invariants are given by

(100)

W o WHP? = % (mr — q*)?, (101a)
E4 :§+%(6m2r2 —12mg’r + 5¢*), (101b)

R*= %, (101c)
RE,, " = ij‘fj. (101d)

We then employ the holographic renormalization procedure
as outlined in Sec. IVA 1 to derive regulated values for the
integration of the above invariants on the RNAdS,. The

results are as follows:
e 28T 2t
d4)C\/_ ;u/paW” PO = 5”—4 (4 + — 2 +—

16 4 rh
4 Tri 32rr,
+2(1- f2)+ e
(102a)
d*x\/det GE, = 4, (102b)
12ﬁr 2 2472
d*xy/detgR* = ——F ( 1+ | ==+,
16 1622 ) ©7 < +ri> 2
(102c)
6pr’ 2\ 2472
dxy/detgRE, v = P (34 ) 20
1672 nt re 4
(102d)
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These results lead to the final form of C,,, for the nonextremal Reissner-Nordstrom-AdS, black hole embedded in the

STU models, given by

(RN-AdS)

Clocal

’
c—=

4 4 2
g(c—Sa) 5[(7c+3051+3052)7+ 87 5
2ot
¢ )] (103)

3
brs <(4c+3051+4552) (c +30B; + 156,) 5 + —
reorl

2rl?

We have verified that the above relation is in perfect agreement with (97) for a vanishing rotation parameter, i.e., a = 0
Notably, there exists an additional topological term %c when transitioning into the nonrotating but charged background

In the Boyer-Lindquist coordinate system, the background metric describing the Kerr-AdS black hole is presented as a
truncation of the geometry (81) by setting g = 0. Specifically, the parameter A, takes a modified form,

3. Kerr-AdS, black hole

i (104)

A, = (r? —|—a2)<1+%) —2mr.

For the outer horizon at » = r, with A,(r,) = 0, and with the same Euclideanized setup, the mass parameter m and the

inverse Hawking temperature # are characterized as
2 2 2 2 2
ry a- a- ri 1 ry a> 31 a
==L (144542, =— | l+5+—F -5 105
"= ( Atz ﬂ) L e ( AN ri> (105)
The necessary background invariants on the KAdS, geometry are derived as
W e WHPO = L [0 — 15r%a*(r? — a*cos?0)cos’0 — a®cos®0)] (106a)
724 (P + a%c0s%6)° ’

24 48m’ 6 2.00,2 _ 2002 2 66

E, :ﬁ—’—mh —15r2a*(r* — a*cos?0)cos?*0 — a®cos®d), (106b)
144 - -
R2 :7, RF”DFW/ :O, (106C)
followed by their regulated integration (via holographic renormalization) relations
pr. a> a®+rl
d4 deta W WHYPe — 4 — 1 — -, 107a
1622 ) ©F e (£ - a?) 2 o)
16 — [ d*xy\/detgE, = (107b)
2 2 0
— [ dtx\/detgR? = ﬂ” o R R (107¢)
16 ) ri 4
1
62 d*x\/detgRF,,,F* = 0. (107d)

All this provides the following simplified C),., relation for the nonextremal Kerr-AdS, black hole in the STU models

—6b 2 2 2
(c = 6b,)pr,. (1 o _%)_ (108)
+

(Kerr-AdS
Clocal = 4(( - Cl) - ﬂ,(l/ﬂ2 _ 612)
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It can be verified that the above result matches the
expression (97) by managing all the Kerr-Newman-AdS,
terms W;, R;, and F; for a vanishing ¢ = 0.

4. Schwarzschild-AdS, black hole

We derive the background metric for a Schwarzschild-
AdS, (SchAdS,) black hole as a charged-truncation (i.e.,
q — 0) of the RNAdS, geometry (98). In this context, the
corresponding background metric function f(r) captures a
specific form,

1—2—m+r2

£r) = 5

(109)

The inverse Hawking temperature parameter for the
SchAdS, black hole is given by

1 3r2
-1 _ 1 ory
b Armr, < * % >’
where r, is the horizon radius such that f(r,) = 0, and it
relates the mass parameter m via

(110)

2
m_r+ <1+r;> (111)
4
The background invariants are computed as
48m?
Wﬂb[lﬁwﬂ re = 6 (1128.)
24 48m?
144 -
R? = e RF, F* = 0. (112c)

To derive the regulated values of the above integrated
invariants, we proceed with the same holographic renorm-
alization procedure detailed in Sec. IV A 1. The results are

4%
d*xy/detgW,, ,,Whre =4 — ——
1622 ) ¢V I o (& +3r%)
r2
x(l-{%), (113a)
16 —— [ d*x\/detgE, = (113b)
2472 r
d*xy/detgR?> = ———— (1 -—% |,
162 *vee f2+3r3)< 2
(113c)
d*x\/det gRF,, F* = 0. (113d)

1677

Finally, we find the relation to obtain the C,, for the
nonextremal SchAdS, black hole in the STU models,

(Sch-AdS) __
=4(c—a) -
GEEES RN

Clocal (1 14)
The expression is found to match the results (95¢), (103),
and (108) by appropriately setting ¢ = 0 and a = 0.

5. Extremal limits and near-horizon geometry

Now, let us delve into the extremal limit of black holes,
denoted by f — oo, wherein the Hawking temperatures
vanish, implying T\, = f~' = 0. Applying the extremal
limit to the aforementioned nonextremal backgrounds and
their setups might, naively, lead to divergences. However,
this challenge is effectively addressed by employing the
quantum entropy function formalism [8§9-91], succinctly
outlined in Sec. II B. The analysis is specifically confined
to the “finite” part of the extremal near-horizon (ENH)
geometry, which includes an AdS, component.

At this stage of our work, our objective is to derive the
invariants W,,,,,, W*°, E,, R?, and RF ,,F* [as outlined in
the Cjcq formula (80)], along with their regulated integra-
tion results around the Euclideanized extremal near-horizon
(ENH) geometry of the Kerr-Newman-AdS,, Reissner-
Nordstrom-AdS,, and Kerr-AdS, black holes. Notably,
the extremal Schwarzschild background is not a valid
geometry [121]. The specific process is detailed as follows.

To structure the extremal near-horizon geometry of the
KNAdS, metric (81), we introduce a new parameter A and
new coordinates 7, 7, and ¢ as
r=ro+ak, =21 ¢= ¢+f2 zjg)z (115)
Here, ry represents the location of the extremal horizon,
satisfying #~!(ry) = 0, imposing the following extremality
bounds on the KNAdS, black hole parameters:

2 3
a? +q —r0<1+a + r0>

A
a’> 2r
m= r0<1 +2+ 520) (116)

The parameter ¢, will be later identified as the radius of
AdS, space characterizing the ENH AdS, geometry of the
KNAdS, black hole and can be expressed as

by =70
2 \/612

Notably, the condition 4 — 0 in transformations (115)
represents a combined limit of the near-horizon and

a+rg 2ry + 2 (2r5 — ¢%)
+ £+ 613 4+ 2 (6r3 — q*) — 3r}
(117)
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extremality, while keeping 7, 7, and ¢ fixed. In this limit,
along with the Euclidean continuation 7 — —i7, the near-
horizon coordinate transformations (115) restructure the
KNAdS, metric (81) into the forms

= Iy £30% ) dr? P 2
G dX¥dx :m 7-dz +? +A—9d6’
2 2 2A : 29 " 2= 52 2
(a —i—ri)g 2gsm <d¢+ 2aro2 2i7’d%> ’
E%p§ (a* +rp)
(118a)
where
a? a?
Ag=1-—cos’0, pj=r§+a’cos’d, E=1-—.
I 4
(118b)

Similarly, one obtains the background Maxwell field (83)
supplying the charges to the above extremal near-horizon
geometry as

it} arysin’@

r3—a’cos?0)Fdi —

d(}ﬁ} (119)

—
=
—

From here, the Euclidean ENH metric (118) can be struc-
tured into a wrapped version of AdS, fibered over a compact
space K, as expressed by (for instance, refer to [§89-91]):

dr?
(P -1)
Here, (7,7%) represent coordinates describing AdS, within
the range 1 < 7 < oo and 7 = 0 + 2z. Additionally, f(y) is
a function of coordinates (6,¢) along the K space,
collectively denoted by y. Importantly, the structure of

ds% involves the remaining differentials that are invariant
under the SL(2, R) isometry of AdS,. It follows that,
(?—a

Vdetg=G(y) = )

where G(y) is a function that has no dependence on the
AdS, coordinates.

