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We investigate the phase transition within an extremely strong magnetic background field, employing a
holographic quantum chromodynamics (QCD) model with a focus on the entropy, pressure, and Polyakov
loop properties. At relatively modest magnetic field strengths, our study discerns a crossover transition
between the normal phase and the quark-gluon plasma (QGP) phase as the temperature rises. In contrast,
under the influence of an extremely strong magnetic field, a first-order phase transition is observed. A
critical point is identified at ðeBc; TcÞ ≈ ð2.8623 GeV2; 0.1191 GeVÞ, which corresponds to a second-
order phase transition. This phase structure is found to be in qualitative agreement with lattice simulation
predictions reported in D’Elia et al. [Phys. Rev. D 105, 034511 (2022)]. Furthermore, we explore the
impact of the magnetic field on the jet quenching parameter across various phases. At zero magnetic field
(eB ¼ 0), the normalized jet quenching parameter q̂=T3 exhibits a monotonic increase with temperature.
However, in the presence of a magnetic background field, the normalized jet quenching parameters not only
display directional anisotropy but also experience a universal enhancement, particularly in the vicinity of
the critical temperature region. This observation suggests that the jet quenching parameter could potentially
act as an indicator of phase transitions.

DOI: 10.1103/PhysRevD.111.026008

I. INTRODUCTION

The investigation of the quantum chromodynamics
(QCD) properties under a magnetic field is one of the
most important fields in high energy physics [1–6]. The
background magnetic field could be generated and widely
exist in noncentral heavy ion collisions [7–9], in the early
cosmology [10], and in magnetar [11]. Many important
and interesting phenomena are found in this area, such
as the Nielsen-Olesen instability [12], chiral magnetic
effects [13,14], chiral magnetic wave [15–17], and the
inverse magnetic catalyses [18].
The chiral and confining properties of QCD are directly

influenced by the presence of a magnetic field. An
extremely strong magnetic field can even change the order
of the phase transition, which could be important for our
understanding of the early universe [19,20]. One of the
most powerful methods for studying QCD in a finite
magnetic background field is the lattice simulation. Lattice
simulations [21–23], which employed standard staggered

fermions, demonstrated a rise of transition temperature in
chiral condensates with Polyakov loops. However, these
findings are in contrast with the results of lattice simu-
lations [24–28] that incorporated improved staggered
fermions. The discrepancy is primarily attributed to lattice
cutoff effects [23]. Moreover, lattice simulations have
demonstrated that a first-order transition exists when eB≳
11m2

π with Nf ¼ 3 [23]. Extrapolation of the lattice results
predicts a critical point beyond eB ¼ 3.25 GeV2 with
Nf ¼ 1þ 1þ 1 [27]. In more recent investigations, a
lattice simulation for Nf ¼ 2þ 1 [29], which employs
stout-improved staggered fermions and try to control the
cutoff effect, has indicated that the critical temperature
decreases as the magnetic field strengthens. Despite the
absence of technical issues such as the sign problem at
finite chemical density, lattice simulations remain con-
strained by limitations in computational power. They
observed a crossover transition at eB ¼ 4 GeV2 and a
first order phase transition at eB ¼ 9 GeV2, indicating the
presence of a critical end point between these values.
The phase structure of QCD under magnetic fields has

also been extensively investigated using low energy
effective theories and models, such as the bag model
[30], chiral perturbation theory (χPT) [31,32], the Nambu-
Jona-Lasinio (NJL) model [33–37] and the quark-meson
(QM) model [38]. However, a unified consensus on the
phase diagram at finite magnetic fields and temperatures
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has not yet been reached across these various studies. The
phase diagram in an extremely strong magnetic field
remains an open topic. Therefore, it is necessary to conduct
further research in this domain with a variety of numerical
and theoretical methods.
In addition to the traditional methods, holographic

duality is another powerful approach for studying strongly
coupled systems [39–41]. Given that the quark-gluon-
plasma (QGP) exists as a strongly coupled state [42],
holographic duality has become an important tool in the
QCD investigations [43–62]. Regarding investigations
involving magnetic backgrounds, various studies have
employed different constructive models, including bot-
tom-up holographic models in the Veneziano limit [63,64]
and Magnetized Einstein-Maxwell-dilaton (EMD) model
[65–72]. An abundance of research has been dedicated to
studying the QCD phase diagram within the finite temper-
ature and chemical potential plane [62,73–76]. However,
in this study, we employ the magnetized EMD model to
explore the phase transition in the context of an extended
magnetic field region, especially the extremely strong
magnetic field. However, it should be noted that the
EMD model does not include hadronic degrees of freedom
such as pion or rho mesons. Extending the EMD model to
include flavor dynamics and calculate hadron masses
remains an open question [77]. In this paper, we would
focus exclusively on the confinement/deconfinement
phase transition and the associated thermodynamic quan-
tities under extremely strong magnetic fields. In the
previous investigations, they utilized the magnetized
EMD model [65,66] and have yielded some findings.
They have predominantly concentrated on crossover tran-
sitions and have not yet provided an exhaustive examina-
tion of the domain characterized by extremely strong
magnetic fields. Building upon this foundation, we have
developed numerical code to extend the parameter space of
the magnetic field and temperature. Then, we study the
extremely strong magnetic field region and observe first-
order phase transitions.
Taking into account the first-order transitions, we discuss

