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The leading quantum-gravitational correction to the black hole entropy is known to be a universal
logarithmic term. In this study, we investigate the logarithmic corrections for the black holes in the STU
supergravity models, which are a bosonic truncation into a specific class ofUð1Þ2-charged Einstein-Maxwell-
dilaton theory. We demonstrate how the entire Kerr-Newman-AdS and Kerr-Newman family of black holes
can be recovered within the gauged and ungauged STU supergravity models as special embedding choices in
4D. Logarithmic corrections are computed using two distinct Euclidean quantum gravity setups for extremal
and nonextremal limits of all embedded rotating, static, charged, and neutral black holes. Our calculations
employ the on-shell heat kernel method based Seeley-DeWitt expansion computations. Notably, all the AdS4
results exhibit a confirmed nontopological nature as compared to the flat counterparts, offering a natural and
more comprehensive “infrared window into the microstates” of black holes.
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I. INTRODUCTION

In the realm of Einstein’s gravity, the entropy of black
holes is universally attributed as one-quarter of the horizon
area in the semiclassical limit [1,2]. This establishes the
seminal Bekenstein-Hawking area law (BHAL), depicted
as SBH in (1). However, the applicability of BHAL is not
solely restricted to Einstein’s gravity; it extends to any self-
consistent quantum gravity theory at the tree level, fol-
lowed by additional corrections emerging in the presence of
quantum fluctuations at the Planck scale.
The leading-order quantum-gravitational correction to

BHAL is universally found to be a logarithmic term of the
horizon area [3–38], as indicated by ln SBH in (1). Over
the last few decades, these logarithmic corrections have
emerged as a gateway to quantum gravity, serving as a
trendy litmus test. This test asserts that the macroscopic
results of quantum-corrected black hole entropy, computed
in the low-energy effective theory of (super)gravity, i.e., the

IR side, must be matched by any precise enumeration of the
microstate data, such as the Strominger-Vafa counting [39]
available within the corresponding UV-complete quantum
gravity candidate. Sen and collaborators have extensively
analyzed this test for various examples of asymptotically
flat Bogomol'nyi-Prasad-Sommerfield (BPS) black holes in
string theory, and all have passed the test with flying colors
[11–14,40]. To date, string theory has successfully enumer-
ated microstates underlying the entropy of a wide class
of asymptotically flat and asymptotically AdS black holes
[39–51]. Thus, the computation of logarithmic corrections
for all such cases, as well as future examples when available,
appears to be a robust “infrared window” into black hole
microstates for providing a nontrivial consistency check.
Conversely, one can also verify whether any concerned
(super)gravity model is indeed a low-energy effective limit
of the UV-complete microscopic counterpart. In this paper,
we aim to progress toward the macroscopic or IR end of the
aforementioned line.
Extensive studies [3–38] have shown that the quantum-

corrected entropy of black holes can be expressed in the
following general form (in natural units: c ¼ ℏ ¼ kB ¼ 1):

SbhðAHÞ ¼ SBH þ Clog ln SBH þO
�

1

SBH

�
þ � � � ;

SBH ¼ AH

4GN
; ð1Þ
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where AH refers to horizon area, GN is Newton’s gravi-
tational constant, and Clog is a constant. The first term, SBH,
corresponds to the Bekenstein-Hawking area law and
constitutes the leading tree-level contribution in the entropy
formula (1). The subsequent terms account for various
quantum gravitational corrections to the BHAL, stemming
from perturbative or nonperturbative frameworks [52].
These include the so-called logarithmic and power-
law corrections, denoted as the second and third terms,
respectively, capturing the perturbative contributions in
formula (1). These perturbative contributions correspond
to different-order quantum loop contributions (gs), arising
when evaluating the Euclidean gravitational path integral
considering quantum fluctuations around any generic black
hole saddle point:

ΔSBH;per ≈ Clog ln
�
AH

GN

�
þ
X
n≥1

κn

�
AH

GN

�
−nþ1

; ð2Þ

where n denotes the order of quantum loops and κn
represents constant values that control the relative strengths
of the loop or power-law corrections. In the case of quan-
tum fluctuations in a higher-derivative modified gravity
model, the saddle-point contribution extends the BHAL
into the Bekenstein-Hawking-Wald formula [61] by incor-
porating higher-derivative (α0) corrections. However, the
modified form of the perturbative correction formula (2)
remains the same. Remarkably, the logarithmic correc-
tion appears as a special class of one-loop contributions
explicitly induced from the two-derivative sector of the
theory and remains unaffected by the higher-derivative and
power-law corrections [11,16].
The logarithmic corrections have garnered significant

attention due to their intriguing properties, offering crucial
yet nontrivial insights into the nature of quantum gravity.
Their ubiquitous form ∝ lnAH is not specific to any
particular model or theory; rather, it emerges universally
for all types of black holes evolving within the framework
of different quantum gravity approaches. These approaches
encompass conical singularity [3,4], quantum geometry
[5], Cardy formula [6], quantum tunneling [7–9], con-
formal anomaly [10], Euclidean effective action method
[11–31], supersymmetric index [32,33], nonlocal quantum
gravity [34–38], and more. In the context of (super)gravity
models being regarded as a low-energy limit of string
theory or other quantum gravity theories, it is convenient
to impose the so-called large-charge limit [62] on black
hole backgrounds, rendering BHAL a valid choice at the
leading order in black hole entropy (1). Consequently, the
logarithmic correction becomes the most dominant sub-
leading quantum correction contribution, suppressing the
power-law corrections. Hence, any true quantum gravity
candidate or microstate counting data that fails to reproduce
the leading-order logarithmic-corrected macroscopic
black hole entropy is deemed incorrect. Notably, the

quantum-gravity corrections to black hole entropy typically
depend on the specifics of the UV completion, i.e., the
contributions from various massive modes in the quantum
loops. Interestingly, the logarithmic corrections are inde-
pendent of the UV completion and can be computed using
the massless fluctuations (i.e., low-energy or infrared
modes) running in the one-loop [11–30].
The prefactor Clog is a dimensionless constant that

exhibits theory-specific behavior, unlike the universal
lnAH part in the logarithmic entropy correction. In a given
theory, the value and sign of Clog are completely determined
by the geometric parameters (such as mass, charge, angular
momentum, etc.) characterizing the relevant black hole,
as well as the quantum fluctuation data (e.g., conformal
anomaly, central charges, etc.) of the entire field content of
the theory. In general, Clog are found to be a complex
function of different dimensionless ratios of black hole
parameters [15,16,23–26,29,30]. However, in certain spe-
cial or limiting cases, as seen in [12–14,17,19–21], Clog
exhibits topological values (i.e., pure numbers), giving rise
to a fully universal logarithmic correction within the
specific theory of choice. Investigating such universal or
topological vs nontopological nature of Clog is not only
fascinating but also highly sensitive to microstate counting
data within the realm of quantum gravity. In this paper, we
aim to compute and analyze Clog results for a well-studied
family of AdS and flat black holes embedded within the
so-called STU supergravity models in 4D.
Let us elucidate the motivation behind investigating

quantum black holes within the framework of STU super-
gravity models. Supergravities are the popular low-energy
(small curvature expansion) limit of superstring theories,
with one well-studied example of string theory compacti-
fications down to four dimensions being the N ¼ 8 super-
gravity [63,64]. They feature many Uð1Þ gauge field
strengths and scalar moduli fields in their bosonic sector.
Although numerous truncations of N ¼ 8 supergravity
have been reported over the last few decades in search of a
general family of black hole solutions, many of them have
proven elusive. However, there exists a consistent trunca-
tion of N ¼ 8 supergravity (for both the ungauged and
gauged versions) into a model popularly known as the STU
supergravity (e.g., see [65,66]), which can be viewed as a
pure N ¼ 2 supergravity multiplet coupled with three
vector multiplets [66]. Notably, the equations of motion
in supergravity are technically more intricate than those in
general relativity, requiring sophisticated solving proce-
dures. However, STU solutions employ such a distinctive
procedure, which relies on global symmetries (i.e.,
U-dualities) inherent to string theory, generating the most
general black holes ofN ¼ 8 supergravity via truncation to
a system with only four Uð1Þ gauge fields and three
complex scalar fields [67,68]. Moreover, STU supergravity
solutions find wide application in generating black holes
within all N ≥ 2 supergravity theories [68]. Therefore,
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STU supergravity models serve as fundamental and uni-
versal building blocks to structure the central bosonic
sector of various low-energy effective superstring theories
or supergravities in four dimensions.
STU supergravity models admit a generalized yet non-

trivial family of black hole solutions with higher-
dimensional origins in string theory. In this study, our
objective is to recover their previously known general-
relativistic trivial subcases, specifically the simplest
four-dimensional Einstein-Maxwell (EM) and Einstein-
Maxwell-AdS (EM-AdS) backgrounds [69–72] within
STU models. This motivation stems from the intriguing
properties and broader implications of the EM solutions,
which already have a solid microscopic foundation within
string theory [11–14,40]. The four-dimensional EM theory
involves a single Uð1ÞMaxwell field coupled minimally to
the metric field and is known to admit supersymmetric
black hole solutions by structuring the bosonic sector of
pure N ¼ 2 supergravity [73]. However, while the STU
supergravity we focus on is a more generalized theory,
there is no direct and consistent truncation that reduces
STU models to the EM theory. In this paper, we detail how
the entire asymptotically AdS4 and flat4 counterparts of the
Kerr-Newman family of black holes can be systematically
recovered within the gauged and ungauged versions of
STU supergravity models as special embedding choices.
Notably, this EM embedding process is not straightforward,
but it is conceptually and technically well understood.
This work primarily regards the STU supergravity

models as a distinct class of Uð1Þ4-charged Einstein-
Maxwell-dilaton (EMD) theory with four Maxwell and
three dilaton fields, admitting the generic four-charge black
hole solutions [74–79]. However, there exist two consistent
scenarios in which the Uð1Þ4-charged EMD system,
intersecting with the bosonic sector of STU supergravity
models, can be further reduced to two distinct versions of
Uð1Þ2-charged EMD systems [75–77,80,81]. In these
truncated STU versions, a single dilaton is nonminimally
coupled to two Maxwell fields via two separate exponential
coupling functions [82], where the values of dilaton
coupling coefficients are fixed during the compactifica-
tion of superstring theories. The nonminimal nature of
Maxwell-dilaton couplings prevents all charged EM back-
grounds from directly solving the equations of motion
of Uð1Þ2-charged EMD theories. However, we identify a
specific case where suitable constraints on the two Uð1Þ or
Maxwell charges can effectively decouple the two non-
minimal Maxwell-dilaton couplings in the Uð1Þ2-charged
EMD models. Consequently, the modified STU equations
of motion exhibit a vanishing dilaton background, thereby
reducing to the field equations governing a class of single-
charged black hole solutions within the EM theory.
Notably, the EM embedding procedure also extends to
Uð1Þ2-charged EMD systems with a negative cosmo-
logical constant, which are referred to as Uð1Þ2-charged

EMD-AdS theories. Following this approach, we
successfully embed the Kerr-Newman-AdS and Kerr-
Newman, Kerr-AdS and Kerr, Reissner-Nordström-AdS
and Reissner-Nordström, and Schwarzschild-AdS and
Schwarzschild black holes into Uð1Þ2-charged EMD-
AdS and EMD theories intersecting with gauged and
ungauged STU supergravities in 4D. Ultimately, our goal
is to compute the logarithmic correction to the entropy of
all these embedded asymptotically AdS4 and flat4 black
holes in both their nonextremal and extremal temperature
limits.
We employ the traditional heat kernel method [83–86]

within the framework of Euclidean quantum gravity
[87,88] to compute the logarithmic entropy corrections
for the black holes addressed in this paper. Our method-
ology combines Sen’s quantum entropy function formalism
[89–91] with techniques developed in [16], allowing us to
extract the essential “logarithmic” component from the
Euclideanized one-loop quantum effective action associ-
ated with the entropy of extremal and nonextremal black
holes, respectively. The computation of the one-loop
effective action involves expressing it in terms of the heat
kernel of the kinetic operator governing only one-loop or
quadratic fluctuations and subsequently expanding it using
the well-known Seeley-DeWitt expansion [92–97]. The
working formula for logarithmic entropy corrections
involves integrating a specific Seeley-DeWitt coefficient
around the relevant part of the black hole geometries. For
the four-dimensional black holes considered in this study,
we only require to compute the third-order heat kernel
expansion coefficient, denoted as a4ðxÞ in (17), which we
accomplish by following Gilkey’s approach [98]. This
approach proves to be highly efficient and universally
applicable, enabling us to investigate the quantum entropy
of any charged, neutral, static, rotating, nonsupersymmet-
ric, supersymmetric or BPS, extremal, and nonextremal
black holes within a unified framework without limitations.
In contrast, many other established approaches, such as

the eigenfunction expansion of the heat kernel operator
employed in [11–13,17,19,20,55], which are restricted
to the Bertotti-Robinson (AdS2 × S2) type extremal
near-horizon background geometry featuring rotational
symmetry. On the contrary, the Euclidean gravity setup
considered in this study has achieved significant success
over the last decade by computing logarithmic corrections
for asymptotically flat black holes in various examples of
the Einstein-Maxwell theory [15,16,27] and ungauged
N ≥ 1 supergravities [14,21,23–26,28]. More recently,
the same investigation has also been extended to a few
examples of asymptotically AdS black holes in the four-
dimensional gauged supergravity [29,31] and Einstein-
Maxwell-dilaton theory with a negative cosmological
constant [30]. Notably, the logarithmic corrections for
AdS black holes remain less explored till date, primarily
due to substantial technical challenges. In this paper,
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we advance along this trendy direction and test the
aforementioned Euclidean gravity setup on a specific class
of AdS4 black holes, which are inherent to string theory via
the STU supergravity models.
The main technical contribution of this paper is twofold.

Firstly, we derive the expression for the heat kernel
coefficient a4ðxÞ for two specific cases of Uð1Þ2-charged
EMD-AdS theory, obtained as a consistent bosonic trun-
cation of the STU supergravity. In this process, we expand
the relevant bulk actions up to quadratic order to account
for small quantum fluctuations of the entire STU field
content. This quantization is performed around a generic
class of four-dimensional classical backgrounds featuring a
vanishing dilaton, yielding black hole solutions of a four-
dimensional EM theory embedded into the STU-truncated
systems. The considered heat kernel approach is entirely
on-shell, where we utilize the EM-embedded background
equations of motion to systematically manage the Seeley-
DeWitt coefficients exclusively in terms of invariants
induced by the background geometry and fields. In parti-
cular, we express the necessary a4ðxÞ as a function of four-
derivative background invariants involving trace anomalies
such as the square of the four-dimensional Weyl tensor and
the Euler density, which are derived from the two-derivative
action of the truncated STU models. At any point, by
imposing appropriate flat-space limits on the Uð1Þ2-
charged EMD-AdS backgrounds, one can obtain similar
heat kernel results in the counterpart of Uð1Þ2-charged
EMD theory evolving with a vanishing cosmological
constant. The computed formulas for a4ðxÞ, in simplified
forms, are recorded in Eqs. (78) and (79).
In the final part, the computed a4ðxÞ relations are

integrated over black hole geometries, encompassing both
the full geometry and near-horizon configurations for
nonextremal and extremal limits, respectively. These inte-
grations yield the logarithmic corrections to the entropy
of all asymptotically AdS4 and flat4 members of Kerr-
Newman, Kerr, Reissner-Nordström, and Schwarzschild
black holes. The resulting formulas for the two cases of
truncated STU supergravity models are presented in
Eqs. (136)–(159). Notably, our analysis reveals that the
AdS4 results are all nontopological, exhibiting a much
richer and broader structure compared to the flat cases.
We provide a consistent explanation for this observation,
attributing the confirmed nontopological component in the
logarithmic entropy corrections as a natural and generic
contribution induced by the boundary of AdS black hole
backgrounds. In contrast, when the AdS boundary dis-
appears, as in the case of flat black hole backgrounds,
a vanishing charge ensures confirmed topological log-
arithmic correction results. Furthermore, the extremal or
zero temperature limit guarantees the same nature for the
charged but nonrotating background, whereas the charged-
rotating result remains nontopological. This observation
might set a stringent criterion for 4D supergravity models to

admit a UV completion, which is highly sensitive to the
microscopic analysis of the relevant black holes within the
framework of string theory counterparts.
The rest of this paper is outlined as follows. In Sec. II, we

provide a concise and efficient guide for applying the heat
kernel method to compute the logarithmic correction to
black hole entropy, with special emphasis on the treatment
of four-dimensional black hole backgrounds. In Sec. III, we
calculate the third-order Seeley-DeWitt coefficient a4ðxÞ
for the interested EMD-truncated STU supergravity
models. Section IV utilizes the computed heat kernel data
to derive the logarithmic correction formulas for the entire
Kerr-Newman-AdS and Kerr-Newman families of black
holes embedded in the gauged and ungauged STU super-
gravity models, respectively. Finally, Sec. V concludes
this paper with a summary and relevant discussion, and
provides an outlook for future research directions. Given
the intricate nature of the current topic, we have included
Appendixes A and B to provide comprehensive details on
heat kernel computations and other relevant technical
aspects.

II. THE SETUP

This section aims to provide a comprehensive manual
for calculating the logarithmic correction to the entropy of
general black holes, considering both the extremal and
near-extremal limits of their Hawking temperature. We
explicitly evaluate the one-loop quantum effective action of
the relevant gravitational theory fluctuated around the black
hole backgrounds of interest. This manual is developed by
revisiting the Euclidean quantum gravity frameworks
proposed by Sen [16,89–91] and employs the Seeley-
DeWitt expansion of the heat kernel method [98].

A. Euclidean quantum gravity and heat kernel
expansion

We consider charge and rotating black hole solutions in a
generic class [99] of D-dimensional Einstein’s gravity
characterized by the following path integral:

Z ¼
Z

D½gμν;φ� exp ð−SE½gμν;φ�Þ: ð3Þ

Here,D½gμν;φ� is the measure of functional integration over
the set of all massless fields φ propagating through a
spacetime geometry described by the metric gμν, and
SE½gμν;φ� denotes the Wick-rotated action characterizing
the Euclidean continuation of black hole solutions within
the theory. To determine the entropy SbhðM; J⃗; Q⃗Þ of a
black hole with mass M, angular momenta J⃗, and charges
Q⃗, we follow the saddle-point approximation in the
Gibbons and Hawking prescription [87], employing the
following Legendre transformation:
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SbhðM; J⃗; Q⃗Þ ¼ lnZðβ; ω⃗; μ⃗Þ þ βM þ ω⃗ · J⃗ þ μ⃗ · Q⃗: ð4Þ

Here, Zðβ; ω⃗; μ⃗Þ represents the path integral measure
defined in (3), evaluated at a stationary saddle point that
satisfies the classical equations of motion of the theory,
subject to appropriate asymptotic boundary conditions.
These boundary conditions are controlled by fixing a set
of three parameters: β, ω⃗, and μ⃗, which respectively denote
the inverse temperature (or the period of Euclideanized
time), the angular velocities, and the electromagnetic
chemical potentials associated with the Euclidean saddle-
point solutions. Notably, in the definition provided in (4),
black holes are not directly referenced; rather, they are
manifested as Euclideanized saddle points. Their relevant
parameters M, J⃗, and Q⃗ are determined in terms of β, ω⃗,
and μ⃗ through the relations

M ¼ −
∂ lnZ
∂β

; J⃗ ¼ −
∂ lnZ
∂ω⃗

; Q⃗ ¼ −
∂ lnZ
∂μ⃗

: ð5Þ

To evaluate the path integral partition function Zðβ; ω⃗; μ⃗Þ,
we follow the procedure outlined below. We begin by
considering fluctuations in the entire set of field content and
the metric describing gravity, denoted by ϕm ¼ fgμν;φg,
around their classical background or saddle-point values
ðḡμν; φ̄Þ, such that δ

δϕm
SE½ḡμν; φ̄� ¼ 0, i.e.,

gμν ¼ ḡμν þ hμν; φ ¼ φ̄þ φ̃: ð6Þ

Here, ϕ̃m ¼ fhμν; φ̃g denotes the entire set of small
quantum fluctuations that are in the Planck scale order.
Consequently, the effective action, defined as
W ¼ − lnZðβ; ω⃗; μ⃗Þ, can be expanded in different-order
quantum loop expansions,

W ¼ SE½ḡμν; φ̄� − ln
Z

D½ϕ̃m�

× exp

�
−
Z

dDx
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ϕ̃mHϕ̃m

�
þ � � � ; ð7Þ

where H ¼ δ2SE
δϕ2

m
is the kinetic operator controlling the

quadratic field fluctuations appearing in the one-loop.
The first term SE½ḡμν; φ̄� corresponds to the classical or
on-shell action, which dominates the transformation (4) and
leads to the Bekenstein-Hawking area law [87,88], or its
Wald generalization [61] when higher-derivative terms are
integrated into Einstein’s framework,

SBHðM; J⃗; Q⃗Þ ¼ AHðM; J⃗; Q⃗Þ
4GN

þ � � � : ð8Þ

On the other hand, the term next to the leading saddle-point
contribution in the setup (7) is the one-loop effective action

(OLEA). It involves a Gaussian integral over the quadratic
fluctuations with the kinetic operator H and can be
expressed as

W1-loop ¼
χ

2
ln detH ¼ χ

2
Tr lnH; ð9Þ

where Tr denotes the trace operation performed over
spacetime and all internal indices of the field fluctuations,
and χ ¼ �1 for bosonic and fermionic fluctuations, respec-
tively. With this setup, the quantum-corrected black hole
entropy up to one-loop is given by

SbhðM; J⃗; Q⃗Þ ¼ SBHðM; J⃗; Q⃗Þ −W1-loop þ βM

þ ω⃗ · J⃗ þ μ⃗ · Q⃗: ð10Þ

The entire problem is now centered on the evaluation of
W1-loop, as it yields the desired one-loop quantum correc-
tion to the black hole entropy. To address this purpose, we
employ the conventional heat kernel method [83–86,98]
and rewrite the OLEA as

W1-loop ¼ −
χ

2

Z
∞

ϵ

dτ
τ
KðτÞ; KðτÞ≡ Trðe−τHÞ; ð11Þ

where τ is an auxiliary proper time parameter with
dimensions of ðlengthÞ2. KðτÞ is the heat kernel trace of
the quadratic operator H with the orthonormal eigenfunc-
tions ffiðxÞg and eigenvalues fhig, which can be expressed
in the following spectral decomposition form:

KðτÞ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
det ḡ

p X
i

e−hiτfiðxÞfiðxÞ¼
X
i

e−hiτ: ð12Þ

Notice that the heat kernel representation of the OLEA
given above suffers from a UV divergence as τ → 0, which
is regulated by the UV cut-off parameter ϵ introduced in
the lower integration limit. In a UV-regulated theory, ϵ is
typically constrained by the square of the Planck length,
which is of the same order as the gravitational constant GN
in the convention employed in this paper.
Further, the upper integration limit in (12) suggests

that the OLEA also suffers from an infrared divergence
induced due to the infinite volume spacetime. However,
Sen demonstrated in [16] that this infrared divergence could
be regulated by excluding the component of the OLEA that
accounts for the thermal gas contribution from all particles
in our theory, which remains in equilibrium with the black
hole saddle point. This approach aids in isolating the
precise portion of the OLEA exclusively associated with
the quantum entropy of the black hole, as required in the
formula (10). To achieve this, we confine a black hole of
radius R (such that the horizon area scales as AH ∼RD−2)
inside a box of size L. The dominant contribution to the
OLEA from the thermal gas in equilibrium with the black
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hole, characterized by inverse temperature β, angular
velocity ω⃗, and chemical potential μ⃗, is given by [16]

W1-loop;gas ≃ LD−1fðβ; ω⃗; μ⃗Þ; ð13Þ

where f is a function that scales as fðλβ; ω⃗; λμ⃗Þ ¼
λ−Dþ1fðβ; ω⃗; μ⃗Þ under the same scaling of the metric ḡμν
and gauge fields Āμ, as well as the associated black hole
parameters, i.e.,

