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The Weinberg compositeness criterion dictates that a pure shallow bound state is characterized by a large
scattering length a0 ≫ Oð1=βÞ and a positive effective range r0 that naturally scales to the size of Oð1=βÞ,
where 1=β signifies the interaction range. In constructing the contact-range effective field theory (EFT) up
to the next-to-leading order to describe the pentaquarks Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ observed by
the LHCb collaboration in 2019, we match the effective range r0 at single-channel situation for these
pentaquarks with the low-energy couplings within the EFT framework. Three different schemes are used
to connect the couplings with the effective range. We find positive effective ranges r0 of the natural size
of Oð1=βÞ for the spin configurations JP ¼ 3

2
− for Pcð4440Þ and JP ¼ 1

2
− for Pcð4457Þ within the

molecular D̄�Σc description. Additionally, predictions from the power counting for low-energy couplings
or Wilsonian coefficients suggest that, under heavy quark spin symmetry, the broad Pcð4380Þ resonance,
discovered by the LHCb collaboration in 2015, when considered as part of the single-channel D̄ð�ÞΣð�Þ

c

molecular system alongside Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ, has a mass of approximately 4376 MeV.

DOI: 10.1103/PhysRevD.111.054029

I. INTRODUCTION

The theoretical and experimental investigation of multi-
quark exotic hadrons, which transcend the conventional
quark model description, has consistently triggered sub-
stantial interest due to their potential implications for our
understanding of nonperturbative quantum chromodynam-
ics [1–5]. In 2015, two hidden-charm pentaquark states,
Pcð4380Þ andPcð4450Þ, were first discovered by the LHCb
experiment [6]. Subsequent observations revealed that the
Pcð4450Þ splits into two narrow peaks, namely, Pcð4440Þ
and Pcð4457Þ, and a new Pcð4312Þ state was also

identified. However, the broad Pcð4380Þ does not appear
as a clear signal in the J=ψpmass spectrum [7]. These three
pentaquarks, Pcð4312Þ (Pc1), Pcð4440Þ (Pc2), and
Pcð4457Þ (Pc3), have sparked lively discussions regarding
their nature [8–18]. Their masses and widths are

mðPc1Þ ¼ 4311.9� 0.7þ6.8
−0.6 MeV;

ΓðPc1Þ ¼ 9.8� 2.7þ3.7
−4.5 MeV; ð1Þ

mðPc2Þ ¼ 4440.3� 1.3þ4.1
−4.7 MeV;

ΓðPc2Þ ¼ 20.6� 4.9þ8.7
−10.1 MeV; ð2Þ

mðPc3Þ ¼ 4457.3� 0.6þ4.1
−1.7 MeV;

ΓðPc3Þ ¼ 6.4� 2.0þ5.7
−1.9 MeV: ð3Þ

Since their masses are close to the D̄Σc and D̄�Σc
thresholds, it is natural to consider them as molecules of
charmed mesons and baryons [19–33]. Besides, there exist
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other explanations for these pentaquarks, e.g., compact five
quark states and hadrocharmonia [34–39].
Within the molecular picture, heavy quark spin sym-

metry (HQSS) implies other four pentaquarks formed
by D̄Σ�

c and D̄�Σ�
c [40,41], which together with the above

three pentaquarks already identified by the LHCb collabo-
ration, constitute a multiplet of seven pentaquark states.
Furthermore, within this hadronic molecular framework,
the mass spectrum alone derived from the effective field
theory or phenomenology does not allow for a definitive
determination of the Pcð4440Þ and Pcð4457Þ spins, which
can be either JP ¼ 1

2
− or 3

2
−. Many studies have addressed

this spin issue [42–46]. To determine the Pc2 and Pc3 spins
under the two-body hadronic molecular D̄�Σc description,
it is helpful to reconsider the nature of being “molecule” or
“composite.” For a given few-body system on a low energy
scale, the Weinberg compositeness criterion could judge
whether this system is “composite” or more like “elemen-
tary.” The Weinberg compositeness criterion was originally
proposed for studying the deuteron to discriminate between
the elementary particle jdi and the composite molecular
state jnpi, and this criterion has been extended to exotic
hadronic states. A multiquark state jΦi can contain two
components, a compact one jϕi and a two-body molecular
part jh1h2ðkÞi

jΦi ¼
ffiffiffiffi
Z

p
jϕi þ

Z
d3k
ð2πÞ3 λðkÞjh1h2ðkÞi; ð4Þ

with hi (i ¼ 1; 2) representing the hadrons in the molecule
picture. Z ¼ jhΦjϕij2 and 1 − Z ¼ R

d3k
ð2πÞ3 jλðkÞj2 indicate

the probability of the compact and molecular parts within
the given system, respectively.
For an s-wave loosely bound state, the Weinberg