their influence on the properties of QGP. Among various
QGP signals in heavy-ion collisions, jet quenching is a
crucial one [78–80]. The holographic calculation of the jet
quenching parameter q̂ has been previously provided [81]
and extensively tested in some holographic models [82–87].
In this work, we focus on the behaviors of anisotropic jet
quenching parameters under both crossover and first order
phase transitions.
This paper is organized as follows. In Sec. II, we

introduce the construction of magnetized EMD model
and how it realizes duality to QCD. In Sec. III, we
numerically obtain the mapping between the input param-
eters ðϕ;BÞ and the physical parameters ðT; eBÞ. We then
study the entropy variation with temperature at fixed
magnetic field, determine the phase boundary of the

first-order transition and identify the critical end point
in T-eB plane. In addition, we calculate the Polyakov loop
to do the multiverify for the phase boundary. In Sec. IV, we
investigate the effect of the first-order transition to the jet
quenching parameters. Section V is a brief conclusion.

II. THE EINSTEIN-MAXWELL-DILATIONMODEL

In this section, we provide a brief introduction to the
EMD model with a finite magnetic field B ≠ 0 and zero
chemical potential μB ¼ 0, as constructed in Refs. [65,66].
The chiral symmetry is not shown as an explicit degree of
freedom. According to the analysis in Ref. [88], it is
reasonable to conclude that only a particular combination
of the condensate and baryon density remains as a hydro-
dynamic mode, making the baryon density a suitable
variable to describe the system. This bottom-up approach
aims to mimic the QCD system by fitting lattice results for
thermodynamic of the confinement/deconfinement phase
transition from the holographic perspective, a method
originally proposed by Gubser and Nellore in Ref. [51].
In the EMD model, a scalar field ϕ, i.e., a dilaton field,

and an Abelian gauge field Aμ are included. The five
dimension action is

S¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂μϕÞ2−VðϕÞ−

fðϕÞ
4

F2
μν

�
; ð1Þ

with

VðϕÞ ¼ −v0 coshðv00ϕÞ þ v2ϕ2 þ v4ϕ4 þ v6ϕ6;

κ2 ¼ 8πG5;

fðϕÞ ¼ c3sechðc0 þ c1ϕþ c2ϕ2Þ; ð2Þ

and the field strength tensor Fμν ¼ ∂μAν − ∂νAμ. The
dilaton potential VðϕÞ and gravitational constant κ2 ≡
8πG5 is determined by fitting the lattice data of equation of
state at B ¼ 0 in Ref. [89].1 The coupling between the
gauge field and dilaton fðϕÞ is determined by fitting the
lattice results of the magnetic susceptibility at B ¼ 0 in
Ref. [92]. The values of these parameters are summarized
in Table I. For the asymptotically AdS5 geometries,
the ultraviolet asymptotically expansion should satisfy
Vðϕ → 0Þ ≈ −12=L2 þm2ϕ2=2 with L the asymptotic
AdS5 radius, in which the mass m and the scaling
dimension Δ of the dual operator in the gauge theory
satisfy the relation

m2L2 ¼ −νΔ ¼ ð4 − ΔÞΔ: ð3Þ

1For the fitting of dilaton potential, the Breitenlohner-Freed-
man bound should be satisfied [90,91].
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Here, the radius is always set to be unity, i.e., L ¼ 1. Thus,
one can derive Δ ¼ 2.73294.
In this EMD model, the magnetic field B is introduced

through the Abelian gauge field at the boundary and set to
be a constant in the z direction. Therefore, one can take the
metric ansatz as

ds2¼e2aðrÞ½−hðrÞdt2þdz2�þe2cðrÞðdx2þdy2Þþe2bðrÞdr2

hðrÞ ;

ϕ¼ϕðrÞ;
A¼Aμdxμ¼Bxdy⇒F¼dA¼Bdx∧dy; ð4Þ

with five dimension coordinates ðt; x; y; z; rÞ. As a result of
the magnetic field, the rotation symmetry is broken from
SOð3Þ to SOð2Þ. Along the holographic direction, the
boundary of the asymptotically AdS5 is at r → ∞ and the
horizon of the black hole at rH, which defined by
hðrHÞ ¼ 0. Under this metric in (4), the equations of
motion (EOMs) can be derived as,