ḡμν → λ2ḡμν; Āμ → λĀμ; M → λD−3M;

Q⃗ → λD−3Q⃗; J⃗ → λD−2J⃗: ð14Þ

Here, λ represents a common length scale crucial for
logarithmic correction computations [16]. Moreover, the
scalings in (14) modify the black hole radius RðM; J⃗; Q⃗Þ
and its Bekenstein-Hawking entropy SBHðM; J⃗; Q⃗Þ by λ
and λD−2, respectively.
Then the key idea involves considering a new reference

black hole solution with a fixed radiusR0, confined within
an identical box of size L0 ¼ LR0=R. This new solution is
related to the original black hole solution through param-
eter rescaling depicted in (14) for λ ¼ R0=R. For this new
black hole system, it is straightforward to verify that the
dominant thermal gas contribution to the OLEA is given by
ðLλÞD−1fðβλ; ω⃗; μ⃗λÞ, which is identical to the contribution
(13) in the original black hole system (for details, refer to
Appendix B of [16]). Thus, the subtraction of the OLEAs
between the original and rescaled black hole systems
effectively cancels out the leading thermal gas contribu-
tions, yielding the difference solely related to the black
holes. For simplicity, we will denote this thermal gas
regulated difference in the OLEAs of the original and

new black holes by ΔW. Notably, the eigenvalues hð0Þi of
the kinetic operator for the new black hole system are
related to the eigenvalues hi of the original system via the
same scaling (14) with λ ¼ R0=R and are given by

hð0Þi ¼ hi=λ2: ð15Þ

Therefore, the specific form (11) of the OLEA, along with
the relations (12) and (15), allows us to express ΔW as

ΔW ¼ −
χ

2

�Z
∞

ϵ

dτ
τ

X
i

e−hiτ −
Z

∞

ϵ

dτ
τ

X
i

e−hiτ=λ
2

�

¼ −
χ

2

Z
ϵ=λ2

ϵ

dτ
τ
KðτÞ; ð16Þ

where the final step is obtained by rescaling the second
integration variable τ=λ2 → τ. The infrared cutoff at the
upper limit of the OLEA integration (16) results in a
dominant contribution within the range ϵ < τ < ϵ=λ2 or
ϵ=R2 < τ=R2 < ϵ=R2

0. Within this interval, we need to

take the so-called large charge limit on both black holes by
setting R ≫

ffiffiffi
ϵ

p
and R0 ≫

ffiffiffi
ϵ

p
or λ ≫ 1, given that

ffiffiffi
ϵ

p
is

in the Planck length order. Consequently, we can utilize the
short-time asymptotic expansion at τ → 0 of the heat kernel
trace KðτÞ as

KðτÞ ¼τ→0
Z

dDx
ffiffiffiffiffiffiffiffiffi
det ḡ

p X∞
n¼0

τn−
D
2a2nðxÞ; ð17Þ

where the functions a2nðxÞ represent the well-known
Seeley-DeWitt coefficients [92–97].
It is noteworthy that opting for the large-charge limit

λ ≫ 1 allows us to carefully delineate massless fluctua-
tions within the existing scaling configuration, which is a
crucial fundamental in computing the logarithmic correc-
tions. The appearance of massive fluctuations necessarily
modulate the heat-trace expansion (17) by an additional
prefactor e−τm

2

(e.g., see [86]), where their mass m must
be scaled as m → m=λ to accommodate the rescaling
τ=λ2 → τ in the step (16). Following the same prescription
as in [11–14,16,22], we utilize the limit λ ≫ 1 to define
“masslessness” as any fluctuation whose mass m is of the
order of λ−1 or less. This characteristic effectively sup-
presses the term e−τm

2

, as if setting m ¼ 0 from the outset,
thereby excluding all massive contributions from the
current heat kernel setup in computing logarithmic correc-
tions for all generic black holes [100].
We can now substitute the heat trace expansion (17) into

the OLEA form (16) and integrate it over τ, yielding [101]

ΔW ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
det ḡ

p �
a0ðxÞ
Dϵ

D
2

ðλD − 1Þ

þ a2ðxÞ
ðD − 2ÞϵD2−1 ðλ

D−2 − 1Þ

þOðϵ−1Þ þ aDðxÞ ln λþOðϵÞ
�
: ð18Þ

It is evident that a logarithmic term involving the Seeley-
DeWitt coefficient a2nðxÞ with n ¼ D

2
emerges, which is a

robust result stemming from the ϵ cut-off independent part
of the bulk effective action and is therefore regularization
scheme independent. Hence, we can disregard all divergent
and vanishing terms as ϵ → 0 and extract the leading
contribution in the explicit OLEA of the original black
hole with radius R as

WðlogÞ
1-loop ¼ −

Z
dDx

ffiffiffiffiffiffiffiffiffi
det ḡ

p
aDðxÞ lnR: ð19Þ

Putting all this together, we find that the leading one-loop
quantum-gravitational effects on the black hole entropy
formula in D-dimensional theory are given by (with
AH ∼RD−2)

KARAN, PUNIA, and BISWAS PHYS. REV. D 111, 066016 (2025)

066016-6



SbhðM; J⃗; Q⃗Þ ≃ SBHðM; J⃗; Q⃗Þ þ βM þ ω⃗ · J⃗ þ μ⃗ · Q⃗

þ 1

ðD − 2Þ
�Z

BH geometry
dDx

ffiffiffiffiffiffiffiffiffi
det ḡ

p
aDðxÞ

þ Czm

�
ln

�
AH

GN

�
: ð20Þ

Here, it is important to address the inclusion of Czm as an
additional prefactor of the logarithmic correction term
lnAH in (20). Primarily, Czm captures some global correc-
tions that are not accounted for into the local correction
term involving the integration of the Seeley-DeWitt coef-
ficient aDðxÞ over all spacetimes. One significant source of
such global contributions arises from the zero modes
present in the theory, identified when eigenvalues satisfy
hi ¼ 0 or HfiðxÞ ¼ 0 in the setup (12). When studying
quantum fluctuations around an asymptotic black hole
solution, these zero modes represent typical symmetries
(e.g., gauge transformations) that do not vanish even at
infinity. In their presence, the OLEA deviates from its
Gaussian integral form, as indicated in (7). Consequently,
the heat kernel methodology discussed cannot be used to
evaluate the correction to the OLEA arising from zero
modes. A systematic resolution of this issue involves
removing all zero-mode contributions from the heat kernel
(12) and adding them back in terms of an overall volume
factor associated with the asymptotic symmetry groups
responsible for inducing the zero modes. This procedure
contributes one part of the correction term Czm in (20).
Furthermore, the effective action in the current setup is

initially defined through the Euclidean path integral under
thermal boundary conditions and identified as the free
energy within the canonical ensemble. In contrast, the
quantum black hole entropy formulation occurs within the
microcanonical ensemble, where the black hole mass and
charges remain fixed. The transformation between these
ensembles has been accomplished via the Legendre trans-
form (4), which induces a logarithmic term and is even-
tually absorbed into Czm.
For a more detailed discussion of the nonlocal or global

corrections, readers are referred to [11–14,16,21,29,32,
102–104]. Additionally, the data regarding Czm for the
four-dimensional asymptotically flat and AdS black holes
of interest in this paper are well known and summarized in
Sec. II C and Table I.

B. Extremal black holes and quantum entropy
function formalism

We would like to highlight that the Euclidean quantum
gravity framework outlined in Sec. II A does not directly
accommodate extremal black holes. This limitation arises
because naively applying the extremal limit β → ∞ or
Tbh ¼ ð∂Sbh

∂M Þ−1 → 0 results in a divergent OLEA and quan-
tum black hole entropy in the setup (20). However, we can

interpret extremality as the nonradiating stable “ground
state” of the nonextremal or finite temperature black hole
setup, where the divergence stemming from extremality can
be viewed as an infinite shift to the ground state energy. In
the analysis of this paper, we primarily employ the well-
established quantum entropy function (QEF) formalism
[89–91] to regulate these divergences and adjust the
quantum entropy formula (20) to account for extremal
black holes.
The near-horizon geometry (NHG) at extremality is

interpreted as the ground state limit on the nonextremal
horizon. This crucial feature is utilized in QEF formalism to
define the quantum entropy of extremal black holes solely
through the near-horizon analysis, thus bypassing the
need for detailed knowledge of the entire spacetime. The
extremal NHG is well defined and gives rise to a new class
of AdS2 solutions [89]. Consequently, according to the
AdS=CFT correspondence, the entropy of extremal black
holes precisely corresponds to the entropy calculated from
the full partition function in AdS2, which is equivalent to
the partition function of the boundary CFT1,

lim
β→∞

ZAdS2 ¼ lim
β→∞

ZCFT1
: ð21Þ

Here, β serves as an infrared regulator on both sides,
effectively regularizing the infinite volume of AdS2 as well
as the infinite length of the CFT1 boundary. On the CFT1

side, as β tends to infinity, only the ground state (with
energy E0 and degeneracy d0) contributes to the partition
function,

lim
β→∞

ZCFT1
¼ d0e−βE0 : ð22Þ

Consequently, computing entropy from the partition func-
tion (22) yields ln d0, with d0 interpreted as the microstate
degeneracy underlying the entropy of extremal black holes.
On the gravity or AdS2 side, the trick is to choose
appropriate coordinates such that the regularized path
integral ZAdS2 can be expressed in a similar form as (22),

TABLE I. Czm contributions to the logarithmic corrected black
hole entropy. The results are same for both the asymptotically flat
and AdS partners of each background geometry.

Black hole backgrounds Czm

Schwarzschild −3
Nonextremal Kerr −1
Nonextremal Reissner-Nordström −3
Nonextremal Kerr-Newman −1
Extremal Kerr near-horizon −4
Extremal Reissner-Nordström near-horizon −6
Extremal Kerr-Newman near-horizon −4
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lim
β→∞

ZAdS2 ¼ Zfinitee−βCþOðβ−1Þ: ð23Þ

Here, the linear term involving a constant C in the
β-dependent part corresponds to an infinite shift in the
ground state energy. At any point, we can disregard this
divergent term, along with all other vanishing Oðβ−1Þ
terms, in the limit β → ∞ and identify the cut-off inde-
pendent quantity Zfinite with d0. This Zfinite piece is known
as the quantum entropy function [89–91], which describes
a macroscopic definition of the horizon degeneracy of
extremal black holes. By computing the logarithm of Zfinite

provides a finite and unambiguous result for the extremal
black hole entropy, which is independent of any regulari-
zation procedure.
Based on the quantum entropy function formalism

described above, we can refine the formulation of the
OLEA part in formula (20) as follows:Z

BH geometry
dDx

ffiffiffiffiffiffiffiffiffi
det ḡ

p
aDðxÞ

���
β→∞

≡
�Z

near-horizon
dDx

ffiffiffiffiffiffiffiffiffi
det ḡ

p
aDðxÞ

	
finite

AdS2

: ð24Þ

Here, the notation hi represents the integration of the
coefficient aDðxÞ over the finite extremal NHG. This integ-
ration explicitly excludes any boundary independent terms
of the regulated AdS2 after structuring the Euclideanized
extremal NHG into the form AdS2 × KD−2, where K
denotes a (D − 2)-dimensional space fibered over the AdS2
part and encompasses all the compact or angular coordinates.
For more technical details, interested readers can refer
to [12–15,24–27].

C. Working formulas and computations
for 4D black holes

In this paper, the working formula for computing the
logarithmic correction to the entropy of black holes in a
four-dimensional theory is given by

ΔSBH ¼ 1

2
ðClocal þ CzmÞ ln

�
AH

GN

�
: ð25aÞ

The local contribution, denoted as Clocal, is identified as the
density of the Seeley-DeWitt coefficient a4ðxÞ integrated
over the finite near-horizon and full geometries, respec-
tively, for extremal and nonextremal black holes,

Clocal ¼
Z
BH geometry

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
a4ðxÞ: ð25bÞ

The global contribution Czm, which captures corrections
from the available zero modes and the changes in ensemble,
has been extensively computed and analyzed in previous

works [11–14,16,21,29,102–104]. We can consolidate the
available data and write a common but compact Czm
formula applicable for all 4D asymptotically flat and
AdS black holes as

Czm ¼ −ð3þ KÞ þ 3δnonext þ 2NBPS: ð25cÞ

Here, K takes the value 3 for spherically symmetric
nonrotating black holes and 1 for other cases. δnonext is 0
for extremal black holes and 1 otherwise, while NBPS is 4
for black holes preserving supercharges (i.e., BPS black
holes) and 0 otherwise.
In the formula for Czm (25c), the −K contribution arises

from the change in the ensemble from canonical to micro-
canonical via the transition (4) and is related to the number
of unbroken rotational symmetries of the black hole. The
−3 contribution is associated with the SLð2;RÞ symmetry
of AdS2 spaces characterizing the near-horizon geometry of
extremal black holes. This contribution is countered by the
additional 3δnonext contribution when transitioning from the
near-horizon to the full geometry for nonextremal black
holes. Furthermore, the contribution 2NBPS arises from the
fermionic generators of the PSUð1; 1—2Þ near-horizon
symmetry for BPS black holes in supergravity theories.
For the local piece (25b) in logarithmic correction, this

paper aims to follow the methodology outlined in [98] and
evaluate the heat kernel coefficient a4ðxÞ solely in terms of
the background fields and covariant derivatives appearing
in the kinetic operator H characterizing the one-loop
fluctuations. The entire strategy is summarized as follows.
First, the quadratic fluctuated action needs to be adjusted as

δ2S½ϕ̃m� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ϕ̃mHm

n ϕ̃
n; ð26Þ

for the quantum fluctuations fϕ̃mg so that the differential
operatorH takes the following Hermitian and Laplace-type
form:

−Hm
n ¼ ðDρDρÞIm

n þ 2ðωρDρÞmn þ Pm
n : ð27Þ

Here, m and n simultaneously label the types of fluc-
tuations as well as their tensor indices. Dρ represents
the covariant derivative with connections controlled by
the background metric. I serves as the identity operator
in the space of field fluctuations, which functions as an
effective metric or a projection operator for raising and
lowering the indices of relevant matrices, and defines the
trace operation in the central formula (33) [105]. Also, ωρ

and P are matrices induced from the background metric
and fields. More precisely, the matrix ωρ in the operator
form (27) is identified as a background gauged connection
determining the nonminimal coupling between fluctua-
tions. Consequently, we can reformulate the quadratic
operator H into a more generic form,

KARAN, PUNIA, and BISWAS PHYS. REV. D 111, 066016 (2025)

066016-8



−Hm
n ¼ ðDρDρÞIm

n þ Em
n ; ð28Þ

where Dρ is a modified covariant derivative with the gauge
connection ωρ, defined as

Dρϕ̃m ¼ Dρϕ̃m þ ðωρÞmn ϕ̃n ∀m ≠ n: ð29Þ

Note that by definition, ωρ vanishes for any fluctuation that
is minimally coupled to the background gravity via

ffiffiffiffiffiffiffiffiffi
det ḡ

p
in the quadratic action form (26). Furthermore, there exists
an effective curvature Ωρσ associated with Dρ, given by the
following relation:

ϕ̃mðΩρσÞmn ϕ̃m ¼ ϕ̃m½Dρ;Dσ�ϕ̃m

¼ ϕ̃m½Dρ; Dσ�ϕ̃m þ ϕ̃mD½ρωσ�mn ϕ̃
n

þ ϕ̃m½ωρ;ωσ�mn ϕ̃n; ð30Þ

where the brackets indicate commutation operations. In the
first part of (30), the covariant derivative commutation
½Dρ; Dσ� operating on scalars Φ, vectors or gauge fields aμ,
spin-1=2 Dirac fields ψ , spin-3=2 Rarita-Schwinger fields
ψμ, and metric or graviton fields hμν is defined by the
following standard relations:

½Dρ; Dσ�Φ ¼ 0; ð31aÞ

½Dρ; Dσ�aμ ¼ Rμ
ν
ρσaν; ð31bÞ

½Dρ; Dσ�ψ ¼ 1

8
½γα; γβ�Rαβρσλ; ð31cÞ

½Dρ; Dσ�ψμ ¼ Rμ
ν
ρσψν þ

1

8
½γα; γβ�Rαβρσψμ; ð31dÞ

½Dρ; Dσ�hμν ¼ Rμ
α
ρσhαν þ Rν

α
ρσhμα; ð31eÞ

where the gamma matrices γα are associated with the
Clifford algebra describing the spinors. Next, the matrix
E introduced in the operator form (28) accounts for the
effective potential for the operator H via the following
expression:

ϕ̃mEm
n ϕ̃

n ¼ ϕ̃mPm
n ϕ̃

n − ϕ̃mðDρω
ρÞmn ϕ̃n

− ϕ̃mðωρÞmpðωρÞpnϕ̃n: ð32Þ

Finally, incorporating all the aforementioned matrix-valued
data, the Seeley-DeWitt coefficient a4ðxÞ can be deter-
mined using the formula [98]

a4ðxÞ ¼
χ

16π2
Tr

�
1

2
E2 þ 1

6
REþ 1

12
ΩρσΩρσ

þ 1

180

�
RμνρσRμνρσ − RμνRμν þ 5

2
R2

�
I
�
; ð33Þ

where Rμνρσ, Rμν, and R are the background Riemann and
Ricci curvature tensors and Ricci scalar, respectively. Here,
the Tr operation over a specific matrix is defined by
contracting them using the appropriate I . In the analysis
of this paper, we shall ignore all the total derivative terms
while computing a4ðxÞ since they appear as vanishing
boundary contributions to the integral (25b).
Furthermore, in order to incorporate fermionic fluctua-

tions into the current heat kernel setup, a specific adjust-
ment is necessary, as demonstrated in [13]. The quadratic
action of fermionsΨ is always characterized by a first-order
operator =D,

δ2S½Ψm; Ψ̄m� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
Ψ̄m =Dm

nΨn; Ψ̄m ¼ ðΨmÞ†:

ð34Þ

However, the fermionic operator =D can be bosonized into
the desired second-order Laplace-type form (27) by adjust-
ing the one-loop determinant form (9) as follows:

ln det =D ¼ ln det =D† ¼ 1

2
ln detH; H ¼ =D† =D; ð35Þ

where the appearance of an additional factor of 1=2 needs
to be compensated by setting the χ value as −1 and −1=2 in
the formula (33) for the case of complex Dirac and real
Majorana spinors, respectively. χ is always set to þ1 for all
bosons and scalars. Additionally, the signature of χ must be
reversed for the ghost fields induced during the process of
gauge-fixing the theory. It is important to note that the
treatment outlined in (35) cannot accommodate Weyl
spinors with both left and right chirality states. For further
elaboration and examples regarding the heat kernel com-
putation of various elementary fermionic cases, readers are
encouraged to review [106].
The heat kernel approach offers a significant advantage:

after fluctuating the action around an arbitrary classical
background up to a quadratic order, we have systematic
steps and a straightforward formula to compute a4ðxÞ only
in terms of background curvature invariants. This can be
particularly useful for determining the quantum entropy of
all black holes in the theory under consideration. For
example, please refer to Secs. III and IV.

III. SEELEY-DEWITT COEFFICIENT a4ðxÞ
IN STU SUPERGRAVITY

This section aims to revisit the model setup of STU
supergravity in terms of Einstein-Maxwell-dilaton (EMD)
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systems, and subsequently embed the EM-AdS and EM
backgrounds [69–72] within it. We then demonstrate
systematic computations of the Seeley-DeWitt coefficient
a4ðxÞ for the fluctuations of the STU content around the
embedded black hole backgrounds. This computation is
essential for deriving the logarithmic correction relation
presented in Sec. IV.

A. The model setup

Four-dimensional maximal N ¼ 8 supergravity theory
originates from the T7 reduction of eleven-dimensional
supergravity, through ten-dimensional type IIA supergrav-
ity, where the bosonic content comprises the metric and a
large number of Uð1Þ gauge fields as well as scalar fields
[63,64]. To generate a solution encompassing the most
general black hole in N ¼ 8 supergravity, the global sym-
metries of the field equations (i.e., classical U-dualities)
indicate that reducing the theory to only four gauge fields
is sufficient [68]. This pertinent supergravity theory,

commonly referred to as the STU model, represents N ¼
2 supergravity coupled with three vector multiplets [65,66].
In each vector multiplet, there exists a gauge field, a
dilaton, and an axion, while the fourth gauge field is part
of the N ¼ 2 supergravity multiplet. The scope of this
study is to nullify the influence of the three axionic scalars
and ensure the vanishing of their sources. To achieve this,
we explore field configurations where the four Uð1Þ
or Maxwell field strengths exclusively exhibit electric
components without any magnetic components. Our focus
is solely on the bosonic sector, which provides black hole
solutions for STU supergravity and often viewed as a
Uð1Þ4-charged EMD model, with the Einstein gravity
sector being nonminimally coupled to the three Maxwell
sectors through three dilaton fields [74–79]. The pertinent
field content comprises the metric gμν, four Uð1Þ gauge or
Maxwell fields AIμ, and three dilatons Φi, where I ¼ 1, 2,
3, 4 and i ¼ 1, 2, 3. Their dynamics and equations of
motion are described by the following action [107]:

S½gμν;AIμ;Φi� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p �
R − 2Λ − 2

X3
i¼1

DμΦiDμΦi −
X4
I¼1

fIðΦ⃗ÞF IμνF
μν
I

�
; ð36aÞ

where we have defined

fIðΦ⃗Þ ¼ e−2a⃗I ·Φ⃗; Φ⃗ ¼ ðΦ1;Φ2;Φ3Þ; a⃗1 ¼ ð1; 1; 1Þ; ð36bÞ

a⃗2 ¼ ð1;−1;−1Þ; a⃗3 ¼ ð−1; 1;−1Þ; a⃗4 ¼ ð−1;−1; 1Þ; ð36cÞ

where R ¼ gμνRμν corresponds to the Ricci scalar charac-
terizing the Einstein sector and F Iμν ¼ D½μAIν� represents
the 2-form gauge field strengths that govern the four distinct
Maxwell sectors. The presence of negative cosmological
constant Λ induces the AdS4 backgrounds of boundary l
(such that l2 ¼ −3=Λ) within the gauged version of STU
supergravity. At any point, we can set the limit l → ∞ or
Λ ¼ 0 in order to transition into the ungauged STU super-
gravity admitting the flat4 black hole backgrounds.
The STU supergravity model (36) has the scope for

additional simplification, leading to irreducible Uð1Þ2-
charged EMD systems including just a single dilaton
and two Maxwell or Uð1Þ gauged fields [75–77,80,81].
This truncation gives rise to two distinct scenarios. The first
involves setting A1μ ¼ A2μ and A3μ ¼ A4μ, while the
second scenario entails setting A2μ ¼ A3μ ¼ A4μ. In both
cases, the relevant action form is formulated as

S½gμν; A1μ; A2μ;Φ� ¼
Z

d4x
ffiffiffi
g

p ðR − 2Λ − 2DμΦDμΦ

− f1ðΦÞF1μνF1
μν − f2ðΦÞF2μνF2

μνÞ;
ð37aÞ

where the two Maxwell field strengths and dilaton coupling
functions are defined as

F1μν ¼D½μA1ν�; F2μν ¼D½μA2ν�; f1ðΦÞ ¼ e−2κ1Φ;

f2ðΦÞ ¼ e−2κ2Φ: ð37bÞ

It is important to note that the dilaton coupling constants
ðκ1; κ2Þ must satisfy

κ1κ2 ¼ −1; N1κ1 þ N2κ2 ¼ 0; N1 þ N2 ¼ 4;

ð37cÞ

which ensure the consistency of the Uð1Þ2-charged
EMD model (37) as a consistent truncation of STU super-
gravity (36). There are only two special cases of the STU
truncations: ðN1; N2Þ ¼ ð2; 2Þ and (1,3), which in turn
correspond to ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ,
respectively [77]. Notably, the former type directly inter-
sects with the exact bosonic sector of N ¼ 4 supergravity
[108–110]. These two Uð1Þ2-charged systems hold par-
ticular significance within this paper, as they exhibit
considerably lower complexity compared to the complete
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STUmodel, while still preserving all fundamental character-
istics and offering an irreducible form of supergravity. It is
essential to note that the relevant Uð1Þ gauge or Maxwell
fields, A1μ and A2μ, exclusively carry electric charges.
We are now interested in exploring the nature of the

equations of motion that govern STU supergravity. These
equations stem from the evolution of the action (37a) with
respect to all STU components in the context of an arbitrary
background solution denoted as ðḡμν; Ā1μ; Ā2μ; Φ̄Þ. The
gravitational field equations are derived as follows:

Rμν −
1

2
ḡμνRþ Λḡμν ¼ TðdilatonÞ

μν þ TUð1Þ2
μν ; ð38aÞ

where Rμν and R represent the background Ricci curvature
tensor and scalar, respectively. The total stress-energy
tensor consists of distinct dilaton and Uð1Þ2 or Maxwell
components:

TðdilatonÞ
μν ¼ 2

�
DμΦ̄DνΦ̄ −

1

2
ḡμνDρΦ̄DρΦ̄

�
; ð38bÞ

TUð1Þ2
μν ¼ e−2κ1Φ̄

�
2F̄1μρF̄1ν

ρ −
1

2
ḡμνF̄1ρσF̄1

ρσ

�

þ e−2κ2Φ̄
�
2F̄2μρF̄2ν

ρ −
1

2
ḡμνF̄2ρσF̄2

ρσ

�
; ð38cÞ

where F̄1μν ¼ D½μĀ1ν� and F̄2μν ¼ D½μĀ2ν� symbolize the
background Maxwell field strengths. The two sets of
Maxwell and Maxwell-Bianchi equations take the form

Dμðe−2κ1Φ̄F̄1μνÞ ¼ 0; D½μF̄1ρσ� ¼ 0;

Dμðe−2κ2Φ̄F̄2μνÞ ¼ 0; D½μF̄2ρσ� ¼ 0: ð39Þ

Finally, the dilaton evolution equation is expressed as

DμDμΦ̄þ 1

2



κ1e−2κ1Φ̄F̄1μνF̄1

μν þ κ2e−2κ2Φ̄F̄2μνF̄2
μν
� ¼ 0:

ð40Þ
Notably, the aforementioned STU equations of motion,
together with their corresponding background solu-
tions, always remain unchanged under the following trans-
formations:

fQ1⟶Q2;Q2⟶Q1g; ðκ1;κ2;Φ̄Þ⟶ ð−κ1;−κ2;−Φ̄Þ;

f1ðΦ̄Þ⟶ 1

f1ðΦ̄Þ; f2ðΦ̄Þ⟶ 1

f2ðΦ̄Þ; ð41Þ

where any change in the signature of dilaton coupling
constants necessitates a corresponding reversal in the sig-
nature of the background dilaton as well as its coupling
functions, and vice versa. This further suggests that the STU
background solutions remain invariant when electric charges

ðQ1; Q2Þ associated with the background Maxwell fields
ðA1μ; A2μÞ are interchanged. It is important to note that all the
above-mentioned equations of motion and identities hold
appropriately for the two cases of Uð1Þ2-charged STU
truncations when ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ,
satisfying κ1κ2 ¼ −1.

