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We derive the celestial optical theorem from the S-matrix unitarity, which provides nonperturbative
bootstrap equations of conformal partial wave (CPW) coefficients. This theorem implies that the imaginary
parts of CPW coefficients exhibit a positivity property. By making certain analyticity assumptions and
using the celestial optical theorem, we derive nonperturbative constraints concerning the analytic structure
of CPW coefficients. We discover that the CPW coefficients of four massless particles must and can only
have simple poles located at specific positions. The CPW coefficients involving massive particles exhibit
double-trace poles, indicating the existence of double-trace operators in nonperturbative celestial
conformal field theory. It is worth noting that, in contrast to AdS/CFT, the conformal dimensions of
double-trace operators do not have anomalous dimensions.
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I. INTRODUCTION

Celestial holography connects four-dimensional quan-
tum gravity in asymptotically flat spacetime to a putative
two-dimensional celestial conformal field theory
(CCFT) [1–7]. In this duality, the conformal correlators
in the boundary CCFT, known as celestial amplitudes, are
obtained by expressing the bulk scattering amplitudes in
terms of the conformal basis.
In CFT, conformal correlators can be expanded into

conformal partial wave (CPW) coefficients through the
CPW expansion. Conversely, CPW coefficients can be
extracted from conformal correlators using the inversion
formula. The dynamical information, such as operator
spectra and three-point coefficients, is directly related to
the analytic structure of the CPW coefficients. As con-
formal correlators in CCFT, celestial amplitudes also share
this CPW expansion, as shown by perturbative examples
in [8–19].
All the three objects—scattering amplitude, celestial

amplitude, and CPW coefficient—encode the same physi-
cal information. For the scattering amplitude, the (gener-
alized) optical theorem, as a direct consequence of bulk
unitarity, serves as the starting point of S-matrix bootstrap,

see [20–22] and the references therein. This naturally raises
the question (see Fig. 1):
How does bulk unitarity constrain celestial amplitudes or

CPW coefficients in CCFT?.
This question was explored in [8,9,11,15,23–25].

Particularly, the authors in [8] discovered that for a
particular tree-level exchange diagram, the optical theorem
relates the CPW coefficient to the three-point coefficients.
However, this relation has only been shown at the tree-
level, and the nonperturbative implications of bulk unitarity
for CCFT remain unknown.
Here, we answer this question by expanding the opti-

cal theorem with conformal basis and CPWs. The result,
which we call the celestial optical theorem, provides non-
perturbative relations between lower- and higher-point CPW
coefficients, and can serve as the bootstrap equations ofCCFT.
By the celestial optical theorem, we find that for elastic

scattering, the imaginary parts of the CPW coefficients
with appropriate conformal dimensions are nonnegative.
Moreover, we derive nonperturbative constraints on the
analytic structure of the CPW coefficients. Our analysis
reveals that for elastic scattering of two massless particles,
the CPW coefficients must and can only have simple poles
located at specific positions. While if involving massive
particles, the CPW coefficients contain double-trace poles,
suggesting the existence of double-trace operators in
CCFT, even in nonperturbative scenarios.

II. BACKGROUND

Generalized optical theorem. We consider scattering
process of bosonic particles in 4d Minkowski spacetime.
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A generic nK-particle state is denoted as jKi≡ jαK;pK;lKi,
where the bold symbols αK , pK and lK are the collection
of particle species, on-shell momenta and bulk spins of
individual particles respectively. The completeness relation
of the Hilbert space is

1 ¼
X
K

Z
dΠKjKihKj; ð1Þ

where
R
dΠK denotes the on-shell integral together with

polarization sums and appropriate permutation factors for
identical particles.
The unitarity of the S-matrix is equivalent to iT† − iT ¼