compositeness criterion connects the renormalization
factor Z to the scattering length a and effective range
r. For a pure molecular state, the derivation above yields
the condition Z ¼ 0, which implies that the scattering
length a should be unnaturally large, namely, a ≫ 1=Λ
with Λ the hard energy scale of the molecular system,
while the effective range r is positive and of the order of
the range R of the potential responsible for binding the
molecular state.
This study aims to investigate the effective ranges of

the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ states within the
molecular picture and the contact effective field theory
framework. We will consider two alternative scenarios
with distinct D̄�Σc spin configurations for Pcð4440Þ and
Pcð4457Þ to calculate the effective range. By evaluating
which scenario yields a unnaturally large scattering length
a and a positive effective range r comparable to the
interaction range R—consistent with the molecular
hypothesis with Z ¼ 0—we aim to determine the spins
of Pcð4440Þ and Pcð4457Þ. Besides, the existence of other

predicted Pc molecular states under HQSS will be exam-
ined, which is important for future experiments and under-
standing the pentaquarks’ nature.
This article is structured as follows. In Sec. II, we derive

the effective range and scattering length for pure molecules
by revisiting the Weinberg compositeness. In Sec. III, we
construct the next-to-leading order contact field theory to
describe the Pc states within the molecular picture. The
corresponding power counting is introduced in Sec. IV.
Three matching schemes to relate the effective range to
low-energy couplings are proposed in Sec. V. The numeri-
cal results are presented in Sec. VI. Finally, Sec. VII
provides our conclusions and discussions.

II. EFFECTIVE RANGE EXPANSION AND
THE WEINBERG COMPOSITENESS

OF BOUND STATES

Considering the Pc states as two-body bound system of

D̄ð�ÞΣð�Þ
c , the effective range expansion at low momenta p

yields [47,48]

p2lþ1 cot δl ¼ −
1

al
þ 1

2
rlp2 þ � � � ; ð5Þ

where l ¼ 1; 2; 3;… represent the different partial waves,
δl is the phase shift, al and rl are respectively the scattering
length and effective range. The s-wave amplitude in a
low-energy scattering process can then be written

T ¼ 2π

μ

1

p cot δ0 − ip
¼ 2π

μ

1

− 1
a0
þ 1

2
r0p2 þ � � � ; ð6Þ

with μ denoting the reduced mass of the two-body bound
system.

The binding momentum for the D̄ð�ÞΣð�Þ
c molecules is

γ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
, where EB > 0 is the binding energy. For

loosely bound states, γ ≪ β, where β is the hard energy
scale of the two-body system, usually represented by the
mass of the exchanged meson mex. The compositeness
1 − Z under the nonrelativistic situation could be written as
the following [49,50]

1 − Z ¼
Z

d3k
ð2πÞ3

hh1h2ðkÞjVjΦi�
EB þ k2

2μ

�
2

�
1þO

�
k2

β2

��

¼ μ2g2

2πγ

�
1þO

�
γ

β

��
; ð7Þ

where V is the interaction between the state jΦi and the
hadron pair, and the constant g ≃ hh1h2ðkÞjVjΦi intro-
duced here is the coupling between the molecular system
and the given state. Through the dispersion relation
of T , this coupling g can be connected to the scattering

PENG, GENG, and XIE PHYS. REV. D 111, 054029 (2025)

054029-2



amplitude. Comparing with T in Eq. (6), the Weinberg
compositeness could be obtained as [51,52]

a0 ¼ 2
ð1 − ZÞ
γð2 − ZÞ þO

�
1

mex

�
; ð8Þ

r0 ¼ −
Z

γð1 − ZÞ þO
�

1

mex

�
: ð9Þ

We note that the compositeness 1 − Z is very sensitive
to a0 and r0, because the compositeness 1 − Z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0=ða0 − 2r0Þ

p
becomes singular at r0 ¼ a0=2. On the

other hand, the effective range r0 and scattering length a0 of
the deuteron can be well described by assuming Z ¼ 0 [50].
In this work, we assume that the above relations hold. More
extensive studies on the limitations and extensions of the
Weinberg compositeness criterion, including scenarios
involving virtual states, resonant states and coupled-
channel scenario, can be found in Refs. [52–59].
According to the above relations among a0, r0, and the

compositeness 1 − Z, for a pure molecular system with
Z ¼ 0, the effective range r0 is positive [60–62], with a
value of the order of the interaction range ofOð1=mexÞ∼R.
Conversely, for a compact state with Z ¼ 1, r0 is negative.
Additionally, under the low-energy situation of γ ≪ mex,
assuming Z ¼ 0 for a molecule leads to an unnaturally
large scattering length a0 ∼ 1=γ ≫ R. This is consistent
with the characteristics of shallow bound states, as the
scattering length a0 could be interpreted as the node of the
wave function ϕðxÞ at low energy k [63]