9, dxdx =231 (y) [(?2 —1)d# + ] +ds%. (120)

213

(r + a*cos?0) sind,  (121)

Now, our task is to evaluate the contribution of Cj,, for
extremal black holes by integrating the a4(x) coefficient or
the related background invariants over the ENH geometry,
as structured in Egs. (118) and (120). However, these
integrations suffer from divergences due to the infinite
volume of the AdS, piece. As per the QEF prescription
discussed in Sec. II B, we must ignore these divergences
and extract only the divergent-insensitive finite part of the
ENH geometry. This finite part encodes the quantum
degrees of freedom for the extremal black holes and serves
as the exact result for the C),., contribution. Importantly,
we do not need to employ any specific regularization
scheme, such as the holographic renormalization consid-
ered for the nonextremal case in Sec. IVA 1. As a way
forward, we introduce an infrared cut-off at # = 7. and
expand the Cy,, formula in terms of the a4(x) coefficient as

Fe 2 -
Clocal = / d?/ d%/ dod¢ +/ det§a4(x)
1 0

= 2n(re=1) [ @G0)ayy) (122)
ENH

The term proportional to 7, is interpreted as an infinite shift
in the ground state energy in the extremal limit [§9-91]. On
the other hand, the cut-off independent finite piece is the
true and unambiguous contribution to the one-loop cor-
rection for the quantum horizon degeneracy of extremal
black holes. Thus, we need to discard the divergent part and
identify the finite term, involving a —2xz prefactor, as the
desired C,., contribution for extremal black holes. This
yields the following revised formula:

(=27)

(4r)*
+ b,RF, F*],

Clocal = /ENH dzyG(y) [CW,uupaWWPU - C(E4 + ble

(123)

where we have utilized the trace anomaly relation (79) for
a, and the integration range is 0 < @ < 7z and 0 < ¢ < 2z
for the y coordinates on the ENH geometry (118). The final
form of the background invariants, as well as their integ-
rations over specific parts of the ENH geometry, are derived
and separately listed in Appendix B. This results in the
following expression for Cj,, for the extremal Kerr-
Newman-AdS, black hole in STU models:

ClextKNAGS) _ _gq % 3a7r3( (¢ + 16b;) — 27 N ] (39¢ + 2406, — 24b,)
local 2ELR (@ 1 R 0 ! oo 0 : ?
2 ot £ 15
— (22¢ - 246,) 5 — °4> i <(49c +336b, — 48b,) — (50¢ + 48b,) — — i)
o To o o

+3arl! <(7c + 48D, + 24b,) — (6¢ — 8b,)

4 a? a**\? a
X|(3+—————;| arctan| — | |.
5 g 7o

I/ﬂZ

7—r—g> +3(V(])2<

0

et a?\?
1+
o

(124)
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Next, we compute the same integrated invariants on the
near-horizon background of extremal Kerr-AdS, and
Reissner-Nordstrom-AdS,; black holes in STU models
(refer to Appendix B). The corresponding regulated and
finite contributions to C,,., are presented as follows

ext,Kerr- 2(c—6 I/ﬂz 2 32
ClexikenadS) _ 40 ) _ (c—6b) 2<]_a + r0>’

ocal (Lp2 _ a2) fz
(125)
ext RN- 4 2 3
ClexLRN-ALS) _ <§c —4a+ 4bl> —(Fe+26 - 52> r—g
2 r(z)

Note that with appropriate limits, particularly g =0
and a =0, one can successively reproduce the above
formulas as consistent truncations of the Kerr-Newman-
AdS, relation (124).

To ensure the consistency of our setup, we have also
taken an alternative approach to obtain the C),., contribu-
tions by directly considering the extremal limit, f — oo,
on the finite temperature backgrounds discussed in
Secs. IVA 1-IV A 3. This method enables us to circumvent
naive divergences associated with taking the f — oo limit.
In the initial steps, we treat the outer horizon r, as an
explicit function of the inverse temperature S, while
keeping all other parameters and charges fixed. By employ-
ing a low-temperature expansion, we obtain

2xt %
p

Here, ¢, represents the radius of AdS, space that naturally
emerges in the structure of extremal black holes. On the
other hand, the extremal horizon ry is interpreted as a finite
component within the nonextremal horizon radius r, as
p — 0. For a generic extremal Kerr-Newman-AdS, black
hole, 7, is given in Eq. (117), while the typical form of ry is
expressed as

£? 2 2
rg:—<\/1+—(6q2+7a2)—“——1>. (128)

ry=ro+ +0(p7?). (127)

6 £* £*

Continuing with the expansion (127), we can expand the
Cloca CONtribution as

ﬁhmclocal =Cif+Co+O(B). (129)
In the extremal limit as f — oo, the terms with inverse

powers of S vanish, while the first term, linear in f,
diverges. This divergence can be interpreted as an infinite

shift in the ground state energy due to one-loop fluctua-
tions. Therefore, we can safely disregard this linear and
divergent term and consider the finite constant term C; as an
unambiguous and effective value for the C,, contribution
of extremal black holes. The results obtained by following
this procedure align precisely with those derived in
Egs. (124)—(126) via the QEF formalism.

6. Asymptotically flat limits

We will now explore the C.., contributions for the
asymptotically flat counterpart of the previously discussed
nonextremal and extremal AdS, black holes embedded in
STU supergravity models with a vanishing cosmological
constant, i.e., A = 0. The flat-space limit is achieved by
setting £ — oo in the relations given in Egs. (97), (103),
(108), (114), and (124)—(126). In this scenario, the outer-
horizon and inverse Hawking-temperature for the nonex-
tremal Kerr-Newman black hole are given by

dnr (r3 +a?)
_ [ 2 2 o _anrg \ry
ro=m-+y\/m q a-, ﬂ (r%r_qz_az)a

while r and 5, as well as the revised Kerr parameter b = 7

(130)

controlling the related extremality, are constrained as

ro=1/q>+a>,  Cr=1/q*+2a%, b:%
(131)

Following that, the Cy,, formulas for the nonextremal and
extremal Kerr-Newman black holes embedded in STU
models are expressed as

XN — 4(c—a) +

local

g’ [(3a4 +2a%r2 +3r%)
167 a*rd (a®> +r%)

ERE R (5)),

5 4

a’ry ry
k) _ o, € [(34245% + 400" + 16D°)
local 2 (b2 + 1)2(2b2 + 1)

3(2b2+1) . b
— =y arctan | ——— .
b(b* + 1)%/? Vb2 +1

Similarly, we successively derive the local contributions of
nonextremal and extremal Schwarzschild (¢ =0, a = 0),
Reissner-Nordstrom (a = 0, £, = r(, and b = 0) and Kerr
(g =0, ¢, = V/2ry, and b — o) black holes as follows:

(132)

clh 4(c—a),

local

(133)

Clo " = 4(c—a),

ckem — 4(c - a),

local

(134)

066016-27



KARAN, PUNIA, and BISWAS

PHYS. REV. D 111, 066016 (2025)

2¢fq*
a) + /Z,
Sz

(ext,RN-AdS)
local

C(RN)

local

= —4a.

=4(c— (135)

We have verified that the above C,., expressions are
consistent with the results obtained in [15,16,21,24-27]
for asymptotically flat, black holes embedded in Einstein-
Maxwell (super)gravity theories.

