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Dibaryons are the simplest system in which the baryon-baryon interaction, and hence the underlying
quark-quark interaction, can be studied in a clear way. Although the only dibaryon known today is the
deuteron (and possibly the d�), fully heavy dibaryons are good candidates for bound states because in such
systems the kinetic energy is small and the high symmetry of the wave function favors binding. In this
study, the possible existence of ΩcccΩccc and ΩbbbΩbbb dibaryons is investigated in the framework of a
constituent quark model that satisfactorily describes the deuteron, the d�ð2380Þ and the NN interaction.
JP ¼ 0þ candidates are found in both systems with binding energies of the order of MeV. A Ω-dibaryon
candidate is also found.
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I. INTRODUCTION

Understanding the nucleon-nucleon interaction has been
one of the priority problems in nuclear physics since
Yukawa’s one pion exchange theory. The subsequent
development of QCD paved the way to describe the strong
interactions in terms of quark degrees of freedom and
facilitate to enlarge the field to other flavors like charm
and bottom.
Dibaryons are the simplest systems in which these studies

can be addressed in a transparent way. Until recently, the
only well-established bound state of two baryons was the
deuteron. Then, in 2011, another unstable light dibaryon,
the d�ð2380Þ, was reported by the WASA-at-COSY col-
laboration [1] from the double pionic fusion reaction
pn → dπ0π0. This resonance can be described as a non-
strange ΔΔ dibaryon with IðJPÞ ¼ 0ð3þÞ. In 1989,
Goldman noted that, due to the special symmetry of such
a state, any model based on confinement and gluon

exchange should predict it [2]. The long history of the
search for dibaryons in the light quark sector can be found
in Ref. [3].
It is well known that the binding of the deuteron is due to

the coupling of the 3S1 and 3D1 partial waves by one-pion
exchange tensor interactions. Similarly, the binding of the
d�ð2380Þ can be explained in terms of Goldstone-boson
exchanges [4]. These two systems then prove that the
interaction binding these dibaryons arises from QCD chiral
symmetry breaking in the light quark sector.
Another interesting system is the fully heavy dibaryon.

In such a system the relativistic effects are negligible and
the kinetic energy is small. As originally pointed out by
Bjorken [5], the triply charmed baryon Ωccc is stable
against strong interactions. This fact opens the possibility
to study systems like ΩcccΩccc or ΩbbbΩbbb. Moreover, in
contrast to the deuteron and the d� case, the latter systems
provide an ideal scenario to explore the baryon-baryon
interaction in an environment free of chiral dynamics.
In this work we will focus on the study of the fully heavy

dibaryons. Two recent lattice QCD calculations have
explored these systems: Ref. [6] showed that ΩcccΩccc is
loosely bound by 5.68(0.77) MeV, while Ref. [7] found a
very deep ΩbbbΩbbb state with a binding energy of
81þ14

−16 MeV. These conclusions are confirmed by several
quark model calculations but are contradicted by others. For
example, Huang et al. [8], using a constituent quark model
based on the one-gluon exchange interaction and the
resonating group method, studied the possible bound states
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of the ΩcccΩccc and ΩbbbΩbbb, among others. They found a
JP ¼ 0þ bound state for theΩcccΩccc system with a binding
energy of 2.5 MeV and another ΩbbbΩbbb state bound by
0.9 MeV, contrary to naive expectations. Deng [9] per-
formed a study of the di-Δþþ, di-Ωccc, and di-Ωbbb systems
using a naive one-gluon exchange quark model and a chiral
quark model including π and σ exchanges between quarks.
Obviously, in this case these parts of the interaction apply
only to the light quarks, but the set of parameters is different
in the two models. Both studies predict very shallow di-Ωccc
and di-Ωbbb states with binding energies around 1 MeV.
Using a different model, namely QCD sum rules, Wang [10]
found for each di-Ωccc and di-Ωbbb systems two JP ¼ 0þ