T†T ¼ TT† with S ¼ 1þ iT. From unitarity and com-
pleteness (1), for a scattering process I → F, the optical
theorem from S†S ¼ 1 provides a nonlinear relation of
scattering amplitudes

iðT FIÞ� − iT IF ¼
X
K

Z
dΠKðT FKÞ�T IK; ð2Þ

where T IF ≡ hFjTjIi and similar for others. Here and in
the following we use ð� � �Þ� to denote the complex con-
jugate of ð� � �Þ.
Celestial holography. In celestial holography, to mani-

fest the conformal symmetry slð2;CÞ ≃ soð3; 1Þ on the
boundary celestial sphere, the conformal basis

jKi
∂
≡ jαK;ΔK; JK; zKi ð3Þ

is introduced for a multiparticle state. As previously, the
bold symbols ΔK , JK, and zK denote the collection of
conformal dimensions, conformal spins and celestial coor-
dinates respectively. The z̄-dependence is omitted when
there is no ambiguity.
The transition matrix from jKi to jKi

∂
is called the

conformal primary wavefunction, denoted as ϕ [1]. Similar
to the plane-waves, the conformal primary wave functions
provide a complete basis to the solutions of the equation of
motion. While the plane-waves manifest the translation
symmetry, the conformal primary wave functions transform
covariantly under the conformal group.

As an example, with the parametrization of the null
momentum p ¼ ωð1þ ww̄; wþ w̄;−iðw − w̄Þ; 1 − ww̄Þ,
the conformal primary wave function of a massless scalar
is [1,2]

ϕΔðz; pÞ ¼
1

4
ωΔ−2δð2Þðz − wÞ: ð4Þ

For massive and spinning particles, the construction and
properties of conformal primary wave functions can be
found in, e.g., [1,2,26–30].
Given a momentum-space scattering amplitude T IF, the

celestial amplitude AIF is defined by expanding it with
respect to the conformal basis [1,2]. The celestial amplitude
AIF transforms as a boundary conformal correlator with
coordinates zI , zF and conformal weights ðΔI; JIÞ,
ðΔF; JFÞ, i.e.,

AIF ≡AΔI ;JI jΔF;JF
αI jαF ðzIjzFÞ: ð5Þ

For example, the celestial amplitude of scalars takes the
form

AIF ¼
� YnIþnF

a¼1

Z
d3pa

p0
a

ϕΔa
ðza; paÞ

�
T IF: ð6Þ

Since the transformation is invertible, the celestial ampli-
tude AIF captures the same physical information as the
scattering amplitude T IF.
Conformal partial wave expansion. As mentioned

before, the CPWs Ψ provide a complete basis for expand-
ing conformal correlators [31–41]. They transform cova-
riantly under the conformal group and are single-valued
solutions of conformal Casimir equations. We leave the
useful properties of CPWs in the Supplementary
Material [42]. With the CPWs, the four-point conformal
correlator FΔ;JðzÞ can be decomposed as

FΔ;JðzÞ ¼
Xþ∞

J0¼−∞

Z
1þi∞

1

dΔ0

μðΔ0; J0Þ ρ
Δ;J
Δ0;J0Ψ

Δ;J
Δ0;J0 ðzÞ; ð7Þ

where ρ is called the CPW coefficient and

μðΔ; JÞ ¼ 4π4i
J2 − ðΔ − 1Þ2 ð8Þ

is the Plancherel measure. Generalizing to n-point, F can
be decomposed into the CPW coefficient ρ in the comb-
channel [43–63] (see the left panel of Fig. 2):

FΔ;JðzÞ ¼
X
J0

Z
dΔ0ρΔ;JΔ0;J0Ψ

Δ;J
Δ0;J0 ðzÞ: ð9Þ

Here the exchange conformal weights are denoted by
primed symbols, e.g., Δ0 ≡ fΔ0

1;…;Δ0
n−3g. The vectorial

FIG. 1. The relation between scattering amplitude T , celestial
amplitude A and CPW coefficient ρ.
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sum and integral are the (n − 3)-fold version of the ones
in (7).
In particular, as a boundary conformal correlator, we

denote the CPW coefficient associated to the celestial
amplitude AIF as ρIK . Explicitly, ρIK depends on the
ðnI þ nFÞ external conformal weights ðΔI; JIÞ, ðΔF; JFÞ,
and ðnI þ nF − 3Þ exchange ones ðΔ0; J0Þ, see the right
panel of Fig. 2.
We emphasize that due to the unitarity condition of the

Euclidean conformal group, the conformal dimensions in
conformal primary wave functions, celestial amplitudes
and CPW coefficients are initially restricted on the princi-
pal series 1þ iR. In practice they can be analytically
continued to a larger domain of holomorphy, and we will
adopt this prescription by default.