B. Results

This section provides a comprehensive overview of the
final outcomes of our research, specifically focusing on the
logarithmic corrections to black hole entropy within two
distinct scenarios of STU supergravity intersecting with
U(1)?-charged EMD theories in four-dimensional space-
time (as detailed in Sec. III). Our analysis is grounded in
the central formula outlined in Eq. (25). The local compo-
nent of the logarithmic corrections is derived from the

|

corresponding Ci.., formulas, as detailed in Sec. IVA,
while considering trace anomaly data from (79) for the two
STU truncations: (k;,k,) = (1,—1) and (v/3,—1/+/3). In
contrast, the zero-mode contributions for various black hole
backgrounds are computed using the global relation (25c¢).
For the specific black holes considered in this study, we
refer to the C,,, data listed in Table I. We will further
elaborate on the typical nature and significance of these
logarithmic correction results in Sec. V.

1. Quantum corrected AdS, black holes

Case I: (ky,k,) = (1,—1). For the STU supergravity model
truncated into a U(1)?-charged EMD-AdS theory with
dilaton couplings x; = 1,k, = —1, the logarithmic entropy
correction results for Kerr-Newman-AdS,, Reissner-
Nordstrom-AdS,, Kerr-AdS,, and Schwarzschild-AdS,
black holes are calculated as

(Sch-AdS) -37 3431‘3_ ri

AS =|l——————F——(1- 1 , 136
B FERETIZRET= N Gy | hia (136)

AS(Kerr-AdS) o _Q 343ﬂ}"+ 1+ 61_2 a’ + }"i InA (137)
BH C 45 80x(¢? - d?) r % "

[ 562 71972 1667xr pr3 1217¢%  83¢*

AgRN-AdS) | 202 71T +_ P+ - 1 , 138
BH 225710022 255 25x/ 82 8t n Ay (138)
roacs) _ [ 419 at 249 183172 2r+ 183172 | 8rt 27172

AS = —————y{— +t—— 83 + 83 +
BH 180 32_r+(r+ +a?) | 5 TS T 5¢2 5a* 27

1668 /92 p ri 2 16r+ 83 76972 23294
- 1420k 249
5a° ( iz ) —|_407rrJr ( < 2 \4 ' 2 404
20r (83 266172 749r+ 332r+ 1 1667”+ L 87 10M 80
at \10 522 204 a? at a®
24947 dzry  3ri)\2 249/3r+ r’
1- 1+—=
+ 407a® ( p ta 2 40ﬂa a?
2 2 2) 4
X (1 - a_2 + (a +23r+) s ( —2>> arctan <i> H In Ay. (139)
r 4 r
+ Lt

Similarly, in the extremal limit and near-horizon analysis (see Sec. IVA 5) for the above backgrounds, we obtain

(extKer-AdS) _ 29 343¢3 a’ +3r3
ASS 1- In Ay, 140
[90 40(¢* - a?) 22 A (140)
A§(EXLRN-ALS) 101 £ In A "
BH - _Kﬂzo +f2 S (141)
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Aglonknads) _ [_689 3 37,5 (1831, 8372 837 s 5 (7163 91322 83
BH 180  802ar*ry(r3 + a?)? 6 g 2r o\ 2 2 27

5 o (10493 415¢2 24974 11 (1499 24972 8344 249r(1)2 a?\?
Sa’rg —+ =3 3ar} 5 ) - 14+ =
10 s 2r; 2 s 2r; 2

2
2 2 P2\ 2
<3+f e —%) arctan<3> H In Ay (142)
ro ro ro

o
Case II: (k;,%,) = (v/3,—1/+/3). For the STU supergravity model intersecting with a U(1)2-charged EMD-AJS theory,
with dilaton couplings kx; = v/3 and k, = —1/+/3, the logarithmic correction to the entropy of Kerr-Newman-AdS,,
Reissner-Nordstrom-AdS,, Kerr-AdS,, and Schwarzschild-AdS, black holes are computed as

. 37 343 2
ASSALS) [ —”(1 r*)}lnAH, (143)

45 20(¢% +3r%) £?

AS(Kerr»AdS) o _g _ 343ﬂr+ 1+ 61_2 _ a2 + r%— In .A (144)

BH T 45 80x(¢2 —d?) e H’

®RN-Ads) [ 586 607r%  Sldxr,  pri 1161£% 257/
AS = |-+ - 103 - )| In Ay, 145

BH 25 1002 T T Tp T 25ar 82~ 2t )| M (143)
AgNATS) _ [ 443 N a* 257 N 108172 e 2r2 257 + 5213r2 N 8rt 257 + 677r%

BH | 180 3282 (P2 +4%) | 5 3¢ 3d® 5¢2 15a* 202

5145 1+9ﬁ N P (157 i\ 80r% §+2363ri+1351ri
15a° £? 4071, Nz 3a*> \ 20 5¢2 44

2014 (257 7783r% 661ri) 3 102875 <1 _91’1)) +5147”’+ <3 n 8r2  10r% +M>

& \30 1522 2 34 Z 155 2 T

+257,Br7+ 1_4711;4_% 2_’_257,81& l—é 1+é 2
407a® s 2 40za’ a® a’

a*> (a®>+3r%) Aar a®\\? a
BN S

On the other hand, considering the near-horizon limit in the extremal case for the above backgrounds yields

(ext.Kerr- AdS) 29 343f% a? + 37'0
AS - 1- In Ay, 147
BH 190 40(£2 — a?) z " (147)
exrNAS) | S1L 4745 137
AS =1"50 1072 | A 148
B 90 12072 4073 A (148)
(extknacs) _ [ 713 % 1081 257£2 2574%\ a’r) (21049 273142 2574
ASpy’ T ” a’rg t—3 - 4 > 7
| 180 ' 16Eas*r)(r2 + a?)? 6 52 10rk 15\ 2 2 2rk

10341 6617¢% 257¢* 279 739¢% 25744\ 257r)? a?\?
g + + +3ari! | == + -—L 1+
"\ 10 1573 2r 2 15173 307§ 10 r2

2
LpZ 2{2 2
<3+ i —a—4> arctan<£> H In Ay. (149)
ro rO ro

All the results presented above are entirely nontopological as they are intricate functions of the respective black hole
parameters and dimensionless ratios, denoted as {a, r,,ro, ¢, ¢,, f}. These parameters are distinct for each background,
representing direct functions of the black hole mass, charge, and angular momentum (as detailed in Sec. IV A). Notably,
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the formulas derived for uncharged Kerr-AdS, and
Schwarzschild-AdS, black holes in both extremal and
nonextremal limits are dilaton coupling independent
and identical. These quantum entropy corrections are novel
and represent a significant achievement in this work.

2. Quantum corrected flat, black holes

Case I: (ky,ky) = (1,—1). For the STU supergravity model
truncated into a U(1)?-charged EMD theory with dilaton
couplings x; = 1,x, = —1, the logarithmic entropy cor-
rection results for asymptotically flat Kerr-Newman,
Reissner-Nordstrom, Kerr and Schwarzschild black holes
are calculated as

ay 37
ASS = 25 A (150)

29

CIr 82 ext,Kerr 9
A_S‘g; ):ElnAHv AS%HLK ):90111.,4]{’ (151)

37 83pq°
AS](;}{N):{ 4 334 ]mAH,

45 1 20071
(ext,RN) _@
ASgn ) = = 1go M Aw (152)
AEN) _ 82  83fq* [(3a* +2a°r% +3r1)
BHC 145 U 12807 | afri(a? + %)

2 2N(2 2
+3(a ri)la +’”Jr)arctan<i> H In Ay,

5.4
a’ry Ty

(153)

Aglexkn) _ [_ 689 83 [(3+ 24b* + 40b* + 16b°)
B 180 ' 160 0% + 12267 + 1)

3262 + 1)
- W arctan

) f
(154)

Case II: (ki,Kky) = (\/5,—1/\/3). For the STU super-
gravity model intersecting with a U(1)?-charged EMD
theory, with dilaton couplings x; = v/3 and x, = —1/+/3,
the logarithmic correction to the entropy of Kerr-Newman,
Reissner-Nordstrom, Kerr, and Schwarzschild black holes
are computed as

a) 37
ASSN — 25 A (155)