and JP ¼ 1− states that are slightly below their respective
thresholds.
On the other hand, several studies within the quark

model have ruled out the existence of fully heavy dibary-
ons. In Ref. [11] the authors investigated the existence of
bbbccc dibaryons and extrapolated their results to the
properties of the bbbbbb and cccccc systems. They found
no bound states for ΩcccΩccc or ΩbbbΩbbb combinations.
On the other hand, Alcaraz-Peregrina and Gordillo [12]
used the diffusion Monte Carlo technique to describe fully
heavy compact six-quark arrangements. They found that all
the hexaquarks have smaller masses than those of their
constituents, i.e., all the hexaquarks are bound systems.
However, their masses are also larger than those of any pair
of baryons into which they can be divided. This means that
each hexaquark is unstable with respect to its splitting into
two baryons. Finally, two more calculations, in the frame-
work of the constituent quark model [13] or the extended
chromomagnetic model [14], showed that all the fully
heavy dibaryons lie above their corresponding baryon-
baryon thresholds.
In view of this controversial situation, since different

approaches lead to quite different conclusions, we will
study the possible existence of ΩcccΩccc and ΩbbbΩbbb
dibaryons using the constituent quark model of Ref. [15]
and its extension to the heavy quark sector [16,17], which
has been able to describe a large variety of hadronic
phenomenology. In particular, the model reproduces the
properties of the deuteron [18,19] and predicts the exist-
ence of the d�ð2380Þ as a ΔΔ dibaryon [20,21]. Although
the binding energy of the d� predicted in the latter
references is smaller than the experimental value, it is also
worth mentioning that these studies were performed with-
out coupling to the NN channel.
The paper is structured as follows. In Sec. II we describe

the main aspects of our theoretical model, giving details
about the wave functions used to describe Ωccc (Ωbbb)
baryons and the way we derive the ΩcccΩccc interaction
using the resonating group method (RGM). Section IV is
devoted to presenting our results for the possible dibary-
ons. Finally, we summarize and give some conclusions
in Sec. V.

II. THEORETICAL FORMALISM

A. The constituent quark model

Our theoretical framework is a QCD-inspired constituent
quark model proposed in Ref. [16] and extended to the
heavy quark sector in Ref. [17]. The main pieces of the
model are the constituent light quark masses and Goldstone-
boson exchanges, which appears as consequences of spon-
taneous chiral symmetry breaking of the QCD Lagrangian
together with perturbative one-gluon exchange (OGE) and
nonperturbative color confining interactions.
Following Diakonov [22], a simple Lagrangian invariant

under chiral transformations can be written as

L ¼ ψ̄ði=∂ −Mðq2ÞUγ5Þψ ; ð1Þ

whereMðq2Þ is the dynamical (constituent) quark mass and
Uγ5 ¼ eiλaϕ

aγ5=fπ is the matrix of Goldstone-boson fields
that can be expanded as

Uγ5 ¼ 1þ i
fπ

γ5λaπa −
1

2f2π
πaπa þ… ð2Þ

The first term of the expansion generates the constituent
quark mass, while the second term gives rise to a one-boson
exchange interaction between quarks. The main contribu-
tion of the third term comes from the two-pion exchange
that has been simulated by means of a scalar-meson
exchange potential.
In the heavy quark sector, chiral symmetry is explicitly

broken and Goldstone-boson exchange does not occur.
However, the full interaction constrains the model param-
eters through the light-meson phenomenology [16,17].
Thus, OGE and confinement are the only remaining
interactions between the heavy quarks.
The OGE potential is generated from the vertex

Lagrangian

Lqqg ¼ i
ffiffiffiffiffiffiffiffiffiffi
4παs

p
ψ̄γμG

μ
cλcψ ; ð3Þ

where λc are the SUð3Þ color matrices,Gμ
c is the gluon field,

and αs is the strong coupling constant. The scale depend-
ence of αs allows a consistent description of light, strange,
and heavy mesons. Its explicit expression can be found in,
e.g., Ref. [16],