B. Embedding of the Einstein-Maxwell backgrounds

The Uð1Þ2-charged STU supergravity model (37)
emerges as a natural extension of the Einstein-Maxwell
theory where the Einstein gravity sector is minimally
coupled to a single Maxwell sector described by the action

S½gμν; Aμ� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p
ðR − 2Λ − FμνFμνÞ: ð42Þ

Within this EM framework, the well-known Kerr-Newman
family of black holes represents the general background
solutions, satisfying the following field equations:

Rμν − ḡμνΛ ¼ 2F̄μρF̄ν
ρ −

1

2
ḡμνF̄ρσF̄ρσ; R ¼ 4Λ;

DμF̄μν ¼ 0; D½μF̄ρσ� ¼ 0: ð43Þ

This family of EM background solutions encompasses all
the four-dimensional asymptotically AdS and asymptoti-
cally flat counterparts of Schwarzschild (both stationary
and static), Reissner-Nordström (stationary with charge),
Kerr (static with rotation), and Kerr-Newman (both rotating
and charged) black holes. Our current goal is to system-
atically recover all of these EM backgrounds within the
STU supergravity model (37). This motivation stems from
the intriguing properties and broader implications of the
EM solutions, which already found a robust microscopic
foundation within string theory. The four-dimensional EM
theory (42) features a single Uð1Þ Maxwell field coupled
minimally to the metric field and is known to admit
supersymmetric black hole solutions by structuring the
bosonic sector of a pure N ¼ 2 supergravity [73]. How-
ever, while the STU supergravity we focus on is a more
generalized theory, there is no direct and consistent trunca-
tion that reduces STU models to the EM theory. We now
elucidate how the systematic recovery of the Kerr-Newman
family of black holes within STU supergravity models is
achievable through special embedding choices.
While the STUmodel (37) is indeed a natural extension of

the EM theory (42), the recovery of the EM theory through
a trivial truncation is not feasible due to the presence of
nonminimal dilaton coupling functions f1ðΦÞ ¼ e−2κ1Φ and
f2ðΦÞ ¼ e−2κ2Φ. Even when considering a vanishing dilaton
background (Φ̄ ¼ 0), the EM backgrounds do not conform
to the STU evolution equations (38)–(40). However, a
special scenario exists where the EM backgrounds can be
revived by constraining the STU equations of motion with
κ1F̄1μνF̄1

μν þ κ2F̄2μνF̄2
μν ¼ 0 for any nonvanishing dilaton
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coupling constants κ1 and κ2. This particular EM embedding
is achievable by appropriately scaling the charges of two
background Uð1Þ or Maxwell fields in STU supergravity. In
the context of two specific Uð1Þ2-truncated STU cases, the
EM embedding conditions can be summarized as follows
(also see Table II),

Q2 ¼ κ1Q1 ¼−
Q1

κ2
⟶
EM embedding

STU supergravity
F̄2μνF̄2

μν ¼−
κ1
κ2
F̄1μνF̄1

μν;

Φ̄¼ 0; ð44Þ

where ðQ1; Q2Þ represent the electric charges for the back-
ground Uð1Þ or Maxwell fields ðĀ1μ; Ā2μÞ. Technically, the
aforementioned embedding choice effectively decouples all
the nonminimal “Maxwell-dilaton” background terms and
interprets Φ̄ ¼ 0 as a nontrivial solution of the STU field
equations. As a result, the dilaton contribution (38b) of the
stress-energy tensor disappears, while the Maxwell compo-
nent (38c) undergoes modification to represent an effective
background Uð1Þ field with a net charge of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 þQ2
2

p
.

This further enforces all STU evolution equations (38)–(40)
to truncate into the exact Einstein-Maxwell background
equations (43), subject to the following definitions (also refer
to Sec. IVA 1):

F̄μρF̄ν
ρ ¼ F̄1μρF̄1

ρ
ν þ F̄2μρF̄2

ρ
ν;

F̄μνF̄μν ¼ F̄1μνF̄1
μν þ F̄2μνF̄2

μν

¼ κ21F̄1μνF̄1
μν þ κ22F̄2μνF̄2

μν: ð45Þ

The above analysis further substantiates the concept of “EM
embedding” and ensures the emergence of dilaton-free EM
backgrounds as solutions within the framework of the
Uð1Þ2-charged STU model in supergravity [111]. In sum-
mary, this approach employs the embedding constraint (44)
to transform the general two-charged STU background
solutions ðḡμν; Ā1μ; Ā2μ; Φ̄Þ into the single-charged Kerr-
Newman family of black holes (both asymptotically flat and
AdS) satisfying the EM equations of motion (43). Notably,
while the Kerr and Schwarzschild black holes do not
necessitate this specific embedding due to being charge
neutral, the charged Kerr-Newman and Reissner-Nordström
black holes strictly require the prescribed scalings as detailed
in Table II in order to be uplifted within the STU models.

Before delving into the computation of the Seeley-
DeWitt coefficient a4ðxÞ and the logarithmic correction
to the entropy of black holes within EM-embedded STU
supergravity models, it is important to clarify a crucial
point. There is no need for concern when implementing a
vanishing dilaton background, Φ̄ ¼ 0, within the STU
framework using the embedding choice (44). This choice
simply entails a modification of the STU equations of
motion to accommodate dilaton-free EM black hole back-
grounds. However, throughout this study, we consistently
work with the complete STU supergravity model (37),
where the nonminimal Maxwell-dilaton couplings are
always active that are expressed through exponential
functions f1ðΦÞ and f2ðΦÞ. In fact, the subsequent section
delves into the quantization of the STU model by expand-
ing the dilaton coupling functions through a perturbative
expansion for a small quantum fluctuation denoted as Φ̃
around the embedded EM background with Φ̄ ¼ 0. This
expansion takes the form

fIðΦ̄þ Φ̃ÞjΦ̄¼0 ¼ fIðΦ̄ÞjΦ̄¼0 þ Φ̃
dfIðΦÞ
dΦ

����
Φ̄¼0

þ Φ̃2

2

d2fIðΦÞ
dΦ2

����
Φ̄¼0

þ � � � ; I ¼ 1; 2:

ð46Þ
Our objective is to explore the quadratic fluctuations of the
complete STU content, including the dilaton, with the aim
of evaluating the a4ðxÞ coefficient and determining the
contributions of logarithmic entropy corrections.

C. Quadratic fluctuations: Background matrices
and a4ðxÞ computation

As discussed in Sec. III A, the bosonic sector of STU
supergravity directly intersects with the Uð1Þ2-charged
Einstein-Maxwell-dilaton theory, encompassing the grav-
iton gμν, two Maxwell fields ðA1μ; A2μÞ, and a dilaton Φ.
This alignment is established for two specific choices
of the dilaton coupling constants ðκ1; κ2Þ≡ ð1;−1Þ and
ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ. The corresponding interactions are detailed
within the action form (37). Our present focus lies in
exploring the quadratic fluctuations around the embedded
Einstein-Maxwell backgrounds and then follow the heat
kernel treatment elucidated in Sec. II C to compute the
Seeley-DeWitt coefficient a4ðxÞ. Throughout, we aim to
provide systematic details of the relevant background
matrices and their traces, expressed in terms of the arbitrary
dilaton couplings κ1 and κ2. Finally, we present simplified
a4ðxÞ results for the two distinct STU cases.
We consider the following perturbations around the EM

background ðḡμν; Ā1μ; Ā2μÞ embedded within the STU
supergravity models for small quantum fluctuations of
metric or graviton hμν, two Maxwell fields a1μ and a2μ,

TABLE II. The choice of constraints on two cases of Uð1Þ2-
charged STU truncations (37) for embedding Einstein-Maxwell
black hole backgrounds.

Types of Uð1Þ2-charged
STU supergravity models

Constraints on background Uð1Þ
charges and field strengths

Case I (κ1 ¼ 1; κ2 ¼ −1) Q1 ¼ Q2; F̄1μνF̄1
μν ¼ F̄2μνF̄2

μν

Case II (κ1¼
ffiffiffi
3

p
;κ2¼− 1ffiffi

3
p ) Q1¼ 1ffiffi

3
p Q2;F̄1μνF̄1

μν¼ 1
3
F̄2μνF̄2

μν
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and dilaton Φ̃:

gμν ¼ ḡμν þ
ffiffiffi
2

p
hμν; A1μ ¼ Ā1μ þ

1

2
aIμ;

A2μ ¼ Ā2μ þ
1

2
a2μ; Φ ¼ 0þ 1

2
Φ̃; ð47aÞ

where

FIμν ¼ F̄Iμνþ
1

2
fIμν; fIμν ¼D½μaIν�; I ¼ 1;2: ð47bÞ

The graviton and Maxwell fluctuations are adjusted using a
specific normalization factor, following the convention
employed by Sen et al. in [15]. Additionally, the dilaton
fluctuation has been scaled by a 1

2
factor. This collective

normalization choice will be advantageous in ensuring that

all the effective kinetic components are in the same state of
normalization within the Laplace-type operator form (58).
It is important to note that the dilaton acts as its own
fluctuation, while simultaneously sharing the common EM
background with the graviton and Maxwell fluctuations.
We then proceed with expanding the STU action (37) in
terms of the fluctuations (47). We specifically focus on the
quadratic part of the contribution, as required by the one-
loop quantum correction setup in Sec. II. We ascertained
that this quadratic contribution entails several terms with
complicated nonminimal couplings via the background
Maxwell field strengths F̄1μν and F̄2μν. By considering
terms up to total derivatives and making use of the
expansion (46), we systematically decouple the quadratic
fluctuated STU action into the following “Einstein-dilaton”
and “Maxwell-dilaton” sectors:

δ2

 ffiffiffiffiffiffiffiffiffi

det g
p

ðR − 2Λ − 2DμΦDμΦÞ� ¼ 1

2

ffiffiffiffiffiffiffiffiffi
det ḡ

p �
hμνDρDρhμν − hμμDρDρhνν − 2hνρDμDνhμρ þ 2hμνDμDνhαα

þ Φ̃DρDρΦ̃ − ðR − 2ΛÞhμνhμν þ 2Rμνð2hμρhνρ − hααhμνÞ þ
1

2
ðR − 2ΛÞðhααÞ2

�
;

ð48aÞ

δ2


−

ffiffiffiffiffiffiffiffiffi
det g

p
ðf1ðΦÞF1μνF1

μν þ f2ðΦÞF2μνF2
μνÞ� ¼ −

ffiffiffiffiffiffiffiffiffi
det ḡ

p �
1

4
ðf1μνf1μν þ f2μνf2μνÞ þ 2ðF̄1μνF̄1αβ þ F̄2μνF̄2αβÞhμαhνβ

þ 4ðF̄1μνF̄1
μα þ F̄2μνF̄2

μαÞhνβhαβ − 2ðF̄1μνF̄1α
ν þ F̄2μνF̄2α

νÞhρρhμα

−
1

2
ðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ

�
hαβhαβ −

1

2
ðhρρÞ2

�

− 2
ffiffiffi
2

p
ðF̄1μνf1αν þ F̄2μνf2ανÞhμα þ

ffiffiffi
2

p

2
ðF̄1μνf1μν þ F̄2μνf2μνÞhρρ

þ 1

2
ðκ12F̄1μνF̄1

μν þ κ2
2F̄2μνF̄2

μνÞΦ̃2 − ðκ1F̄1μνf1μν þ κ2F̄2μνf2μνÞΦ̃
þ 2

ffiffiffi
2

p
ðκ1F̄1μνF̄1α

ν þ κ2F̄2μνF̄2α
νÞΦ̃hμα

−
ffiffiffi
2

p

2
ðκ1F̄1μνF̄1

μν þ κ2F̄2μνF̄2
μνÞΦ̃hαα

�
; ð48bÞ

where the respective kinetic parts of Maxwell fluctuations need to be identified from the terms f1μνf1μν and f2μνf2μν using
the following relations:

−
1

2
fIμνfIμν ¼ aIμðḡμνDρDρ − RμνÞaIν þ ðDμaIμÞ2; I ¼ 1; 2: ð48cÞ

We continue with the objective of formulating the desired
Laplace-type structure (27) for the differential operator that
governs the quadratic STU fluctuations. To achieve this, we
carried out a series of adjustments on the fluctuated action
form (48) that are in the following order.
(1) The heat kernel treatment II C necessitates that there

be a distinct kinetic term corresponding to each

off-shell degree of freedom or fluctuation present in
the theory of interest. However, the quadratic action
form (48) includes a few redundant components in
the kinetic contributions of both the graviton and
Maxwell fluctuations. To address this, we adopt the
conventional practice of gauge-fixing the fluctuated
theory by incorporating the gauge-fixing term,
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−
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p ��
Dμhμρ −

1

2
Dρhαα

��
Dνhνρ −

1

2
Dρhββ

�
þ 1

2
ððDμa1μÞ2 þ ðDμa2μÞ2Þ

�
; ð49Þ

where the graviton and Maxwell modes are accom-
modated through the choice of harmonic gauge
Dμhμρ − 1

2
Dρhμμ ¼ 0 and Lorentz gauge Dμa1μ ¼ 0;

Dμa2μ ¼ 0, respectively. The gauge-fixing (49) is
applicable to both the asymptotically flat and AdS
cases, as the presence of the cosmological term
always preserves the gauge invariance under the
considered background field transformations. The
introduction of this gauge-fixing procedure gives
rise to an additional ghost term [11],

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
½2b1μðḡμνDρDρ þ RμνÞc1ν

þ 2b2μðḡμνDρDρ þ RμνÞc2ν
þ 2b1DρDρc1 þ 2b2DρDρc2

− 4b1F̄ρνDρc1ν − 4b2F̄ρνDρc2ν�: ð50Þ

This term involves two sets of vector ghosts ðb1μ;
b2μ; c1μ; c2μÞ and scalar ghosts ðb1; b2; c1; c2Þ, aris-
ing respectively from the diffeomorphism and gauge
invariance of the graviton and Maxwell fluctuations.
This ghost term is minimal and remains non-
interacting with the gauge-fixed component. Con-
sequently, we have the flexibility to treat and
evaluate the heat kernel contribution of the ghost
part (50) separately.

(2) The preceding gauge-fixing procedure needs to be
complemented by an appropriate treatment of the
trace mode of the graviton for the remaining kinetic
component hμμDρDρhνν. Readers familiar with the
literature (e.g., see [112–114]) may recognize the
standard treatment of decomposing the graviton into
its trace h ¼ hμμ ¼ ḡμνhμν and a symmetric traceless
part ĥμν ¼ hμν − 1

4
ḡμνh. This decomposition enables

to effectively treat the trace h and traceless ĥμν
graviton components as distinct fluctuations that
transform under the irreducible representations of
SLð2;CÞ. As a consequence, the gauge-fixed kinetic
portion of the graviton can be reformulated as

hμνDρDρhμν −
1

2
hμμDρDρhνν

¼ Gĥμνĥαβ ĥμνDρDρĥαβ −
1

4
hDρDρh; ð51Þ

where the inner product between traceless
graviton modes is defined by the following DeWitt
metric [115]:

Gĥμνĥαβ ¼ 1

2

�
ḡμαḡνβ þ ḡμβḡνα −

1

2
ḡμνḡαβ

�
: ð52Þ

The operator Gĥμνĥαβ serves as an effective metric that
projects onto the symmetric and traceless piece of
the graviton, containing 10 − 1 ¼ 9 off-shell degrees
of freedom after gauge-fixing the STU theory.
Consequently, in the subsequent heat kernel treat-
ment of this study, Gĥμνĥαβ must be utilized as a
projection operator to contract the pairs of indices
for any matrix acting on ĥμν. For instance, ifM is an
arbitrary matrix associated with the fluctuations of
the traceless graviton component, i.e.,

ϕ̃mMm
n ϕ̃

n ¼ ĥμνMĥμνĥαβ ĥαβ; ð53Þ

then the expression for M2 is given by

ðM2Þĥμνĥαβ ¼ Gĥρσ ĥγδ
MĥμνĥρσMĥγδĥαβ : ð54Þ

Moreover, the trace operations on M and M2 are
defined as

TrðMÞ ¼ Gĥμνĥαβ
Mĥμνĥαβ ;

TrðM2Þ ¼ Gĥαβ ĥρσ
Gĥμνĥγδ

MĥμνĥρσMĥαβ ĥγδ : ð55Þ

(3) The revised kinetic contribution of the graviton, as
presented in Eq. (51), still requires further refine-
ment. Notably, the graviton trace component in-
volves a negative signature, treating h as a ghost
field. This scenario highlights the familiar conformal
factor problem in gravity, resulting in a divergent
and ill-defined contribution to the Euclideanized
one-loop path integral (7). To address this issue,
we adopt the conventional procedure outlined by
Gibbons et al. [116,117] by implementing a con-
formal rotation along the imaginary axis with a new
real graviton trace component ĥ, i.e.,

ĥ ¼ −
i
2
h: ð56Þ

It is important to note that the introduction of an
additional 1=2 factor serves the purpose of aligning
the kinetic contribution of the graviton trace with the
same normalization state as that of the traceless
component and Maxwell fluctuations [please refer
to Eq. (58)].
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(4) As a subsequent step, we need to modify the
quadratic fluctuated STU action to ensure its self-
adjoint properties in the desired operator form (51).
This technical requirement necessitates adjusting
the quadratic action to incorporate the Hermitian
counterpart of each term. To achieve this, we
identify appropriate terms with fluctuations ϕ̃m ¼
fĥμν; ĥ; a1μ; a2μ; Φ̃g and then extract their Hermitian
partners using the following schematic approach
involving arbitrary matrices N and Kρ:

ϕ̃mNmnϕ̃n þ ϕ̃mðKρÞmnDρϕ̃n

¼ 1

2
ϕ̃m

�
Nmn −

1

2
ðDρKρÞmn þ ðKρÞmnDρ

�
ϕ̃n

þ 1

2
ϕ̃n

�
Nmn −

1

2
ðDρKρÞmn − ðKρÞmnDρ

�
ϕ̃m:

ð57Þ

It is important to note that the above relations are
derived by utilizing the commutative properties of
the bosonic fluctuations and disregarding all the total
derivative terms. This adjustment up to total deriv-
atives is crucial since they lead to boundary terms
that do not contribute to the integrations (48) around
asymptotically flat and AdS backgrounds.

1. Gauge-fixed contribution

With incorporating the above rectifications, we finally
arrive at the desired form of quadratic fluctuated STU
theory [without including the ghost contribution (50)],

δ2S½ĥμν; ĥ; a1μ; a2μ; Φ̃� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
ϕ̃mHm

n ϕ̃
n; ð58aÞ

where the simplified Laplace-type operator H is expressed
into the following components:

ϕ̃mHm
n ϕ̃

n¼ ĥμν

�
GĥμνĥαβDρDρĥαβþ2

�
Rμανβ− ḡμαRνβ−2F̄1

μαF̄1
νβ−2F̄2

μαF̄2
νβ−

1

2
ḡμαḡνβðF̄1ρσF̄1

ρσþ F̄2ρσF̄2
ρσ−2ΛÞ

�
ĥαβ

−2iðF̄1
μαF̄1

ν
αþ F̄2

μαF̄2
ν
αÞĥ−

ffiffiffi
2

p
ðDνF̄1

μαÞa1α−
ffiffiffi
2

p
ðDνF̄2

μαÞa2α−2
ffiffiffi
2

p
ðκ1F̄1

μαF̄1
ν
αþκ2F̄2

μαF̄2
ν
αÞΦ̃

þ2
ffiffiffi
2

p
ðḡνρF̄1

μα− ḡναF̄1
μρÞðDρa1αÞþ2

ffiffiffi
2

p
ðḡνρF̄2

μα− ḡναF̄2
μρÞðDρa2αÞ



þ ĥfDρDρĥþ2Λĥ−2iðF̄1

μαF̄1
ν
αþ F̄2

μαF̄2
ν
αÞĥμνgþ Φ̃fDρDρΦ̃− ðκ12F̄1μνF̄1

μνþκ2
2F̄2μνF̄2

μνÞΦ̃
−2

ffiffiffi
2

p
ðκ1F̄1

μαF̄1
ν
αþκ2F̄2

μαF̄2
ν
αÞĥμνþ2κ1F̄1

ραðDρa1αÞþ2κ2F̄2
ραðDρa2αÞg

þa1αfḡαβDρDρa1β−Rαβa1β−
ffiffiffi
2

p
ðDνF̄1

μαÞĥμν−2κ1F̄1
ραðDρΦ̃Þ−2

ffiffiffi
2

p
ðḡνρF̄1

μα− ḡναF̄1
μρÞðDρĥμνÞg

þa2αfḡαβDρDρa2β−Rαβa2β−
ffiffiffi
2

p
ðDνF̄2

μαÞĥμν−2κ2F̄2ραðDρΦ̃Þ−2
ffiffiffi
2

p
ðḡνρF̄2

μα− ḡναF̄2
μρÞðDρĥμνÞg: ð58bÞ

The above operator form represents different intricate
interactions between the quadratic fluctuations of the
STU model through the Einstein-Maxwell backgrounds.
These interactions are noticed to be distributed among
various nonminimal blocks that are determined by the
background metric, curvature, and Maxwell strengths. To
better organize these blocks, we have further restructured
them in (58) to pair each quadratic term symmetrically by
interchanging indices within each traceless graviton ĥμν
and also with its quadratic counterpart (ĥμν; ĥαβ). During
this process, one may make use of the background Einstein
equation (38), the Maxwell equation (39), and the embed-
ding condition (44) to facilitate necessary simplifications at
appropriate steps. This adjustment is crucial to ensure
correct trace results using the relations in (55). At this
stage, we are well-prepared to conduct the heat kernel
treatment as outlined in Sec. II C, where we compare the
Laplace-type operatorH for STU theory with the schematic
representation in (27) and proceed to extract the required
background heat kernel matrices.