82 " 29
AS](BI;W) = Eln Ay, AS](;Ht,Kerr) - %m Ay, (156)

37 25784
ASRY — |2 In Ay,
B~ |25 6002 | "
o 893
ASIEIRN) ~go A (157)

ASKN _ [g 257p4* {(3a4 +2a*r2 +3r4)
45 3840z a*rd (a*+r2)
2_ 2\ (242
+ 3(a +5> (4a +ri) arctan (i> H In Ay,

ary Ty

(158)

AS(ext,KN) _ —E_i_ﬁ (3 +24b2 _|_40b4 + 16b6>
B 180 ' 480 b + 1)2(26% 1 1)

30202 + 1) b
— Warctan <b2—H> }:| In AH-
(159)

In contrast to the AdS, results, the logarithmic correction
formulas obtained for the flat, backgrounds are less
complicated. Interestingly, their nontopological nature,
which was unavoidable for the AdS, cases, exhibits a
specific pattern for the asymptotically flat backgrounds. For
charged backgrounds, the results remain nontopological
but are considerably more streamlined in terms of back-
ground parameters and dimensionless ratios, as illustrated
in Sec. IVA 6. However, in the extremal limit, the Reissner-
Nordstrom formulas become expressions in terms of
numerical ratios, completely independent of geometric
parameters. Similarly, in the limit of vanishing charge
(g =0,b - ), the logarithmic correction relations for
Kerr and Schwarzschild black holes become entirely
topological, both in the extremal and nonextremal limits.
Readers familiar with the literature may recognize this
characteristic pattern, as observed in previous works such
as [15,16,27]. Additionally, the Kerr-Newman results are
always found to be transcendental instead of rational.
Further discussion of the nontopological versus topological
logarithmic correction results as well as their implications
are presented in the next section.

V. SUMMARY AND DISCUSSIONS

In this paper, we computed the logarithmic corrections to
the Bekenstein-Hawking entropy of black holes in 4D STU
supergravity [65,66]. Specifically, this study considers the
scenario where STU models are viewed as a U(1)*-charged
EMD theory [74-79] and further truncated into two specific
U(1)?-charged EMD systems [75-77,80]. These systems
are characterized by one dilaton coupled nonminimally to two
Maxwell fields, with the specific coupling constant values
(k1.%) = (1,=1) and (v/3,-1/+/3) in the action (37).
Subsequently, we demonstrated how setting appropriate
constraints on the two U(1) Maxwell backgrounds/charges,
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ie,0, =x101 =— %‘, uplifts the entire Kerr-Newman-AdS

family of black holes and their flat counterparts, embedding
them within the two cases of truncated STU systems. This
technically defines our choice of EM embedding, where the
Einstein-Maxwell backgrounds (both cosmological and
flat) nontrivially satisfy the U(1)?-charged STU equations
of motion for a null dilaton background. In the future, we
aspire to surmount the obstacles associated with going
beyond the charge-constrained or EM-embedding limit and
explore the quantum black hole entropy within STU models
characterized by a nonvanishing dilaton background.

Notably, one should not be concerned about the absence
of any fermionic contribution in the main results presented
in Secs. IIID and IV B. The current STU models are
essentially a bosonic truncation of N = 8 supergravity,
which includes multiple gauge and scalar moduli fields
[63,64]. As discussed, these models have undergone further
truncations into U(1)* and U(1)?-charged EMD systems
(36) and (37), forming the central or exact bosonic sector of
all N' > 2 supergravity theories and providing them with
general black hole solutions [68]. In essence, STU models
are of particular interest as they serve as universal bosonic
building blocks within supergravity/low-energy string
vacua. However, one can utilize the current STU results
at any point and explore the full supergravity theories
(minimal as well as matter coupled), where the a4 (x) and
logarithmic correction relations receive contributions from
additional one-loop fermionic and bosonic fluctuations in
supergravity, vector, and other matter multiplets. When
considering the embedding of the same black holes, it is
essential to remember that the additional fermionic and
bosonic content must have a vanishing background but
fluctuate around the common EM backgrounds (for details,
see [12,13,21,24-26,29]).

The logarithmic correction relations for the embedded
AdS, and flat, black holes, as detailed in Egs. (136)—(159),
are computed using Euclidean quantum gravity setups
[16,89-91] as elaborated in Sec. II, followed by the heat
kernel method-based Seeley-DeWitt expansion [98]. In the
local part, the four dimensional C,,, contributions depend
only on the a4(x) coefficient. The relevant data (78) is
obtained by fluctuating the STU content around the
embedded EM backgrounds and is re-expressed in terms
of appropriate geometric invariants and conformal anomalies
in Eq. (79). The related central charges and anomaly coeffi-
cients are determined in terms of generic formulas (79b)
involving dilaton couplings x; or k,. In special limiting
cases, the obtained heat kernel data aligns perfectly with
previously available results for the Einstein-Maxwell theory
[15,16,27], or the bosonic sector of A/ = 2 supergravity
(k1 = ko = 0)[13,19,21,24,26,29], the Kaluza-Klein system
(k1 = V3 .k, =0,A =0) [23], and Einstein-Maxwell-dilaton
models (k; = 1,v/3,1/+/3 and k, = 0) [30]. Furthermore,
we independently verified the computed a,(x) relation

through manual calculation and by developing Mathematica
algorithms using xAct [122] and xpert [123]. These validations
enhance our confidence in the consistency of a4(x) deriva-
tions and logarithmic entropy correction results achieved
in this work.

All the results presented in Secs. IVB 1 and IV B 2 are
obtained by integrating the Weyl anomaly W, ,, W#*¥?, the
Euler density E4;, and other background invariants such
as R* and RF,,F*, which constitute the central ay(x)
relation (79). Specifically, these integrated invariant rela-
tions, along with their central charge coefficients
(¢,a,by,b,), collectively evaluate the C,., formulas out-
lined in Sec. IV A. For all AdS, black holes, this integration
process necessitates the inclusion of a holographic boun-
dary term (90) to regulate the divergences arising from their
infinite volume. This choice of regularization naturally
aligns with the Gauss-Bonnet-Chern theorem [120], result-
ing in a consistent and unambiguous result by isolating the
finite portion from the diverging bulk one-loop effective
action. The holographic renormalization choice yields the
consistent 4D Euler characteristic value of y =2 when
integrating E, around all AdS, backgrounds of interest.
Furthermore, we have verified that the integrated AdS,
invariants precisely match the established relations in
[15,16,21,26,27] for asymptotically flat, black holes in
the limit £ — oo. Around these flat backgrounds, invariants
such as R? and RF,, F* vanish, and ay(x) is solely
governed by W,,,,WH?? and E4 anomalies, along with
nonvanishing central charge values ¢ and a. In this flat-
space scenario, the integration of W, ,,W#**? and E, over
the nonextremal backgrounds always traces out a finite
volume and does not require the utilization of any regu-
larization treatment or incorporation of boundary terms.

The regularization procedure of the integrated back-
ground invariants over all AdS, and flat, black holes in
their extremal limit rely on the prescription of quantum
entropy function formalism [89-91], as detailed in
Sec. IIB. Here, the underlying analysis is confined to
the cut-off independent finite part of the extremal near-
horizon geometry, which includes an AdS, component and
suffers divergences due to its infinite volume. Following
the QEF prescription, we ignored these divergences and
extracted only the divergent-insensitive finite part of the
ENH geometry. This treatment serves as the exact result for
the Cj,cq contributions provided in Sec. IVA 5. Moreover,
these extremal results are further verified by directly taking
the f — oo limit on all the nonextremal backgrounds
considered in Secs. IVA 1-IVA 3. This ensures that the
extremal logarithmic correction results presented in this
paper are unambiguous and robust.