αsðμÞ ¼
α0

ln
�

μ2þμ2
0

Λ2
0

� : ð4Þ

Regarding the confinement potential, it is well known that
multigluon exchanges produce an attractive linearly rising
potential proportional to the distance between infinite-heavy
quarks [23]. However, sea quarks are also important
components of the strong interaction dynamics that
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contribute to the screening of the rising potential at low
momenta and eventually to the breaking of the quark-anti-
quark binding string [24]. Our model tries to mimic this
behavior with a screening potential at high distances.
Then, the full interaction between heavy quarks is

given by

VijðrÞ ¼
�
−acð1 − e−μcrÞ þ Δþ αsðμÞ

4

1

r

�
ðλ⃗i · λ⃗jÞ;

VS
ijðrÞ ¼ −

αsðμÞ
4

1

6mimj

e−r=r0ðμÞ

rr20ðμÞ
ðσ⃗i · σ⃗jÞðλ⃗i · λ⃗jÞ;

VT
ijðrÞ ¼ −

1

16

αsðμÞ
mimj

Sijðλ⃗i · λ⃗jÞ

×

�
1

r3
−
e−r=rgðμÞ

r

�
1

r2
þ 1

3r2gðμÞ
þ 1

rrgðμÞ
��

; ð5Þ

where r0ðμÞ ¼ r̂0
mn
2μ with μ the reduced mass of the ðijÞ

heavy quark pair, λ⃗ are the color matrices, σ⃗ the spin
matrices, and Sij ¼ 3ðσ⃗i · r̂Þðσ⃗j · r̂Þ − ðσ⃗i · σ⃗jÞ the tensor
operator of the ðijÞ pair with r⃗ their relative position. Notice
that all the interactions in the heavy quark sector are color
interactions.
All the parameters of the model are given in Table I. We

have not included the spin-orbit interaction parts coming
from the one-gluon exchange and confinement because
they should give small contributions in this calculation. For
the same reason, the spin-tensor terms are neglected in the
calculation of the Ωccc (Ωbbb) masses but are included in
the ΩcccΩccc (ΩbbbΩbbb) interaction.
However we are also going to consider states with

strange quarks and in this case we also need the interactions
coming from chiral dynamics. In the present model we have
to add the one-sigma-exchange (OSE) and one-eta-
exchange (OEE) potentials given by

VijðrÞ ¼ VC
σ ðrÞ þ VC

η ðrÞ; ð6Þ

VC
σ ðrÞ ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrÞ −

Λσ

mσ
YðΛσrÞ

�
;

VC
η ðrÞ ¼

g2ch
4π

m2
η

12m2
s

Λ2
η

Λ2
η −m2

η
mη

�
YðmηrÞ −

Λ3
η

m3
η
YðΛηrÞ

�

× ðσ⃗i · σ⃗jÞ
�
cosðθpÞλ8i λ8j − sinðθpÞ

�
;

VT
ijðrÞ ¼ VT

η ðrÞ; ð7Þ

VT
η ðrÞ ¼

g2ch
4π

m2
η

12m2
s

Λ2
η

Λ2
η −m2

η
mη

�
HðmηrÞ −

Λ3
η

m3
η
HðΛηrÞ

�

× Sij½cosðθpÞλ8i λ8j − sinðθpÞ�; ð8Þ

with

YðxÞ ¼ e−x

x
; ð9Þ

HðxÞ ¼
�
1þ 3

x
þ 3

x2

�
e−x

x
: ð10Þ

The parameters of the model for these interactions are given
in Table II.