III. CELESTIAL OPTICAL THEOREM

In this section, we present the celestial optical theorem,
which is a consequence of the bulk unitarity and the
completeness relation of the Hilbert space (1). In the rest
of this letter, we will focus on 2-to-2 scattering I → F, i.e.,
nI ¼ nF ¼ 2 and

jIi
∂
¼ jα1; α2;Δ1;Δ2; J1; J2; z1; z2i;

jFi
∂
¼ jα3; α4;Δ3;Δ4; J3; J4; z3; z4i: ð10Þ

Moreover, for a boundary state jKi
∂
in (3), we define its

hatted conjugation jK̂i
∂
as

^∶jKi
∂
↦ jK̂i

∂
≡ jαK;Δ�

K;−JK; zKi: ð11Þ

Here Δ�
K is a collection of conformal dimensions whose

elements are complex conjugate of those in ΔK . As the
derivation is standard but tedious, we leave it to the
Supplementary Material [42]. The main idea contains
the following two steps.

Step I. Similar to the derivation of the optical theorem,
we use the completeness relation of the conformal basis to
expand the optical theorem (2) into celestial amplitudes:

iðAF̂ ÎÞ� − iAIF ¼
X
K

Z
dΩK

Z
d2zKðAF̂KÞ�AIK: ð12Þ

HereAF̂ Î , depending on the hatted boundary states jÎi∂ and
jF̂i

∂
, is an abbreviation as in (5). The integral over ΩK is

Z
dΩK ¼ 1

SK

YnK
a¼1

X
Ja ∈LðlaÞ

Z
1þi∞

1−i∞

dΔa

N ðΔa; Ja;laÞ
; ð13Þ

where the symmetry factor SK takes into account identical
intermediate particles. If the ath particle in K is massive
with mass m and bulk spin l, then the set LðlÞ and the
factor N ðΔ; J;lÞ are

LðlÞ ¼ f−l;−lþ 1;…;l − 1;lg;

N ðΔ; J;lÞ ¼ ð−1ÞJþ126þlπ6iðl − JÞ!ðlþ JÞ!
m2ðΔþ J − 1ÞðΔ − J − 1Þð2lÞ! : ð14Þ

If the a-th particle in K is massless with bulk spin l, then
LðlÞ and N ðΔ; J;lÞ are

LðlÞ ¼ f−l;lg;
N ðΔ; J;lÞ ¼ 2lþ3π4i: ð15Þ

Step II. The relation (12) serves as a nonperturbative
bootstrap equation of celestial amplitudes. We further
expand it into CPW coefficients and reach the following
celestial optical theorem:

iðρF̂ ÎÞ�− iρIF¼
X0

K

ξKððCF̂KÞ�CIKþðK↔ K̃ÞÞ

þ
X00

K

X
J0K

Z
dΔ0

K

Z
dΩKðρF̂KÞ�ρIK: ð16Þ

This equation can be illustrated by Fig. 3.

FIG. 2. Comb-channel CPW coefficients. The left is the CPW
coefficient ρΔ;JΔ0;J0 in (9). The right is the CPW coefficient ρIK
associated to AIF, and the arrows denote the direction of
incoming/outgoing.

FIG. 3. Illustration of celestial optical theorem (16). We use the
red color denoting complex conjugation. The pairs of red and
blue arrows connected by yellow plaquettes represent the
variables that should be integrated out.
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Now we explain this equation in detail. For each term in
(16), the dependence on conformal weights is summarized
in Fig. 4. The free variables are the external conformal
weights ðΔi; JiÞ for i ¼ 1; 2; 3; 4 and the exchange one
ðΔ0

1; J
0
1Þ.