However, there are instances reported in the literature
[22,46] where the AdS, logarithmic corrections derived
from extremal near-horizon analyses do not align with
the results obtained from field theory computations. It is
important to resolve this discrepancy and highlight that
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the Cjy contributions remain consistent across all
treatments—whether involving the full geometry or focus-
ing on the near-horizon of extremal black holes. Actually,
the differences arise in the zero-mode or C,,,, contributions,
leading to distinct total logarithmic correction outcomes
when employing different approaches to analyze the two
facets of extremal black hole geometry. In the future, it
would be intriguing to investigate whether the degrees of
freedom responsible for the zero-mode quantum entropy in
extremal AdS black holes reside in the near-horizon region,
encompass the full geometry, or exist elsewhere. Progress
in this direction may require determining the appropriate
ensemble and scalings for extremal AdS black hole
backgrounds.

In the current choice of STU supergravity models, we
observe that all the AdS, logarithmic correction formulas in
Egs. (136)—(149) are guaranteed to be nontopological
and represented by nontrivial functions of different black
hole parameters. However, their flat-space counterparts in
Egs. (150)—(159) exhibit a relatively simplified yet con-
trasting nature. Specifically, in the absence of the AdS,
boundary, a vanishing charge (as in the Kerr and
Schwarzschild cases) ensures confirmed topological or
black hole parameter-independent numerical results. More-
over, the extremal limit guarantees the same nature for all
uncharged (e.g., Kerr) and nonrotating (e.g., Reissner-
Nordstrom) backgrounds, while the charged-rotating
Kerr-Newman result remains nontopological. Readers
familiar with the literature may recognize a similar char-
acteristic pattern of logarithmic corrections as reported in
previous works [15,16,27,29,30].

The aforementioned observation might set a stringent
criterion for four-dimensional supergravity models to admit
a UV completion, which is highly sensitive to the micro-
scopic analysis of the relevant black holes. In fact, we have
already seen that the available microstate counting data
[39-49,103] is indeed topological. However, in all even
dimensions, quantum black holes exhibiting nontopolog-
ical logarithmic corrections are a generic and natural
feature (e.g., see [15,16,27,29,30]). Notably, for a parent
theory in odd-D dimensions, the Seeley-DeWitt coeffi-
cients ap(x) characterizing Cy,., vanish due to the lack of
any diffeomorphism invariant scalar functions connected to
the concerned background [98], and the ASgy formula is
entirely defined by the topological C,,, contributions. Such
an expectation has also been confirmed in various 11D
supergravity computations [47-49,103].

In order to anticipate a topological logarithmic correction
in even dimensions following the current setup of this
study, one needs to either set ¢ = b; = b, = 0 or somehow
constrain the integrated invariants, such as W ,,,, W#**?, R?
and RF,,,F*, to have a vanishing or topological value [124].
Typically, these two classes of criteria, as well as their
possible overlaps, are found to be fulfilled while consid-
ering the supergravity backgrounds with anomaly and other

nontrivial cancellations [21,23,24,26,29,31], adhering to
extremality conditions, approaching the flat-space limit,
having vanishing charge or rotation parameters, turning off
the Maxwell backgrounds, etc. [125]. However, as soon as
one considers even-dimensional AdS backgrounds, the
logarithmic correction formulas are guaranteed to have
nontopological characteristics due to the appearance of
a natural and robust boundary # (with > = —12/R =
—3/A), which eventually declines or neutralize the simul-
taneous occurrence of available topological constraints
[29-31]. Arguably, this reasoning provides a consistent
explanation for the specific nature of logarithmic correction
results obtained for all Kerr-Newman-AdS and Kerr-
Newman families of black holes embedded within the
four-dimensional STU supergravity models.

However, discrepancies have been reported in certain
cases where logarithmic corrections derived through differ-
ent computational methods deviate from the expected
nontopological nature. For instance, in the context of
ten-dimensional massive IIA supergravity, the microscopic
computations for the logarithmic entropy corrections of
AdS, black holes appear to be topological [50]. To address
this puzzle, we suspect that incorporating matter multiplets
induced from the full Kaluza-Klein (KK) tower modes
could be crucial in higher-dimensional supergravity theo-
ries to preserve the true character of logarithmic correction
relations. Similarly, in the computation of logarithmic
corrections for BPS black holes in four-dimensional
N = 2 gauged supergravity presented in [126], the results
are reported to be topological, which contradicts the out-
comes in [29] and our expectation. As a potential reso-
lution, we argue that the topological characteristic in [126]
explicitly emerges from the considered Euler term.
However, it might be possible to recover the true non-
topological nature of logarithmic corrections by incorpo-
rating the n-invariant term as a correction due to the
presence of a boundary [127].

In conclusion, the logarithmic correction to the entropy
of extremal and nonextremal AdS black holes embedded in
any even-dimensional parent theory confirms a nontopo-
logical nature compared to their flat-space counterparts.
This insight provides a natural and more comprehensive
“infrared window into the microstates” of the black holes.
We argue that the presence of AdS boundary must be
interpreted as a robust and general criterion for this “non-
topological” characteristic, which is also sensitive to the
microscopic details of the black holes. Therefore, the
current study sheds light on novel aspects of black hole
properties in this specific class of STU supergravity
theories and significantly contributes to understanding
low-energy effective string theory models in 4D. It would
be intriguing to extend this topological vs nontopological
analysis to the recently explored near-extremal black holes
[55-59], even in higher-dimensional supergravity. A more
challenging task would involve realizing and interpreting
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the nontopological nature of logarithmic corrections
through progress in microstate counting within the frame-
work of UV-completed string theory counterparts. We aim
to explore some of these advancements in future research.
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APPENDIX A: HEAT KERNEL TRACE
COMPUTATIONS FOR a4(x) IN STU MODELS

1. Notation and background identities

In this paper, we considered the two Maxwell field
strengths, denoted as F'j,, and F,,, which play a crucial
role in embedding EM backgrounds into the U(1)?-charged
STU supergravity models for two sets of coupling con-
stants: (ki,k,) = (1,—1) and (\/5, —1/+/3). They lead to
solely electrically charged configurations that satisfy either
0, =k10; or Q; =Kk,0, (for detailed discussions, see
Secs. Il A and III B). Throughout our analysis, we main-
tained strict control over the Maxwell field strengths by
imposing a set of constraint relations:

Kiky = —1, K Fy Fi#* 4 k) Fap FP = 0, (A1)
KiF  F#* 4+ k3F o, Fot* = Fy, Fi* + Fo Fot, (A2)
K%(FlelW)z + K%(FZ/M/FZ”U)Z = —2’<1’<2F1WF1””F2WF2””7 (A3)
(Flyuﬁéﬂb)z = FlﬂvFlﬂDFZ/mFZPU = FlﬂuFZ”DFIpﬂF2p6' (A4)
The above constraints, along with the following Einstein and Maxwell evolution equations,
PR o o) a L B Rw L E, o
Flﬂ[)Flb + F2;4pF2v = E(R/uz - Ag/w) +Zg;w(F1/wF1 + F2;wF2 )’ (AS)
R =4A, DﬂFI”” =0, D#le‘” =0, prlpo] =0, D[MFQ/JG] =0. (A06)
lead to several induced on-shell identities that are presented as
RuFWEY, — LR FwEye
vt 1 l/)_g vt 2 2 p
1 - - -
_ 2
= m {R R — 4N> + 2A(F F (M 4 Fop F2) ) (A7)
Fyw B BBy =~ B0 Ey By Fo?
1 1 pt lust 1v _K_? 2 2 pt 2uct 2v
1 LV L I o
= —2F1W)F2 pFl/ufFQI/
Ky
- ' VoL, L
=5 F\/"F  FruFo,
Ky
1 - - -
_ 2 2
TR {R R —4N> 4 (Fr F A" + Fou F2)}, (A8)
R FF 7 = LR FWE 0, Ry o Fy = LR, Fope A9
ppvot 1 = E uvpot 1 > ppvot 2 2 — E yuvpet 2 2 > ( )
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(Dpplﬂv)(DpFIW> = 2(DﬂF1py)(DuF1pﬂ) = Rﬂypg}_?'lﬂ”}_?lﬂ" - ZRWFIM)FIDP’ (AIO)