B. The wave function of the ΩcccðΩbbbÞ
A precise definition of the wave functions of the Ωccc

and Ωbbb baryons (henceforth ΩQQQ) is an essential part of
the calculation because it defines the size of the baryon,
which is important for the baryon-baryon interaction.
Once we know the quark-quark interaction, the ΩQQQ

wave function can be calculated by solving the Schrödinger
equation with the Gaussian expansion method (GEM) [25].
In the GEM framework one makes an expansion in
Gaussian wave functions but instead of using only one
set of Jacobi coordinates, one includes the lowest orbital
angular momentum wave functions using the three sets of
possible Jacobi coordinates. The reason to use different sets
is that lowest angular momentum wave functions in one set
generates higher angular momentum wave functions in the
other sets, making a very numerically efficient way to
include such high angular momentum components.

TABLE I. Parameters for the quark-quark interaction.

Quark masses (MeV) mc 1763
mb 5110

OGE r̂0 (fm) 0.181
α0 2.118

Λ0 (fm−1) 0.113
μ0 (MeV) 36.976

Confinement ac (MeV) 507.4
μc (fm−1) 0.576
Δ (MeV) 184.432

TABLE II. Parameters for interactions from chiral dynamics
relevant in the ss sector.

Quark mass (MeV) ms 555

χSB g2ch 6.661
mσ (fm−1) 3.42
Λσ (fm−1) 4.2
mη (fm−1) 2.77
Λη (fm−1) 5.2

θp −15°
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However the wave function given by GEM would be
quite complicate and would make the calculation of the
dibaryon interaction slow. Alternatively, for the calculation
of the dibaryon interaction (which will be justified later),
the following orbital wave function can be used:

ϕðp⃗ξ1 ; p⃗ξ2Þ ¼
�
2b2

π

�
3=4

e−b
2p2

ξ1

�
3b2

2π

�
3=4

e−
3b2
4
p2
ξ1 ; ð11Þ

where pξi are the Jacobi coordinates defined as

p⃗ξ1 ¼
1

2
ðp⃗1 − p⃗2Þ;

p⃗ξ2 ¼
2

3
p⃗3 −

1

3
ðp⃗1 þ p⃗2Þ: ð12Þ

In the notation we use for the baryon calculation this
corresponds to mode 3 of the GEM basis using only one
Gaussian with angular momentum zero and the parameters
ν ¼ 1

4b2 and λ ¼ 1
3b2. Notice that fixing the relation between

the parameters of the Gaussians ν and λ to these values
(ν ¼ 3

4
λ), the orbital wave functions is totally symmetric,

necessary to get a totally antisymmetric wave function for
the baryon of lowest energy. The spin wave function has to
be also symmetric and implies S ¼ 3

2
and the color wave

function will be a color singlet.
So our wave function for the baryon is

ψB ¼ ϕðp⃗ξ1 ; p⃗ξ2ÞχBξc½13�; ð13Þ

with χB ¼ ðð1
2
1
2
Þ1 1

2
Þ 3
2
Þ the spin wave function and ξc½13� a

singlet color wave function.
Using the wave function of Eq. (11), the kinetic energy is

given by

T ¼ hψBj
p2
ξ1

m
þ 3p2

ξ2

4m
jψBi ¼

3

2mb2
: ð14Þ

For the interaction energy we can evaluate hψBjV12jψBi
and multiply by 3, since we have three interactions between
equivalent quarks. It is easier to evaluate it in coordinate
space. The wave function in coordinate space is