ϕðxÞ ∼ sinðkxþ δ0Þ ∼ 1 −
x
a0

: ð10Þ

The emergence of a shallow bound state will alter a0 from
infinity to an unnaturally large magnitude.
Therefore, the molecular hypothesis for the pentaquark

states as D̄ð�ÞΣð�Þ
c bound states imply positive natural

effective ranges r0 ∼R and unnaturally large scattering

lengths of a0 ≫ R for the D̄ð�ÞΣð�Þ
c interactions. However,

it should be noted here that the above conclusion is for
bound states since the application of the Weinberg
compositeness criterion to virtual or resonance states is
different [54,56,57,64,65]. In addition, the assumption of
pure molecule states is necessary for obtaining a positive
effective range r0. This is related to the uncertainties from
Oð1=mexÞ and can be understood as follows. Taking, as an
example, the requirement of r0 > 0 in Eq. (9), we have

1

mex
<

1 − Z
Z

γ: ð11Þ

For the Pc states studied here, one can assign mex a value
of ∼500 MeV, assuming that the short-range interactions
are mediated by the scalar meson of σ and vector mesons

of ρ and ω. On the other hand, γ is taken as about 100 MeV
[66–68]. As a result, a compact component of Z ≥ 0.2 will
invalidate the relation of Eq. (11) and thus the conclusion
of r0 > 0 for bound molecular states. Consequently, the
premise of pure molecular states or a negligible fraction of
compact components for the Pc states is essential for the
above conclusions.

III. MOLECULAR DESCRIPTIONS OF Pc
STATES WITH CONTACT EFFECTIVE FIELD
THEORY UP TO NEXT-TO LEADING ORDER

The Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ states can be
described as nonrelativistic D̄ð�ÞΣc bound states in the
contact effective field theory [27,40,69,70]. Under HQSS,
the LO meson-baryon potential can be expressed with two
low-energy couplings

V ¼ Ca þ Cbðσ⃗1L · S⃗2LÞ; ð12Þ

where σ⃗1L and S⃗2L represent the spins of the light degrees of
freedom within the charmed mesons and baryons, respec-
tively. According to HQSS, the spins of heavy c quarks
do not influence the interactions between the D̄ð�Þ mesons

and Σð�Þ
c baryons. Here, it should be noted that our analysis

assumes a single-channel of D̄ð�ÞΣc configuration, where
we study with the isospin-symmetric limit and use the
isospin-averaged masses of D̄ð�Þ and Σc as listed in the
Particle Data Group (PDG) [71]. The above contact
potential yields the following potentials for the D̄Σc and
D̄�Σc systems

V

�
D̄Σc; JP ¼ 1

2

−
�

¼ Ca; ð13Þ

V

�
D̄�Σc; JP ¼ 1

2

−
�

¼ Ca −
4

3
Cb; ð14Þ

V

�
D̄�Σc; JP ¼ 3

2

−
�

¼ Ca þ
2

3
Cb: ð15Þ

However, the spin classification of D̄�Σc for Pcð4440Þ and
Pcð4457Þ remains undetermined from the mass spectra
studies with the above LO potential. Pcð4440Þ and
Pcð4457Þ can either have JP ¼ 1

2
− or 3

2
−. Both scenarios

predict a D̄Σc bound state, corresponding to Pcð4312Þ, of a
similar mass within the experimental uncertainty.
Since the effective range r0 should be positive and of

natural size for pure s-wave bound molecular states, it is
useful to calculate r0 from the contact range EFT to help
determine which spin scenario for Pcð4440Þ and Pcð4457Þ
is preferred. In the scenario where the scattering length
a0 ∼ 1=p ≫ R is unnaturally large, to generate the effec-
tive range r0, one needs to construct the contact potential at
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least up to the next-to-leading order (NLO) of Oðp2Þ. This
can be easily verified by expanding the amplitude of
Eq. (6) [72,73].
In the nonrelativistic effective field theory, the contact

interactions between two hadrons are described by the
following effective Lagrangian [47,74]

L ¼ ψ†
�
i∂t þ

∇2

2m

�
ψ þ C0ψ

†ψψ†ψ

þ C2½ðψ†ψ†Þðψ∇↔2

ψÞ þ H:c:� þ � � � : ð16Þ

From the above Lagrangian, the contact potential V in the
center-of-mass system (CMS) can be derived as [75–78]