(D/)FZyU)(D/}F2lw) = 2(D;4F2/)D)(DDF2/)”) =R FZ”UFZI)” - 2R;4VF2M)F2D/)' (All)

HUpo

In deriving the above identities, we have considered the gravitational Bianchi identities and related relations whenever
needed:

1
R#[u/)ﬂ] =0, R/l/w(rRﬂwm = ER#WURWW' (A12)

Notably, we have adjusted terms involving covariant derivatives on the Maxwell field strengths up to total derivatives,
accompanied by the commutation relation of covariant derivatives for a rank-2 tensor, as follows (for both 7 =1, 2):

(D/)Flﬂv)(DpFIﬂy) = ZFI”UD/)DyFIW)
= 2FI”U[D/J7D;4]FIW)
- ZFI”U(RDO_M/)FI‘HG + RMpFIUp). (AIS)

2. Components of heat kernel matrices E and ,,

In this section, we demonstrate the derivation of the components of matrices E and €,,, which are essential for
proceeding with the heat kernel treatment discussed in Sec. III C. To achieve this, we employ the formulas presented in
Eqs. (32) and (30). For the current configuration of STU fluctuations denoted as ¢,, = {}Az,w, h. Ay, Aoy, <~I>}, we utilize all
the matrix-valued data of Z%%:, (@?)?»%» and P#»%x recorded in Egs. (59), (61), and (62). Technically, we have identified 5

diagonal and 14 off-diagonal valid components of the effective potential matrix E, which are listed as follows:

Ehwhs = Pl — (@ Yous (@ )06, (Y ()50 T, . (Al4)
i _ pih, (A15)
ety — paiy _ ((Dp)alailm (wp)iz,,;awzﬁw;% _ (wp)al,,&)(wp)éa,ﬂzd)é’ (Al16)
F2ty — panay _ (a)/’)“zfli’ﬂ”(a),,)i"”‘az/’zilwyﬁ - (a)/’)“h‘i’(a)/,)‘i’“zﬂféﬁ,, (A17)
E®® = pPO — ()% (, ) OL, o = (@)% (@,) T, 4, (A18)
Ehwh — B phai _ phi,. (A19)
Eay — _(a)p)amﬁw(wp)ﬁy,sazﬂzhwi% _ (a)p)a]a(i)(wp)(f)azﬁl'&)é’ (A20)
Bt = —(a? ) (@, )T~ (@) (@,) " T g5, (A21)
El® = Ph® — ()l (@,) 90T, o, = (@ Ve (@)L o, (A22)
EVh = PO — (00)B00 (0, JI T, = (@)% (0,0 T, . (A23)
Ehwtia — phuaia _ (Dpwp);’ﬂ”“‘“, (A24)
Bt — Pt _ (D o Yt (A25)
Ehuwta — phuas _ (Dpwp)fl,waza’ (A26)
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Eazai'uv — P‘hai';w — (Dpa)p)“Zail#b’ (A27)
E9® = —(D,w’)"®  E®s = —(D, @) P, (A28)
Eaz,,db — _(Dpwp)aza‘i)’ Ed')aZ{z — _(Dpa)/’>‘b’/12a. (A29)

Notice that the aforementioned relations rely on the Z, , form of the projection matrices, which are expressed as

Ij;,

N

1, Ial;:alp = I“Zyazp = gﬂzn
1 1
Iﬁ Jhay E g;mgvﬂ +9 gﬂﬂgua zg;wgaﬁ . (A30)

Similarly, we derive the effective curvature commutator matrix €2,,, which consists of 4 diagonal and 12 off-diagonal
components. These components are summarized as follows:

A 1 o A A o
(Qﬂo_)hmhaﬂ = z (g”aRyﬁpo' + gﬂﬂRyapo_ —+ ngﬂﬂpg + guﬁRﬂapo') + ((wp)hﬂualy(wg)aléha/} — (a)g)hm/u]y(wp)a](ihaﬁ)z-a]ram

+ () (@) e — () () P ) T (A31)

Aoy dys?

Q)10 = R + ((,) 1 (@0,) 10 — () 1e®(@,)P0) T + ((@,) el (@) 00 = ()15 (@, ) rs0) T,

(A32)

(@) = R, + ((0,) " (05) % = (05) 2P (@,)%%) L5 + (@) 20 (05595 — (@)l (@, ) st )T} 5
(A33)
(2,)%® = (@)% (@,)7® = (0,)2(,) V)L, 0, + (@,)2% (@,) P = (@0,) % (,) )L 0. (A34)
(Q,0)"% = ((a,) ()10 = (,) e (@,) WPV, 01 + ((@,) 0 (@0,) 5 = (@) w2 (@0,) ¥ )L, ., (A3S)
(Qp0)® = ((0,)24 (@) e = ()1 (@,) 1)L, 01 + ()2 (0,) 0 = (0,) P (w,) )T, ., (A36)
(@) 122 = (@, ) el (w320 — (g )1 (@, ) rs®0) T 5 4 ((@,) 15 (@05) P = (@) ®(@,) ) g5, (A37)
(o) et = (@) (@0, 5 = (@) i (w0, Yl 0) T} G 4 ((@,) 20 (w05) P = (05) P (@,))*0) g5, (A38)
(Qp) e = (D)t — (D@, ), (A39)
(Qp) 1 = (D@, )b — (D, )b, (A40)
(Qpg) w2 = (D)t — (D a0, ), (A41)
(Qp) 2l = (D@, )t — (D y,) @b, (A42)
(Q,0)4«® = (Dyw,)«® = (D,,)4e®, (A43)
Q)% = (D) — (Dy,) e, (Ad4)
(Q,0)® = (D,w,)*® — (D,m,)"®, (A45)
(Q0) %% = (Dyw,) > — (Dyw,) . (A46)
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It is important to emphasize that during the evaluation of [D,,, D,] contributions for the aforementioned components, we
applied the covariant derivative commutation operations, as depicted in Egs. (31e), (31b), and (31a). In this process, we
treated the traceless graviton /,, as a two-rank tensor, the Maxwell fluctuations (ay,. a,,) as vectors, and the trace graviton

h and dilaton @ as scalars.

3. Traces and background invariants

In this section, we finally turn to our goal of computing the traces Tr(E), Tr(E?), and Tr(£,,€) for the fluctuated STU
models encountered in this paper. In terms of the components of matrices E and €2,;, these traces can be defined as

Tr(E) = Elwj + EM + E%a, + E%, +E%, (A47)

la

=
=
5

2\ — Fhu . Fha. a1, as Ay A h. ph. Do a1, Ay A ay
TI‘(E ) _Emh E /h +E fl|/iE /“1a+E azﬁE /0211+E hE h+E @E CD+E uz/iE /u1a+E al/iE !

Aoq

hw h R fl“ il,,, Ay . i . /:l,/ ilv Ay Ay il,,, fzb~ D
+ BN EY,, BN BNy BN B A B B A BTy, EO + BT By, + EMGET

h;u/

+ E(DﬁmEhW&) + Eam(f)Eéala + EcbamEala&) + EazaéEcﬁaza + E(i)a'_)aEaza(f)’ (A48)

TH(Q07) = (@) (7)) 4 (Qp0)® ()% + (R, (7)1, + (Q) %, ()%,

+ (Qpo)",, (¥ w + (Qpg) 2, ()78,
+ (@), ()5 4 (Qyp) 2, (7)o
o)

+(Q/)o')amci)(glm) ai ( /70') ala(Q/’”)ala~ (Qprr)aza&)(glm)d)

+ (le)hmam(Qﬂ”)amﬁw/ + (Q/m)ami, (on)hwam

+ (Qy0) " 5 ()%, + (R0) %5, () g

122

2a

r A2

+( Q)% (7). (A49)