ϕBðr3; R3Þ ¼
�

1

2πb2

�
3=4

e−
r2
3

4b2

�
2

3πb2

�
3=4

e−
R2
3

3b2 ; ð15Þ

and so

hψBjV12jψBi ¼ 4π

�
1

2πb2

�
3=2

Z
∞

0

r23dr3e
−

r2
3

2b2Vðr3Þ: ð16Þ

The mean value distance between quarks is given by

ffiffiffiffiffiffiffiffiffi
hr2iji

q
¼

ffiffiffi
3

p
b ð17Þ

and the mass is given by

M ¼ 3mb þ T þ 3hψBjV12jψBi: ð18Þ

Finally, the value of the b parameter is obtained by
minimizing the mass

∂M
∂b

¼ 0: ð19Þ

Although the GEM method provides a more complete
description of the wave function as mentioned before, the
calculation is simplified if we use the analytical wave
function of Eq. (11). In Table III we show the results of the
Ωccc and Ωbbb wave functions using the mass minimization
procedure and compare with the GEM solution to justify
the use of the simple wave function given by Eq. (11). We
see that we get a reasonable agreement for the sizes and
energies in both cases, although the agreement is better in
the beauty sector. The minimal values for b are given by
bmin ¼ 0.15679 fm for the Ωbbb and bmin ¼ 0.25172 fm
for the Ωccc.

III. THE ΩQQQΩQQQ INTERACTION

The system under study has six identical quarks. Then,
the baryon-baryon total wave function must be fully
antisymmetric. As the wave function of the baryons is
already antisymmetric, the antisymmetrizer operator is just
given by

A ¼ 1 − 9P36: ð20Þ

In order to obtain the effective baryon-baryon interaction
from the underlying quark dynamics we use the RGM
[26,27]. We follow the same formalism in momentum
space as in Ref. [28] where the two baryon wave function is
written as

ψB1B2
¼ A½χðP⃗ÞψS

B1B2
�;

¼ A½ψB1
ðp⃗ξB1

ÞψB2
ðp⃗ξB2

ÞχðP⃗ÞχSB1B2
ξc½23��; ð21Þ

where ψBi
ðp⃗ξBi

Þ is the internal spatial wave function of

each baryon, χSB1B2
is the two baryon spin wave function

coupled to total spin S, ξc½23� is the product of the two
singlet color wave functions, and χðP⃗Þ is the spatial relative
wave function of the two baryons. In this way the wave
function is totally antisymmetric by construction.
Then, we need to solve the projected Schrödinger

equation,

0 ¼
�

p02

2μΩΩ
− E

�
χðP⃗0Þ þ

Z
ðRGMVDðP⃗0; P⃗iÞ

þ RGMKðP⃗0; P⃗iÞÞχðP⃗iÞd3Pi; ð22Þ

PABLO MARTÍN-HIGUERAS et al. PHYS. REV. D 111, 054002 (2025)

054002-4



where P⃗0 (P⃗i) is the relative ΩQQQ − ΩQQQ final (initial)
momentum, E ¼ ET − 2MΩ is the relative energy of the
system with respect to the threshold, RGMVDðP⃗0; P⃗iÞ is the
direct kernel, and RGMKðP⃗0; P⃗iÞ is the exchange kernel and
μΩΩ is the reduced mass of two ΩQQQ baryons.
Here, MΩ is

MΩ ¼ 3mb þ
3

2mQb2
þ 3Eint; ð23Þ

Eint ¼ hViji ¼
Z

d3qe−
q2b2

2 hVijðqÞi: ð24Þ

The direct term will be zero in the present model since
the color coefficients, ðλ⃗i · λ⃗jÞ, are zero between color
singlets.
Then, the full interaction is driven by exchange dia-

grams, which take into account the quark rearrangement
between baryons. The exchange kernel can be written as

RGMKðP⃗0; P⃗iÞ ¼ RGMTðP⃗0; P⃗iÞ þ RGMVijEðP⃗0; P⃗iÞ
− ET

RGMNðP⃗0; P⃗iÞ; ð25Þ

where RGMTðP⃗0; P⃗iÞ is the exchange kinetic
term, RGMNðP⃗0; P⃗iÞ is a normalization term, and
RGMVijEðP⃗0; P⃗iÞ is the exchange potential (for explicit
expressions see, e.g., Refs. [29,30]).