The effective projection or identity matrices for individ-
ual off-shell STU fluctuations are read off as

ϕ̃mImnϕ̃n ¼ ĥμνGĥμνĥαβ ĥαβ þ ĥ ĥþa1μḡμνa1ν

þ a2μḡμνa2ν þ Φ̃ Φ̃ : ð59Þ
Notice that the traceless graviton employs the DeWitt metric
Gĥμνĥαβ as an identity operator for the specific form given in
Eq. (52), whereas the same is replaced solely by the four-
dimensional background metric ḡμν for theUð1Þ or Maxwell
fluctuations. When we calculate the trace of (59), we find a
total of nineteen off-shell degrees of freedom for the current
gauged-fixed STU fluctuations fϕ̃mg: nine stemming from
the traceless graviton ĥμν, four from each Maxwell mode a1μ
and a2μ, and one from each scalar field ĥ and Φ̃, providing

TrðIÞ ¼ 9þ 1þ 4þ 4þ 1 ¼ 19: ð60Þ
Additionally, we derived the gauge-connection matrix

ωρ by analyzing the nonminimal (i.e., linear-derivative)
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terms in the operator form (58) as

ϕ̃mðωρÞmnϕ̃n ¼
ffiffiffi
2

p

2
ĥμνðḡμρF̄1

να þ ḡνρF̄1
μα − ḡμαF̄1

νρ − ḡναF̄1
μρÞa1α þ

ffiffiffi
2

p

2
ĥμνðḡμρF̄2

να þ ḡνρF̄2
μα − ḡμαF̄2

νρ − ḡναF̄2
μρÞa2α

−
ffiffiffi
2

p

2
a1αðḡμρF̄1

να þ ḡνρF̄1
μα − ḡμαF̄1

νρ − ḡναF̄1
μρÞĥμν −

ffiffiffi
2

p

2
a2αðḡμρF̄2

να þ ḡνρF̄2
μα − ḡμαF̄2

νρ − ḡναF̄2
μρÞĥμν

þ κ1ða1αF̄1
αρΦ̃− Φ̃F̄1

αρa1αÞ þ κ2ða2αF̄2
αρΦ̃− Φ̃F̄2

αρa2αÞ: ð61Þ

The relation above confirms the existence of only two
primary sources of nonminimal couplings within the
current quadratic fluctuation framework of the STU model.
These couplings directly govern the interactions of two
Maxwell fluctuations ða1α; a2αÞ with the traceless graviton
ĥμν and the dilaton Φ̃. From a technical perspective, this
interaction pattern gives rise to an indirect nonminimal
coupling between a1α and a2α, subsequently leading to the
emergence of relevant components within the E and Ωρσ

matrices when derived using the relation (61) (for details,

please refer to Appendix A). Furthermore, it is worth noting
that the components ofωρ are antisymmetric with respect to
the relevant fluctuations. This particular characteristic is
consistent with findings from previously reported similar
heat kernel treatments, offering primary validation for the
Laplace-type operator form derived in (58).
Similarly, we read off the matrix P from the derivative-

free or minimal part of the operator form (58). The relevant
components are expressed as follows:

ϕ̃mPmnϕ̃n ¼ ĥμν

�
Rμανβ þ Rμβνα −

1

2
ðḡμαRνβ þ ḡναRμβ þ ḡμβRνα þ ḡνβRμαÞ − 2ðF̄1

μαF̄1
νβ þ F̄1

μβF̄1
να þ F̄2

μαF̄2
νβ

þ F̄2
μβF̄2

ναÞ − 1

2
ðF̄1ρσF̄1

ρσ þ F̄2ρσF̄2
ρσ − 2ΛÞðḡμαḡνβ þ ḡμβḡναÞ

�
ĥαβ þ 2ĥΛĥ − Φ̃ðκ12F̄1μνF̄1

μν

þ κ2
2F̄2μνF̄2

μνÞΦ̃ − a1μRμνa1ν − a2μRμνa2ν − 2iðF̄1
μαF̄1

ν
α þ F̄2

μαF̄2
ν
αÞðĥμνĥþ ĥĥμνÞ

− 2
ffiffiffi
2

p
ðκ1F̄1

μαF̄1
ν
α þ κ2F̄2

μαF̄2
ν
αÞðĥμνΦ̃þ Φ̃ĥμνÞ −

ffiffiffi
2

p

2
ðDμF̄1

να þDνF̄1
μαÞðĥμνa1α þ a1αĥμνÞ

−
ffiffiffi
2

p

2
ðDμF̄2

να þDνF̄2
μαÞðĥμνa2α þ a2αĥμνÞ: ð62Þ

From here, our objective involves utilizing all the matrix-
valued data recorded in Eqs. (59), (61), and (62) to derive
the components of the desired matrices E and Ωρσ , which
encode the complete details of all quadratic STU inter-
actions in terms of the background metric and Maxwell
fields. This process requires the formulation of additional
terms that involve contraction and commutation operations
between the connection ωρ and the covariant derivative
Dρ, as delineated by the formulas in Eqs. (30)–(32).

Subsequently, we calculate the traces TrðEÞ, TrðE2Þ, and
TrðΩρσΩρσÞ over all relevant components. Although these
calculations are highly intricate and laborious, they may
provide valuable insights to interested readers. We have
provided a systematic outline of the underlying steps in
Appendix A. The computed trace results are summarized as
follows:

TrðEÞ ¼ −12Λþ 7ðF̄1μνF̄1
μν þ F̄2μνF̄2

μνÞ; ð63Þ

TrðE2Þ ¼ 3RμνρσRμνρσ −
�
23

4
þ 2κ21
ðκ41 þ 1Þ

�
RμνRμν þ

�
31þ 8κ21

ðκ41 þ 1Þ
�
Λ2 þ 3RμνρσðF̄1

μνF̄1
ρσ þ F̄2

μνF̄2
ρσÞ

þ 37

4
ðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ2 − Λ

�
18þ 4κ21

ðκ41 þ 1Þ
�
ðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ; ð64Þ

TrðΩρσΩρσÞ ¼ −8RμνρσRμνρσ þ
�
113

2
þ 4κ21
ðκ41 þ 1Þ

�
RμνRμν −

�
226þ 16κ21

ðκ41 þ 1Þ
�
Λ2 − 18RμνρσðF̄1

μνF̄1
ρσ þ F̄2

μνF̄2
ρσÞ

−
111

2
ðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ2 þ Λ

�
60þ 8κ21

ðκ41 þ 1Þ
�
ðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ: ð65Þ

KARAN, PUNIA, and BISWAS PHYS. REV. D 111, 066016 (2025)

066016-16



The aforementioned trace relations are simplified by incor-
porating appropriate on-shell identities (see Appendix A 1),
expressing them solely in terms of distinct irreducible
invariants of Einstein-Maxwell backgrounds for the two
Uð1Þ2-charged STU models with κ1κ2 ¼ −1. However, it
has been observed that nearly all invariants involving back-
ground Maxwell field strengths in the specific trace data
are precisely canceled out within the a4ðxÞ formula (33).

The final Seeley-DeWitt result involves only ΛF̄1μνF̄1
μν

and ΛF̄2μνF̄2
μν, specifically for the case ðκ1; κ2Þ ¼

ð ffiffiffi
3

p
;−1=

ffiffiffi
3

p Þ in the STU truncation. These can be collec-
tively encoded inside the effective invariant RF̄μνF̄μν,
where R ¼ 4Λ, in accordance with the choice of the
embedding condition (45). All of this leads to the following
result:

ð4πÞ2a4gauge-fixedðxÞ ¼
169

180
RμνρσRμνρσ þ

�
311

180
−

2κ21
3ðκ41 þ 1Þ

�
RμνRμν −

�
4

9
−

κ21
6ðκ41 þ 1Þ

�
R2 þ ðκ21 − 1Þ2

6ðκ41 þ 1ÞRF̄μνF̄μν; ð66Þ

where we have set χ ¼ 1 for the graviton and Uð1Þ or
Maxwell fluctuations. It is worth noting some insightful
remarks about the Seeley-DeWitt result (66). The coeffi-
cient of RμνρσRμνρσ remains robust for a theory with fixed
off-shell degrees of freedom. In contrast, the specific
coefficients for RμνRμν, R2 and RF̄μνF̄μν are not funda-
mental but rather sensitive to the type of nonminimal
couplings and gauge interactions that are effective between
fluctuations. Moreover, their respective contributions can
be interchanged through the one-shell Einstein equa-
tion (43). Therefore, at any stage, it is never advisable to
disregard the background invariants proportional to F̄1μν

and F̄2μν, which were present in the trace data obtained in
Eqs. (63)–(65) but canceled out inside the final result (66).

2. Ghost contribution

Now, we need to proceed with a similar heat kernel
computation for the ghost term (50), which further refines
the gauge-fixed contribution (66) of the Seeley-DeWitt
coefficient a4ðxÞ. To begin, we can express the ghost
action asZ

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
½2bIμðḡμνDρDρ þ RμνÞcJνδIJ

þ 2bIDρDρcJδIJ − 4bIF̄
ρν
J DρcKνδIJK�; ð67Þ

where δIJ and δIJK are the Kronecker deltas with indices I,
J, K ¼ 1, 2 enumerating all the ghost fields correspond to
the twoUð1Þ gauge or Maxwell species. Clearly, the kinetic
terms need to be diagonalized to make use of the Laplace-
type quadratic operator for the heat kernel methodology.
A convenient approach is to introduce the following
redefinitions between the ghost species:

bIμ →

ffiffiffi
2

p

2
ðcIμ − ibIμÞ; cIμ →

ffiffiffi
2

p

2
ðcIμ þ ibIμÞ;

bI →

ffiffiffi
2

p

2
ðcI − ibIÞ; cI →

ffiffiffi
2

p

2
ðcI þ ibIÞ: ð68Þ

This allows us to extract the desired form of the kinetic
operator (up to quadratic order) operating on the six ghost
fluctuations ϕ̃m ¼ fbIμ; cIμ; bI; cIg as

δ2Sghost ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ϕ̃mHm

n ϕ̃
n; ð69aÞ

where

ϕ̃mHm
n ϕ̃

n ¼ bIμðḡμνDρDρ þ RμνÞbJνδIJ þ cIμðḡμνDρDρ þ RμνÞcJνδIJ þ bIDρDρbJδIJ þ cIDρDρcJδIJ

þ bIμF̄
ρμ
J ðDρbK þ iDρcKÞδIJK þ cIμF̄

ρμ
J ðDρcK − iDρbKÞδIJK − bIF̄

ρμ
J ðDρbKμ − iDρcKμÞδIJK

− cIF̄
ρμ
J ðDρcKμ þ iDρbKμÞδIJK: ð69bÞ

From here, the task is to write the forms of the following necessary heat kernel matrices (as defined in Sec. II C):

ϕ̃mImnϕ̃n ¼ bIμðḡμνδIJÞbJν þ cIμðḡμνδIJÞcJν þ bIðδIJÞbJ þ cIðδIJÞcJ; ð70Þ

ϕ̃mPmnϕ̃n ¼ bIμðRμνδIJÞbJν þ cIμðRμνδIJÞcJν; ð71Þ
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ϕ̃mðωρÞmnϕ̃n ¼
1

2
bIμðF̄ρμ

J δIJKÞbK −
1

2
bIðF̄ρμ

J δIJKÞbKμ þ
1

2
bIμðiF̄ρμ

J δIJKÞcK −
1

2
cIðiF̄ρμ

J δIJKÞbKμ þ
1

2
cIμðF̄ρμ

J δIJKÞcK

−
1

2
cIðF̄ρμ

J δIJKÞcKμ þ
1

2
cIμðiF̄ρμ

J δIJKÞbK −
1

2
bIðiF̄ρμ

J ÞcKμ; ð72Þ

which further provides

ϕ̃mEmnϕ̃n ¼ bIμðRμνδIJÞbJν þ cIμðRμνδIJÞcJν; ð73Þ

ϕ̃mðΩρσÞmnϕ̃n ¼ bIμðRμν
ρσδIJÞbJν þ cIμðRμν

ρσδIJÞcJν −
1

2
bIμðDμF̄JρσδIJKÞbK þ 1

2
bIðDμF̄JρσδIJKÞbKμ

−
1

2
bIμðiDμF̄JρσδIJKÞcK þ 1

2
cIðiDμF̄JρσδIJKÞbKμ þ

1

2
cIμðiDμF̄JρσδIJKÞbK −

1

2
bIðiDμF̄JρσδIJKÞcKμ

−
1

2
cIμðDμF̄JρσδIJKÞcK þ 1

2
cIðDμF̄JρσδIJKÞcKμ: ð74Þ

It is essential to recognize that all other matrix components
that are technically valid but nullified by the application of
the equations of motion (38) to (40) for our specific choice
of EM background embedded STU supergravity model.
Taking into account the derived components for the
matrices I , E and Ωρσ , we can determine the following
traces for the ghosts:

TrðIÞ ¼ 4δII þ 4δII þ δII þ δII ¼ 20;

TrðEÞ ¼ RδII þ RδII ¼ 16Λ;

TrðE2Þ ¼ 2RμνRμνδIJδJI ¼ 4RμνRμν;

TrðΩρσΩρσÞ ¼ −2RμνρσRμνρσδIJδJI ¼ −4RμνρσRμνρσ: ð75Þ

This trace data is sufficient to determine the ghost con-
tribution to the third-order Seeley-DeWitt coefficient a4ðxÞ,

ð4πÞ2a4ghostðxÞ ¼
2

9
RμνρσRμνρσ −

17

9
RμνRμν −

17

18
R2: ð76Þ

One must note that this result incorporates χ ¼ −1 in the
formula (33) due to the inclusion of bosonic ghosts where
the negative signature arises as the ghosts follow a reverse
spin-statistics compared to the physical fields.

D. Results

In gravitational theories with quantum fluctuations, the
logarithmic correction to black hole entropy induced by the
one-loop effective action is well known to be associated
with trace anomalies (e.g., see [19,35,118]). Within the
framework of effective action formulated by the heat kernel
expansion and the background field formalism (as detailed
in Sec. II), the trace anomalies explicitly appear as terms
within the heat expansion coefficients and depend on the
background curvature invariants. Specifically, the trace
anomalies are encoded within the third-order Seeley-
DeWitt coefficient a4ðxÞ for four-dimensional theories.

Our current objective is to unveil trace anomalies within
a4ðxÞ for the ongoing analysis of the quantized STU
supergravity model around Einstein-Maxwell-AdS back-
grounds. Specifically, we will demonstrate that the square
of the Weyl tensor WμνρσWμνρσ and the four-dimensional
Euler-Gauss-Bonnet density E4, respectively, appear as the
type-B and type-A trace anomalies, defined as

WμνρσWμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þ 1

3
R2;

E4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð77Þ
We need to combine the computed gauge-fixed contribu-
tion (66) and ghost contribution (76). These contributions
are computed separately since the ghosts do not interact
with the gauge-fixed sector of the theory containing
physical modes. The combination of gauge-fixed and ghost
parts is straightforward, resulting in

ð4πÞ2a4STUðxÞ

¼ 209

180
RμνρσRμνρσ −

�
29

180
þ 2κ21
3ðκ41 þ 1Þ

�
RμνRμν

−
�
25

18
−

κ21
6ðκ41 þ 1Þ

�
R2 þ ðκ21 − 1Þ2

6ðκ41 þ 1ÞRF̄μνF̄μν: ð78Þ

For the solution of the STU supergravity model embedded
with Einstein-Maxwell backgrounds in AdS space (or with
a negative cosmological constant Λ), the Seeley-DeWitt
coefficient a4ðxÞ can be decomposed in terms of a sum of
four-derivative background terms, including the trace
anomalies:

ð4πÞ2a4STUðxÞ ¼ cWμνρσWμνρσ − aE4 þ b1R2

þ b2RF̄μνF̄μν; ð79aÞ
where the coefficients c, a, b1, and b2 can be extracted from
the relation (78), derived using the two-derivative action of
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the present theory. The coefficients c and a, respectively
multiplying WμνρσWμνρσ and E4, are recognized as the two
central charges of the conformal anomaly in 4D. The results
of the coefficients in (79a) are summarized as follows:

c ¼ 1

3

�
269

40
−

κ21
κ41 þ 1

�
; ð79bÞ

a ¼ 1

3

�
389

120
−

κ21
κ41 þ 1

�
; ð79cÞ

b1 ¼ −
1

18

�
19þ κ21

κ41 þ 1

�
; ð79dÞ

b2 ¼
ðκ21 − 1Þ2
6ðκ41 þ 1Þ : ð79eÞ

It is important to note that the absence of the dilaton
coupling constant κ2 from the results presented in Eqs. (78),
(79), and (66) should not raise concerns. The κ2 contribu-
tions are consistently taken into account in all relevant
places. We substituted them using the specific choice κ2 ¼
−1=κ1 in order to simplify the forms of the heat kernel
results computed for the two truncation cases of the STU
model, i.e., when ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ
(refer to Sec. III B). While it is feasible to rewrite the
results in terms of relatively complex forms involving both
κ1 and κ2 at any point, such a task is not straightforward and
requires the use of trace data and identities provided in
Appendixes A 3 and A 1.
The derived trace anomaly data (39) is specific to the

chosen theory, relying entirely on the one-loop fluctuations
and embedded asymptotically AdS EM background in
the STU supergravity model. Equivalent results for the
Uð1Þ2-charged STU model in asymptotically flat EM
backgrounds can be easily obtained by setting the cosmo-
logical constant to zero, Λ ¼ 0. In this flat space limit,
terms such as R2 and RF̄μνF̄μν vanish, and the relation (78)
for a4ðxÞ is solely governed by the Weyl anomaly
WμνρσWμνρσ and the Euler density E4, with nonvanishing
coefficients c and a. Moreover, the a4ðxÞ coefficient in the
flat-space limit becomes invariant under electromagnetic
duality, as it is independent of terms proportional to the
effective field strength F̄μν [as defined in Eq. (45)].
Interestingly, this property persists even when transitioning
beyond the flat limit and considering AdS backgrounds
embedded in the ðκ1; κ2Þ ¼ ð1;−1Þ case of the STU theory,
resulting in a vanishing b2. However, the STU model with
ðκ1; κ2Þ ¼ ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ breaks the electromagnetic dual-
ity invariant nature of a4ðxÞ due to the induction of a
nonzero b2.
Before delving into the implications of the heat kernel

and trace anomaly data for computing the logarithmic
correction to the entropy of embedded black holes (refer to

Sec. IV), it is essential to assess their consistency with
existing literature. While the current STU super-
gravity model stands as the most natural and nontrivial
generalization of previously explored bosonic super-
gravity models (for example, refer to the reviews
[13,15,16,19,21,23,24,26,27,29,30]), there is no direct path
leading to these available results by setting appropriate
limits in the relations presented in Eqs. (78) and (79).
Technically, this is because the dilaton-coupling-indepen-
dent terms in the heat kernel or trace anomaly data are
sensitive to the specific off-shell degrees of freedom and
their nonminimal interactions within the theory, making
them less controllable. Nevertheless, we have conducted
meticulous checks, starting with the original form of
trace data recorded in Appendix A 3 and proceeding
with top-down manipulations. This approach has yielded
exact results for the fluctuated Einstein-Maxwell theory
[15,16,27] or the boson sector of N ¼ 2 supergravity
(for κ1 ¼ κ2 ¼ 0) [13,19,21,24,26,29], the Kaluza-Klein
system (for κ1 ¼

ffiffiffi
3

p
; κ2 ¼ 0;Λ ¼ 0) [23], and Einstein-

Maxwell-dilaton models (for κ1 ¼ 1;
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
and

κ2 ¼ 0) [30]. Each of these emerges as a distinct and
consistent limiting case of the current STU model (37) heat
kernel results obtained in Eqs. (78) and (79).

IV. LOGARITHMIC CORRECTIONS TO ADS4
AND FLAT4 BLACK HOLE ENTROPY

In this section, we delve into the derivation of the log-
arithmic correction to the entropy of black holes embedded
in the truncated four-dimensional STU supergravity models
discussed in Sec. II. These backgrounds encompass all the
Kerr-Newman-AdS, Reissner-Nordström-AdS, Kerr-AdS,
and Schwarzschild-AdS black holes, along with the Kerr-
Newman, Reissner-Nordström, Kerr, and Schwarzschild
black holes, which are generic solutions of the Einstein-
Maxwell theory evolving with and without a negative
cosmological constant, respectively. Here, we interpret or
uplift them as the background solutions of the Uð1Þ2-
charged EMD-AdS and EMD theories intersecting with the
gauged and ungauged STU supergravities in four spacetime
dimensions.
At this stage, we apply the framework established in

Sec. II, which necessitates the utilization of the Seeley-
DeWitt coefficient a4ðxÞ calculated in Secs. III C and III D.
Specifically, our current objective is to provide the trace
anomaly form (79) of a4ðxÞ as a precursor for determining
the logarithmic corrections for both nonextremal and
extremal black holes embedded in the STU models. In
the local contribution Clocal, all the four-derivative back-
ground invariants, including the WμνρσWμνρσ and E4

anomalies, need to be integrated over the appropriate part
of the geometry of the concerned black hole backgrounds.
This leads us to the following general formula for obtaining
the local part of logarithmic entropy corrections:
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Clocal ¼
c

16π2

Z
d4x

ffiffiffī
g

p
WμνρσWμνρσ −

a
16π2

Z
d4x

ffiffiffī
g

p
E4

þ b1
16π2

Z
d4x

ffiffiffī
g

p
R2 þ b2

16π2

Z
d4x

ffiffiffī
g

p
RF̄μνF̄μν;

ð80Þ

where the coefficients a, c, b1, and b2 do not affect the
integrations since their values, as obtained in Eq. (79b), are
constants fixed by the choice of theory. For nonextremal or
finite-temperature AdS4 and flat4 black holes, the integra-
tions need to be performed over the entire background
geometry ḡμν. Meanwhile, for extremal black holes, we
observe that the contributions to Clocal remain the same
whether the integration (80) is executed over the full
geometry or only the finite piece of near-horizon geometry.
In the following subsections, we systematically derive

specific relations for computing contributions to Clocal in
STU models. These relations are expressed in terms of
various dimensionless ratios involving different black hole
parameters and the anomaly coefficients a, c, b1 and b2.
Throughout this process, our primary focus is on evaluating
the curvature invariant integrations, as detailed in rela-
tion (80), for the most generic nonextremal background
of a four-dimensional Kerr-Newman-AdS black hole.
Subsequently, we emphasize on the extremal and near-
horizon cases, along with their asymptotically flat limits.
Furthermore, the same analysis is extended to other AdS4
and flat4 counterparts of Reissner-Nordström, Kerr, and
Schwarzschild black holes. As a final output, we present
the explicit results for the logarithmic correction to the
entropy of all black holes embedded in both the gauged and
ungauged versions of the STU supergravity theory.