On the right side of (16), the primed sum accounts for
contributions from intermediate single-particle states, while
the double-primed sum includes contributions from multi-
particle states. CIK is the three-point coefficient of the
2-to-1 scattering I → K, and CIK̃ is the one with the
outgoing particle K expanded by the shadow conformal
basis [2,15,19,28,64]. The factor ξKðΔ0

1; J
0
1Þ is

ξKðΔ; JÞ ¼
� μðΔ;JÞ

N ðΔ;J;lKÞ ; if J∈LðlKÞ;
0; if J ∉ LðlKÞ:

ð17Þ

The integral
R
dΩK is defined in (13) and

P
J0K

R
dΔ0

K is the
ðnK − 2Þ-fold version of the ones in (7). Here, ðΔ0

K; J
0
KÞ is

the collection of exchange conformal weights excluding the
first one ðΔ0

1; J
0
1Þ, see Fig. 4.

The relation (16) serves as a bootstrap equation in the
boundary CCFT imposed by the bulk unitarity S†S ¼ 1,
and we expect numerous physical information can be
extracted from it. Additionally, another celestial optical
theorem can be similarly derived from SS† ¼ 1, which we
have included in the Supplementary Material [42].
Celestial optical theorem vs optical theorem. The optical

theorem (2) and the celestial optical theorem (16) are
equivalent up to the change of scattering basis, and both of
them serve as bootstrap equations. In the conventional
S-matrix program, to utilize the optical theorem, the 2-to-2

scattering amplitudes are further expanded by Legendre/
Jacobi polynomials for scalar/spinning particles. However,
for scattering amplitudes with more than four particles
there is currently no such polynomial basis. This lack of
knowledge makes such amplitudes challenging to handle.
Moreover, the optical theorem involves on-shell vectorial
integrals which are difficult to manipulate. In contrast, there
exists a natural basis in CCFT—the conformal partial
waves—to expand higher-point celestial amplitudes. This
enables us to obtain scalar equations of CPW coefficients
containing only Mellin-Barnes integrals.

IV. APPLICATIONS

We assume that the bulk S-matrix is unitary so that the
celestial optical theorem (16) holds, and will study proper-
ties of the CPW coefficient. We focus on the elastic
scattering process, i.e., the 3-rd (4th) outgoing particle
has the same species as the 1st (2nd) incoming particle.
In this case, for fixed external conformal spins Ji with
i ¼ 1; 2; 3; 4 and exchange one J01, the CPW coefficient ρIF
is a function of external conformal dimensions Δi and
exchange one Δ0

1. For clarity we relabel the exchange
conformal weights as ðΔ0

1; J
0
1Þ≡ ðΔ; JÞ and the CPW

coefficient as ρIF ≡ ρJiJ ðΔ;ΔiÞ.
Positivity. Setting ðα1;Δ1; J1Þ ¼ ðα3;Δ�

3;−J3Þ and
ðα2;Δ2; J2Þ ¼ ðα4;Δ�

4; J4Þ in (16), each term on the right
side is manifestly nonnegative (see also Fig. 5), hence we
obtain the following positivity property:

ImρJ1;J2;−J1;−J2J ðΔ;Δ1;Δ2;Δ�
1;Δ�

2Þ ≥ 0 ð18Þ

for Δ∈ 1þ iR.
If the putative CCFT corresponds to a unitary bulk

theory, the CPW coefficients must satisfy this positivity
condition (18). We mention that similar positivity con-
ditions have also been established in [11]. There, the
authors found that if the external conformal dimensions
are real, the imaginary part of the four-point celestial
amplitude can be positively expanded by the Poincare
partial waves.
Analyticity. As mentioned previously, ρJiJ ðΔ;ΔiÞ is

initially defined for the conformal dimensions Δ and Δi
on the principal series 1þ iR. In practice it can be extended
to a meromorphic function on a larger domain. Particularly,
when the corresponding conformal correlator admits a

FIG. 4. Dependence of each term in (16) on external and
exchange conformal dimensions and spins. Here 1 denotes
ðΔ1; J1Þ, 3̂ denotes ðΔ�

3;−J3Þ, 10 denotes ðΔ0
1; J

0
1Þ, and similar

for others. Notice that ðΔ0
K; J

0
KÞ denotes the collection of

exchange conformal weights without the first one ðΔ0
1; J

0
1Þ.