IV. RESULTS

Let us first study the ΩbbbΩbbb system. One of the states
in S wave is the JP ¼ 0þ, which corresponds to the 1S0 and
5D0 partial waves. As in the case of the deuteron, S and D
waves are mixed. We first calculate the binding energy
considering the parameter b and the reduced mass given by
the minimization procedure. Without tensor interactions
they are decoupled and only a bound state appears in the 1S0
partial wave. The binding energy of this state is
E ¼ −1.9859 MeV. The 5D0 partial wave is not bound.
If we include the tensor interaction of OGE, then the partial

waves are coupled and the binding energy increases very
slightly to E ¼ −1.9876 MeV. The probability of the D
wave is only 6.6 × 10−4%. As in the deuteron, the binding
energy has a sizable cancellation between the kinetic and
interaction parts. The mean value of the kinetic energy is
hTi ¼ 11.2 MeV, while for the interaction we have
hVi ¼ −13.2 MeV. The confinement interaction domi-
nates and gives the needed attraction to bind the system.
If we exclude the OGE, then we get E ¼ −7.3698 MeV
with hTi ¼ 20.9 MeV and hVi ¼ −28.3 MeV.
The potential for the 1S0 partial wave is given in Fig. 1.

The relative wave functions are shown in Fig. 2.

TABLE III. Parameters for the Ωccc and Ωbbb baryons obtained
from the mass minimization procedure (∂M

∂b ¼ 0) and the Gaussian
Expansion Method.

Ωccc Ωbbb

∂M=∂b GEM ∂M=∂b GEM

M [MeV] 4810.9 4798.6 14413.8 14396.9ffiffiffiffiffiffiffiffiffi
hr2iji

q
[fm] 0.4360 0.4432 0.2716 0.2762

hTi [MeV] 522.9 522.8 465.0 471.5
hVi [MeV] −333.7 −337.7 −460.4 −468.2 FIG. 1. The potential Vðp0; pÞ in the 1S0 partial wave for the

ΩbbbΩbbb interaction.

FIG. 2. The relative wave functions in the 1S0 and 5D0 partial
waves for the ΩbbbΩbbb dibaryon.

STUDY OF THE ΩcccΩccc AND … PHYS. REV. D 111, 054002 (2025)

054002-5



If we consider b ¼
ffiffiffiffi
r2ij

p
ffiffi
3

p and the reduced mass given by

the GEM calculation we get a binding energy in the
coupled case of E ¼ −1.81 MeV. With b given by the
minimization procedure and the reduced mass is given by
GEM we get ¼ −1.9754 MeV. The effect of the different
reduced mass is very small and dominates the effect of the
different b parameters. In principle with only one Gaussian
one should use the value given by the minimization
procedure, but this gives us a feeling of the uncertainty
due to the simplification of the wave function. Although the
binding energy varies a little bit, in both cases the system is
bounded.
Another possible state is the JP ¼ 2þ, which includes

the 5S2, 1D2, 5D2, and 5G2 partial waves. None of them are
bound. One could expect a bound state for the 5S2 partial
wave, but in this case one can see that the potential coming
from the λ⃗i · λ⃗j have opposite sign for S ¼ 2 with respect to
S ¼ 0. So if we have attraction for the S ¼ 0, this implies
repulsion for S ¼ 2. Higher partial waves are more difficult
to bind.
Antisymmetry implies Lþ S ¼ even and parity is given

by P ¼ ð−1ÞL. So for P ¼ þ, the spin S has to be even.
This means that 1þ and 3þ can be only in D or G waves,
which will be difficult to bind as it was seen for the 0þ and
2þ states. In more detail:
(1) We start with the 1þ state and include 5D1, which is

the only partial wave. It should be the same as the
5D2 partial wave with the exception of the contri-
bution of the OGE tensor interaction. It does
not bind.

(2) For the 3þ state we have the 5D3 and 5G3 partial
waves and they do not bind.