V ¼ C0 þ C1
2q

2 þ C2
2k

2 þ ðC3
2q

2 þ C4
2k

2Þσ⃗1L · S⃗2L

þ i
2
C5
2ðσ⃗1L þ S⃗2LÞ · ðq × kÞ þ C6

2ðq · σ⃗1LÞðq · S⃗2LÞ

þ C7
2ðk · σ⃗1LÞðk · S⃗2LÞ þ

i
2
C8
2ðσ⃗1L − S⃗2LÞ · ðq × kÞ

þ � � � ; ð17Þ

where p⃗ and p⃗0 are the initial and final center-of-mass
momenta, C0, Ci

2 (i ¼ 1;…; 8) are the low-energy cou-
plings, also known as Wilson coefficients in effective field
theory, and q ¼ p⃗0 − p⃗, k ¼ ðp⃗0 þ p⃗Þ=2 are defined as the
transferred and average momenta.
Performing the standard partial-wave projection, the

above NLO contact potential can be respectively reduced
to the following forms with four low-energy couplings for
the s-wave states of 2S1

2
D̄Σc, 2S1

2
D̄�Σc, and 4S3

2
D̄�Σc

V1 ¼ Ca þ
1

2
Daðp⃗2 þ p⃗02Þ ð18Þ

V2 ¼ Ca −
4

3
Cb þ

1

2
ðDa −DbÞðp⃗2 þ p⃗02Þ ð19Þ

V3 ¼ Ca þ
2

3
Cb þ

1

2

�
Da þ

Db

2

�
ðp⃗2 þ p⃗02Þ: ð20Þ

The Lippmann-Schwinger equation of T ¼ V þ VGT can
be greatly simplified in the contact effective field theory.

Introducing a Gaussian regulator of the form e−
2q2

Λ2 with Λ
the momentum cutoff and adopting the on-shell approxi-
mation, the scattering amplitude T becomes

T ¼ V½1þ VGðq;ΛÞ þ ðVGðq;ΛÞÞ2 þ � � ��

¼ V
1 − VGðq;ΛÞ ; ð21Þ

where the propagator G is

GðEB;ΛÞ ¼
μ

π2

Z þ∞

0

dq
q2

2μEB þ q2
e−

2q2

Λ2 : ð22Þ

Here, μ is the reduced mass of the D̄ð�ÞΣc system and
EB > 0 is the binding energy.
In the unnatural scenario where the scattering length a0 is

large, satisfying a0 ∼ 1
p ≫ 1

Λ [corresponding precisely to
our case with Z ¼ 0 in Eq. (8)], the amplitude T can be
expanded in powers of p

Λ rather than p. This expansion is
permissible for large a0 situation, because p is not small
compared to 1

a0
, thereby leading to [47,72,73]

T ¼ −
2π

μ

1
1
a0
þ ip

"
1þ r0

2
�

1
a0
þ ip

�p2 þ � � �
#
: ð23Þ

Matching the above equation to the LO and NLO terms,
T LO and T NLO, from Eq. (21), as illustrated in Fig. 1,
one can derive the relations among the scattering length a0,
effective range r0, and low-energy couplings C0 and C2

as [72,73,79,80]

C0 ¼
2π

μ

1
1
a0
− αΛ

; ð24Þ

C2 ¼
2π

μ

1�
1
a0
− αΛ

�
2

r0
2
; ð25Þ

where α can be determined with different regulators and
renormalization schemes [47]. For the Gaussian form factor
we used here, αΛ ¼ 2π

μ Gð0;ΛÞ ∼ 0.4Λ.

IV. POWER COUNTING ANALYSIS

Two power counting schemes—the Weinberg power
counting and the KSW (Kaplan, Savage, and Wise) power
counting—can both be applied to the above low-energy
couplings C0 and C2 to ensure that the LO and NLO terms
of the amplitude T are matched to the resummation
diagrams depicted in Fig. 1 [81].
Considering a given effective field theory for a particular

system, the effective Lagrangian density can be expressed

FIG. 1. The s-wave amplitudes of LO and NLO terms from the
contact interactions, where black and gray solid circles denote the
C0 and C2 terms.
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in the following form, based on the operator product
expansion (OPE)

Leff ¼
X
n

CnOn; ð26Þ

where On are the operators that satisfy the symmetry
requirements for constructing the EFT, and Cn stands for
the corresponding Wilsonian coefficient. In this EFT,
employing the Wilsonian cutoff Λ, the naive dimensional
analysis (NDA) dictates a condition for naturalness, sug-
gesting that the dimensionless parameters in OPE should be
ofOð1Þ. Consequently, the different Wilsonian coefficients
Ci and Cj associated with the operators Oi and Oj are
related