ϕ00 þ
�
2a0 þ 2c0 − b0 þ h0

h

�
ϕ0

−
e2b

h

�
∂VðϕÞ
∂ϕ

þ B2e−4c

2

∂fðϕÞ
∂ϕ

�
¼ 0; ð5aÞ

a00 þ
�
14

3
c0 − b0 þ 4h0

3h

�
a0 þ 8

3
a02 þ 2

3
c02

þ 2h0

3h
c0 þ 2e2b

3h
VðϕÞ − 1

6
ϕ02 ¼ 0; ð5bÞ

c00 −
�
10

3
a0 þ b0 þ h0

3h

�
c0 þ 2

3
c02 −

4

3
a02 −

2h0

3h
a0

−
e2b

3h
VðϕÞ þ 1

3
ϕ02 ¼ 0 ð5cÞ

h00 þ ð2a0 þ 2c0 − b0Þh0 ¼ 0; ð5dÞ

with a constraint equation,

a02 þ c02 −
1

4
ϕ02 þ

�
a0

2
þ c0

�
h0

h
þ 4a0c0

þ e2b

2h

�
VðϕÞ þ B2e−4c

2
fðϕÞ

�
¼ 0; ð5eÞ

where the prime denotes the derivative with respect to the
fifth dimension r.

To investigate the properties of the EMD model, one
should solve the EOMs in Eq. (5) and extract the thermal-
dynamic quantities. The first step involves obtaining the
near-boundary and near-horizon asymptotic expansions for
the bulk field ϕðrÞ and aðrÞ, cðrÞ, hðrÞ. We adopt the
domain-wall gauge bðrÞ ¼ 0. Consequently, the ultraviolet
asymptotic expansions can be derived as follows:

aðrÞ ¼ αðrÞ þ � � � ; ð6aÞ

cðrÞ ¼ αðrÞ þ cfar0 − afar0 þ � � � ; ð6bÞ

hðrÞ ¼ hfar0 þ hfar4 e−4αðrÞ þ � � � ; ð6cÞ

ϕðrÞ ¼ ϕAe−ναðrÞ þ ϕBe−ΔαðrÞ þ � � � ; ð6dÞ

with

αðrÞ ¼ afar0 þ r=
ffiffiffiffiffiffiffi
hfar0

q
: ð6eÞ

and � � � denote higher-order terms. The integration con-
stants afar0 , cfar0 , hfar0 and ϕA are related to the thermody-
namic quantities. Near the horizon rH ¼ 0, the asymptotic
expansions of the bulk fields are given by

YðrÞ ¼
X∞
n¼0

Ynðr − rHÞn; ð7Þ

where Y ¼ a; c; h;ϕ. In the expansion coefficients, due to
the freedom in rescaling properties, one can set rH ¼ a0 ¼
c0 ¼ 0 and h1 ¼ 1. One can also assume h0 ¼ 0. After
these settings and assumptions, only ϕ0 and B remain
undetermined among the seven parameters in the near
horizon expansions. Once ϕ0 and B are given, the values
XðϵÞ2 and their first-order derivative values X0ðϵÞ of the
near horizon expansion are determined. One can numeri-
cally solve the EOMs in Eq. (5) by fitting the UV
asymptotic expansions in Eq. (6) with these numerical
solutions to obtain the corresponding integration constants
afar0 ; cfar0 ; hfar0 , and ϕA. From our numerical tests, we find
that choosing the maximum radial coordinate rmax ¼ 10 is
sufficient for the near-boundary asymptotic expansions.
Thus, the numerical solutions are all given in the inter-
val r∈ ½ϵ; rmax�.
As previously shown, we can obtain the numerical

results with ϕA ≠ 0, which can be understood as renorm-
alization group flows induced by a slight deformation of a
relevant operator. However, to accurately mimic QCD, ϕA
must be maintained constant. To accomplish this, it is
necessary to perform a coordinate transformation from the
numerical coordinates to the standard coordinates. In the

TABLE I. An table of the parameters of the EMD model [66].

Paramaters G5 v0 v00 v2 v4 v6 c0 c1 c2 c3

Values 46
100

−12 63
100

65
100

− 5
100

3
1000

− 32
100 − 15

100
22
100

95
100

2Due to the singularity at horizon, a small deviation ϵ is used in
the numerical strategy. We choose ϵ ¼ 10−15 in this work.
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standard coordinates, the metric and the UV asymptotic
expansions are

ds̃2 ¼ e2ãðr̃Þ½−h̃ðr̃Þdt̃2 þ dz̃2� þ e2c̃ðr̃Þðdx̃2 þ dỹ2Þ þ dr̃2

h̃ðr̃Þ ;

