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A recent analysis of the LHCb data [Esposito et al., Phys. Rev. D 105 L031503 (2022)] obtained a
sizable negative effective range for the Xð3872Þ. This has attracted intensive discussions on whether
Xð3872Þ can be deemed as a DD̄� molecular state. This work explicitly demonstrates that the negative
effective range of the Xð3872Þ does not contradict the molecular picture, adopting an effective field theory
formulation of the DD̄� interaction that can simultaneously reproduce the binding energy and effective
range of the Xð3872Þ. We elaborate on the implications of the large negative effective range of Xð3872Þ and
the small binding energy on the underlying DD̄� interaction. Such results are relevant for a better
understanding of hadronic molecules and their binding mechanism.
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I. INTRODUCTION

The number of so-called exotic hadrons, beyond the
configurations of mesons made of a pair of quark and
antiquark and baryons made of three quarks in the conven-
tional quark model [1,2], has been increasing [3–9]; these
not only enrich hadron spectroscopy but also provide
valuable opportunities to understand the nonperturbative
strong interactions better. Despite the intensive experimen-
tal and theoretical studies, the nature of these exotic states
remains controversial [10–23]. Because most of them
are located close to the mass thresholds of pairs of conven-
tional hadrons, the hadronic molecular picture has become
very popular [15,23]. Recent studies have shown that, in
addition to the hadronic molecular components, other
configurations, such as compact multiquark components,
also contribute to the experimentally discovered states,
leading to complicated structures for these states [24,25].

To estimate the relative importance of the hadronic
molecular component in a physical state, one often turns
to the Weinberg compositeness criterion, which defines the
probability of finding an elementary component in the
physical state corresponding to the field renormalization
constant Z [26],

Z¼ 1−
Z

dαjhαjdij2; Z¼
X
n

jhnjdij2; ð1Þ

where jαi and jni represent the eigenstates of the con-
tinuum and discrete elementary particle states in the free
HamiltonianH0, and jdi represents the physical state in the
total HamiltonianH with the normalization of

P
n jnihnj þR

dαjαihαj ¼ 1 and hdjdi ¼ 1. Z ¼ 0 implies that the
physical state is a pure hadronic molecule, and 0<Z< 1
indicates the existence of an elementary component inside
the physical state.
One can relate Z to the scattering amplitude at low

energies in a model-independent way, which can be
expressed by the effective range expansion

fðkÞ ¼ 1

k cot δ − ik
≈

1

− 1
a þ 1

2
r0k2 − ik

; ð2Þ

where δ is the phase shift, a is the scattering length, r0 is the
effective range, k ¼ ffiffiffiffiffiffiffiffiffi

2μE
p

, and μ is the reduced mass. The
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scattering length and effective range can be expressed in
terms of Z as [27]

a¼ 2ð1−ZÞ
2−Z

1

γ
þO

�
1

β

�
; r0¼−

Z
1−Z

1

γ
þO

�
1

β

�
; ð3Þ

where γ ¼ ffiffiffiffiffiffiffiffiffi
2μB

p
is the binding momentum, and 1=β

estimates the range corrections. From the relation above,
following Ref. [28] and ignoring higher order corrections,
one can obtain the compositeness X ¼ 1 − Z, which can be
seen as the probability of finding the hadronic molecular
component in the normalized wave function of the bound
state

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
a − 2r0

r
: ð4Þ

Since β denotes the next momentum scale not treated
explicitly in the effective range expansion, it is normally
regarded as the mass of the lightest exchanged particle.
Applying this rule to the deuteron, a bound state

composed of one proton and one neutron, one obtains a
compositeness X ¼ 1.68 with the following experimental
values for the scattering length, effective range, and
binding energy: a ¼ 5.419ð7Þ fm, r0 ¼ 1.766ð8Þ fm, and
B ¼ 2.224575ð9Þ MeV. The result is unacceptable because
X should be smaller than one by definition. As stressed in
Ref. [29], the alternative is even worse. As a result,
Weinberg concluded, “The true token that the deuteron
is composite is that r0 is small and positive rather than large
and negative [30]”.
Many studies of exotic hadrons employed the Weinberg

compositeness criterion to classify a particular hadron as
either a molecular or nonmolecular state [27,31–37]. The
Xð3872Þ is the most studied among the many exotic
hadrons discovered. However, whether it is a compact
tetraquark state or a loosely bound molecule remains
unsettled [35,37–41]. By fitting the LHCb data [25],
Ref. [35] obtained an effect range for the Xð3872Þ,
r0 ¼ −5.34 fm,1 and an inverse scattering length
κ0 ¼ 6.92 MeV. According to the Weinberg relation of
Eq. (3) and the Landau relation:

Z ¼ −r0κ
1 − r0κ

; ð5Þ

they obtained Z ¼ 0.14 and concluded that the Xð3872Þ
cannot be a pure shallow molecule, which means Z ¼ 0 and
the effective range must be strictly positive, as happens for
the deuteron. We note, however, that most studies would
classify such a state with Z ¼ 0.14 (i.e., X ¼ 0.86) as a
hadronic molecule. They further stated that only if the

Xð3872Þ is an elementary object, the effective range is
negative, and its magnitude is much larger than that of the
inverse pion mass. We note that Ref. [42], assuming that
the H-dibaryon is a loosely bound state of ΛΛ (with a
binding energy similar to that of the deuteron), obtained
r0;ΛΛ ¼ −4.95 fm, which implies that a large and negative
effective range should not be regarded as a criterion for a
nonmolecular state.
It should be noted that when applied to hadronic

molecules, the Weinberg composition criterion should be
corrected since the dynamics of hadronic molecules are
more complicated. Recently, the impact of the range of the
effective potentials to the effective range has been exten-
sively discussed [27,29,32,43]. As argued in Ref. [27],
because the one-pion exchange is responsible for the
nucleon-nucleon scattering, the corresponding value of
1=β is 1.4 fm. In contrast, the value for a pair of charmed
mesons is reduced to 1 fm because of the suppression of the
one-pion exchange contribution. Moreover, the authors
stressed that coupled-channel effects, isospin violation
effects, and the widths of constituents also modify the
effective range of Xð3872Þ. Considering the contributions
from the next-to-leading order Weinberg relation, Ref. [32]
confirmed that the deuteron is a composite particle and
concluded that higher-order corrections of the effective
range expansion are required for deeply bound states.
In this work, we want to understand what the effective

range can tell about the underlying hadron-hadron inter-
actions, e.g., the DD̄� interaction for the Xð3872Þ. In
particular, we study two types of DD̄� interactions and
check whether they can reproduce the binding energy and
negative effective range of the Xð3872Þ and simultaneously
yield a compositeness X greater than 0.5, following the
criterion for a hadronic molecule adopted by most studies.
We note that unlike most previous studies trying to quantify
to what extent a specific state can be deemed as a molecular
state or nonmolecular state [27,29,32–37,39–41], we try to
determine what the effective range and the binding energy
can tell about the underlying hadron-hadron interaction. In
this sense, our present work is similar in spirit to Ref. [29]
but with different focuses.
This work is organized as follows. In Sec. II, we explain

how to fix the potential parameters, solve the Lippmann-
Schwinger equation in momentum space, and calculate the
binding energy, scattering length, effective range, and
compositeness of Xð3872Þ. Results and discussions are
given in Sec. III, followed by a summary in the last section.

II. THEORETICAL FORMALISM

To better understand the relation between the effective
range and the underlying DD̄� interaction, we work in
momentum space, which allows one to parametrize the
DD̄� interaction in a model-independent way. We study
first the single-channel DD̄� interaction to simplify the

1After subtracting the contribution from the second channel, a
reanalysis of the same data yielded a value of about−3.78 fm [27].
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discussion without losing generality. In this case, we use
the masses of their neutral partners for the masses of
D and D̄�. In the particle basis, the binding energy of the
Xð3872Þ is only 0.05 MeV with respect to the threshold of
D0D̄�0 [44]. Working with the isospin averaged masses, the
Xð3872Þ binding energy would be about 4 MeV [40]. We
will study how such a large binding energy affects our
understanding. We then study the coupled-channel case to
check the robustness of our conclusion. For the sake of
reference, we show in Fig. 1 the mass thresholds of the
neutral channels, charged channels, and isospin channels of
DD̄� relative to the mass of Xð3872Þ.
In momentum space, close to the threshold, the DD̄�

interaction can be parametrized as

V ¼ αþ βk2; ð6Þ

where α and β are the low-energy constants (LECs) of
effective field theories (EFTs) to be determined. In the
language of EFTs, the expansion parameter for the D̄�D
system can be parametrized as the ratio of the binding
momentum γ ¼ ffiffiffiffiffiffiffiffiffi