Ci

Cj
∼
Λdj

Λdi
; ð27Þ

where di and dj are the mass dimensions of the operators
Oi and Oj. This relation indicates that for the operators On

with higher mass dimensions, the corresponding Wilsonian
coefficients Cn will be suppressed compared to those with
lower mass dimensions. The above conclusion regarding
Wilsonian coefficients from NDA is consistent with
Weinberg’s power counting used for the contact EFT in

Eq. (16), describing the D̄ð�ÞΣð�Þ
c interactions, where the

ratio between C2 and C0 is derived as

C2

C0

∼ Λ−2; ð28Þ

since C2 is of Oðp2Þ while C0 is of Oðp0Þ.
Introducing the scheme of power divergence subtraction

(PDS) in dimensional regularization, Kaplan et al. [72,73]
suggest that for the large scattering length situation, the
couplings C0 and C2 in Eqs. (24) and (25) will scale as

C2

C0

∼
1

ΛðαΛÞ : ð29Þ

It is clear that with αΛ → Λ, Weinberg’s power counting in
Eq. (28) will be recovered, while the choice of αΛ → p
leads to the KSW counting [81].

V. MATCHING THE EFFECTIVE RANGE WITH
THE NLO CONTACT POTENTIAL

To determine the effective range r0, it is necessary to
include the NLO momentum-related term of the contact
potential, as given in Eqs. (18)–(20), to describe the
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ pentaquarks. With
the on-shell approximation, the D̄ð�ÞΣc potentials can be
expressed as

VðD̄ΣcÞ ¼ Ca þDap2
cm1; ð30Þ

V

�
D̄�Σc;

1

2

−
�

¼ Ca −
4

3
Cb þ ðDa −DbÞp2

cm2; ð31Þ

V

�
D̄�Σc;

3

2

−
�

¼ Ca þ
2

3
Cb þ

�
Da þ

Db

2

�
p2
cm2 ð32Þ

where pcm1 and pcm2 are the center-of-mass momenta for
D̄Σc and D̄�Σc, respectively, given by

pcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1 þm2Þ2�½s − ðm1 −m2Þ2�

p
2

ffiffiffi
s

p : ð33Þ

Here,
ffiffiffi
s

p
represents the center-of-mass energy, m1 and m2

denote the masses of D̄ð�Þ and Σc. However, because there
are only three experimental masses, it is impossible to
predict the effective ranges from the potential given
in Eqs. (30)–(32) with four low-energy couplings, i.e.,
Ca, Cb, Da, and Db. Therefore, we propose three schemes
to address this issue:

(I) In scheme I, we neglect the spin-spin interaction
term at Oðp2

cmÞ of the potential in Eqs. (30)–(32),
namely, setting Db ¼ 0. This approach is reasonable
because the difference in the C2 term is of the next-
to-leading order (NLO) and should contribute less
than other terms [82].

(II) In scheme II, including the Pcð4380Þ discovered by
LHCb in 2015,1 we now have four masses of the
Pcð4312Þ, Pcð4440Þ, Pcð4457Þ, and Pcð4380Þ
states, thus the four low-energy couplings could
be determined, allowing us to derive the effective

range r0 for the D̄ð�ÞΣð�Þ
c molecules. In this way, we

can check whether including the Pcð4380Þ mass
predicts the expected large a0 ≫ 1=mex and natural
r0 ∼ 1=mex, as suggested by Eqs. (8) and (9) for the
conjected molecular picture of the pentaquarks,
thereby providing insight into the existence of the
Pcð4380Þ state.

(III) In scheme III, the suppression of the NLO low-
energy couplings from the power counting can be
utilized to estimate the Db term, allowing to fix four
couplings with three inputs.
According to Eqs. (30)–(32) and considering that

the NLO Db term might be suppressed around Λ2

compared to the LO couplings [see Eqs. (28)
and (29)], we can vary Db within a range of

Db ∼ N ×
1

Λ2
× ½−C;C�; ð34Þ

1Note that the broad Pcð4380Þwith a large decay width has not
been confirmed in later LHCb experiments as mentioned in the
Introduction [83]. Nevertheless, some studies have reproduced
the Pcð4380Þ mass through different methods, such as the
production rates analysis of pentaquarks [41] and mass spectrum
prediction of the seven Pc multiplets [40].
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where N ∼ 10 is the magnitude chosen to ensure
that theDb contribution can be fully considered, and
C ∼ 3 fm2 is the value of the LO couplingsC0 of Ca,
Ca − 4

3
Cb, and Ca þ 2

3
Cb for Pcð4312Þ, Pcð4440Þ,

and Pcð4457Þ.
Given that Db has been determined within the

above-specified range, the other three couplings
of Ca, Cb, and Da could be fixed by solving the
Lippmann-Schwinger equation for the D̄ð�ÞΣc sys-
tems to reproduce the Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ masses.