ϕ̃ ¼ ϕ̃ðr̃Þ;
Ã ¼ Ãμdx̃μ ¼ B̂ x̃ dỹ ⇒ F̃ ¼ dÃ ¼ B̂dx̃ ∧ dỹ; ð8Þ

and

ãðr̃Þ ¼ r̃þ � � � ; ð9aÞ

c̃ðr̃Þ ¼ r̃þ � � � ; ð9bÞ

h̃ðr̃Þ ¼ 1þ � � � ; ð9cÞ

ϕ̃ðr̃Þ ¼ e−νr̃ þ � � � : ð9dÞ

with the boundary at r̃ → ∞ and the horizon at r̃ ¼ r̃H. The
numerical coordinates and the standard coordinates are
equivalent and satisfy

ds̃2¼ ds2; ϕ̃ðr̃Þ¼ϕðrÞ; B̂dx̃∧ dỹ¼Bdx∧ dy: ð10Þ

Using the relation in Eq. (10) and comparing the UV
asymptotic expansions in numerical and standard coordi-
nates in Eqs. (6) and (9), one can derive

r̃ ¼ rffiffiffiffiffiffiffi
hfar0

q þ afar0 − lnðϕ1=ν
A Þ; ð11aÞ

t̃ ¼ ϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q
t; ð11bÞ

x̃ ¼ ϕ1=ν
A ec

far
0
−afar

0 x; ð11cÞ

ỹ ¼ ϕ1=ν
A ec

far
0
−afar

0 x; ð11dÞ

z̃ ¼ ϕ1=ν
A z; ð11eÞ

ãðr̃Þ ¼ aðrÞ − lnðϕ1=ν
A Þ; ð12aÞ

c̃ðr̃Þ ¼ cðrÞ − ðcfar0 − afar0 Þ − lnðϕ1=ν
A Þ; ð12bÞ

h̃ðr̃Þ ¼ hðrÞ
hfar0

; ð12cÞ

ϕ̃ðr̃Þ ¼ ϕðrÞ; ð12dÞ

and

B̂ ¼ e2ða
far
0
−cfar

0
Þ

ϕ2=ν
A

B: ð13Þ

Therefore, one can solve the EOMs in the numerical
coordinates and obtain the numerical solutions of the QCD
quantities in the standard coordinates through the relations
in Eqs. (12) and (13). In the upper panel of Fig. 1, the curve
represents the upper bound of the input parameters ðϕ0;BÞ.
From the relation in Eq. (12) and asymptotic expansions at
horizon in Eq. (7), one can obtain the QCD temperature as

T̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃0̃t t̃g̃

0r̃ r̃
q

4π

�����
r̃¼r̃H

¼ eãðr̃HÞ

4π
jh̃0ðr̃HÞj ¼

1

4πϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q ;

ð14Þ

To mimic to the real QCD, the temperature correspond-
ing to the minimum of the sound speed c2s in the holo-
graphic results is compared to the lattice results. Based on
this comparison, a scaling factor is determined,

λ ¼
T lattice
min c2s

T̂min c2s

≈ 1058.83 MeV: ð15Þ

0 2 4 6 8

5
10

50
100

500
1000

5000

0 2 4 6 8 10 12
0.05

0.10

0.15

0.20

0.25

eB GeV2
T
G
eV

FIG. 1. The upper panel is the upper bound of the input
parameter B at a given ϕ0. In the lower panel, each curve of
ðT; eBÞ corresponding to a fixed ϕ0.
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Therefore, the QCD quantities X can be obtained by scaling
X̂ with λ, following the relation X ¼ X̂λp½MeVp�, where p
is determined by dimensional analysis. For example T ¼
T̂λ½MeV� and B ¼ B̂λ2½MeV2�. In the lower panel of Fig. 1,
we show the numerical results for (T; eB), where each
curve corresponds to a fixed ϕ0 and a series of B. Normally,
small ϕ0 maps to high T, large ϕ0 maps to low T and small
B maps to small eB. As B approaches its upper bound, a
slight variation in B induces a large change of eB. Noticing
that the fixed ϕ0 curves in lower panel of Fig. 1 are convex
for large ϕ0 (i.e., low T) but concave for small ϕ0 (i.e., high
T), these curves may exhibit overlaps at the moderate
temperatures in the range of T ¼ 100–150 MeV.

III. THE PHASE TRANSITION WITH FINITE
MAGNETIC FIELD

In this section, we investigate the QCD properties in a
magnetic background field. The strategy is as follows: first,
we draw a vertical line to intersect with the curves in the
lower panel of Fig. 1, and then numerically map from the
intersection points back to determine the corresponding
input parameters (ϕ0;B). For example, as shown in Fig. 2,
we plot three curves of the selected input parameters
(ϕ0;B), which are corresponding to the magnetic back-
ground fields set at eB ¼ 0.1, 1, and 10 GeV2, respectively.
Finally, after determining several sets of the input param-
eters for fixed magnetic fields, we solve the EOMs in
Eq. (5) and obtain the corresponding values of the QCD
quantities.