We give in Fig. 3 the Fredholm determinant for the four
different Jþ quantum numbers, where we can see that only
the 0þ channel binds.
Regarding possible P ¼ − states, this would imply odd

partial waves and odd total spin. We have analyzed the

JP ¼ f0−; 1−; 2−; 3−g, finding no additional bound states.
Again, in Fig. 4 the Fredholm determinant for the four
different J− quantum numbers is shown, where we can see
that no bound state is predicted.
Concerning the ΩcccΩccc system, the situation is similar

to the ΩbbbΩbbb system, and we only find a bound state in
the 0þ channel. The binding energy is E ¼ −0.7104 MeV
with aD-state probability of 1.7 × 10−3%. The mean values
of kinetic and interaction terms are hTi ¼ 7.46 MeV and
hVi ¼ −8.17 MeV. In this case we used the b parameter
from the minimization procedure and the reduced mass
from the GEM. Using the reduced mass from the mini-
mization parameter the binding energy changes to E ¼
−0.7288 MeV and both parameters from the GEM
to E ¼ −0.62 MeV.

A. Dependence on the model parameters

We analyze the dependence on the parameters of the
model for the JP ¼ 0þ state to see in which parameter
space region the system will not bind. In all cases we use
the minimization procedure to obtain b and μΩΩ.
The dependence on the quark mass mq is shown in

Fig. 5. Notice that some of the parameters of the potential
depends on mq since we use scale dependent parameters.
We see that the system binds reducing the quark mass up
to mq ∼ 800–900 MeV.
Our model has an effective string tension given by

σ ¼ 8

3
acμc ¼ 0.1537 GeV2 ð26Þ

We plot the parameters b, MQQQ, and E as a function of
the string tension in Fig. 6. We vary the value of μc from
0.15 to 0.85 fm−1 and leave ac unchanged so the saturation
energy does not change.
We see that for higher string tension values (our value is

lower than some determinations) the binding energy will
increase.

FIG. 3. The Fredholm determinant of the ΩbbbΩbbb system for
the 0þ, 1þ, 2þ, and 3þ channels. Only the 0þ crosses the zero.

FIG. 4. The Fredholm determinant of the ΩbbbΩbbb system for
the 0−, 1−, 2−, and 3− channels. None of them crosses the zero.

PABLO MARTÍN-HIGUERAS et al. PHYS. REV. D 111, 054002 (2025)

054002-6



Our confinement effective potential is

VðrÞ ∼ σ
1 − e−μcr

μc
: ð27Þ

We vary the value of μc from 0.15 to 0.85 fm−1 and change
ac so that σ does not change. This is the same interval we
used when we changed the string tension σ. The saturation
energy changes as σ

μc
. Notice that the interaction region is

∼
ffiffiffi
3

p
b, so if x≡ ffiffiffi

3
p

bμc ≪ 1 the potential in the interacting
region is basically linear. In this calculation we got x ¼
0.062 to x ¼ 0.39 in the charm sector and x ¼ 0.039 to

x ¼ 0.24 in the bottom sector. For μc → 0 the potential
becomes more linear in the interaction region.
The results varying the saturation are shown in Fig. 7.

We see that the dependence on the saturation point of the
properties of theΩQQQ, b, andMQQQ, is smaller than on the
string tension σ as one would expect. For the binding
energy of the ΩQQQ dibaryon we see also an smaller
dependence.
Notice that when μc → 0 the binding energy increases,

so a linear confinement potential should give more binding.
Finally we can study the dependence of the binding

energy on the size of the baryon. For that we keep all the
parameters unchanged and only vary the parameter b on the
RGM calculation. Results are shown in Fig. 8. With bigger
sizes we get less binding but it has to be increased much
more than the difference between the sizes of the variational
and GEM calculation, which shows that using the exact
wave function the system will still bind. This argument is
more robust for the bottom sector but it should also work in
the charm.
The result should be seen as an upper bound of the

binding energy, since we are using a variational calculation.
Also other channels may be involved, but since we are
considering the lower energy channel, including more
channels will provide more attraction. We can conclude
that the chiral quark model binds theΩQQQΩQQQ system in
both cases, when Q is a bottom or a charm quark. These
molecular states are analogs of two-atom molecules, where
the direct interaction is zero for neutral atoms, as in our
model for colorless objects.