A. Black hole backgrounds in STU supergravity
and Clocal contributions

1. Kerr-Newman-AdS4 black hole

We start with a four-dimensional nonextremal Kerr-
Newman-AdS (KNAdS) black hole, representing the most
interesting and generic Einstein-Maxwell background in
our chosen STU models. In terms of the standard Boyer-
Lindquist type coordinates, the metric for this charged and
rotating background is given by [71]

ḡμνdxμdxν ¼ −
Δr

ρ2

�
dt −

asin2θ
Ξ

dϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
a dt −

r2 þ a2

Ξ
dϕ

�
2

; ð81Þ

where we set GN ¼ 1. The parameters Δr, Δθ, ρ, and Ξ are
related to the physical mass M, angular momentum J, and
electric charge Q of the black hole, as well as the boundary
radius l of AdS4 space, via

M ¼ m
Ξ2

; J ¼ ma
Ξ2

; Q ¼ q
Ξ
; Ξ ¼ 1 −

a2

l2
;

Δr ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mrþ q2;

Δθ ¼ 1 −
a2

l2
cos2θ; ρ2 ¼ r2 þ a2cos2θ: ð82Þ

It is important to note that this background setup is valid
only when the rotational parameter a satisfies a2 < l2 and
becomes singular in the limit a2 ¼ l2. Throughout our
analysis, we consider a ≥ 0, and obtain all interested results
by replacing a → jaj everywhere without any loss of
generality. Furthermore, we consistently turn off terms
related to the magnetic charge parameters in order to embed
the charged EM backgrounds into the current STU super-
gravity models. The metric (81) satisfies the background
EM field equations (43) for R ¼ 4Λ ¼ − 12

l2 with an electri-
cally charged vector potential Āμ and an associated
Maxwell field strength tensor F̄μν, given respectively by

Ā ¼ −
qr
ρ2

�
dt −

asin2θ
Ξ

dϕ

�
ð83Þ

and

F̄μνF̄μν ¼ −
2q2

ðr2 þ a2cos2θÞ4 ðr
4 − 6a2r2cos2θþ a4cos4θÞ:

ð84Þ

As per the specific embedding choices (44) and (45), the
KNAdS background is interpreted as a solution of the
truncated STU models (37) for an effective electric charge
parameter,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

q
or Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 þQ2
2

q
; ð85Þ

where q1 and q2 represent the respective charge parameters
of the twoUð1Þ gauge fields, satisfying (83) and (84). If the
outer event horizon of the KNAdS black hole (81) is
located at r ¼ rþ, then one obtains rþ by finding the largest
real root of g00 ¼ Δr ¼ 0 and fixing the mass parameter as

m ¼ rþ
2

�
1þ a2

l2
þ a2 þ q2

r2þ
þ r2þ

l2

�
: ð86Þ

At this level, it is standard practice to consider the
analytical continuation of the Lorentzian metric (81) by
t → iτ and a → ia for obtaining the Euclidean structure of
the KNAdS black hole. The associated Bekenstein-
Hawking entropy is given by
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SBH ¼ 4π
ðr2þ þ a2Þ

1 − a2

l2

� : ð87Þ

Also, the regularity at r ¼ rþ requires identifying τ ∼ τ þ β where inverse of β is a measure of the Hawking temperature of
the black hole,

Tbh ¼ β−1 ¼ rþ
4πðr2þ þ a2Þ

�
1þ a2

l2
þ 3r2þ

l2
−
a2 þ q2

r2þ

�
: ð88Þ

With the above setup, the four curvature invariants necessary for (80) in the electrically charged and rotating KNAdS black
hole case are expressed as follows:

WμνρσWμνρσ ¼ 48

ðr2 þ a2cos2θÞ6
�
8r4ðq2 − 2mrÞ2 −m2ðr2 þ a2cos2θÞ3 − 8r2ðq2 − 3mrÞðq2 − 2mrÞðr2 þ a2cos2θÞ

þ ðq4 − 10mrq2 þ 18m2r2Þðr2 þ a2cos2θÞ2�; ð89aÞ

E4 ¼
24

l4
þ 8

ðr2 þ a2cos2θÞ6
�
48r4ðq2 − 2mrÞ2 − 6m2ðr2 þ a2cos2θÞ3 − 48r2ðq2 − 3mrÞðq2 − 2mrÞðr2 þ a2cos2θÞ

þ ð5q4 − 60mrq2 þ 108m2r2Þðr2 þ a2cos2θÞ2�; ð89bÞ

R2 ¼ 144

l4
; ð89cÞ

RF̄μνF̄μν ¼ 24q2

l2ðr2 þ a2cos2θÞ4 ðr
4 − 6a2r2cos2θ þ a4cos4θÞ: ð89dÞ

Next, we proceed to integrate all the aforementioned invariants over the Euclideanized KNAdS4 black hole geometry.
However, these integrations pose challenges due to divergence caused by the infinite volume of AdS4. In this paper, we
address this issue by employing holographic renormalization principles [119]. Specifically, we introduce a cutoff at r ¼ rc
on the boundary of the KNAdS4 geometry (81). Following this, we introduce a holographic counterterm,

CHCT ¼
Z
∂ðAdS4Þ

d3y
ffiffiffiffiffiffiffiffiffi
det γ

p
ðc1 þ c2RÞ: ð90Þ

Here, R represents the Ricci scalar associated with the metric γμν characterizing the KNAdS4 boundary geometry,

γμνdyμdyν ¼ −
Δrc

ρ2c

�
idτ þ asin2θ

Ξ
dϕ

�
2

þ ρ2c
Δθ

dθ2 þ Δθsin2θ
ρ2c

�
ia dτ þ r2c þ a2

Ξ
dϕ

�
2

; ð91aÞ

where

Δrc ¼ ðr2c þ a2Þ
�
1þ r2c

l2

�
− 2mrc þ q2; ρc

2 ¼ r2c þ a2cos2θ: ð91bÞ

For this boundary geometry, we determine

det γ ¼ 1

Ξ2

�
q2 − 2mrc þ ðr2c þ a2Þ

�
1þ r2c

l2

��
ρ2csin2θ; ð92aÞ

R ¼ 2

ρ6c

�
r4c þ ðr2c − 2mrc þ q2Þa2cos2θ þ a2

l2
ðr2cð1 − 5cos2θÞ − 3a2cos4θÞρ2c

�
; ð92bÞ

and derive the following form of the holographic counterterm (90):
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CHCT ¼ 4πβ

Ξl

�
c1r3c þ

1

6l2
ðc1ð4a2 þ 3l2Þl2 þ 4c2ð3l2 − 2a2ÞÞrc − c1ml2

�
þOðr−1c Þ: ð93Þ

The integration range is defined as 0 ≤ τ ≤ β, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. Subsequently, the boundary term (93) needs to
be combined with the bulk Clocal term (80), involving integrations over the KNAdS4 background invariants. The resulting
bulk-boundary combinations contain Oðr−1c Þ order terms that vanish as rc → ∞. The next step involves appropriately
setting the coefficients c1 and c2 to cancel the r3c and rc divergences. This procedure yields a finite contribution of all the
integrated background invariants, leading to a regularized Clocal given by

Clocal ¼ lim
rc→∞

�
1

16π2

Z
β

0

dτ
Z

rc

rþ
dr

Z
π

0

dθ
Z

2π

0

dϕ
ffiffiffiffiffiffiffiffiffi
det ḡ

p
a4ðτ; r; θ;ϕÞ þ CHCT

�
: ð94Þ

Here, the Seeley-DeWitt coefficient a4ðτ; r; θ;ϕÞ appears as a function of the invariants WμνρσWμνρσ, E4, R2, and RF̄μνF̄μν

around the Euclideanized KNAdS4 geometry (81). The integrated invariants, as required in (80), take the following
particular forms:

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
WμνρσWμνρσ ¼ W1 þ βW2 þ

W3

β
; ð95aÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
E4 ¼ 4; ð95bÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
R2 ¼ R1 þ βR2; ð95cÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
RF̄μνF̄μν ¼ F1 þ βF2; ð95dÞ

where the piecesWi, Ri, and Fi are isolated based on their dependency on the inverse temperature parameter β. In particular,
they are expressed as

W1 ¼
ða2 þ r2þÞ
2Ξa5l2r3þ

�
ð3a4ðl2 − r2þÞ þ 4a2l2r2þ − 3ðl2 þ 3r2þÞr4þÞarþ

− 3ðr4þ − a4Þða2ðl2 − r2þÞ − ðl2 þ 3r2þÞr2þÞ arctan
�
a
rþ

��
; ð95eÞ

W2 ¼
1

16πΞa5l4ðr2þ þ a2Þr4þ

�
3a9ðl2 − r2þÞ2rþ − 4a7ð3r4þ þ 12l2r2þ þ l4Þr3þ

þ 2a5ð5r4þ − 14l2r2þ þ l4Þr5þ − 4a3ðl4 − 9r4þÞr7þ þ 3aðl2 þ 3r2þÞ2r9þ
− 3ðr4þ − a4Þða2 þ r2þÞða2ðl2 − r2þÞ − ðl2 þ 3r2þÞr2þÞ2 arctan

�
a
rþ

��
; ð95fÞ

W3 ¼
πða2 þ r2þÞ
Ξa5r2þ

�
arþð3a4 þ 2a2r2þ þ 3r4þÞ − 3ðr4þ − a4Þða2 þ r2þÞ arctan

�
a
rþ

��
; ð95gÞ

R1 ¼ −
24

Ξl2
ðr2þ þ a2Þ; R2 ¼

12rþ
πΞl4

ðl2 þ r2þÞ; ð95hÞ

F1 ¼ −
24r2þ
Ξl2

; F2 ¼
6rþ

πΞl4ða2 þ r2þÞ
½3r4þ þ ðl2 þ a2Þr2þ − a2l2�: ð95iÞ

The regularization procedure outlined above is applicable to all background geometries considered in this paper. The
holographic renormalization prescription employed is natural, producing consistent and unambiguous results by isolating
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the finite piece of the bulk effective action from divergent terms. In contrast, any naive regularization treatment that merely
removes the divergent term would fail to yield physically sensible results, as demonstrated in Eqs. (94) and (95). As an
illustrative example, consider verifying the Euler characteristic for AdS4 spacetime obtained through this holographic
renormalization procedure:

χ ¼ lim
rc→∞

�
1

32π2

Z
KNAdS4

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
E4 þ

1

32π2

Z
∂ðKNAdS4Þ

d3y
ffiffiffiffiffiffiffiffiffi
det γ

p
ðc1 þ c2RÞ

�
¼ 2; ð96Þ

where c1 ¼ − 8
l3 and c2 ¼ 2

l. Remarkably, this result aligns
precisely with the prediction from the integrated four-
dimensional Euler density E4 using the Gauss-Bonnet-
Chern theorem [120]. This alignment validates the current
renormalization procedure, and for more discussions, we
refer the reader to [29,30].
Finally, the integration of the invariants (95) culminates

in the ultimate expression for Clocal for the nonextremal
Kerr-Newman-AdS4 black hole in STU models,

CðKN-AdSÞlocal ¼ cW3

β
− ð4a − cW1 − b1R1 − b2F1Þ

þ βðcW2 þ b1R2 þ b2F2Þ; ð97Þ

where the nontopological terms Wi, Ri and Fi are
expressed in terms of different black hole parameters, as
detailed in Eq. (95e). Notably, the relation (97) precisely
aligns with the results obtained in [29] for vanishing
magnetic charges on the KNAdS4 background. Further-
more, we verify the consistency of the Clocal contributions
derived for the other black hole backgrounds considered in
this paper as distinct special cases.

2. Reissner-Nordström-AdS4 black hole

The background metric for a 4D nonextremal Reissner-
Nordström-AdS (RNAdS4) black hole solution of the STU
field equations (38) is expressed as follows:

ḡμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

Ā ¼ ĀtðrÞdt ¼ −
q
r
dt; ð98aÞ

where the function fðrÞ is expressed in terms of black hole
mass parameter m, effective electric charge q [refer to (85)]
and AdS4 radius l,

fðrÞ ¼ 1 −
2m
r

þ q2

r2
þ r2

l2
: ð98bÞ

Upon Euclidean continuation (t → iτ), the corresponding
Hawking temperature is given by

Tbh ¼ β−1 ¼ 1

4πrþ

�
1 −

q2

r2þ
þ 3r2þ

l2

�
; ð99Þ

where rþ represents the outer horizon radius at which
g00ðrþÞ ¼ fðrþÞ ¼ 0. This yields the mass parameter as

m ¼ rþ
2

�
1þ q2

r2þ
þ r2þ

l2

�
: ð100Þ

For the Euclideanized background geometry (98), the
required invariants are given by

WμνρσWμνρσ ¼ 48

r8
ðmr − q2Þ2; ð101aÞ

E4 ¼
24

l4
þ 8

r8
ð6m2r2 − 12mq2rþ 5q4Þ; ð101bÞ

R2 ¼ 144

l4
; ð101cÞ

RF̄μνF̄μν ¼ 24q2

l2r4
: ð101dÞ

We then employ the holographic renormalization procedure
as outlined in Sec. IVA 1 to derive regulated values for the
integration of the above invariants on the RNAdS4. The
results are as follows:

1

16π2

Z
d4x

ffiffiffī
g

p
WμνρσWμνρσ ¼ 2βr3þ

5πl4

�
4þ l2

r2þ
þ l4

r4þ

�

þ 4

5

�
1 −

7r2þ
l2

�
þ 32πrþ

5β
;

ð102aÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
E4 ¼ 4; ð102bÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
R2 ¼ 12βr3þ

πl4

�
1þ l2

r2þ

�
−
24r2þ
l2

;

ð102cÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
RF̄μνF̄μν ¼ 6βr3þ

πl4

�
3þ l2

r2þ

�
−
24r2þ
l2

:

ð102dÞ
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These results lead to the final form of Clocal for the nonextremal Reissner-Nordström-AdS4 black hole embedded in the
STU models, given by

CðRN-AdSÞlocal ¼ 4

5
ðc − 5aÞ − 4

5

�
ð7cþ 30b1 þ 30b2Þ

r2þ
l2

− 8πc
rþ
β

−
βr3þ
2πl4

�
ð4cþ 30b1 þ 45b2Þ þ ðcþ 30b1 þ 15b2Þ

l2

r2þ
þ cl4

r4þ

��
: ð103Þ

We have verified that the above relation is in perfect agreement with (97) for a vanishing rotation parameter, i.e., a ¼ 0.
Notably, there exists an additional topological term 4

5
c when transitioning into the nonrotating but charged background.

3. Kerr-AdS4 black hole

In the Boyer-Lindquist coordinate system, the background metric describing the Kerr-AdS black hole is presented as a
truncation of the geometry (81) by setting q ¼ 0. Specifically, the parameter Δr takes a modified form,

Δr ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mr: ð104Þ

For the outer horizon at r ¼ rþ with ΔrðrþÞ ¼ 0, and with the same Euclideanized setup, the mass parameter m and the
inverse Hawking temperature β are characterized as

m ¼ rþ
2

�
1þ a2

l2
þ a2

r2þ
þ r2þ

l2

�
; β−1 ¼ rþ

4πðr2þ þ a2Þ
�
1þ a2

l2
þ 3r2þ

l2
−
a2

r2þ

�
: ð105Þ

The necessary background invariants on the KAdS4 geometry are derived as

WμνρσWμνρσ ¼ 48m2

ðr2 þ a2cos2θÞ6 ½r
6 − 15r2a2ðr2 − a2cos2θÞcos2θ − a6cos6θ�; ð106aÞ

E4 ¼
24

l4
þ 48m2

ðr2 þ a2cos2θÞ6 ½r
6 − 15r2a2ðr2 − a2cos2θÞcos2θ − a6cos6θ�; ð106bÞ

R2 ¼ 144

l4
; RF̄μνF̄μν ¼ 0; ð106cÞ

followed by their regulated integration (via holographic renormalization) relations,

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
WμνρσWμνρσ ¼ 4 −

βrþ
πðl2 − a2Þ

�
1þ a2

r2þ
−
a2 þ r2þ

l2

�
; ð107aÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
E4 ¼ 4; ð107bÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
R2 ¼ 6βrþ

πðl2 − a2Þ
�
1þ a2

r2þ
−
a2 þ r2þ

l2

�
; ð107cÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
RF̄μνF̄μν ¼ 0: ð107dÞ

All this provides the following simplified Clocal relation for the nonextremal Kerr-AdS4 black hole in the STU models:

CðKerr-AdSÞlocal ¼ 4ðc − aÞ − ðc − 6b1Þβrþ
πðl2 − a2Þ

�
1þ a2

r2þ
−
a2 þ r2þ

l2

�
: ð108Þ

KARAN, PUNIA, and BISWAS PHYS. REV. D 111, 066016 (2025)

066016-24



It can be verified that the above result matches the
expression (97) by managing all the Kerr-Newman-AdS4
terms Wi, Ri, and Fi for a vanishing q ¼ 0.

4. Schwarzschild-AdS4 black hole

We derive the background metric for a Schwarzschild-
AdS4 (SchAdS4) black hole as a charged-truncation (i.e.,
q → 0) of the RNAdS4 geometry (98). In this context, the
corresponding background metric function fðrÞ captures a
specific form,

fðrÞ ¼ 1 −
2m
r

þ r2

l2
: ð109Þ

The inverse Hawking temperature parameter for the
SchAdS4 black hole is given by

β−1 ¼ 1

4πrþ

�
1þ 3r2þ

l2

�
; ð110Þ

where rþ is the horizon radius such that fðrþÞ ¼ 0, and it
relates the mass parameter m via

m ¼ rþ
2

�
1þ r2þ

l2

�
: ð111Þ

The background invariants are computed as

WμνρσWμνρσ ¼ 48m2

r6
; ð112aÞ

E4 ¼
24

l4
þ 48m2

r6
; ð112bÞ

R2 ¼ 144

l4
; RF̄μνF̄μν ¼ 0: ð112cÞ

To derive the regulated values of the above integrated
invariants, we proceed with the same holographic renorm-
alization procedure detailed in Sec. IVA 1. The results are

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
WμνρσWμνρσ ¼ 4 −

4r2þ
ðl2 þ 3r2þÞ

×

�
1 −

r2þ
l2

�
; ð113aÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
E4 ¼ 4; ð113bÞ

1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
R2 ¼ 24r2þ

ðl2 þ 3r2þÞ
�
1 −

r2þ
l2

�
;

ð113cÞ
1

16π2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
RF̄μνF̄μν ¼ 0: ð113dÞ

Finally, we find the relation to obtain the Clocal for the
nonextremal SchAdS4 black hole in the STU models,

CðSch-AdSÞlocal ¼ 4ðc − aÞ − 4ðc − 6b1Þr2þ
ðl2 þ 3r2þÞ

�
1 −

r2þ
l2

�
: ð114Þ

The expression is found to match the results (95e), (103),
and (108) by appropriately setting q ¼ 0 and a ¼ 0.

5. Extremal limits and near-horizon geometry

Now, let us delve into the extremal limit of black holes,
denoted by β → ∞, wherein the Hawking temperatures
vanish, implying Tbh ¼ β−1 ¼ 0. Applying the extremal
limit to the aforementioned nonextremal backgrounds and
their setups might, naively, lead to divergences. However,
this challenge is effectively addressed by employing the
quantum entropy function formalism [89–91], succinctly
outlined in Sec. II B. The analysis is specifically confined
to the “finite” part of the extremal near-horizon (ENH)
geometry, which includes an AdS2 component.
At this stage of our work, our objective is to derive the

invariantsWμνρσWμνρσ, E4, R2, and RF̄μνF̄μν [as outlined in
the Clocal formula (80)], along with their regulated integra-
tion results around the Euclideanized extremal near-horizon
(ENH) geometry of the Kerr-Newman-AdS4, Reissner-
Nordström-AdS4, and Kerr-AdS4 black holes. Notably,
the extremal Schwarzschild background is not a valid
geometry [121]. The specific process is detailed as follows.
To structure the extremal near-horizon geometry of the

KNAdS4 metric (81), we introduce a new parameter λ and
new coordinates t̃, r̃, and ϕ̃ as

r ¼ r0 þ λr̃; t ¼ l2
2

λ t̃; ϕ ¼ ϕ̃þ aðl2−a2Þ
l2ða2þr2

0
Þ t: ð115Þ

Here, r0 represents the location of the extremal horizon,
satisfying β−1ðr0Þ ¼ 0, imposing the following extremality
bounds on the KNAdS4 black hole parameters:

a2 þ q2 ¼ r20

�
1þ a2

l2
þ 3r20

l2

�
;

m ¼ r0

�
1þ a2

l2
þ 2r20

l2

�
: ð116Þ

The parameter l2 will be later identified as the radius of
AdS2 space characterizing the ENH AdS4 geometry of the
KNAdS4 black hole and can be expressed as

l2 ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r20

a2 þ l2 þ 6r20

s
¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r40 þ l2ð2r20 − q2Þ

l4 þ l2ð6r20 − q2Þ − 3r40

s
:

ð117Þ

Notably, the condition λ → 0 in transformations (115)
represents a combined limit of the near-horizon and
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extremality, while keeping r̃, t̃, and ϕ̃ fixed. In this limit,
along with the Euclidean continuation t̃ → −iτ̃, the near-
horizon coordinate transformations (115) restructure the
KNAdS4 metric (81) into the forms

g̃μνdx̃μdx̃ν ¼
l2
2ρ

2
0

a2þ r20

�
r̃2dτ̃2þ dr̃2

r̃2

�
þ ρ20
Δθ

dθ2

þða2þ r20Þ2Δθsin2θ
Ξ2ρ20

�
dϕ̃þ 2Ξar0l2

2

ða2þ r20Þ2
ir̃dτ̃

�
2

;

ð118aÞ
where

Δθ ¼ 1−
a2

l2
cos2θ; ρ20 ¼ r20 þ a2cos2θ; Ξ¼ 1−

a2

l2
:

ð118bÞ
Similarly, one obtains the background Maxwell field (83)
supplying the charges to the above extremal near-horizon
geometry as

Ã¼−
q
ρ20

�
il2

2

a2þr20
ðr20−a2cos2θÞr̃dτ̃−ar0sin2θ

Ξ
dϕ̃

�
: ð119Þ

From here, the Euclidean ENH metric (118) can be struc-
tured into a wrapped version of AdS2 fibered over a compact
space K, as expressed by (for instance, refer to [89–91]):

g̃μνdx̃μdx̃ν ¼ l2
2fðyÞ

�
ðr̃2− 1Þdτ̃2þ dr̃2

ðr̃2 − 1Þ
�
þ ds2K: ð120Þ

Here, ðr̃; τ̃Þ represent coordinates describing AdS2 within
the range 1 ≤ r̃ < ∞ and τ̃≡ 0þ 2π. Additionally, fðyÞ is
a function of coordinates ðθ; ϕ̃Þ along the K space,
collectively denoted by y. Importantly, the structure of
ds2K involves the remaining differentials that are invariant
under the SLð2; RÞ isometry of AdS2. It follows that,

ffiffiffiffiffiffiffiffiffi
det g̃

p
¼ GðyÞ ¼ l2l2

2

ðl2 − a2Þ ðr
2
0 þ a2cos2θÞ sin θ; ð121Þ

where GðyÞ is a function that has no dependence on the
AdS2 coordinates.