Ao Aoy

Note that all the off-diagonal contributions in Tr(E) vanish due to the absence of associated projection operators Z. From
here, we need to utilize all the relations derived in Appendix A 2 for E and Q,, in order to compute the trace results required

in the definitions mentioned above. This yields

. 3
Eh,wilm — Eh,,pha/fzh ey = _ER’ (A50)
E®y = E®®T445 =0, (A52)
By, = BT, 0, = =R+ (6 4 6)Fy, Fy. (a53)
Eazaaza — EalaazﬂIaz ay = —R + (K% + 6)1_72/4”]_72/“” (A54)
followed by
Eﬁ“”fza,; Eiz“”ilm — Ehuhys Ehaphoy T aﬂth g
1
= 2Ryupo R + 2Ry R = 2R R + L R, (AS5)
Eamalﬁanala - EamalyEal/jamzawawzalaaw
= RﬂDR}W — SAFIMVFI”D - (2](‘% + 4>RHHF]}4PF]UP
+ (2K% + 8)(F1;41/F1”D)2 + (K% + 2)2F1M/)F1DpFlyaFlv”1 (A56)
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(57 (557} — [F92a42 Fd2pdas
E a2ﬂE (&7 E E Idzp“zyIGZaﬂz&

= R#DR”U - SAFZMDFZ/W - (2](% + 4>RﬂyF2”pF2Up + (2](% + 8)(F2}WF2”D)2

+ (K% + 2)2F2ﬂﬂF2UPF2”0_F2y0" (A57)

EM"E", = ENENT; T = 4N, (A58)

E®GE®y = E®®E®®T 4 :Ta 5 =0, (A59)

ElwgE®) = E®;, Ewg = Em®EMaTesT) 1 =0, (A60)

EaméE&)am _ Eéa,,,Eam@ _ Eal“éE&)u'/’Iamu,ﬂzéé =0, (A6])

Eaz,,‘i)Eéaz E(D Euz,, J— Eaz,,':DE(l)az/iIazauz/ Iti)é =0, (A62)
- Eiiw;lEil];aﬁIi’ ;lz—;'ﬂvilaﬁ

= (Fl/wpllw + FZﬂyFZﬂU)Z - SFlﬂpF2prl/wF2v6 - 4(}_7'114/7[_71”/)]_71”0}_71”0 + FZﬂpFZUpFZ/wFZUG)’ (A63)

A1 arp — F%a ayp
E ‘12/1E Alg E awE Aoy
— E%at2y Faptis]

alua](SIaZ/iaZy
= 2(K1K2 + 4>F1/41/FIFUF2/)(7F2/M + (K K2 + 2K1K2 + 2)F ll[le /)Flyo’FZL/
+ (2k1Kky + 2)2F (M Fy°F 1 F s, (A64)

v

Eh;wa Eala;l — Eala Eh
la ;u,

— Ehyual/iEalahyzSI

alaalﬂzilm,ilﬂ;

= (DpFl;w)(DpFlyy) + (DyF]pD)(DUFlﬂ”)’ (A65)

h Da . — F%a, il,
Bl g, By, = E (hME " ay,

w

_ prhyans raseh,s
= ERw o wz.az,zaz/iz.hwh,,,

= (DpFZ;w)(DpFZW) (DﬂFZpy)(DbF2pﬂ>' (A66)
We also obtain

(Qpn)h’wi, (Qpa) P, = (Q

aff s Po

) " /5 (on—) "/’hyf/’z aﬂhrﬁzhmhMI

= 6R o RHP7 = 36(F 1 F )2 = 36(Foy Fo®)2 — 24, F 1 Fyy Fot® — A8, F*F, Fot”
_4(R/,w/m- - ﬂ/)l/()')(F ”UF P+ FZ”DFZI)”) +4R(F1/U./F 4 F2 VFZﬂD) + 96F1W)F2D/)FI/MF21/
+ 48(FlﬂpFly/)F1;mF1y + FZﬂpFZ /)FZ;MFZU )’ (A67)
(Qpa)alaa (Qﬂf’)alﬁ = (Qﬂg)amau(gﬂﬁ)amﬂw_’[

1 Aiq a1pary ™ A1gd1s

R;wpaRﬂypo- (ZK? - 16’(% + 52) (Fl;wFllw)z =+ 8RuvpaF1ﬂDF1p6 + (4’{% - 16)RﬂpvaFlﬂyF1p6

+ 8R”UF1MDF1D/) + (2]("1" - 40]('% + 88)F1Mpplpr1’uO.F1yo-, (A68)
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(R (), = () (72T,

2% 2a 2pl2y ™ Aaq s

= =R, po R — (25 — 1663 4 52) (Fu Fo™ ) + 8R, o Fo F5° + (43 — 16)R s F o F"°
+ SRMDFQHPFZDP + (2]("2‘ - 40](% + 88>F2”pF2DPF2ﬂGF2DG, (A69)

(Q0)%4(27)% = (Q,,) 2 ()T 5,655 = 0. (A70)

(Q/m)al" (Q/m)az/; (Q/m)al/;

o = (@)™,

( )(lluazy (Qﬂ”)@/ﬁam_’[

azp Aoq

ulaalazazﬂazy
= (2k}K3 — 44K1Ky + 100)F (0 Fy?  F 1,0 Fa,” + (4kiky — 12)F 1 F o F1Fapy
- (2K1K2 - 12K1K2 + 28)F1ﬂDF1MDF2paF2p0 + <4K1K2 - 24)F1MDF1”DF2paF2pU, (A71)

(Qp(r)h”b(i)(gp(’)q)fzw = (Q‘/)o—)q}i, (Qﬂ(’)h’”~

= (Qpa>h"”®(gpg)®h"$z&>d>zh s
= 267 (F 1 F\ ") + 265 (F oy Fo)? + AF | F (W F oo FyP” = 8KTF (PP F (Y F o F 0
- 8K%F2ﬂpF2pr2yo'F2v5 - 16K1K2F1ﬂpF2DpF1ﬂ6F21/67 (A72)
(Qp) e, (7) 1oy, = (Q

(2 po

)alailm (Qﬂa)hw

Al

— (ng)il;walﬂ <on-)alailyéz-

alaal/i:z-;lﬂ,jlﬂ;

= 2(D;4F1py)(DL/F]pM) - IO(DpFl;w)(D[)FlMD)’ (A73)

(on_)huba (on-)ahrfl — (ng)a%ril (Qﬂg)h;tb

2a u w A2

— (ng)il;waﬂi (on-)a%zilyéz-

GZaazﬂIﬁmﬁ,&

= 2(DﬂF1pU)(DDF1pﬂ) - IO(D/)FIMD)(D/)FIMD)7 (A74)

(o) 15(X)%, = (,0)%, ()4
&J(Q/m)tbalpl'ama”l'é&)

o)
= ZK%(D Flp )(DI/FIW) _2K%(DpF1;w)(DPF1W)a (A75)

(Qpn)am(i)(gﬂﬂ)fb = (ng) 0 (Q/M)az“é
)@ é(Qpa)zbay;I it I(M)
13(D,

= 23(D, F»," ) (D, Fy") — 2u) (DPF2). (A76)

Finally, we utilize all the trace data mentioned above in the definitions (A47)—-(A49). Subsequently, we simplify the results
and background invariants with the assistance of the one-shell identities discussed in Appendix A 1. This process essentially
yields the irreducible form of trace relations, as presented in Egs. (63)—(65), respectively.