VI. NUMERICAL RESULTS

As in Ref. [40], we are going to distinguish two
scenarios: scenario A corresponds to Pcð4440Þ having
JP ¼ 1

2
− and Pcð4457Þ having JP ¼ 3

2
−, and scenario B

represents the alternative assignment.
By checking whether the results for scenario A or B can

match the pure molecular picture of large, unnatural
scattering length a0 ≫ 1=mex and natural effective range
r0 ∼ 1=mex as suggested by Eqs. (8) and (9), one hopes to
identify the spins of Pcð4440Þ and Pcð4457Þ. In addition to
a0 and r0, another parameter R can be defined as below for
comparison

R ¼ Λ2
C2

C0

; ð35Þ

where the C2 is the sum ofDa andDb, and C0 is the sum of
Ca and Cb. The natural value for this jRj, calculated from
the contact effective field theory we constructed above, is
expected to be around Rnatu ¼ 1=α ≃ 2.5 from the power
counting given in Eq. (29).

A. Results for scheme I

First, we show the predictions of Scheme I where the Db
coupling, representing the NLO spin-spin interaction term,
is simply neglected in Eqs. (30)–(32). Taking the masses of
the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ states as inputs, the
resulting scattering length a0 and effective range r0 for
these three pentaquarks are summarized in Table I.

The effective range r0 of Pcð4440Þ and Pcð4457Þ are
positive in scenario B but negative in scenario A. This
result indicates that, in the molecule picture, it is more
natural to identify Pcð4440Þ as the JP ¼ 3

2
− D̄�Σc molecule

and Pcð4457Þ as the JP ¼ 1
2
− one. Additionally, the positive

effective ranges derived for scenario B fall within the range
of ½0.4; 0.75� fm, which is indeed of the order ofOð1=mexÞ,
assuming the mass mex of the exchanged meson mediating
the D̄ð�ÞΣc interaction is approximately 500 MeV. This is
close to the masses of mesons such as σ, ρ, ω, which are
often considered in the context of the one-boson exchange
model for the D̄ð�ÞΣc molecules. These results for r0
are consistent with the conclusion from the Weinberg
compositeness criterion in Eq. (9) that for pure molecular
states with Z ¼ 0, r0 should be positive and of the order
of Oð1=mexÞ.
Furthermore, the large scattering length a0 ≫ 1=mex

predicted for scenario B is also around 1=γ as expected
from Eq. (8), where γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEB
p

∼ 100–200 MeV are the
binding momenta of Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ in
the D̄ð�ÞΣc molecular picture.

B. Results for scheme II

In Scheme 2, the Pcð4380Þ is considered as an additional
input alongside Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ. With
the masses of these four pentaquark states, the four
couplings appearing in Eqs. (30)–(32) can now all be
fixed. The effective ranges for Pcð4380Þ, Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ are all positive for either scenario
A or B, suggesting that both are consistent with the
molecular picture. However, among the predicted positive
r0 for these four pentaquarks, there are always three with a
magnitude larger than the natural value of order Oð1=mexÞ,
which does not fit well with the molecular picture.
The ratios R in Eq. (35) for the four Pc states, listed in

Table II, are often 10-30 times greater than Λ−2 for both
scenarios A and B, which deviate significantly from the
expectation of 1=α ≃ 2.5 as required by the power counting
in Eqs. (29) and (35).
These abnormal a0, r0, and R obtained for both spin

assignments suggest that Pcð4380Þmight not be considered

TABLE I. The scattering length a0, effective range r0, and parameter jRj for Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
obtained in scheme I, where the Db term has been neglected and two cutoffs of 0.5 and 1 GeV are used for Λ. The
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ states are referred to Pc1, Pc2, and Pc3, respectively.

Scenario ΛðGeVÞ
a0ðfmÞ r0ðfmÞ jRj

Pc1 Pc2 Pc3 Pc1 Pc2 Pc3 Pc1 Pc2 Pc3

A 0.5 2.09 1.58 2.57 −0.04 −0.02 −0.06 0.3 0.2 0.3
1 1.42 −0.34 −0.07 −0.54 −0.31 −0.72 5.3 4.1 6.2

B 0.5 2.88 2.45 3.40 0.61 0.53 0.75 3.0 3.4 2.8
1 2.24 1.74 2.75 0.50 0.44 0.58 4.1 4.5 4.0
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a molecular state together with Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ. The Pcð4380Þ may be excluded as an HQSS
molecular partner of Pc states. However, we will demon-
strate below that the classification of Pcð4380Þ as the
HQSS partner is sensitive to its mass, where the broad
Pcð4380Þ discovered in 2015 cannot yet be ruled out
because its mass, predicted from scenario B to be around
∼4376 MeV, is within the experimental uncertainty range
for the Pcð4380Þ mass.