Now, our task is to evaluate the contribution of Clocal for
extremal black holes by integrating the a4ðxÞ coefficient or
the related background invariants over the ENH geometry,
as structured in Eqs. (118) and (120). However, these
integrations suffer from divergences due to the infinite
volume of the AdS2 piece. As per the QEF prescription
discussed in Sec. II B, we must ignore these divergences
and extract only the divergent-insensitive finite part of the
ENH geometry. This finite part encodes the quantum
degrees of freedom for the extremal black holes and serves
as the exact result for the Clocal contribution. Importantly,
we do not need to employ any specific regularization
scheme, such as the holographic renormalization consid-
ered for the nonextremal case in Sec. IVA 1. As a way
forward, we introduce an infrared cut-off at r̃ ¼ r̃c and
expand the Clocal formula in terms of the a4ðxÞ coefficient as

Clocal ¼
Z

r̃c

1

dr̃
Z

2π

0

dτ̃
Z

dθdϕ̃
ffiffiffiffiffiffiffiffiffi
det g̃

p
a4ðxÞ

¼ 2πðr̃c − 1Þ
Z
ENH

d2yGðyÞa4ðyÞ: ð122Þ

The term proportional to r̃c is interpreted as an infinite shift
in the ground state energy in the extremal limit [89–91]. On
the other hand, the cut-off independent finite piece is the
true and unambiguous contribution to the one-loop cor-
rection for the quantum horizon degeneracy of extremal
black holes. Thus, we need to discard the divergent part and
identify the finite term, involving a −2π prefactor, as the
desired Clocal contribution for extremal black holes. This
yields the following revised formula:

Clocal ¼
ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞ�cWμνρσWμνρσ − aE4 þ b1R2

þ b2RF̄μνF̄μν
�
; ð123Þ

where we have utilized the trace anomaly relation (79) for
a4 and the integration range is 0 ≤ θ ≤ π and 0 ≤ ϕ̃ ≤ 2π
for the y coordinates on the ENH geometry (118). The final
form of the background invariants, as well as their integ-
rations over specific parts of the ENH geometry, are derived
and separately listed in Appendix B. This results in the
following expression for Clocal for the extremal Kerr-
Newman-AdS4 black hole in STU models:

Cðext;KN-AdSÞlocal ¼ −4a −
l2
2

2aΞl4r50ða2 þ r20Þ2
�
3a7r50

�
ðcþ 16b1Þ −

2cl2

r20
þ cl4

r40

�
þ a5r70

�
ð39cþ 240b1 − 24b2Þ

− ð22c − 24b2Þ
l2

r20
−
cl4

r40

�
þ a3r90

�
ð49cþ 336b1 − 48b2Þ − ð50cþ 48b2Þ

l2

r20
−
15cl4

r40

�

þ 3ar110

�
ð7cþ 48b1 þ 24b2Þ − ð6c − 8b2Þ

l2

r20
−
cl4

r40

�
þ 3cr120

�
1þ a2

r20

�
2

×

�
3þ l2 þ a2

r20
−
a2l2

r40

�
2

arctan

�
a
r0

��
: ð124Þ
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Next, we compute the same integrated invariants on the
near-horizon background of extremal Kerr-AdS4 and
Reissner-Nordström-AdS4 black holes in STU models
(refer to Appendix B). The corresponding regulated and
finite contributions to Clocal are presented as follows

Cðext;Kerr-AdSÞlocal ¼ 4ðc − aÞ − 2ðc − 6b1Þl2
2

ðl2 − a2Þ
�
1 −

a2 þ 3r20
l2

�
;

ð125Þ

Cðext;RN-AdSÞlocal ¼
�
4

3
c − 4aþ 4b1

�
−
�
2

3
cþ 2b1 − b2

�
l2
2

r20

−
�
2

3
cþ 2b1 þ b2

�
r20
l2
2

: ð126Þ

Note that with appropriate limits, particularly q ¼ 0
and a ¼ 0, one can successively reproduce the above
formulas as consistent truncations of the Kerr-Newman-
AdS4 relation (124).
To ensure the consistency of our setup, we have also

taken an alternative approach to obtain the Clocal contribu-
tions by directly considering the extremal limit, β → ∞,
on the finite temperature backgrounds discussed in
Secs. IVA 1–IVA 3. This method enables us to circumvent
naive divergences associated with taking the β → ∞ limit.
In the initial steps, we treat the outer horizon rþ as an
explicit function of the inverse temperature β, while
keeping all other parameters and charges fixed. By employ-
ing a low-temperature expansion, we obtain

rþ ¼ r0 þ
2πl2

2

β
þOðβ−2Þ: ð127Þ

Here, l2 represents the radius of AdS2 space that naturally
emerges in the structure of extremal black holes. On the
other hand, the extremal horizon r0 is interpreted as a finite
component within the nonextremal horizon radius rþ as
β → ∞. For a generic extremal Kerr-Newman-AdS4 black
hole, l2 is given in Eq. (117), while the typical form of r0 is
expressed as

r20 ¼
l2

6

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

l2
ð6q2 þ 7a2Þ

r
−
a2

l2
− 1

�
: ð128Þ

Continuing with the expansion (127), we can expand the
Clocal contribution as

lim
β→∞

Clocal ¼ C1β þ C0 þOðβ−1Þ: ð129Þ

In the extremal limit as β → ∞, the terms with inverse
powers of β vanish, while the first term, linear in β,
diverges. This divergence can be interpreted as an infinite

shift in the ground state energy due to one-loop fluctua-
tions. Therefore, we can safely disregard this linear and
divergent term and consider the finite constant term C0 as an
unambiguous and effective value for the Clocal contribution
of extremal black holes. The results obtained by following
this procedure align precisely with those derived in
Eqs. (124)–(126) via the QEF formalism.

6. Asymptotically flat limits

We will now explore the Clocal contributions for the
asymptotically flat counterpart of the previously discussed
nonextremal and extremal AdS4 black holes embedded in
STU supergravity models with a vanishing cosmological
constant, i.e., Λ ¼ 0. The flat-space limit is achieved by
setting l → ∞ in the relations given in Eqs. (97), (103),
(108), (114), and (124)–(126). In this scenario, the outer-
horizon and inverse Hawking-temperature for the nonex-
tremal Kerr-Newman black hole are given by

rþ ¼mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −q2−a2

q
; β¼ 4πrþðr2þ þa2Þ

ðr2þ−q2−a2Þ ; ð130Þ

while r0 and l2, as well as the revised Kerr parameter b ¼ a
q

controlling the related extremality, are constrained as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

q
; l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2a2

q
; b¼ r0

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2

r20
− 1

s
:

ð131Þ
Following that, the Clocal formulas for the nonextremal and
extremal Kerr-Newman black holes embedded in STU
models are expressed as

CðKNÞlocal ¼ 4ðc − aÞ þ cβq4

16π

�ð3a4 þ 2a2r2þ þ 3r4þÞ
a4r3þða2 þ r2þÞ

þ 3ða2 − r2þÞða2 þ r2þÞ
a5r4þ

arctan

�
a
rþ

��
;

Cðext;KNÞlocal ¼ −4aþ c
2

�ð3þ 24b2 þ 40b4 þ 16b6Þ
ðb2 þ 1Þ2ð2b2 þ 1Þ

−
3ð2b2 þ 1Þ
bðb2 þ 1Þ5=2 arctan

�
bffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p

��
: ð132Þ

Similarly, we successively derive the local contributions of
nonextremal and extremal Schwarzschild (q ¼ 0, a ¼ 0),
Reissner-Nordström (a ¼ 0, l2 ¼ r0, and b ¼ 0) and Kerr
(q ¼ 0, l2 ¼

ffiffiffi
2

p
r0, and b → ∞) black holes as follows:

CðSchÞlocal ¼ 4ðc − aÞ; ð133Þ

CðKerrÞlocal ¼ 4ðc − aÞ; Cðext;KerrÞlocal ¼ 4ðc − aÞ; ð134Þ
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CðRNÞlocal ¼ 4ðc− aÞ þ 2cβq4

5πr5þ
; Cðext;RN-AdSÞlocal ¼ −4a: ð135Þ

We have verified that the above Clocal expressions are
consistent with the results obtained in [15,16,21,24–27]
for asymptotically flat4 black holes embedded in Einstein-
Maxwell (super)gravity theories.

B. Results

This section provides a comprehensive overview of the
final outcomes of our research, specifically focusing on the
logarithmic corrections to black hole entropy within two
distinct scenarios of STU supergravity intersecting with
Uð1Þ2-charged EMD theories in four-dimensional space-
time (as detailed in Sec. III). Our analysis is grounded in
the central formula outlined in Eq. (25). The local compo-
nent of the logarithmic corrections is derived from the

corresponding Clocal formulas, as detailed in Sec. IVA,
while considering trace anomaly data from (79) for the two
STU truncations: ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ. In
contrast, the zero-mode contributions for various black hole
backgrounds are computed using the global relation (25c).
For the specific black holes considered in this study, we
refer to the Czm data listed in Table I. We will further
elaborate on the typical nature and significance of these
logarithmic correction results in Sec. V.

1. Quantum corrected AdS4 black holes

Case I: ðκ1; κ2Þ ¼ ð1;−1Þ. For the STU supergravity model
truncated into a Uð1Þ2-charged EMD-AdS theory with
dilaton couplings κ1 ¼ 1; κ2 ¼ −1, the logarithmic entropy
correction results for Kerr-Newman-AdS4, Reissner-
Nordström-AdS4, Kerr-AdS4, and Schwarzschild-AdS4
black holes are calculated as

ΔSðSch-AdSÞBH ¼
�
37

45
−

343r2þ
20ðl2 þ 3r2þÞ

�
1 −

r2þ
l2

��
lnAH; ð136Þ

ΔSðKerr-AdSÞBH ¼
�
82

45
−

343βrþ
80πðl2 − a2Þ

�
1þ a2

r2þ
−
a2 þ r2þ

l2

��
lnAH; ð137Þ

ΔSðRN-AdSÞBH ¼
�
−
562

225
þ 719

100

r2þ
l2

þ 166πrþ
25β

−
βr3þ
25πl4

�
121þ 1217l2

8r2þ
−
83l4

8r4þ

��
lnAH; ð138Þ

ΔSðKN-AdSÞBH ¼
�
−
419

180
þ a4

32Ξr2þðr2þ þ a2Þ
�
249

5
þ 1831r2þ

5l2
þ 2r2þ

a2

�
83þ 1831r2þ

5l2

�
þ 8r4þ

5a4

�
83þ 271r2þ

2l2

�

−
166r6þ
5a6

�
1þ 9r2þ

l2

�
þ β

40πrþ

�
249

�
1 −

r2þ
l2

�
2

−
16r2þ
a2

�
83

4
þ 769r2þ

l2
þ 2329r4þ

4l4

�

þ 20r4þ
a4

�
83

10
−
2661r2þ
5l2

−
749r4þ
2l4

�
−
332r6þ
a6

�
1 −

9r4þ
l4

��
þ 166πrþ

5β

�
3þ 8r2þ

a2
þ 10r4þ

a4
þ 8r6þ

a6

�

þ 249βr7þ
40πa8

�
1 −

4πrþ
β

þ 3r2þ
l2

�
2

þ 249βr2þ
40πa3

�
1 −

r2þ
a2

��
1þ r2þ

a2

�
2

×
�
1 −

a2

r2þ
þ ða2 þ 3r2þÞ

l2
−
4πrþ
β

�
1þ a2

r2þ

��
2

arctan
�
a
rþ

�
�
lnAH: ð139Þ

Similarly, in the extremal limit and near-horizon analysis (see Sec. IVA 5) for the above backgrounds, we obtain

ΔSðext;Kerr-AdSÞBH ¼
�
29

90
−

343l2
2

40ðl2 − a2Þ
�
1 −

a2 þ 3r20
l2

��
lnAH; ð140Þ

ΔSðext;RN-AdSÞBH ¼
�
−
101

18
þ 47

120

�
l2
2

r20
þ r20
l2
2

��
lnAH; ð141Þ
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ΔSðext;KN-AdSÞBH ¼
�
−
689

180
þ l2

2

80Ξal4r50ðr20 þ a2Þ2
�
3a7r50

�
1831

6
þ 83l2

r20
−
83l4

2r40

�
þ a5r70

�
7163

2
þ 913l2

r20
þ 83l4

2r40

�

þ 5a3r90

�
10493

10
þ 415l2

r20
þ 249l4

2r40

�
þ 3ar110

�
1499

2
þ 249l2

r20
þ 83l4

2r40

�
−
249r120

2

�
1þ a2

r20

�
2

×

�
3þ l2 þ a2

r20
−
a2l2

r40

�
2

arctan

�
a
r0

�
�
lnAH: ð142Þ

Case II: ðκ1; κ2Þ ¼ ð ffiffiffi
3

p
;−1=

ffiffiffi
3

p Þ. For the STU supergravity model intersecting with a Uð1Þ2-charged EMD-AdS theory,
with dilaton couplings κ1 ¼

ffiffiffi
3

p
and κ2 ¼ −1=

ffiffiffi
3

p
, the logarithmic correction to the entropy of Kerr-Newman-AdS4,

Reissner-Nordström-AdS4, Kerr-AdS4, and Schwarzschild-AdS4 black holes are computed as

ΔSðSch-AdSÞBH ¼
�
37

45
−

343r2þ
20ðl2 þ 3r2þÞ

�
1 −

r2þ
l2

��
lnAH; ð143Þ

ΔSðKerr-AdSÞBH ¼
�
82

45
−

343βrþ
80πðl2 − a2Þ

�
1þ a2

r2þ
−
a2 þ r2þ

l2

��
lnAH; ð144Þ

ΔSðRN-AdSÞBH ¼
�
−
586

225
þ 607

100

r2þ
l2

þ 514πrþ
75β

−
βr3þ
25πl4

�
103þ 1161l2

8r2þ
−
257l4

24r4þ

��
lnAH; ð145Þ

ΔSðKN-AdSÞBH ¼
�
−
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180
þ a4

32Ξr2þðr2þ þ a2Þ
�
257

5
þ 1081r2þ

3l2
þ 2r2þ

3a2

�
257þ 5213r2þ

5l2

�
þ 8r4þ
15a4

�
257þ 677r2þ

2l2
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−
514r6þ
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l2

�
þ β

40πrþ

�
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�
1 −

r2þ
l2

�
2

−
80r2þ
3a2

�
257
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þ 2363r2þ

5l2
þ 1351r4þ

4l4
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þ 20r4þ
a4

�
257
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−
7783r2þ
15l2

−
661r4þ
2l4

�
−
1028r6þ
3a6

�
1 −

9r4þ
l4

��
þ 514πrþ

15β

�
3þ 8r2þ

a2
þ 10r4þ

a4
þ 8r6þ

a6

�

þ 257βr7þ
40πa8

�
1 −

4πrþ
β

þ 3r2þ
l2

�
2

þ 257βr2þ
40πa3

�
1 −

r2þ
a2

��
1þ r2þ

a2

�
2

×

�
1 −

a2

r2þ
þ ða2 þ 3r2þÞ

l2
−
4πrþ
β

�
1þ a2

r2þ

��
2

arctan

�
a
rþ

�
�
lnAH: ð146Þ

On the other hand, considering the near-horizon limit in the extremal case for the above backgrounds yields

ΔSðext;Kerr-AdSÞBH ¼
�
29

90
−

343l2
2

40ðl2 − a2Þ
�
1 −

a2 þ 3r20
l2

��
lnAH; ð147Þ

ΔSðext;RN-AdSÞBH ¼
�
−
511

90
þ 47

120

l2
2

r20
þ 13

40

r20
l2
2

�
lnAH; ð148Þ

ΔSðext;KN-AdSÞBH ¼
�
−
713

180
þ l2

2

16Ξal4r50ðr20 þ a2Þ2
�
a7r50

�
1081

6
þ 257l2

5r20
−
257l4

10r40

�
þ a5r70

15

�
21049

2
þ 2731l2

r20
þ 257l4

2r40

�

þ a3r90

�
10341

10
þ 6617l2

15r20
þ 257l4

2r40

�
þ 3ar110

�
279

2
þ 739l2

15r20
þ 257l4

30r40

�
−
257r120
10

�
1þ a2

r20

�
2

×

�
3þ l2 þ a2

r20
−
a2l2

r40

�
2

arctan

�
a
r0

�
�
lnAH: ð149Þ

All the results presented above are entirely nontopological as they are intricate functions of the respective black hole
parameters and dimensionless ratios, denoted as fa; rþ; r0;l;l2; βg. These parameters are distinct for each background,
representing direct functions of the black hole mass, charge, and angular momentum (as detailed in Sec. IVA). Notably,
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the formulas derived for uncharged Kerr-AdS4 and
Schwarzschild-AdS4 black holes in both extremal and
nonextremal limits are dilaton coupling independent
and identical. These quantum entropy corrections are novel
and represent a significant achievement in this work.

2. Quantum corrected flat4 black holes

Case I: ðκ1; κ2Þ ¼ ð1;−1Þ. For the STU supergravity model
truncated into a Uð1Þ2-charged EMD theory with dilaton
couplings κ1 ¼ 1; κ2 ¼ −1, the logarithmic entropy cor-
rection results for asymptotically flat Kerr-Newman,
Reissner-Nordström, Kerr and Schwarzschild black holes
are calculated as

ΔSðSchÞBH ¼ 37

45
lnAH; ð150Þ

ΔSðKerrÞBH ¼ 82

45
lnAH; ΔSðext;KerrÞBH ¼ 29

90
lnAH; ð151Þ

ΔSðRNÞBH ¼
�
37

45
þ 83βq4

200πr5þ

�
lnAH;

ΔSðext;RNÞBH ¼ −
869

180
lnAH; ð152Þ

ΔSðKNÞBH ¼
�
82

45
þ 83βq4

1280π

�ð3a4 þ 2a2r2þ þ 3r4þÞ
a4r3þða2 þ r2þÞ

þ 3ða2 − r2þÞða2 þ r2þÞ
a5r4þ

arctan

�
a
rþ

�
�
lnAH;

ð153Þ

ΔSðext;KNÞBH ¼
�
−
689

180
þ 83

160

�ð3þ 24b2 þ 40b4 þ 16b6Þ
ðb2 þ 1Þ2ð2b2 þ 1Þ

−
3ð2b2 þ 1Þ
bðb2 þ 1Þ5=2 arctan

�
bffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p

�
�
lnAH:

ð154Þ

Case II: ðκ1; κ2Þ ¼ ð ffiffiffi
3

p
;−1=

ffiffiffi
3

p Þ. For the STU super-
gravity model intersecting with a Uð1Þ2-charged EMD
theory, with dilaton couplings κ1 ¼

ffiffiffi
3

p
and κ2 ¼ −1=

ffiffiffi
3

p
,

the logarithmic correction to the entropy of Kerr-Newman,
Reissner-Nordström, Kerr, and Schwarzschild black holes
are computed as

ΔSðSchÞBH ¼ 37

45
lnAH; ð155Þ

ΔSðKerrÞBH ¼ 82

45
lnAH; ΔSðext;KerrÞBH ¼ 29

90
lnAH; ð156Þ

ΔSðRNÞBH ¼
�
37

45
þ 257βq4

600πr5þ

�
lnAH;

ΔSðext;RNÞBH ¼ −
893

180
lnAH; ð157Þ

ΔSðKNÞBH ¼
�
82

45
þ 257βq4

3840π

�ð3a4 þ 2a2r2þ þ 3r4þÞ
a4r3þða2 þ r2þÞ

þ 3ða2 − r2þÞða2 þ r2þÞ
a5r4þ

arctan

�
a
rþ

�
�
lnAH;

ð158Þ

ΔSðext;KNÞBH ¼
�
−
713

180
þ 257

480

�ð3þ 24b2 þ 40b4 þ 16b6Þ
ðb2 þ 1Þ2ð2b2 þ 1Þ

−
3ð2b2 þ 1Þ
bðb2 þ 1Þ5=2 arctan

�
bffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p

�
�
lnAH:

ð159Þ

In contrast to the AdS4 results, the logarithmic correction
formulas obtained for the flat4 backgrounds are less
complicated. Interestingly, their nontopological nature,
which was unavoidable for the AdS4 cases, exhibits a
specific pattern for the asymptotically flat backgrounds. For
charged backgrounds, the results remain nontopological
but are considerably more streamlined in terms of back-
ground parameters and dimensionless ratios, as illustrated
in Sec. IVA 6. However, in the extremal limit, the Reissner-
Nordström formulas become expressions in terms of
numerical ratios, completely independent of geometric
parameters. Similarly, in the limit of vanishing charge
(q ¼ 0; b → ∞), the logarithmic correction relations for
Kerr and Schwarzschild black holes become entirely
topological, both in the extremal and nonextremal limits.
Readers familiar with the literature may recognize this
characteristic pattern, as observed in previous works such
as [15,16,27]. Additionally, the Kerr-Newman results are
always found to be transcendental instead of rational.
Further discussion of the nontopological versus topological
logarithmic correction results as well as their implications
are presented in the next section.

V. SUMMARY AND DISCUSSIONS

In this paper, we computed the logarithmic corrections to
the Bekenstein-Hawking entropy of black holes in 4D STU
supergravity [65,66]. Specifically, this study considers the
scenario where STU models are viewed as aUð1Þ4-charged
EMD theory [74–79] and further truncated into two specific
Uð1Þ2-charged EMD systems [75–77,80]. These systems
are characterized by one dilaton coupled nonminimally to two
Maxwell fields, with the specific coupling constant values
ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ in the action (37).
Subsequently, we demonstrated how setting appropriate
constraints on the two Uð1Þ Maxwell backgrounds/charges,
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i.e.,Q2 ¼ κ1Q1 ¼ − Q1

κ2
, uplifts the entire Kerr-Newman-AdS

family of black holes and their flat counterparts, embedding
them within the two cases of truncated STU systems. This
technically defines our choice of EM embedding, where the
Einstein-Maxwell backgrounds (both cosmological and
flat) nontrivially satisfy the Uð1Þ2-charged STU equations
of motion for a null dilaton background. In the future, we
aspire to surmount the obstacles associated with going
beyond the charge-constrained or EM-embedding limit and
explore the quantum black hole entropy within STUmodels
characterized by a nonvanishing dilaton background.
Notably, one should not be concerned about the absence

of any fermionic contribution in the main results presented
in Secs. III D and IV B. The current STU models are
essentially a bosonic truncation of N ¼ 8 supergravity,
which includes multiple gauge and scalar moduli fields
[63,64]. As discussed, these models have undergone further
truncations into Uð1Þ4 and Uð1Þ2-charged EMD systems
(36) and (37), forming the central or exact bosonic sector of
all N ≥ 2 supergravity theories and providing them with
general black hole solutions [68]. In essence, STU models
are of particular interest as they serve as universal bosonic
building blocks within supergravity/low-energy string
vacua. However, one can utilize the current STU results
at any point and explore the full supergravity theories
(minimal as well as matter coupled), where the a4ðxÞ and
logarithmic correction relations receive contributions from
additional one-loop fermionic and bosonic fluctuations in
supergravity, vector, and other matter multiplets. When
considering the embedding of the same black holes, it is
essential to remember that the additional fermionic and
bosonic content must have a vanishing background but
fluctuate around the common EM backgrounds (for details,
see [12,13,21,24–26,29]).
The logarithmic correction relations for the embedded