2μB
p

(where μ is the reduced mass of the
D̄�D system and B is the corresponding binding energy) to
the ρmeson mass [45]. For a binding energy of 40MeV, the
ratio becomes γ=mρ ∼ 0.35, which still lies within the
validity range of EFTs but may suffer from slow con-
vergence. With this potential, one can solve the following
Lippmann-Schwinger equation to search for poles, i.e.,

TðsÞ ¼ VðsÞ
1 − VðsÞ ·GðsÞ ; ð7Þ

where GðsÞ is the two-point one-loop function:

GðsÞ ¼
Z

qmax

0

dqq2

4π2
ωðm1; qÞ þ ωðm2; qÞ
ωðm1; qÞ · ωðm2; qÞ

×
1

s − ½ωðm1; qÞ þ ωðm2; qÞ�2 þ iϵ
; ð8Þ

and ωðm1;2; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;2 þ q2
q

is the energy of D and D̄�,ffiffiffi
s

p
is the center-of-mass energy of theDD̄� system, qmax is

a sharp cutoff momentum to regulate the logarithmically
divergent loop function [46], and q is the center-of-mass
momentum of D and D̄�. From the T matrix at threshold,
one can obtain the scattering length a and effective range r0
as follows [47]:

−
1

a
¼ −8π

ffiffiffi
s

p
T−1js¼sth ; ð9Þ

r0 ¼
∂

∂k2
2ð−8π ffiffiffi

s
p

T−1 þ ikÞ

¼
ffiffiffi
s

p
μ

∂

∂s
2ð−8π ffiffiffi

s
p

T−1 þ ikÞ
���
s¼sth

; ð10Þ

where sth ¼ ðm1 þm2Þ2. With a and r0 obtained, one can
calculate the compositeness X following Ref. [29]2:

X ¼ 1 −
1

∂V−1

∂s − ∂G
∂s

∂V−1

∂s

����
s0

; ð11Þ

where s0 is the pole position.
Next, we consider the coupled channels of D0D̄�0 and

DþD�−. The Xð3872Þ wave function as an isospin zero
state is given by

jDD̄�; I ¼ 0i ¼ 1ffiffiffi
2

p ðD0D̄�0 þDþD�−Þ: ð12Þ

If we strictly follow the effective field theory approach, we
will have too much freedom in choosing the coupled-
channel potential, which reads

ṼR ¼
�
VD VC

VC VD

�
: ð13Þ

Namely,wewill need four LECs, two forVC and two forVD.
As a result, without loss of generality, we turn to phenom-
enological models for guidance to avoid introducing too
many LECs. The local hidden gauge theory [48] tells
that VC ¼ VD. Therefore, we can assign VC ¼ VD ¼
1
2
ðαþ βk2Þ.
It is straightforward to obtain the T matrix in this

coupled-channel case with the above potential and the

FIG. 1. Schematic plot of the thresholds of D0D̄�0, DþD�−,
their isospin average, and the location of the Xð3872Þ.

2We do not use the Weinberg relation due to its shortcomings
mentioned in the introduction.
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following loop function in matrix form

G ¼
�
GD0D̄�0 0

0 GDþD�−

�
: ð14Þ

In the coupled-channel case, we will have two scattering
lengths, two effective ranges, and two composites, one for
each channel. They read explicitly as

−
1

a1
¼ ð−8π ffiffiffi

s
p ÞT−1

11 jsth1 ; ð15Þ

r0;1 ¼ 2

ffiffiffi
s

p
μ1

∂

∂s
ð−8π ffiffiffi

s
p ÞT−1

11

���
sth1

; ð16Þ

−
1

a2
¼ ð−8π ffiffiffi

s
p ÞT−1

22 jsth2 ; ð17Þ

r0;2 ¼ 2

ffiffiffi
s

p
μ2

∂

∂s
ð−8π ffiffiffi

s
p ÞT−1

22

���
sth2

; ð18Þ

P1 ¼ −lims→s0ðs − s0ÞT11

∂G1

∂s

����
s0

; ð19Þ

P2 ¼ −lims→s0ðs − s0ÞT22

∂G2

∂s

����
s0

; ð20Þ

where P1 and P2 represent the probability to find the
hadronic molecular component in channels 1 and 2.