C. Results for scheme III

Introducing the variation in Eq. (34) based on the EFT
power counting, the Db coupling can vary within a

reasonable range. For each Db value within this range,
the other three low-energy coupling of Ca, Cb, and Da can
be fixed by identifying the T poles in Eq. (21) as Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ for D̄ð�ÞΣc molecules.
In Fig. 2, we present the variations of R and r0 of

Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ as functions of Db.
For scenario A [see Figs. 2(a) and 2(b)], for both cutoffs of
Λ ¼ 0.5 GeV and Λ ¼ 1 GeV, the effective range r0
cannot simultaneously have a natural positive value
around Oð1=mexÞ ∼ 0.5 fm for Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ. In addition, the ratio R for these pentaquarks
exceeds the natural range of Oð1=αÞ ≃ 2.5 for r0 around
Oð1=mexÞ (shaded area with 0 < r0 < 1 fm in Fig. 2).

TABLE II. The scattering length a0, effective range r0, and parameter jRj for Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and
Pcð4457Þ obtained in scheme II with two cutoffs of 0.5 and 1 GeV are used for Λ. The Pcð4312Þ, Pcð4440Þ,
Pcð4457Þ, and Pcð4380Þ are referred to as Pc1, Pc2, Pc3, and Pc4, respectively.

Scenario ΛðGeVÞ
a0ðfmÞ r0ðfmÞ jRj

Pc1 Pc2 Pc3 Pc4 Pc1 Pc2 Pc3 Pc4 Pc1 Pc2 Pc3 Pc4

A 0.5 5.03 2.88 6.37 4.81 1.68 0.75 2.28 1.66 6.7 3.6 8.6 6.7
1 5.01 2.07 7.00 4.55 1.87 0.65 2.62 1.85 13.2 5.5 17.9 13.2

B 0.5 5.01 3.29 32.82 4.81 1.68 0.93 4.10 1.66 6.7 13.5 4.2 6.7
1 5.01 2.54 −27.30 4.55 1.87 0.89 4.62 1.85 13.2 28.9 7.0 13.2

(a) (c)

(b) (d)

FIG. 2. The ratio R and effective range r0 of Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ obtained for scheme III. Panels (a) and (b) show the R
and r0 results for scenario Awith two cutoffs of Λ ¼ 0.5 GeV and Λ ¼ 1 GeV, while panels (c) and (d) show the R and r0 results for
scenario B with two cutoffs of Λ ¼ 0.5 GeV and Λ ¼ 1 GeV.
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However, for scenario B [see Figs. 2(c) and 2(d)], the
same positive effective range r0 aroundOð1=mexÞ ∼ 0.5 fm
for Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ can be obtained
for a natural value of jRj ∼ 1–3. This result corroborates
again the conclusion obtained for Scheme I, indicating that
in the HQSS framework, Pcð4440Þ should have spin-parity
JP ¼ 3

2
− and Pcð4457Þ spin-parity JP ¼ 1

2
−.

We also study the relation between the predicted effec-
tive range r0 and the value of Rb ¼ Λ2 Db

C0
to check further

the naturalness of the contact EFT we employed. Only the
NLO Db coupling is chosen to study the power counting.
C0 corresponds to Ca, Ca − 4

3
Cb, and Ca þ 2

3
Cb for the

three Pc states, respectively. Figure 3 shows that the
effective ranges r0 of Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ

in scenario A are negative for Rb around the natural range
of ½−3; 3�. However, in scenario B, while Rb varies within
½−3; 3�, the effective ranges r0 for Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ are of natural positive values of Oð1=mexÞ∼
0.5 fm, consistent with Eq. (9). These results are also
consistent with the conclusion drawn from Fig. 2, indicat-
ing that it is more natural to consider Pcð4440Þ as the
JP ¼ 3

2
− and Pcð4457Þ as the JP ¼ 1

2
− D̄�Σc states if

Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are D̄ð�ÞΣc heavy-
quark symmetry partners in the molecular picture.
From the condition where positive r0 ∼Oð1=mexÞ of the

three Pc pentaquarks simultaneously emerge together with
the natural R ∼ 2.5 in scenario B, the Db ∼ 0.15 fm4

and ∼0.03 fm4 can be determined for Λ ¼ 0.5 GeV and

(a) (c)

(b) (d)

FIG. 3. The variation of the effective range r0 with the ratio Rb for Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ obtained for scheme III. Panels
(a) and (b) show the r0 results for scenario Awith two cutoffs of Λ ¼ 0.5 GeV and Λ ¼ 1 GeV, while panels (c) and (d) denote the r0
results for scenario B with two cutoffs of Λ ¼ 0.5 GeV and Λ ¼ 1 GeV.