AdS4 and flat4 black holes, as detailed in Eqs. (136)–(159),
are computed using Euclidean quantum gravity setups
[16,89–91] as elaborated in Sec. II, followed by the heat
kernel method-based Seeley-DeWitt expansion [98]. In the
local part, the four dimensional Clocal contributions depend
only on the a4ðxÞ coefficient. The relevant data (78) is
obtained by fluctuating the STU content around the
embedded EM backgrounds and is re-expressed in terms
of appropriate geometric invariants and conformal anomalies
in Eq. (79). The related central charges and anomaly coeffi-
cients are determined in terms of generic formulas (79b)
involving dilaton couplings κ1 or κ2. In special limiting
cases, the obtained heat kernel data aligns perfectly with
previously available results for the Einstein-Maxwell theory
[15,16,27], or the bosonic sector of N ¼ 2 supergravity
(κ1 ¼ κ2 ¼ 0) [13,19,21,24,26,29], the Kaluza-Klein system
(κ1¼

ffiffiffi
3

p
;κ2¼0;Λ¼0) [23], and Einstein-Maxwell-dilaton

models (κ1 ¼ 1;
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
and κ2 ¼ 0) [30]. Furthermore,

we independently verified the computed a4ðxÞ relation

through manual calculation and by developingMathematica
algorithms using xAct [122] and xPert [123]. These validations
enhance our confidence in the consistency of a4ðxÞ deriva-
tions and logarithmic entropy correction results achieved
in this work.
All the results presented in Secs. IV B 1 and IV B 2 are

obtained by integrating the Weyl anomaly WμνρσWμνρσ, the
Euler density E4, and other background invariants such
as R2 and RF̄μνF̄μν, which constitute the central a4ðxÞ
relation (79). Specifically, these integrated invariant rela-
tions, along with their central charge coefficients
ðc; a; b1; b2Þ, collectively evaluate the Clocal formulas out-
lined in Sec. IVA. For all AdS4 black holes, this integration
process necessitates the inclusion of a holographic boun-
dary term (90) to regulate the divergences arising from their
infinite volume. This choice of regularization naturally
aligns with the Gauss-Bonnet-Chern theorem [120], result-
ing in a consistent and unambiguous result by isolating the
finite portion from the diverging bulk one-loop effective
action. The holographic renormalization choice yields the
consistent 4D Euler characteristic value of χ ¼ 2 when
integrating E4 around all AdS4 backgrounds of interest.
Furthermore, we have verified that the integrated AdS4
invariants precisely match the established relations in
[15,16,21,26,27] for asymptotically flat4 black holes in
the limit l → ∞. Around these flat backgrounds, invariants
such as R2 and RF̄μνF̄μν vanish, and a4ðxÞ is solely
governed by WμνρσWμνρσ and E4 anomalies, along with
nonvanishing central charge values c and a. In this flat-
space scenario, the integration of WμνρσWμνρσ and E4 over
the nonextremal backgrounds always traces out a finite
volume and does not require the utilization of any regu-
larization treatment or incorporation of boundary terms.
The regularization procedure of the integrated back-

ground invariants over all AdS4 and flat4 black holes in
their extremal limit rely on the prescription of quantum
entropy function formalism [89–91], as detailed in
Sec. II B. Here, the underlying analysis is confined to
the cut-off independent finite part of the extremal near-
horizon geometry, which includes an AdS2 component and
suffers divergences due to its infinite volume. Following
the QEF prescription, we ignored these divergences and
extracted only the divergent-insensitive finite part of the
ENH geometry. This treatment serves as the exact result for
the Clocal contributions provided in Sec. IVA 5. Moreover,
these extremal results are further verified by directly taking
the β → ∞ limit on all the nonextremal backgrounds
considered in Secs. IVA 1–IVA 3. This ensures that the
extremal logarithmic correction results presented in this
paper are unambiguous and robust.
However, there are instances reported in the literature

[22,46] where the AdS4 logarithmic corrections derived
from extremal near-horizon analyses do not align with
the results obtained from field theory computations. It is
important to resolve this discrepancy and highlight that
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the Clocal contributions remain consistent across all
treatments—whether involving the full geometry or focus-
ing on the near-horizon of extremal black holes. Actually,
the differences arise in the zero-mode or Czm contributions,
leading to distinct total logarithmic correction outcomes
when employing different approaches to analyze the two
facets of extremal black hole geometry. In the future, it
would be intriguing to investigate whether the degrees of
freedom responsible for the zero-mode quantum entropy in
extremal AdS black holes reside in the near-horizon region,
encompass the full geometry, or exist elsewhere. Progress
in this direction may require determining the appropriate
ensemble and scalings for extremal AdS black hole
backgrounds.
In the current choice of STU supergravity models, we

observe that all the AdS4 logarithmic correction formulas in
Eqs. (136)–(149) are guaranteed to be nontopological
and represented by nontrivial functions of different black
hole parameters. However, their flat-space counterparts in
Eqs. (150)–(159) exhibit a relatively simplified yet con-
trasting nature. Specifically, in the absence of the AdS4
boundary, a vanishing charge (as in the Kerr and
Schwarzschild cases) ensures confirmed topological or
black hole parameter-independent numerical results. More-
over, the extremal limit guarantees the same nature for all
uncharged (e.g., Kerr) and nonrotating (e.g., Reissner-
Nordström) backgrounds, while the charged-rotating
Kerr-Newman result remains nontopological. Readers
familiar with the literature may recognize a similar char-
acteristic pattern of logarithmic corrections as reported in
previous works [15,16,27,29,30].
The aforementioned observation might set a stringent

criterion for four-dimensional supergravity models to admit
a UV completion, which is highly sensitive to the micro-
scopic analysis of the relevant black holes. In fact, we have
already seen that the available microstate counting data
[39–49,103] is indeed topological. However, in all even
dimensions, quantum black holes exhibiting nontopolog-
ical logarithmic corrections are a generic and natural
feature (e.g., see [15,16,27,29,30]). Notably, for a parent
theory in odd-D dimensions, the Seeley-DeWitt coeffi-
cients aDðxÞ characterizing Clocal vanish due to the lack of
any diffeomorphism invariant scalar functions connected to
the concerned background [98], and the ΔSBH formula is
entirely defined by the topological Czm contributions. Such
an expectation has also been confirmed in various 11D
supergravity computations [47–49,103].
In order to anticipate a topological logarithmic correction

in even dimensions following the current setup of this
study, one needs to either set c ¼ b1 ¼ b2 ¼ 0 or somehow
constrain the integrated invariants, such as WμνρσWμνρσ, R2

and RF̄μνF̄μν, to have a vanishing or topological value [124].
Typically, these two classes of criteria, as well as their
possible overlaps, are found to be fulfilled while consid-
ering the supergravity backgrounds with anomaly and other

nontrivial cancellations [21,23,24,26,29,31], adhering to
extremality conditions, approaching the flat-space limit,
having vanishing charge or rotation parameters, turning off
the Maxwell backgrounds, etc. [125]. However, as soon as
one considers even-dimensional AdS backgrounds, the
logarithmic correction formulas are guaranteed to have
nontopological characteristics due to the appearance of
a natural and robust boundary l (with l2 ¼ −12=R ¼
−3=Λ), which eventually declines or neutralize the simul-
taneous occurrence of available topological constraints
[29–31]. Arguably, this reasoning provides a consistent
explanation for the specific nature of logarithmic correction
results obtained for all Kerr-Newman-AdS and Kerr-
Newman families of black holes embedded within the
four-dimensional STU supergravity models.
However, discrepancies have been reported in certain

cases where logarithmic corrections derived through differ-
ent computational methods deviate from the expected
nontopological nature. For instance, in the context of
ten-dimensional massive IIA supergravity, the microscopic
computations for the logarithmic entropy corrections of
AdS4 black holes appear to be topological [50]. To address
this puzzle, we suspect that incorporating matter multiplets
induced from the full Kaluza-Klein (KK) tower modes
could be crucial in higher-dimensional supergravity theo-
ries to preserve the true character of logarithmic correction
relations. Similarly, in the computation of logarithmic
corrections for BPS black holes in four-dimensional
N ¼ 2 gauged supergravity presented in [126], the results
are reported to be topological, which contradicts the out-
comes in [29] and our expectation. As a potential reso-
lution, we argue that the topological characteristic in [126]
explicitly emerges from the considered Euler term.
However, it might be possible to recover the true non-
topological nature of logarithmic corrections by incorpo-
rating the η-invariant term as a correction due to the
presence of a boundary [127].
In conclusion, the logarithmic correction to the entropy

of extremal and nonextremal AdS black holes embedded in
any even-dimensional parent theory confirms a nontopo-
logical nature compared to their flat-space counterparts.
This insight provides a natural and more comprehensive
“infrared window into the microstates” of the black holes.
We argue that the presence of AdS boundary must be
interpreted as a robust and general criterion for this “non-
topological” characteristic, which is also sensitive to the
microscopic details of the black holes. Therefore, the
current study sheds light on novel aspects of black hole
properties in this specific class of STU supergravity
theories and significantly contributes to understanding
low-energy effective string theory models in 4D. It would
be intriguing to extend this topological vs nontopological
analysis to the recently explored near-extremal black holes
[55–59], even in higher-dimensional supergravity. A more
challenging task would involve realizing and interpreting
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the nontopological nature of logarithmic corrections
through progress in microstate counting within the frame-
work of UV-completed string theory counterparts. We aim
to explore some of these advancements in future research.
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APPENDIX A: HEAT KERNEL TRACE
COMPUTATIONS FOR a4ðxÞ IN STU MODELS

1. Notation and background identities

In this paper, we considered the two Maxwell field
strengths, denoted as F̄1μν and F̄2μν, which play a crucial
role in embedding EM backgrounds into theUð1Þ2-charged
STU supergravity models for two sets of coupling con-
stants: ðκ1; κ2Þ ¼ ð1;−1Þ and ð ffiffiffi

3
p

;−1=
ffiffiffi
3

p Þ. They lead to
solely electrically charged configurations that satisfy either
Q2 ¼ κ1Q1 or Q1 ¼ κ2Q2 (for detailed discussions, see
Secs. III A and III B). Throughout our analysis, we main-
tained strict control over the Maxwell field strengths by
imposing a set of constraint relations:

κ1κ2 ¼ −1; κ1F̄1μνF̄1
μν þ κ2F̄2μνF̄2

μν ¼ 0; ðA1Þ

κ21F̄1μνF̄1
μν þ κ22F̄2μνF̄2

μν ¼ F̄1μνF̄1
μν þ F̄2μνF̄2

μν; ðA2Þ

κ21ðF̄1μνF̄1
μνÞ2 þ κ22ðF̄2μνF̄2

μνÞ2 ¼ −2κ1κ2F̄1μνF̄1
μνF̄2μνF̄2

μν; ðA3Þ

ðF̄1μνF̄2
μνÞ2 ¼ F̄1μνF̄1

μνF̄2ρσF̄2
ρσ ¼ F̄1μνF̄2

μνF̄1ρσF̄2
ρσ: ðA4Þ

The above constraints, along with the following Einstein and Maxwell evolution equations,

F̄1μρF̄1ν
ρ þ F̄2μρF̄2ν

ρ ¼ 1

2
ðRμν − ΛḡμνÞ þ

1

4
ḡμνðF̄1μνF̄1

μν þ F̄2μνF̄2
μνÞ; ðA5Þ

R ¼ 4Λ; DμF̄1
μν ¼ 0; DμF̄2

μν ¼ 0; D½μF̄1ρσ� ¼ 0; D½μF̄2ρσ� ¼ 0: ðA6Þ

lead to several induced on-shell identities that are presented as

RμνF̄1
μρF̄1

ν
ρ ¼

1

κ41
RμνF̄2

μρF̄2
ν
ρ

¼ 1

2ðκ41 þ 1Þ fRμνRμν − 4Λ2 þ 2ΛðF̄1μνF̄1
μν þ F̄2μνF̄2

μνÞg; ðA7Þ

F̄1
μρF̄1

ν
ρF̄1μσF̄1ν

σ ¼ 1

κ41
F̄2

μρF̄2
ν
ρF̄2μσF̄2ν

σ

¼ 1

κ21
F̄1

μρF̄2
ν
ρF̄1μσF̄2ν

σ

¼ 1

κ21
F̄1

μρF̄2
νσF̄1μνF̄2ρσ

¼ 1

4ðκ21 þ 1Þ2 fRμνRμν − 4Λ2 þ ðF̄1μνF̄1
μν þ F̄2μνF̄2

μνÞ2g; ðA8Þ

RμρνσF̄1
μνF̄1

ρσ ¼ 1

2
RμνρσF̄1

μνF̄1
ρσ; RμρνσF̄2

μνF̄2
ρσ ¼ 1

2
RμνρσF̄2

μνF̄2
ρσ; ðA9Þ
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ðDρF̄1μνÞðDρF̄1
μνÞ ¼ 2ðDμF̄1ρ

νÞðDνF̄1
ρμÞ ¼ RμνρσF̄1

μνF̄1
ρσ − 2RμνF̄1

μρF̄1
ν
ρ; ðA10Þ

ðDρF̄2μνÞðDρF̄2
μνÞ ¼ 2ðDμF̄2ρ

νÞðDνF̄2
ρμÞ ¼ RμνρσF̄2

μνF̄2
ρσ − 2RμνF̄2

μρF̄2
ν
ρ: ðA11Þ

In deriving the above identities, we have considered the gravitational Bianchi identities and related relations whenever
needed:

Rμ½νρσ� ¼ 0; RμρνσRμνρσ ¼ 1

2
RμνρσRμνρσ: ðA12Þ

Notably, we have adjusted terms involving covariant derivatives on the Maxwell field strengths up to total derivatives,
accompanied by the commutation relation of covariant derivatives for a rank-2 tensor, as follows (for both I ¼ 1, 2):

ðDρF̄IμνÞðDρF̄I
μνÞ ¼ 2F̄I

μ
νDρDμF̄I

νρ

¼ 2F̄I
μ
ν½Dρ; Dμ�F̄I

νρ

¼ 2F̄I
μ
νðRν

σμρF̄I
ρσ þ RμρF̄I

νρÞ: ðA13Þ

2. Components of heat kernel matrices E and Ωρσ

In this section, we demonstrate the derivation of the components of matrices E and Ωρσ, which are essential for
proceeding with the heat kernel treatment discussed in Sec. III C. To achieve this, we employ the formulas presented in
Eqs. (32) and (30). For the current configuration of STU fluctuations denoted as ϕ̃m ¼ fĥμν; ĥ; a1μ; a2μ; Φ̃g, we utilize all
the matrix-valued data of I ϕ̃mϕ̃n , ðωρÞϕ̃mϕ̃n and Pϕ̃mϕ̃n recorded in Eqs. (59), (61), and (62). Technically, we have identified 5
diagonal and 14 off-diagonal valid components of the effective potential matrix E, which are listed as follows:

Eĥμνĥαβ ¼ Pĥμνĥαβ − ðωρÞĥμνa1γ ðωρÞa1δĥαβIa1γa1δ − ðωρÞĥμνa2γ ðωρÞa2δĥαβIa2γa2δ ; ðA14Þ

Eĥ ĥ ¼ Pĥ ĥ; ðA15Þ

Ea1αa1β ¼ Pa1αa1β − ðωρÞa1αĥμνðωρÞĥγδa1βI ĥμνĥγδ
− ðωρÞa1αΦ̃ðωρÞΦ̃a1βI Φ̃ Φ̃; ðA16Þ

Ea2αa2β ¼ Pa2αa2β − ðωρÞa2αĥμνðωρÞĥγδa2βI ĥμνĥγδ
− ðωρÞa2αΦ̃ðωρÞΦ̃a2βI Φ̃ Φ̃; ðA17Þ

EΦ̃ Φ̃ ¼ PΦ̃ Φ̃ − ðωρÞΦ̃a1αðωρÞa1βΦ̃Ia1αa1β − ðωρÞΦ̃a2αðωρÞa2βΦ̃Ia2αa2β ; ðA18Þ

Eĥμνĥ ¼ Eĥĥμν ¼ Pĥμνĥ ¼ Pĥĥμν ; ðA19Þ

Ea1αa2β ¼ −ðωρÞa1αĥμνðωρÞĥγδa2βI ĥμνĥγδ
− ðωρÞa1αΦ̃ðωρÞΦ̃a2βI Φ̃ Φ̃; ðA20Þ

Ea2αa1β ¼ −ðωρÞa2αĥμνðωρÞĥγδa1βI ĥμνĥγδ
− ðωρÞa2αΦ̃ðωρÞΦ̃a1βI Φ̃ Φ̃; ðA21Þ

EĥμνΦ̃ ¼ PĥμνΦ̃ − ðωρÞĥμνa1γ ðωρÞa1δΦ̃Ia1γa1δ − ðωρÞĥμνa2γ ðωρÞa2δΦ̃Ia2γa2δ ; ðA22Þ

EΦ̃ĥμν ¼ PΦ̃ĥμν − ðωρÞΦ̃a1γ ðωρÞa1δĥμνIa1γa1δ − ðωρÞΦ̃a2γ ðωρÞa2δĥμνIa2γa2δ ; ðA23Þ

Eĥμνa1α ¼ Pĥμνa1α − ðDρω
ρÞĥμνa1α ; ðA24Þ

Eĥμνa2α ¼ Pĥμνa2α − ðDρω
ρÞĥμνa2α ; ðA25Þ

Eĥμνa2α ¼ Pĥμνa2α − ðDρω
ρÞĥμνa2α ; ðA26Þ
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Ea2αĥμν ¼ Pa2αĥμν − ðDρω
ρÞa2αĥμν ; ðA27Þ

Ea1αΦ̃ ¼ −ðDρω
ρÞa1αΦ̃; EΦ̃a1α ¼ −ðDρω

ρÞΦ̃a1α ; ðA28Þ

Ea2αΦ̃ ¼ −ðDρω
ρÞa2αΦ̃; EΦ̃a2α ¼ −ðDρω

ρÞΦ̃a2α : ðA29Þ
Notice that the aforementioned relations rely on the Iϕmϕn

form of the projection matrices, which are expressed as

Iĥ ĥ ¼ IΦ̃ Φ̃ ¼ 1; Ia1μa1ν ¼ Ia2μa2ν ¼ ḡμν;

Iĥμνĥαβ ¼
1

2

�
ḡμαḡνβ þ ḡμβḡνα −

1

2
ḡμνḡαβ

�
: ðA30Þ

Similarly, we derive the effective curvature commutator matrix Ωρσ , which consists of 4 diagonal and 12 off-diagonal
components. These components are summarized as follows:

ðΩρσÞĥμνĥαβ ¼
1

2
ðḡμαRνβ

ρσ þ ḡμβRνα
ρσ þ ḡναRμβ

ρσ þ ḡνβRμα
ρσÞ þ ððωρÞĥμνa1γ ðωσÞa1δĥαβ − ðωσÞĥμνa1γ ðωρÞa1δĥαβÞIa1γa1δ

þ ððωρÞĥμνa2γ ðωσÞa2δĥαβ − ðωσÞĥμνa2γ ðωρÞa2δĥαβÞIa2γa2δ ; ðA31Þ

ðΩρσÞa1αa1β ¼ Rαβ
ρσ þ ððωρÞa1αΦ̃ðωσÞΦ̃a1β − ðωσÞa1αΦ̃ðωρÞΦ̃a1βÞI Φ̃ Φ̃ þ ððωρÞa1αĥμνðωσÞĥγδa1β − ðωσÞa1αĥμνðωρÞĥγδa1βÞI ĥμνĥγδ

;

ðA32Þ

ðΩρσÞa2αa2β ¼ Rαβ
ρσ þ ððωρÞa2αΦ̃ðωσÞΦ̃a2β − ðωσÞa2αΦ̃ðωρÞΦ̃a2βÞI Φ̃ Φ̃ þ ððωρÞa2αĥμνðωσÞĥγδa2β − ðωσÞa2αĥμνðωρÞĥγδa2βÞI ĥμνĥγδ

;

ðA33Þ

ðΩρσÞΦ̃ Φ̃ ¼ ððωρÞΦ̃a1αðωσÞa1βΦ̃ − ðωσÞΦ̃a1αðωρÞa1βΦ̃ÞIa1αa1β þ ððωρÞΦ̃a2αðωσÞa2βΦ̃ − ðωσÞΦ̃a2αðωρÞa2βΦ̃ÞIa2αa2β ; ðA34Þ

ðΩρσÞĥμνΦ̃ ¼ ððωρÞĥμνa1αðωσÞa1βΦ̃ − ðωσÞĥμνa1αðωρÞa1βΦ̃ÞIa1αa1β þ ððωρÞĥμνa2αðωσÞa2βΦ̃ − ðωσÞĥμνa2αðωρÞa2βΦ̃ÞIa2αa2β ; ðA35Þ

ðΩρσÞΦ̃ĥμν ¼ ððωρÞΦ̃a1αðωσÞa1β ĥμν − ðωσÞΦ̃a1αðωρÞa1β ĥμνÞIa1αa1β þ ððωρÞΦ̃a2αðωσÞa2β ĥμν − ðωσÞΦ̃a2αðωρÞa2β ĥμνÞIa2αa2β ; ðA36Þ

ðΩρσÞa1αa2β ¼ ððωρÞa1αĥμνðωσÞĥγδa2β − ðωσÞa1αĥμνðωρÞĥγδa2βÞI ĥμνĥγδ
þ ððωρÞa1αΦ̃ðωσÞΦ̃a2β − ðωσÞa1αΦ̃ðωρÞΦ̃a2βÞI Φ̃ Φ̃; ðA37Þ

ðΩρσÞa2αa1β ¼ ððωρÞa2αĥμνðωσÞĥγδa1β − ðωσÞa2αĥμνðωρÞĥγδa1βÞI ĥμνĥγδ
þ ððωρÞa2αΦ̃ðωσÞΦ̃a1β − ðωσÞa2αΦ̃ðωρÞΦ̃a1βÞI Φ̃ Φ̃; ðA38Þ

ðΩρσÞĥμνa1α ¼ ðDρωσÞĥμνa1α − ðDσωρÞĥμνa1α ; ðA39Þ

ðΩρσÞa1αĥμν ¼ ðDρωσÞa1αĥμν − ðDσωρÞa1αĥμν ; ðA40Þ

ðΩρσÞĥμνa2α ¼ ðDρωσÞĥμνa2α − ðDσωρÞĥμνa2α ; ðA41Þ

ðΩρσÞa2αĥμν ¼ ðDρωσÞa2αĥμν − ðDσωρÞa2αĥμν ; ðA42Þ

ðΩρσÞa1αΦ̃ ¼ ðDρωσÞa1αΦ̃ − ðDσωρÞa1αΦ̃; ðA43Þ

ðΩρσÞΦ̃a1α ¼ ðDρωσÞΦ̃a1α − ðDσωρÞΦ̃a1α ; ðA44Þ

ðΩρσÞa2αΦ̃ ¼ ðDρωσÞa2αΦ̃ − ðDσωρÞa2αΦ̃; ðA45Þ

ðΩρσÞΦ̃a2α ¼ ðDρωσÞΦ̃a2α − ðDσωρÞΦ̃a2α : ðA46Þ
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It is important to emphasize that during the evaluation of ½Dρ; Dσ� contributions for the aforementioned components, we
applied the covariant derivative commutation operations, as depicted in Eqs. (31e), (31b), and (31a). In this process, we
treated the traceless graviton ĥμν as a two-rank tensor, the Maxwell fluctuations ða1α; a2αÞ as vectors, and the trace graviton
ĥ and dilaton Φ̃ as scalars.