A. The entropy and pressure

For the mapping between (ϕ0;B) and (T, B) shown in the
lower panel of Fig. 1, there is a special region where a pair
of (T, B) corresponds to different pairs of (ϕ0;B).

3

Specifically, as eB increases from small to large, this

special region begins at a particular point. This behavior
could be a signal of the first-order phase transition. To
confirm this conjecture, we study the behaviors of the
entropy density s and pressure P in this region in the
following part.
Entropy is an extensive quantity, which can be extracted

through the Bekenstein-Hawking relation as S ¼ A=4GN
with A the area of the horizon. Thus, the entropy density
can be obtained by dividing the volume V,

s ¼ S
V
¼ 2π

κ2
eãðr̃HÞþ2c̃ðr̃HÞ ¼ 2πe2ðafar0

−cfar
0
Þ

κ2ϕ3=ν
A

: ð16Þ

In the upper panel of Fig. 3, we show the numerical
results of the temperature dependence of the normalized
entropy density s=T3 for four different fixed magnetic
fields, eB ¼ 0, 1, 2.8326, and 4 GeV2. In the absence of
a magnetic background field, the normalized entropy
density is small at low temperatures and exhibits a mon-
otonic increase as the temperature rises. At high temper-
atures, it behaves according to the relation s ∼ T3. This may
indicate that the QCD system undergoes a crossover from
the low-temperature normal phase to the high-temperature
quark-gluon-plasma (QGP) phase. With a finite magnetic
background field, the normalized entropy density in both
the low and high-temperature limits consistently approaches
the values observed in the absence of a magnetic field. In
the intermediate temperature region, there is a noticeable
enhancement of the normalized entropy density, which
becomes more pronounced with an increase in the mag-
netic field. When eB≳ 2.8326 GeV2, as shown in the inset
in the upper panel of Fig. 3, the normalized entropy density
as a function of temperature exists multiple value region,
signaling the onset of the first-order phase transition.
When eB ≤ 2.8326 GeV2, we shown the specific heat C ¼
T∂s=∂T with μB ¼ 0 in the lower panel of Fig. 3. It
diverges at a certain temperature Tc ≈ 0.1191 GeV with
the critical magnetic field eBc ¼ 2.8326 GeV2. Below
eBc ¼ 2.8326 GeV2, the susceptibility of entropy density
with respect to the temperature is smooth and continuous,
indicating a crossover transition. Therefore, the point
ðeBc; TcÞ ¼ ð2.8326 GeV2; 0.1191 GeVÞ is a critical end-
point, corresponding to a second-order phase transition,
where the first-order transition changes to a crossover.
To determine the phase boundary of the first-order

transition, we study the behavior of the pressure P. At a
fixed magnetic background field, the pressure can be
approximately determined as

PðTÞ ≈
Z

T

T low

sðTÞdT; ð17Þ

where we select a low temperature T low as the lower
boundary rather than absolute zero due to the impracticality

eB 10 GeV2

eB 1 GeV2

eB 0.1 GeV2

1 2 3 4 5 6

0.1

1

10

100

FIG. 2. The input parameters of (ϕ0;B) under the condition of
fixed magnetic field B.

3A similar result of the multiple correspondence, has been
observed in Ref. [62], in which the authors studied the critical
point at finite temperature and chemical potential.
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of achieving zero temperature within this model. This
selection introduces only a constant difference and does
not affect the results of our analysis. For convenience, we
choose T low ¼ 0.053 GeV in our calculations. In Fig. 4, we
show the temperature dependence of the entropy density
(S-shape) and pressure (Swallowtail shape) in the upper
panels and lower panels, respectively. The corresponding
turning points of the entropy and pressure are labeled with
red cross symbols. The first-order phase transition temper-
ature and the unstable region can be determined by employ-
ing the Maxwell construction, where the areas separated by
the isotherm in the thermodynamic curves are equal. In the
lower left panel, the five-pointed star symbol determines the
transition temperature Tt ¼ 0.114 GeV, at which the low-
temperature branch of the entropy density curve directly
jumps to the high-temperature branch through the red
vertical line of left upper panel, with the remaining part
representing the unstable or nonphysical states. For any
other magnetic background field eB > 2.8326 GeV2, we
can also determine the transition temperature using this
method. Finally, we show the phase diagram in the magnetic
field-temperature plane in Fig. 5, where the five-points star
symbol represents the critical endpoint (CEP) and the black
line represents the first-order boundary. As the results
demonstrate, the temperature at which the first-order phase
transition occurs diminishes with an increase of the mag-
netic field.

eB 0 GeV2

eB 1 GeV2

eB 2.8326 GeV2

eB 4 GeV2

0.2 0.4 0.6 0.8
0

2

4

6

8

10

T GeV

eB 0 GeV2

eB 1 GeV2

eB 2.8326 GeV2

0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T GeV

FIG. 3. The upper panel is the normalized entropy density s=T3

as a function of temperature with different fixed magnetic fields.
The inset is a enlarge in the region T ∈ ½0.106; 0.123� GeV. The
lower panel is the specific heat with different fixed magnetic
fields.