TABLE III. With Db ∼ 0.15 fm4 and ∼0.03 fm4 for Λ ¼ 0.5 GeV and Λ ¼ 1 GeV from scenario B, the mass of D̄Σ�
c, the scattering

length a0, the effective range r0, and the parameter R for Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ are predicted.

ΛðGeVÞ mD̄Σ�
c
ðMeVÞ

a0ðfmÞ r0ðfmÞ jRj
Pc1 Pc2 Pc3 Pc4 Pc1 Pc2 Pc3 Pc4 Pc1 Pc2 Pc3 Pc4

0.5 4375.84 2.73 2.37 3.08 2.67 0.50 0.48 0.46 0.49 2.50 2.63 2.19 2.50
1 4375.6 2.13 1.69 2.52 2.06 0.40 0.41 0.31 0.39 3.31 3.67 2.49 3.31
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Λ ¼ 1 GeV, respectively [see Figs. 2(c) and 2(d)].
The above Db couplings can predict whether the broad
Pcð4380Þ state could be regarded as a D̄Σ�

c molecule. From
the results shown in Table III, the Pcð4380Þ mass is
predicted as follows

mPcð4380Þ ¼ 4375.84 MeVðΛ ¼ 0.5 GeVÞ; ð36Þ

mPcð4380Þ ¼ 4375.6 MeVðΛ ¼ 1 GeVÞ: ð37Þ

These values are approximately 4 MeV below the central
mass value of the Pcð4380Þ state as observed in 2015, but
they remain comfortably within the experimental uncer-
tainties [6]. Therefore, the broad Pcð4380Þ cannot yet be
excluded as the HQSS molecular partner of Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ; meanwhile the predicted mass
of Pcð4380Þ is constrained to ∼4376 MeV based on the
naturalness of the power counting of the contact effective
field theory.

VII. DISCUSSION AND CONCLUSION

This study investigated the effective ranges of the
recently discovered Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
states in the molecular picture and the contact effective
field theory framework. The Weinberg compositeness
criterion indicates for a pure hadronic molecular state,
the effective range r0 should be positive and of the order of
Oð1=mexÞ, while the scattering length is unnaturally large,
i.e., a0 ≫ Oð1=mexÞ.
Taking into account two alternative spin assignments

for Pcð4440Þ and Pcð4457Þ, we proposed three schemes
for the NLO contact potentials. This allowed us to
determine the scattering length a0, effective range r0,
and the parameter R, where R is quantified through a
naturalness criterion dictated by the power counting, for the
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ pentaquarks.
We showed that only scenario B can accommodate

simultaneously a positive effective range r0 ∼Oð1=mexÞ,
a large scattering length a0 ≫ Oð1=mexÞ, and a natural
R ∼ 2.5. As a result, it seems to be more natural to
assign JP ¼ 3

2
− to Pcð4440Þ and JP ¼ 1

2
− to Pcð4457Þ in

the molecular D̄�Σc picture. This conclusion agrees with
Refs. [31,41,45,84,85] and indicates that within the
molecular states composed of the same components, the
pentaquarks with higher spin prefer a lower mass. This is
consistent with scenario B of Ref. [40].
It should be noted that our study is performed in single

channel. Coupled-channel effects, such as D̄Λc1ð2595Þ

[86,87], might alter the aforementioned conclusion. This
is because the threshold for D̄Λc1ð2595Þ is close to
Pcð4440Þ and Pcð4457Þ, and it may couple with D̄�Σc.
However, limited by the available mass inputs, determining
the potential of D̄Λc1ð2595Þ − D̄Λc1ð2595Þ and crossed-
channel D̄Λc1ð2595Þ − D̄�Σc is challenging. Consequently,
studying the effective range within coupled-channel are
beyond the scope of our current work. Additionally, we
assumed Z ¼ 0 to obtain r0 > 0. Therefore, if Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ contain a significant compact
component, the above conclusion of positive r0 might
change. Nevertheless, the range of r0 being estimated as
jr0j ∼Oð1=mexÞ should still be satisfied for dominantly
molecular states.
Moreover, since the LHCb data of 2019 can be fitted

equally well by models that either include or exclude the
Breit-Wigner contribution from Pcð4380Þ, the potential
role of Pcð4380Þ as a HQSS molecule, akin to Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ, remains uncertain. Our results for
scheme II and III suggest that if the Pcð4380Þ is to be
regarded as the HQSS molecular partner of D̄Σ�

c alongside
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ, its mass should be
constrained to around 4376 MeV based on the naturalness
argument from the power counting, which resides roughly
4 MeV below the experimental central mass of Pcð4380Þ.
These findings about discriminating the spins of Pc

states and constraining the hidden-charm pentaquark pre-
dictions are relevant for future experimental investigations
and further theoretical studies on the inner structure of
pentaquarks.
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