APPENDIX B: INTEGRATED BACKGROUND INVARIANTS IN EXTREMAL NEAR-HORIZON LIMIT
This section lists the explicit forms of the background curvature invariants W? = W,,,,,W**°, E,, R*, and RF,, F* their
integrations for the extremal near-horizon backgrounds of Kerr-Newman-AdS,, Reissner-Nordstrom-AdS, and Kerr-AdS,

black holes as well as their asymptotically flat counterparts considered in this paper. These results prove to be essential for
the analysis of Secs. IVA'5 and IVA 6 to derive the C,., contributions in the extremal limit of the black holes.
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1. Kerr-Newman-AdS,; ENH background

For the specific structure (118) of the ENH geometry of the Kerr-Newman-AdS, black hole, the necessary four-derivative
invariants can be derived in terms of the independent parameters {ry, ¢, a}. Here, the extremality condition is imposed on
(ro,¢,) or (a, q) via the following constraints:

>
-
a’ + ¢* :72(52—1—612—1—3%),

,_ O tn) O+ 2r-qY)
(@ torg) (64 65— qt) = 3r)

Then the ENH invariants take the following forms:

48 .,

- —f4p(1)2 [r§(ré — a®¢*)? + aB¢cos0 — a®rg{a(a® + 2rf + £2)*cos*0 — a*(16r8(a® + ¢*) + 8a>£> (a* + £7)

W2

+2r3(3a* + 13a*£* + 36%) + 9r§)cos?d + 6a*£* — 4r§(a® + £2) + 8a*r3 % (a® + £2)
+ rg(a* + 6a** + ¢*) — 6r§ }cos?6), (B2a)
a* cos* 0(3a*(a* cos* O + 6a*r§ cos® O + 15r3) cos* 0 + 5{a* (105> + Try + £*)

8
Ey=——
f4,0(1)2 [

+2a*(5r6* +16r86% + 9r§) + r{(76* + 18r36% + 18r8) } — 6ari{a* + 2a*(2rf + £7)

+4r3e* — 6ry + ¢4} cos? 0) — 2a’rg (a* (22r36* + 4ry + 19¢%) + 2a*r{(116* + Tr§¢* = 3r])

+ 2r§(26* = 3r? = 9r¢)) cos? O — r (a* (r§ — 2r§* = 5¢*)

+ a?r§(8r3? 4 61§ — 20%) + ric (615 + £7))]. (B2b)

144
R =—, (B2¢)

Al
T 12 04 2 2N,2 200N (4 220002 4o
RF, F" :W(3r0 + (a® + *)rg — a*¢*)(ry — 6a°ricos0 + a*cos*0), (B2d)
Po

where p} = r3 + a® cos? 0. Next, the integration results of above background invariants over the desired part of ENH
geometry, as detailed in the formula (123), are successively obtained as

43

(=2x)
/ENH d?yG(y)W? = 8a45f4r8(a2 " r(z))z a*ry(9a® (Zr%fz - rg -4 + a6r8(70r(2)52 - 135ré + %)

(47)

+2a*r(106r36% = T + 27¢%) + 6a*r§(18r5¢% — 131§ + 3¢6*)
=3r8(2r3* + 1513 = %)) = 3ri! 3rd + £%)? — 124° (a® + r)* (a*(rd — ¢?)

+ r3(3r3 + £2))? arctan <a>] , (B3a)
o
((;721;{2) /ENH FICOIE =4, (B3b)
(—27) 24¢3

2yG(V)R? = — 44 4q22 34’ B3
in? o EYCOIR = = T2 (a4 43 (B30

(=27)
(47)

1263(a® = r3)

Ebﬂ4<a2_’_r%)2 (r(2)(3r(2)+f2) —a2(f2—r(2))), (B?’d)

/ d*>yG(y)RF, F» =
ENH
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% The above extremal near-horizon inte-

grations over y coordinates must be performed in the range

0 <6 <mand0 < ¢ < 27 for the following typical form of
the ENH metric function:

where 2 =

243

G(y) = =) (B4)

(r3 + a*cos*0) sin 6.

All the derived results (B3) can be employed to calculate
the Cy.y contribution for the extremal Kerr-Newman-AdS,
black hole, as listed in Eq. (124).

2. Kerr-AdS,; ENH background

For a similar analysis of the Kerr-AdS, black hole, one
needs to consider the special case ¢ = 0 of the ENH geo-
metry (118). This adjustment further revises all extremal
charges and parameters, as indicated by the following bounds:

azzr%(3r(2)+f2)’ -
@7

20°r3(r3 + ¢2)
GER T

(BS)

where one must consider ry < £. We can now express all
the background invariants over the extremal ENH geometry
of the Kerr-AdS, black hole in much simpler forms,

W, WHPe = (r2 + a®)*(rk + ¢%)?

ppo R
x (r§ — a*cos?0(15r§ — 15a*rjcos®0
+ a*cos*0)), (B6a)
24
Ey = 5+ Wyupo W, (B6b)
144 - -
R=—F.  RF,Pv-= (B6e)

Subsequently, the ENH integrations of the above curva-
ture invariants to compute the C., contribution (125) are
derived as

29 o, 1 S

(B7a)
(@27’)[2) A GO =4 (B7b)
((Z;? A L PIGOIR = 12@5&; fza;)%) . (BTc)
((;7252) /E . d2yG(y)RF,, F* = 0. (B7d)

3. Reissner-Nordstrom-AdS,; ENH background

The extremal near-horizon geometry of the electrically
charged Reissner-Nordstrom-AdS, black hole is obtained
through appropriate coordinate transformations on the
background metric (98),

2
t=—1.

A
Upon introducing the Euclideanized time 7 — —i7 and
taking the limit 4 — 0, the extremal near-horizon geometry
can be expressed in the desired form of AdS, x S,

r=ry+ AF, (B8)

dr?
(-1
+ r3(d6* + sin®0dg?),

Judi#dx” = 73 {(72 - 1)d# +
(B9)

Notably, for this nonrotating (@ = 0) charged background,
the extremality bounds on the r, and #, parameters are

given by
3r; 1 1 6
q2:r3(1+f2>’ a2 R a

where we must operate in the range r > ¢,. The curvature
invariants around the ENH geometry (B9) are computed as
follows:

(B10)

403 - 437

v B
8
E, = (B11b)
fzro
4(r2 _ fz)z

R2=—-0_"2/ B11

e (Bllc)
_ _ 4 2(.,2 —f 2

RF, F" = M (B11d)

62
rots

Finally, we carry out integrations of the mentioned ENH
curvature invariants to derive the C) ., relation, as outlined
in Eq. (126). The specific results are presented as

(=27) / 2 4 2 +73)
d w uvpe — = _
(471_)2 ENH yG( ) lll/po'W 3

3203
(B12a)
-2
o [ e = (B12b)
(—Zﬂ)/ 2 2 2(rg+23)
R-=4 B12
(471_)2 ENHd yG(y) r(z)f% ’ ( C)
(—2ﬂ)/ > (rs = £3)
d“yG(y)RF , F" = Bi2d
(471_)2 ENH y ( ) r(z)f% ( )
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4. ENH backgrounds in flat limit (£ — o)

We will now investigate the flat-space limit, £ — oo,
applied to the previously derived integrated extremal near-
horizon invariants of asymptotically AdS, black hole
configurations. This limit results in R = — % =0, leading
to similar integrated relations for the asymptotically flat,
black holes. In this flat-space scenario, the extremality
conditions for the generic near-horizon parameters r, and
¢, as well as for the revised Kerr parameter b = g, can be

expressed as follows:

re=q¢*>+a*, 3 =q*+2d%

For the case of a flat extremal Kerr-Newman black hole
solution in STU models, the nonvanishing ENH integrated
invariants are

(=27)
(4n)?

| @G
ENH

B 1

S 2(b* 1220+ 1)
3207 +1)? ( b )}
———arctan| ———| |,
bvb* +1 Vb2 + 1

[(3 +24b% + 40b* + 16b°)

(B14a)

(=27)
(47)

/ &yG(y)E, = 4. (B14b)
ENH

In the special case of an extremal Kerr black hole (¢ = 0,
£5 = \/2ry, and b — o), the same relations are give by

((:1721;[2) [ENH d*>yG(y YW ps WHP? = 4, (B15a)
((:1721;;2) /ENH FYGOIE =4 (B130)

Similarly, for the asymptotically flat extremal Reissner-
Nordstrom black hole (a = 0, £, = ry, and b = 0) in STU
models, one obtains

((;721';1-2) [ENH dzyG(y>Wﬂl/Pa WHePe = 0’ <B 16&)
i fo OO =4 (@160

All the integrated results mentioned above are appro-
priately employed in deriving the C,., expressed in
Eqgs. (132), (134), and (135).
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