FIG. 4. The entropy density s and the pressure P as functions of temperature T. The panels correspond to the fixed magnetic fields
eB ¼ 4 GeV2 and the right panels are for the fixed magnetic fields eB ¼ 10 GeV2.
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B. Polyakov loop

In the previous subsection, we analyzed the phase
transition from the perspective of entropy and pressure.
However, to explicitly determine the type and symmetry
breaking associated with the phase transition, it is essential
to consider the Polyakov loop which is the order parameter
of the confienment/deconfinement phase transition. The
Polyakov loop, as derived in the holographic framework,
was first extracted by Noronha in Ref. [93]. The expect-
ation value of the Polyakov loop operator is defined as
follows:

P≡ jhL̂Pij ¼ e−FQ=T ð18Þ
with FQ the heavy quark free energy [94]. The heavy quark
free energy is given by [61,73,93],

FQ ¼
ffiffiffi
λ

p

2π

�Z
∞

r̃H

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃ðsÞtt g̃

ðsÞ
rr

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asyf−g̃ðsÞtt g̃

ðsÞ
rr g

q

−
Z

r̃H

cte
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asyf−g̃ðsÞtt g̃

ðsÞ
rr g

q �
; ð19Þ

where the upper indicator (s) for the string frame with

g̃ðsÞμν ¼ e
ffiffiffiffiffiffi
2=3

p
ϕg̃μν; Asyf−g̃ðsÞtt g̃

ðsÞ
rr g is the asymptotic value

for large r, which equals to e2r; rcte is dependent on the
renormalization scheme. Substituting coordinate transfor-
mation Eq. (12) into Eq. (19), one has4

FQ ¼
ffiffiffi
λ

p

2π

"Z
rmax

rH

dr
ðe

ffiffiffiffiffiffi
2=3

p
ϕðrÞþaðrÞ − er=h

far
0
þafar

0 Þ
ϕ1=ν
A

−
Z

rH

rcte

dr
er=h

far
0
þafar

0

ϕ1=ν
A

#
; ð20Þ

We adopt the renormalization scheme in Ref. [18] as

Fr
Q ¼ FQðT; BÞ − FQðTx; 0Þ; ð21Þ

where Tx is the fixed temperature. We take the fixed
temperature Tx¼360MeV. Thus, renormalization Polyakov
loop,

Pr ¼ e−F
r
Q=T: ð22Þ

To elucidate the change in the order of the confinement/
deconfinement phase transition induced by the magnetic
field, we calculate the Polyakov loop at four specified
magnetic field strengths: B ¼ 0, 1, 2.8623, and 4 GeV2.
The results for the renormalized Polyakov loop, Pr, and its
first derivative with temperature, ∂Pr=∂T, are presented
in Fig. 6.
At zero magnetic field (eB ¼ 0), Pr transitions smoothly

from a small value near zero to a larger value as the
temperature increases. The first derivative of Pr with respect
to temperature, ∂Pr=∂T, rises to a peak and then decreases,
as shown in the inset of the figure. This behavior indicates a
crossover from the confined phase to the deconfined phase.
At eB ¼ 1 GeV2, both Pr and its temperature derivative
exhibit similar behavior to the case at eB ¼ 0. For
eB ¼ 2.8623 GeV2, the Polyakov loop exhibits a second-
order phase transition. In this case, ∂Pr=∂T diverges at
T ¼ 0.119 GeV, which corresponds to the critical endpoint
(CEP) identified from the entropy density and pressure
analysis in Sec. III A. Comparing Pr at the same temper-
ature for different magnetic field strengths, we observe that
a stronger magnetic field leads to a largerPr, consistent with
the lattice QCD results reported in Ref. [18]. As shown in
the last subfigure of Fig. 6, the behavior of Pr at eB ¼
4 GeV2 differs significantly from the magnetic field
below the CEP (eB ≤ 2.8623 GeV2). In this regime, Pr
exhibits an S-shaped curve with multiple values around
T ¼ 0.114 GeV, indicating a first-order phase transition for
the confinement/deconfinement transition. This observation
is consistent with the conclusions derived from the entropy
density and pressure in Sec. III A. Thus, the presence of a
magnetic field significantly impacts the confining properties
of QCD, driving the transition from a crossover to a first-
order phase transition as the magnetic field strength
increases.

IV. JET QUENCHING PARAMETER

From the study of the phase transition in the temperature
and magnetic field plane in the frame of holographic QCD,
we find there are crossover, first-order and second-order
phase transitions. It would be interesting to investigate the
jet quenching parameter within these different phase
transition backgrounds. This investigation of jet quenching
parameter is essential for gaining insights into the QGP

FIG. 5. The phase diagram in the plane of magnetic field and
temperature. The critical end point (CEP) of the first order phase
boundary is located at ðeBc; TcÞ ¼ ð2.8623 GeV2; 0.1193 GeVÞ.