III. RESULTS AND DISCUSSIONS

In this section, we study the binding energy, scattering
length, effective range, and compositeness of Xð3872Þ and
check whether it can be understood as aDD̄� molecule with
a negative effective range.
In addition to the LECs α and β, the momentum cutoff

qmax also needs to be determined, for which we choose a
value of 1 GeV.3 The relevant D=D̄� masses, binding
energy, and effective range are given in Table I.

A. Single-channel case

We first focus on the single-channel case. The results for
the case of V ¼ α are shown in the upper panel of Fig. 2 as
a function of α. One can see that the effective range r0 is
always positive, and the corresponding X is equal to 1 by
definition, as can be easily seen from Eq. (11), which is
consistent with Ref. [49]. Interestingly, for a zero-range
interaction, the effect range must be negative semidefinite
because of Wigner’s causality inequality [28]. However, as
we have demonstrated, when a momentum cutoff is

introduced to avoid ultraviolet divergence in practical
calculations, the effective range becomes positive for a
constant potential in momentum space.
In order to obtain a negative effective range r0, we turn to

the next-to-leading order potential, i.e., V ¼ αþ βk2. With
such a potential, one can find solutions for theXð3872Þ, i.e.,
the potential can simultaneously yield B and r0 consistent
with the experimental data, which determine the LECs
α0 and β0. According to Ref. [29], we can calculate the
compositeness X with Eq. (11). Taking the binding energy
0.05 MeV, the effective range r0 ¼ −5 fm, we obtain
X ¼ 0.80; taking the effective range r0 ¼ −3 fm, we obtain
X ¼ 0.86. It is clear that in both cases, the Xð3872Þ can
be viewed as aDD̄� bound state. With β fixed at β0, we can
vary α and study the variation of the binding energy,
scattering length, effective range, and compositeness with
α. The results are shown in the bottom panel of Fig. 2. As the
binding energy becomes larger, the effective range moves
closer to zero, and the scattering length and the composite-
ness decrease.
It is interesting to note that if we took the binding energy

of the Xð3872Þ with respect to the isospin averaged mass
threshold, i.e., about 4 MeV, we would have obtained the
results shown in Fig. 3 (also using isospin averaged masses
forD and D̄�). To show the dependence of the results on the
cutoff qmax, we calculate the scattering length, effective
range, and compositeness of D̄�D for a cutoff varying from
0.8 to 1.5 GeV as shown in Fig. 4. One can see that the
compositeness is around 0.15� 0.07, indicating that our
results are weakly dependent on the cutoff. The scattering
length is less than 1 fm in such a case, while the
compositeness X becomes about 0.2. The compositeness
is inversely related to the distance to the threshold, as more
thoroughly studied in several studies [48,50].

B. Coupled-channel case

Next, we consider the coupled-channel case. Note that
we follow the implication of the local hidden gauge
approach. That is, the off-diagonal elements are the same
as the diagonal elements. The results are shown in Fig. 5.
Compared to the single-channel case, this figure is a bit
complicated because there are two channels. As a result,
there are two scattering lengths, two effective ranges,
and two compositenesses. First, we note that even in
the coupled-channel scenario, one cannot simultaneously
reproduce the binding energy and negative effective range

TABLE I. Value of physical quantities relevant to the present
work, where B is the binding energy of the Xð3872Þ and r0 is its
effective range [35]. The binding energy and masses are in units
of MeV and the effective range is in units of fm.

B D0 D̄�0 Dþ D�− r0

0.05 1864.84 2006.85 1869.66 2010.26 −5.34 < r0 < −3

3We have checked using a cutoff of 0.5 GeV barely affects the
results and our conclusion.
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of the Xð3872Þwith a constant potential V ¼ α. The results
for a constant potential are shown in the upper panel of
Fig. 5. One can see that the effective range r1 is negative but
only −1.01 fm, consistent with Ref. [48]. Compared with
the single-channel result of Fig. 2, the effective range r1
naturally becomes negative once coupled-channel effects
are considered, as indicated in Ref. [27].
Similarly, as concluded from the single-channel sce-