3. Traces and background invariants

In this section, we finally turn to our goal of computing the traces TrðEÞ, TrðE2Þ, and TrðΩρσΩρσÞ for the fluctuated STU
models encountered in this paper. In terms of the components of matrices E and Ωρσ, these traces can be defined as

TrðEÞ ¼ Eĥμν
ĥμν

þ Eĥ
ĥ þ Ea1α

a1α þ Ea2α
a2α þ EΦ̃

Φ̃; ðA47Þ

TrðE2Þ ¼ Eĥμν
ĥαβ

Eĥαβ
ĥμν

þ Ea1α
a1βE

a1β
a1α þ Ea2α

a2βE
a2β

a2α þ Eĥ
ĥE

ĥ
ĥ þ EΦ̃

Φ̃E
Φ̃
Φ̃ þ Ea1α

a2βE
a2β

a1α þ Ea2α
a1βE

a1β
a2α

þ Eĥμν
ĥE

ĥ
ĥμν þ Eĥ

ĥμν
Eĥμν

ĥ þ Eĥμν
a1αE

a1α
ĥμν

þ Ea1α
ĥμν
Eĥμν

a1α þ Eĥμν
a2αE

a2α
ĥμν

þ Ea2α
ĥμν
Eĥμν

a2α þ Eĥμν
Φ̃E

Φ̃
ĥμν

þ EΦ̃
ĥμν
Eĥμν

Φ̃ þ Ea1α
Φ̃E

Φ̃
a1α þ EΦ̃

a1αE
a1α

Φ̃ þ Ea2α
Φ̃E

Φ̃
a2α þ EΦ̃

a2αE
a2α

Φ̃; ðA48Þ

TrðΩρσΩρσÞ ¼ ðΩρσÞĥμν ĥαβðΩρσÞĥαβ ĥμν þ ðΩρσÞΦ̃Φ̃ðΩρσÞΦ̃Φ̃ þ ðΩρσÞa1αa1βðΩρσÞa1βa1α þ ðΩρσÞa2αa2βðΩρσÞa2βa2α
þ ðΩρσÞa1αa2βðΩρσÞa2βa1α þ ðΩρσÞa2αa1βðΩρσÞa1βa2α þ ðΩρσÞĥμνa1αðΩρσÞa1α ĥμν þ ðΩρσÞa1α ĥμνðΩρσÞĥμνa1α
þ ðΩρσÞĥμνa2αðΩρσÞa2α ĥμν þ ðΩρσÞa2α ĥμνðΩρσÞĥμνa2α þ ðΩρσÞĥμν Φ̃ðΩρσÞΦ̃ĥμν

þ ðΩρσÞΦ̃ĥμν
ðΩρσÞĥμν Φ̃

þ ðΩρσÞa1α Φ̃ðΩρσÞΦ̃a1α þ ðΩρσÞΦ̃a1α
ðΩρσÞa1α Φ̃ þ ðΩρσÞa2α Φ̃ðΩρσÞΦ̃a2α þ ðΩρσÞΦ̃a2α

ðΩρσÞa2α Φ̃: ðA49Þ

Note that all the off-diagonal contributions in TrðEÞ vanish due to the absence of associated projection operators I . From
here, we need to utilize all the relations derived in Appendix A 2 for E andΩρσ in order to compute the trace results required
in the definitions mentioned above. This yields

Eĥμν
ĥμν

¼ EĥμνĥαβI ĥμνĥαβ
¼ −

3

2
R; ðA50Þ

Eĥ
ĥ ¼ Eĥ ĥI ĥ ĥ ¼ 2Λ; ðA51Þ

EΦ̃
Φ̃ ¼ EΦ̃ Φ̃I Φ̃ Φ̃ ¼ 0; ðA52Þ

Ea1α
a1α ¼ Ea1αa1βIa1αa1β ¼ −Rþ ðκ21 þ 6ÞF̄1μνF̄1

μν; ðA53Þ

Ea2α
a2α ¼ Ea1αa2βIa2αa1β ¼ −Rþ ðκ22 þ 6ÞF̄2μνF̄2

μν; ðA54Þ

followed by

Eĥμν
ĥαβ
Eĥαβ

ĥμν
¼ EĥμνĥγδEĥαβ ĥθϕI ĥαβ ĥγδ

I ĥμνĥθϕ

¼ 2RμνρσRμνρσ þ 2RμρνσRμνρσ − 2RμνRμν þ 1

4
R2; ðA55Þ

Ea1α
a1βE

a1β
a1α ¼ Ea1αa1γEa1βa1δIa1βa1γIa1αa1δ

¼ RμνRμν − 8ΛF̄1μνF̄1
μν − ð2κ21 þ 4ÞRμνF̄1

μρF̄1
ν
ρ

þ ð2κ21 þ 8ÞðF̄1μνF̄1
μνÞ2 þ ðκ21 þ 2Þ2F̄1

μρF̄1
ν
ρF̄1μσF̄1ν

σ; ðA56Þ
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Ea2α
a2βE

a2β
a2α ¼ Ea2αa2γEa2βa2δIa2βa2γIa2αa2δ

¼ RμνRμν − 8ΛF̄2μνF̄2
μν − ð2κ22 þ 4ÞRμνF̄2

μρF̄2
ν
ρ þ ð2κ22 þ 8ÞðF̄2μνF̄2

μνÞ2
þ ðκ22 þ 2Þ2F̄2

μρF̄2
ν
ρF̄2μσF̄2ν

σ; ðA57Þ

Eĥ
ĥE

ĥ
ĥ ¼ Eĥ ĥEĥ ĥI ĥ ĥI ĥ ĥ ¼ 4Λ2; ðA58Þ

EΦ̃
Φ̃E

Φ̃
Φ̃ ¼ EΦ̃ Φ̃EΦ̃ Φ̃I Φ̃ Φ̃I Φ̃ Φ̃ ¼ 0; ðA59Þ

Eĥμν
Φ̃E

Φ̃
ĥμν

¼ EΦ̃
ĥμν
Eĥμν

Φ̃ ¼ EĥμνΦ̃EΦ̃ĥαβI Φ̃ Φ̃I ĥμνĥαβ
¼ 0; ðA60Þ

Ea1α
Φ̃E

Φ̃
a1α ¼ EΦ̃

a1αE
a1α

Φ̃ ¼ Ea1αΦ̃EΦ̃a1βIa1αa1βI Φ̃ Φ̃ ¼ 0; ðA61Þ

Ea2α
Φ̃E

Φ̃
a2α ¼ EΦ̃

a2αE
a2α

Φ̃ ¼ Ea2αΦ̃EΦ̃a2βIa2αa2βI Φ̃ Φ̃ ¼ 0; ðA62Þ

Eĥμν
ĥE

ĥ
ĥμν

¼ Eĥ
ĥμν
Eĥμν

ĥ

¼ EĥμνĥEĥĥαβI ĥ ĥI ĥμνĥαβ

¼ ðF̄1μνF̄1
μν þ F̄2μνF̄2

μνÞ2 − 8F̄1
μρF̄2

ν
ρF̄1μσF̄2ν

σ − 4ðF̄1
μρF̄1

ν
ρF̄1μσF̄1ν

σ þ F̄2
μρF̄2

ν
ρF̄2μσF̄2ν

σÞ; ðA63Þ

Ea1α
a2βE

a2β
a1α ¼ Ea2α

a1βE
a1β

a2α

¼ Ea1αa2γEa2βa1δIa1αa1δIa2βa2γ

¼ 2ðκ1κ2 þ 4ÞF̄1μνF̄1
μνF̄2ρσF̄2

ρσ þ ðκ21κ22 þ 2κ1κ2 þ 2ÞF̄1
μρF̄2

ν
ρF̄1μσF̄2ν

σ

þ ð2κ1κ2 þ 2Þ2F̄1
μρF̄2

νσF̄1μνF̄2ρσ; ðA64Þ

Eĥμν
a1αE

a1α
ĥμν

¼ Ea1α
ĥμν
Eĥμν

a1α

¼ Eĥμνa1βEa1αĥγδIa1αa1βI ĥμνĥγδ

¼ ðDρF̄1μνÞðDρF̄1
μνÞ þ ðDμF̄1ρ

νÞðDνF̄1
ρμÞ; ðA65Þ

Eĥμν
a2αE

a2α
ĥμν

¼ Ea2α
ĥμν
Eĥμν

a2α

¼ Eĥμνa2βEa2αĥγδIa2αa2βI ĥμνĥγδ

¼ ðDρF̄2μνÞðDρF̄2
μνÞ þ ðDμF̄2ρ

νÞðDνF̄2
ρμÞ: ðA66Þ

We also obtain

ðΩρσÞĥμν ĥαβðΩρσÞĥαβ ĥμν ¼ ðΩρσÞĥμνĥγδðΩρσÞĥαβ ĥθϕI ĥαβ ĥγδ
I ĥμνĥθϕ

¼ −6RμνρσRμνρσ − 36ðF̄1μνF̄1
μνÞ2 − 36ðF̄2μνF̄2

μνÞ2 − 24F̄1μνF̄1
μνF̄2ρσF̄2

ρσ − 48F̄1μνF̄2
μνF̄1ρσF̄2

ρσ

− 4ðRμνρσ − 2RμρνσÞðF̄1
μνF̄1

ρσ þ F̄2
μνF̄2

ρσÞ þ 4RðF̄1μνF̄1
μν þ F̄2μνF̄2

μνÞ þ 96F̄1
μρF̄2

ν
ρF̄1μσF̄2ν

σ

þ 48ðF̄1
μρF̄1

ν
ρF̄1μσF̄1ν

σ þ F̄2
μρF̄2

ν
ρF̄2μσF̄2ν

σÞ; ðA67Þ

ðΩρσÞa1αa1βðΩρσÞa1βa1α ¼ ðΩρσÞa1αa1γ ðΩρσÞa1βa1δIa1βa1γIa1αa1δ

¼ −RμνρσRμνρσ − ð2κ41 − 16κ21 þ 52ÞðF̄1μνF̄1
μνÞ2 þ 8RμνρσF̄1

μνF̄1
ρσ þ ð4κ21 − 16ÞRμρνσF̄1

μνF̄1
ρσ

þ 8RμνF̄1
μρF̄1

ν
ρ þ ð2κ41 − 40κ21 þ 88ÞF̄1

μρF̄1
ν
ρF̄1μσF̄1ν

σ; ðA68Þ
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ðΩρσÞa2αa2βðΩρσÞa2βa2α ¼ ðΩρσÞa2αa2γ ðΩρσÞa2βa2δIa2βa2γIa2αa2δ

¼ −RμνρσRμνρσ − ð2κ42 − 16κ22 þ 52ÞðF̄2μνF̄2
μνÞ2 þ 8RμνρσF̄2

μνF̄2
ρσ þ ð4κ22 − 16ÞRμρνσF̄2

μνF̄2
ρσ

þ 8RμνF̄2
μρF̄2

ν
ρ þ ð2κ42 − 40κ22 þ 88ÞF̄2

μρF̄2
ν
ρF̄2μσF̄2ν

σ; ðA69Þ

ðΩρσÞΦ̃Φ̃ðΩρσÞΦ̃Φ̃ ¼ ðΩρσÞΦ̃ Φ̃ðΩρσÞΦ̃ Φ̃I Φ̃ Φ̃I Φ̃ Φ̃ ¼ 0; ðA70Þ

ðΩρσÞa1αa2βðΩρσÞa2βa1α ¼ ðΩρσÞa2αa1βðΩρσÞa1βa2α
¼ ðΩρσÞa1αa2γ ðΩρσÞa2βa1δIa1αa1δIa2βa2γ

¼ ð2κ21κ22 − 44κ1κ2 þ 100ÞF̄1
μρF̄2

ν
ρF̄1μσF̄2ν

σ þ ð4κ1κ2 − 12ÞF̄1
μρF̄2νσF̄1μνF̄2ρσ

− ð2κ21κ22 − 12κ1κ2 þ 28ÞF̄1μνF̄1
μνF̄2ρσF̄2

ρσ þ ð4κ1κ2 − 24ÞF̄1μνF̄1
μνF̄2ρσF̄2

ρσ; ðA71Þ

ðΩρσÞĥμν Φ̃ðΩρσÞΦ̃ĥμν
¼ ðΩρσÞΦ̃ĥμν

ðΩρσÞĥμν Φ̃
¼ ðΩρσÞĥμνΦ̃ðΩρσÞΦ̃ĥγδI Φ̃ Φ̃I ĥμνĥγδ

¼ 2κ21ðF̄1μνF̄1
μνÞ2 þ 2κ22ðF̄2μνF̄2

μνÞ2 þ 4F̄1μνF̄1
μνF̄2ρσF̄2

ρσ − 8κ21F̄1
μρF̄1

ν
ρF̄1μσF̄1ν

σ

− 8κ22F̄2
μρF̄2

ν
ρF̄2μσF̄2ν

σ − 16κ1κ2F̄1
μρF̄2

ν
ρF̄1μσF̄2ν

σ; ðA72Þ

ðΩρσÞĥμνa1αðΩρσÞa1α ĥμν ¼ ðΩρσÞa1α ĥμνðΩρσÞĥμνa1α
¼ ðΩρσÞĥμνa1βðΩρσÞa1αĥγδIa1αa1βI ĥμνĥγδ

¼ 2ðDμF̄1ρ
νÞðDνF̄1

ρμÞ − 10ðDρF̄1μνÞðDρF̄1
μνÞ; ðA73Þ

ðΩρσÞĥμνa2αðΩρσÞa2α ĥμν ¼ ðΩρσÞa2α ĥμνðΩρσÞĥμνa2α
¼ ðΩρσÞĥμνa2βðΩρσÞa2αĥγδIa2αa2βI ĥμνĥγδ

¼ 2ðDμF̄1ρ
νÞðDνF̄1

ρμÞ − 10ðDρF̄1μνÞðDρF̄1
μνÞ; ðA74Þ

ðΩρσÞa1α Φ̃ðΩρσÞΦ̃a1α ¼ ðΩρσÞΦ̃a1α
ðΩρσÞa1α Φ̃

¼ ðΩρσÞa1αΦ̃ðΩρσÞΦ̃a1βIa1αa1βI Φ̃ Φ̃

¼ 2κ21ðDμF̄1ρ
νÞðDνF̄1

ρμÞ − 2κ21ðDρF̄1μνÞðDρF̄1
μνÞ; ðA75Þ

ðΩρσÞa2α Φ̃ðΩρσÞΦ̃a2α ¼ ðΩρσÞΦ̃a2α
ðΩρσÞa2α Φ̃

¼ ðΩρσÞa2αΦ̃ðΩρσÞΦ̃a2βIa2αa2βI Φ̃ Φ̃

¼ 2κ22ðDμF̄2ρ
νÞðDνF̄2

ρμÞ − 2κ22ðDρF̄2μνÞðDρF̄2
μνÞ: ðA76Þ

Finally, we utilize all the trace data mentioned above in the definitions (A47)–(A49). Subsequently, we simplify the results
and background invariants with the assistance of the one-shell identities discussed in Appendix A 1. This process essentially
yields the irreducible form of trace relations, as presented in Eqs. (63)–(65), respectively.

APPENDIX B: INTEGRATED BACKGROUND INVARIANTS IN EXTREMAL NEAR-HORIZON LIMIT

This section lists the explicit forms of the background curvature invariantsW2 ¼ WμνρσWμνρσ, E4, R2, and RF̄μνF̄μν their
integrations for the extremal near-horizon backgrounds of Kerr-Newman-AdS4, Reissner-Nordström-AdS4 and Kerr-AdS4
black holes as well as their asymptotically flat counterparts considered in this paper. These results prove to be essential for
the analysis of Secs. IVA 5 and IVA 6 to derive the Clocal contributions in the extremal limit of the black holes.
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1. Kerr-Newman-AdS4 ENH background

For the specific structure (118) of the ENH geometry of the Kerr-Newman-AdS4 black hole, the necessary four-derivative
invariants can be derived in terms of the independent parameters fr0;l; ag. Here, the extremality condition is imposed on
ðr0;l2Þ or ða; qÞ via the following constraints:

a2 þ q2 ¼ r20
l2

ðl2 þ a2 þ 3r20Þ;

l2
2 ¼

l2ða2 þ r20Þ
ða2 þ l2 þ 6r20Þ

¼ l2ð2r40 þ l2ð2r20 − q2ÞÞ
ðl4 þ l2ð6r20 − q2Þ − 3r40Þ

: ðB1Þ

Then the ENH invariants take the following forms:

W2 ¼ 48

l4ρ120

�
r40ðr40 − a2l2Þ2 þ a8l4cos4θ − a2r20

�
a4ða2 þ 2r20 þ l2Þ2cos4θ − a2ð16r40ða2 þ l2Þ þ 8a2l2ða2 þ l2Þ

þ 2r20ð3a4 þ 13a2l2 þ 3l4Þ þ 9r60Þcos2θ þ 6a4l4 − 4r60ða2 þ l2Þ þ 8a2r20l
2ða2 þ l2Þ

þ r40ða4 þ 6a2l2 þ l4Þ − 6r80
�
cos2θ

�
; ðB2aÞ

E4 ¼
8

l4ρ120

�
a4 cos4 θð3a4ða4 cos4 θ þ 6a2r20 cos

2 θ þ 15r40Þ cos4 θ þ 5fa4ð10r20l2 þ 7r40 þ l4Þ

þ 2a2ð5r20l4 þ 16r40l
2 þ 9r60Þ þ r40ð7l4 þ 18r20l

2 þ 18r40Þg − 6a2r20fa4 þ 2a2ð2r20 þ l2Þ
þ 4r20l

2 − 6r40 þ l4g cos2 θÞ − 2a2r20


a4ð22r20l2 þ 4r40 þ 19l4Þ þ 2a2r20ð11l4 þ 7r20l

2 − 3r40Þ
þ 2r40ð2l4 − 3r20l

2 − 9r40Þ
�
cos2 θ − r40



a4ðr40 − 2r20l

2 − 5l4Þ
þ a2r20ð8r20l2 þ 6r40 − 2l4Þ þ r40l

2ð6r20 þ l2Þ��; ðB2bÞ

R2 ¼ 144

l4
; ðB2cÞ

RF̄μνF̄μν ¼ 12

l4ρ80
ð3r40 þ ða2 þ l2Þr20 − a2l2Þðr40 − 6a2r20cos

2θ þ a4cos4θÞ; ðB2dÞ

where ρ20 ¼ r20 þ a2 cos2 θ. Next, the integration results of above background invariants over the desired part of ENH
geometry, as detailed in the formula (123), are successively obtained as

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞW2 ¼ l2
2

8a4Ξl4r50ða2 þ r20Þ2
�
a2r0ð9a8ð2r20l2 − r40 − l4Þ þ a6r20ð70r20l2 − 135r40 þ l4Þ

þ 2a4r40ð106r20l2 − 77r40 þ 27l4Þ þ 6a2r60ð18r20l2 − 13r40 þ 3l4Þ
− 3r80ð2r20l2 þ 15r40 − l4ÞÞ − 3r110 ð3r20 þ l2Þ2 − 12a3ða2 þ r20Þ2ða2ðr20 − l2Þ

þ r20ð3r20 þ l2ÞÞ2 arctan
�
a
r0

��
; ðB3aÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4; ðB3bÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞR2 ¼ −
24l2

2

Ξl4ða2 þ r20Þ
ða4 þ 4a2r20 þ 3r40Þ; ðB3cÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞRF̄μνF̄μν ¼ 12l2
2ða2 − r20Þ

Ξl4ða2 þ r20Þ2
ðr20ð3r20 þ l2Þ − a2ðl2 − r20ÞÞ; ðB3dÞ
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where Ξ ¼ ðl2−a2Þ
l2 . The above extremal near-horizon inte-

grations over y coordinates must be performed in the range
0 ≤ θ ≤ π and 0 ≤ ϕ̃ ≤ 2π for the following typical form of
the ENH metric function:

GðyÞ ¼ l2l2
2

ðl2 − a2Þ ðr
2
0 þ a2cos2θÞ sin θ: ðB4Þ

All the derived results (B3) can be employed to calculate
the Clocal contribution for the extremal Kerr-Newman-AdS4
black hole, as listed in Eq. (124).

2. Kerr-AdS4 ENH background

For a similar analysis of the Kerr-AdS4 black hole, one
needs to consider the special case q ¼ 0 of the ENH geo-
metry (118). This adjustment further revises all extremal
charges and parameters, as indicated by the following bounds:

a2 ¼ r20ð3r20 þ l2Þ
ðl2 − r20Þ

; l2
2 ¼

2l2r20ðr20 þ l2Þ
ðl4 þ 6l2r20 − 3r40Þ

; ðB5Þ

where one must consider r0 < l. We can now express all
the background invariants over the extremal ENH geometry
of the Kerr-AdS4 black hole in much simpler forms,

WμνρσWμνρσ ¼ 12

l4ρ80r
2
0

ðr20 þ a2Þ2ðr20 þ l2Þ2

×


r60 − a2cos2θð15r40 − 15a2r20cos

2θ

þ a4cos4θÞ�; ðB6aÞ

E4 ¼
24

l2
þWμνρσWμνρσ; ðB6bÞ

R2 ¼ 144

l4
; RF̄μνF̄μν ¼ 0: ðB6cÞ

Subsequently, the ENH integrations of the above curva-
ture invariants to compute the Clocal contribution (125) are
derived as

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞWμνρσWμνρσ ¼ 4−
2l2

2ðl2−a2− 3r20Þ
l2ðl2 −a2Þ ;

ðB7aÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4; ðB7bÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞR2 ¼ 12l2
2ðl2 − a2 − 3r20Þ
l2ðl2 − a2Þ ; ðB7cÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞRF̄μνF̄μν ¼ 0: ðB7dÞ

3. Reissner-Nordström-AdS4 ENH background

The extremal near-horizon geometry of the electrically
charged Reissner-Nordström-AdS4 black hole is obtained
through appropriate coordinate transformations on the
background metric (98),

r ¼ r0 þ λr̃; t ¼ l2
2

λ
t̃: ðB8Þ

Upon introducing the Euclideanized time t̃ → −iτ̃ and
taking the limit λ → 0, the extremal near-horizon geometry
can be expressed in the desired form of AdS2 × S2,

g̃μνdx̃μdx̃ν ¼ l2
2

�
ðr̃2 − 1Þdτ̃2 þ dr̃2

ðr̃2 − 1Þ
�

þ r20ðdθ2 þ sin2θdϕ2Þ; ðB9Þ

Notably, for this nonrotating (a ¼ 0) charged background,
the extremality bounds on the r0 and l2 parameters are
given by

q2 ¼ r20

�
1þ 3r20

l2

�
;

1

l2
2

−
1

r20
¼ 6

l2
; ðB10Þ

where we must operate in the range r0 > l2. The curvature
invariants around the ENH geometry (B9) are computed as
follows:

WμνρσWμνρσ ¼ 4ðr20 − l2
2Þ2

3r40l
4
2

; ðB11aÞ

E4 ¼ −
8

l2r20
; ðB11bÞ

R2 ¼ 4ðr20 − l2
2Þ2

r40l
4
2

; ðB11cÞ

RF̄μνF̄μν ¼ 4q2ðr20 − l2Þ2
r60l

2
2

: ðB11dÞ

Finally, we carry out integrations of the mentioned ENH
curvature invariants to derive the Clocal relation, as outlined
in Eq. (126). The specific results are presented as

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞWμνρσWμνρσ ¼ 4

3
−
2ðr40 þ l4

2Þ
3r20l

2
2

;

ðB12aÞ
ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4; ðB12bÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞR2 ¼ 4 −
2ðr40 þ l4

2Þ
r20l

2
2

; ðB12cÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞRF̄μνF̄μν ¼ −
ðr40 − l4

2Þ
r20l

2
2

: ðB12dÞ
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4. ENH backgrounds in flat limit (l → ∞)

We will now investigate the flat-space limit, l → ∞,
applied to the previously derived integrated extremal near-
horizon invariants of asymptotically AdS4 black hole
configurations. This limit results in R ¼ − 12

l2 ¼ 0, leading
to similar integrated relations for the asymptotically flat4
black holes. In this flat-space scenario, the extremality
conditions for the generic near-horizon parameters r0 and
l2, as well as for the revised Kerr parameter b ¼ a

q, can be
expressed as follows:

r20 ¼ q2 þ a2; l2
2 ¼ q2 þ 2a2; b2 ¼ r20

q2

�
l2
2

r20
− 1

�
:

ðB13Þ

For the case of a flat extremal Kerr-Newman black hole
solution in STU models, the nonvanishing ENH integrated
invariants are

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞWμνρσWμνρσ

¼ 1

2ðb2 þ 1Þ2ð2b2 þ 1Þ
�
ð3þ 24b2 þ 40b4 þ 16b6Þ

−
3ð2b2 þ 1Þ2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p arctan

�
bffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p

��
; ðB14aÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4: ðB14bÞ

In the special case of an extremal Kerr black hole (q ¼ 0,
l2 ¼

ffiffiffi
2

p
r0, and b → ∞), the same relations are give by

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞWμνρσWμνρσ ¼ 4; ðB15aÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4: ðB15bÞ

Similarly, for the asymptotically flat extremal Reissner-
Nordström black hole (a ¼ 0, l2 ¼ r0, and b ¼ 0) in STU
models, one obtains

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞWμνρσWμνρσ ¼ 0; ðB16aÞ

ð−2πÞ
ð4πÞ2

Z
ENH

d2yGðyÞE4 ¼ 4: ðB16bÞ

All the integrated results mentioned above are appro-
priately employed in deriving the Clocal expressed in
Eqs. (132), (134), and (135).
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