4In the numerical process, the integration interval is chosen to
be ½ϵ; rmax�.
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from both theoretical and experimental perspectives, as
well as for understanding the phase transitions within the
framework of QCD. Although laboratory-generated mag-
netic fields may not reach extremely high values, the
investigation for the extremely magnetic field region
remains meaningful. It is important to note that the
magnetic field generated in heavy-ion collisions is not
constant but highly time-dependent. The results presented
in this paper are based on the assumption of a constant
magnetic field, which provides an idealized estimate of the
QCD phase structure and jet quenching behavior. While
this simplification facilitates theoretical calculations,
extending the model to account for the transient nature
of the magnetic field remains a crucial task for bridging the
gap between theoretical predictions and experimental
observations. On one hand, relevant phenomena can be
compared to the high density case. On the other hand,
extremely strong magnetic fields might have existed in the
early universe making the study of first-order transition
very important.
Within the framework of holographic QCD, the calcu-

lation of the jet quenching parameter was first obtained by
Liu et al. in Ref. [81]. Since then, many studies have been
conducted under various conditions and using different
holographic models. However, the jet quenching parameter
in extremely strong magnetic fields remains unexplored.

Our calculations suggest that the phase transition in this
condition could be of the first-order, thereby rendering the
discussion of jet quenching parameters in this scenario both
compelling and significant.
Due to the magnetic background field, the spatial SOð3Þ

symmetry is broken down to SOð2Þ. In the anisotropic
medium, there are three different types of jet quenching
parameters. First, the light parton moves along the direction
of the magnetic field, with transverse momentum broad-
ening perpendicular to the magnetic field direction. Second,
the light parton moves perpendicular to the magnetic field,
with transverse momentum broadening in the magnetic
field direction. Third, the light parton moves perpendicular
to the magnetic field direction, with transverse momentum
broadening also perpendicular to the magnetic field direc-
tion. Following the steps in Refs. [81,85], one can derive
the jet quenching parameters q̂ as

q̂pðkÞ ¼
ffiffiffiffi
λt

p
π

 Z
∞

r̃H

dr̃
1

g̃kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃rr

g̃tt þ g̃pp

s !−1

; ð23Þ

where p is the direction of the light parton moving and k is
the direction of the transverse momentum broadening. λt is
the ’t Hooft coupling. Substituting the relation Eq. (12)
into the expression of the jet quenching parameter Eq. (23),
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FIG. 6. The renormalized Polyakov loop, Pr, is shown as a function of temperature for different magnetic field strengths: B ¼ 0,
eB ¼ 1GeV2, eB ¼ 2.8623GeV2, and eB ¼ 4GeV2, arranged from left to right and top to bottom. The inset figures in the first three
subfigures display ∂Pr=∂T in the region where Pr rises rapidly with increasing temperature. For the last subfigure, the inset provides a
zoomed-in view of the same region to highlight detailed behavior.
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one can obtain the expressions for these normalized jet
quenching parameters.

q̂jjð⊥Þ
T3

¼ 64π2
ffiffiffiffi
λt

p
hfar0R

rmax
rH

dr e
−2cðrÞ−aðrÞþ2ðcfar

0
−afar

0
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrÞ½hfar
0
−hðrÞ�

p
ð24aÞ

q̂⊥ðjjÞ
T3

¼ 32π2
ffiffiffiffi
λt

p
hfar0R

rmax
rH

dr e−2aðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞ½hfar

0
e
2cðrÞ−2ðcfar

0
−afar

0
Þ−hðrÞe2aðrÞ�

q ð24bÞ

q̂⊥ð⊥Þ
T3

¼ 32π2
ffiffiffiffi
λt

p
hfar0R

rmax
rH

dr e
−2cðrÞþ2ðcfar

0
−afar

0
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrÞ½hfar
0
e
2cðrÞ−2ðcfar

0
−afar

0
Þ−hðrÞe2aðrÞ�

q ð24cÞ

In Fig. 7, we show the results of q̂ without a magnetic
field. As shown by the red curve, we have the normalized
jet quenching parameter q̂=T3 as a function of the temper-
ature. In our calculations, we choose the ’t Hooft coupling
λt ¼ 1=2. We have found that the holographic outcomes are
in agreement with the Monte Carlo simulations, which
were conducted using an initial quark jet with an energy of
E ¼ 10 GeV, as well as the results from the deep inelastic
scattering (DIS) [78,95]. The holographic curve lies within
the region of the Monte Carlo and the DIS results. The
significant difference between the low and high temper-
atures indicates a crossover from the normal phase to the
QGP phase.
In Fig. 8, we show the normalized jet quenching