B. The strange sector

Another interesting case is the possible Ω dibaryon, a
state with six strange quarks. From Fig. 5 we can see that
for quark masses around 800 MeVand below the system is
not bound. Considering the strange quark mass of 555MeV
in our model, the system is clearly unbound. However it is
important to consider that now we are in the light sector and
we have to consider effects from spontaneously chiral
symmetry breaking that are not included in Fig. 5.
We perform a similar calculation but now we add the

OSE and OEE potentials. We start considering the Ω
baryon in the GEM and variational approaches. The results
are shown in Table IV. Again we see an overall good
agreement between both approaches and shows that using
the simple one Gaussian approximation with b from the
variational approach is a reasonable approximation for the
baryon wave function. Here we do not change any
parameter from our original model and the mass of the
Ω baryon is only around 50 MeV below the experimental
value 1672.45 MeV [31].
We study now the possible existence of the Ω dibaryon.

For that we perform an RGM calculation as in previous
sections considering the b parameter given by the varia-
tional approach and the experimental mass of theΩ baryon.

FIG. 5. Quark mass dependence of b, MQQQ, and E. We show
by a dot the result of the chiral quark model.
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Considering only the color interactions it is not bound and
the OEE gives repulsion so only when we include the OSE
the system gets bound. Including the color interactions and
OSE we obtain a binding energy of 96.6 MeV and adding
the OEE to build the full potential reduces to 68.2 MeV. In
Fig. 9 we show the Fredholm determinant that only crosses
0 if OSE is included. The probability of D wave is again
quite small 0.12%. The kinetic energy is 60 MeV and the
potential energy −128 MeV.
The Ω dibaryon was recently obtained on lattice QCD

[32] with a much smaller binding energy of the order
2 MeV. QCD sum rules [33] also predict the existence of
the Ω dibaryon although with a bigger binding energy of
the order of 15 MeV. However other quark models give
similar results to ours [34,35]

V. SUMMARY

In this work we have studied the possible existence of
fully heavy dibaryons in the charm and bottom sectors. We
have performed an RGM calculation with a simple one
Gaussian internal wave function for the baryons. The wave
function is obtained using a variational calculation for the
mass of the baryon that has been shown to be in a fairly
good agreement with the precise solution of the three body
problem given by the Gaussian expansion method.
The main conclusion we found is that, using a wave

function that minimizes the mass of the Ωccc (Ωbbb)
baryons, the six c quarks or the six b quarks can form
bound states with JP ¼ 0þ quantum numbers. The binding
energy of the charm dibaryon is Eb ¼ −0.71 MeV, while

FIG. 6. Dependence of b,MQQQ, and E on the effective string tension σ ¼ 8
3
acμc formq ¼ mc (left) andmq ¼ mb (right). We show by

a dot the result of the chiral quark model.
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FIG. 7. Dependence of b,MQQQ, and E on the saturation parameter μc for mq ¼ mc (left) and mq ¼ mb (right). We show by a dot the
result of the chiral quark model.

FIG. 8. Dependence of E on the size of the baryon given by b. Charm sector on the left and bottom sector on the right. We show by a
dot the result of the chiral quark model.
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in the bottom case the binding energy is slightly higher,
Eb ¼ −1.98 MeV, which is reasonable due to the highest
mass of the bottom quark. The JP ¼ 0þ state corresponds
to the coupling of 1S0 and 5D0 partial waves but with a very
small 5D0 component. No further bound states are found in
other partial waves.
We have also studied the fully strange sector. Here,

considering only the color interactions present in the heavy
sector, the system does not get bound. However contribu-
tions from chiral dynamics give the necessary attraction to
bind the system.
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