nario, a momentum-dependent potential is needed. Once
the momentum dependence is considered, as seen from the
bottom panel of Fig. 5, one can simultaneously reproduce
the binding energy and effective range r1 of the Xð3872Þ.
The corresponding scattering length a1 is 16 fm, not far
from the value of 19 fm in the single-channel scenario. The

compositeness of channel 1 is 0.77, the state dominated by
theD0D̄�0, which is also consistent with the single-channel
scenario. It should be noted that the ratio of the off-diagonal
element to the diagonal element is 0.5 according to the one-
meson exchange theory [40], different from the ratio 1
predicted by the local hidden gauge approach [48]. With the
meson-exchange potential, we find that the scattering
length and the compositeness of D̄�0D0 become a1¼ 32 fm
and P1 ¼ 0.9, respectively, indicating that the Xð3872Þ
contains a dominant D̄�0D0 component in both approaches.
Namely, the Xð3872Þ can be largely viewed as a DD̄�
molecule. The variations of the effective range, scattering
length, and compositeness are consistent with the single-
channel results. The effective range r1 is crucial to pinpoint

FIG. 2. Variations of the binding energy, scattering length, effective range, and compositeness for two types of potentials in
momentum space V ¼ α (upper), and V ¼ αþ βk2 with fixed β0 (lower). The red points represent the solution for the Xð3872Þ,
a ¼ 18.7 fm, and X ¼ 0.8, with α0 ¼ −162 and β0 ¼ −3616 GeV−2.

FIG. 3. The same as Fig. 2, but for a binding energy of 4 MeV. The solution for the Xð3872Þ yields a ¼ 0.88 and X ¼ 0.17 with
α0 ¼ −251 and β0 ¼ −8650 GeV−2.

FIG. 4. Cutoff dependence of the scattering length a, effective range r0, and compositeness X for a binding energy of 4 MeV of the
Xð3872Þ with respect to the isospin averaged mass threshold.
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the internal structure of Xð3872Þ, waiting for more precise
future measurements.

C. Comparison with the Zcð3900Þ
It is interesting to compare theXð3872Þwith theZcð3900Þ.

They have long been believed to be isospin partners. In this
work, we demonstrated explicitly that one needs a DD̄�

interaction of the form αþ βk2 to reproduce the binding
energy and effective range of theXð3872Þ. While to generate
the Zcð3900Þ as a resonance above the DD̄� threshold, the
same form of the potential is needed [51–53]. In addition, we
note that in the one-boson exchange model, the DD̄�
interactions in the isospin zero and one channels are both
induced by the exchange of σ,ω, and ρmesons. However, the
strength is larger for the isospin zero channel than for the
isospin one channel [54–56]. From this viewpoint, the results
of the present study make sense.
Furthermore, we note that the so-called contact range

effective field theories have been widely employed to
connect the Xð3872Þ with various other systems [57–60].
How the momentum dependence of the potential affects
these studies needs to be scrutinized.

IV. SUMMARY

In this work, motivated by the debate on the nature of the
Xð3872Þ from the perspective of its effective range, we
studied whether the Xð3872Þ can be dynamically generated
as a DD̄� molecular state and with the compositeness X
greater than 0.5. We adopted a model-independent para-
metrization of the DD̄� potential. We showed that the
leading-order potential cannot accommodate a negative
effective range, while the next-to-leading-order potential
can. The resulting compositeness of the Xð3872Þ ranges
from 0.8 (in the single-channel case) to about 0.77 in the
coupled-channel case, indicating that it can indeed be
viewed as a DD̄� molecular state.

In addition to showing that a negative effective range is not
an indicator of a nonmolecular state, the present study
provided invaluable clues on theDD̄� interaction.The current
experimental data show that the interaction needs to be the
form of αþ βk2 near the DD̄� threshold. The exchange of
light mesons can induce such a form in the single-channel
case. This is easily achievable because the one-pion exchange
for the DD̄� interaction is allowed. Such an implication for
various studies needs to be further scrutinized.
Reference [27] showed that coupled-channel hadron-

hadron dynamics can naturally generate a large negative
effective range. This is complementary to and consistent
with the present study because even a constant contact
interaction in a coupled-channel case, when reduced to a
single channel, necessarily introduces energy (or momen-
tum) dependence (see, e.g., Ref. [48]), which is needed to
account for the large and negative effective range.
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