parameter q̂jjð⊥Þ as a function of temperature for different
fixed magnetic background fields. Comparing the sub-
figures, one can see that q̂jjð⊥Þ is generally enhanced by
the magnetic field, favoring the transverse momentum

broadening. This enhancement is especially significant in
the phase transition temperature region and tends to match
the values of the zero magnetic field case in both the low
and high-temperature limits. Furthermore, with relatively
small magnetic fields, q̂jjð⊥Þ=T3 remains a monotonic
function of temperature. However, in the presence of an
extremely strong magnetic field, for instance, eB ¼ 4 and
10 GeV2, q̂jjð⊥Þ=T3, there exists a region around the phase
transition temperature where q̂jjð⊥Þ=T3 takes on multiple
values. This results in three different values of q̂jjð⊥Þ=T3

for a single temperature, as indicated by the red dashed
lines in Fig. 8, which is the typical characteristic of the
first-order transition. At the critical value of the magnetic
field, i.e., eB ¼ 2.8326 GeV2, the first-order derivative of
jet quenching parameter with respect to the temperature
∂q̂jjð⊥Þ=∂T diverges at Tc.
For the other two types of jet quenching parameters,

q̂⊥ðjjÞ and q̂⊥ð⊥Þ, the numerical results are shown in
Fig. 9. The overall trends of these jet quenching parameters
are almost the same as q̂jjð⊥Þ shown in Fig. 8. Specifically,
q̂⊥ðjjÞ þ q̂⊥ð⊥Þ is larger than q̂jjð⊥Þ; q̂⊥ð⊥Þ is larger than
q̂⊥ðjjÞ under the same temperature and magnetic field
conditions.5

V. CONCLUSIONS

In this paper, we investigate the impact of a magnetic
background field on QCD properties using the EMD
model. Our findings reveal that at extremely high magnetic
fields, the QCD phase transition is of first-order. As the
magnetic field decreases, the first-order phase transition
boundary terminates at a critical endpoint, located at
ðeBc; TcÞ ¼ ð2.8326 GeV2; 0.1191 GeVÞ, before which
the transition turns into a crossover. The entropy density
and pressure behavior confirmed this phase transition
boundary, with typical S-shape and Swallowtail shape
curves. The first-order transition temperature decreases
with the increasing of magnetic field. These are qualita-
tively consistent with lattice results in Ref. [29].
Additionally, both the entropy and pressure are signifi-
cantly enhanced by the magnetic fields. The analysis of the
Polyakov loop confirms that the confinement/deconfine-
ment phase transition evolves with increasing magnetic
field strength, transitioning from a crossover to a first-
order phase transition. This observation is consistent with
entropy density and pressure results.
Furthermore, we also discuss the variation of the jet-

quenching parameter during the phase transition process in
the presence of a magnetic field. For comparison, in the
absence of a magnetic field, our holographic results are
primarily consistent with the Monte Carlo and the DIS

FIG. 7. The normalized jet quenching parameter q̂=T3 as a
function of temperature without magnetic background field
eB ¼ 0. The red curve is the holographic QCD result with
λt ¼ 1=2. The HT-BW, HT-M model results, for an initial quark
jet with energy E ¼ 10 GeV, and deep inelastic scattering (DIS)
results are all taken from Refs. [78,95]. The filled boxes and
meshes represent for the errors.

5This is consistent with the results in a narrower region of
magnetic field [85].
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experiment [78,95], provided that λt ¼ 1=2. In the presence
of a magnetic field, it highlights the anisotropic nature of
QGP in heavy ion collisions. The magnetic field reduces the
spatial SOð3Þ symmetry to SOð2Þ, leading to distinct jet
quenching parameters that vary with the direction of the
parton’s motion and the orientation of the transverse
momentum broadening. Under the phase transition, the
jet quenching parameters are greatly affected by the
magnetic field. The normalized jet quenching parameters
are enhanced around the phase transition temperature,
suggesting that magnetic fields promote the transverse
momentum broadening as well as the jet energy loss in
the QGP. The parameters converge to the zero magnetic
field cases at both low and high-temperature extremes.
Moreover, as a consequence of the first-order phase

transition, they can exhibit multiple values which indicates
that jet quenching could serve as a signal to probe the phase
diagram of QCD phase transition.
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FIG. 9. For the left panel, the jet quenching parameter q̂⊥ðjjÞ as a function of temperature under different fixed magnetic field. For the
right panel, the jet quenching parameter q̂⊥ð⊥Þ as a function of temperature under different fixed magnetic field. The inserts are the
enlarge of the transition temperature regions.

FIG. 8. With different fixed magnetic fields, the temperature dependence of the jet quenching parameters q̂jjð⊥Þ for the parton moving
in the direction of the magnetic field and the transverse momentum broadening in the perpendicular to the magnetic field.
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