FIG. 5. Illustration of positivity.
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convergent conformal block expansion, we may naturally
assume that ρ is meromorphic for Δ∈C. Besides, pertur-
bative examples suggest that ρ is also meromorphic for Δi.
We make the above more rigorous into the following
assumptions:
(1) ρJiJ ðΔ;ΔiÞ is meromorphic with respect toΔ∈C and

decays sufficiently fast to zero as Δ → ∞; and
(2) ρJiJ ðΔ;ΔiÞ is meromorphic with respect to Δi ∈C4.
Under the above assumptions and by the technique of

complex analysis, we can prove the following properties of
ρJiJ ðΔ;ΔiÞ for generic Δi [65]. The proofs are left in the
Supplementary Material [42].
Property 1. Exactly one of the following statements

is true:
(1) for any J and Ji, ρ

Ji
J ðΔ;ΔiÞ ¼ 0; and

(2) for J1 ¼ −J3 and J2 ¼ −J4, ρ
Ji
J ðΔ;ΔiÞ contains at

least one Δ-pole.
Property 2. Given any three-point coefficient CIK

illustrated in Figure 4 with ðΔ0
1; J

0
1Þ≡ ðΔ; JÞ, a pole Δ ¼

fðΔ1;Δ2Þ of CIK is also a pole of ρJiJ ðΔ;ΔiÞ for J1 ¼ −J3
and J2 ¼ −J4, if the following conditions hold:
(1) f is meromorphic with respect to ðΔ1;Δ2Þ∈C2; and
(2) the equation RefðΔ1;Δ2Þ ¼ 1 has solutions for

ðΔ1;Δ2Þ∈C2.
Property 3. If the two incoming particles are both

massless, exactly one of the statements is true:
(1) for any J and Ji, ρ

Ji
J ðΔ;ΔiÞ ¼ 0; and

(2) for J1 ¼ −J3 and J2 ¼ −J4, ρ
Ji
J ðΔ;ΔiÞmust and can

only contain simple Δ-poles located at

Δ ¼ −Δ34 − J34 − J þ 2ðnþ 1Þ;
Δ ¼ Δ34 − J34 þ J þ 2ðnþ 1Þ;
Δ ¼ Δ12 þ J12 − J − 2n;

Δ ¼ −Δ12 þ J12 þ J − 2n; ð19Þ

for some n∈N. Here Δij ≡ Δi − Δj and similar
for Jij.

Comparison to known examples. The validity of our
properties can be verified by examining the known exam-
ples of CPW coefficients [8,15,16,19,66]. Particularly,
using the results from [66,67], we find the Δ-poles of
CPW coefficients for the MHV amplitudes fall into the set
described in the property 3.
Existence of double-trace operators. The property 2

implies that the analytic structure of the four-point CPW
coefficient ρIF is closely related to that of the three-point
coefficient CIK. Here, we provide a concrete example of
scalar particles.
We first show the Δ-poles in the scalar three-point

coefficient CIK will not be corrected by loop diagrams.
Using (6), any scalar three-point celestial amplitude takes
the form as

AIK ¼
�Y3

a¼1

Z
d3pa

p0
a

ϕΔa

�
δð4Þðp1 þ p2 − p3ÞMIK; ð20Þ

where Δ3 ≡ Δ and MIK is the scattering amplitude T IF
with the momentum conservation δ-function dropped off.
Using Lorentz symmetry and momentum conservation,
MIK only depends on the mass squares and thus can be
taken out from the integral. The remaining integral in (20)
is exactly the tree-level three-point celestial amplitude
without coupling constant, and the Δ-poles can only come
from this integral.
Together with property 2, we conclude that the Δ-poles

in the full ρIF is directly related to the ones in the tree-
level CIK .
As an example, we consider the case that at least one of

the two incoming particles in I is massive and there exists a
nonvanishing three-point coefficient CIK with lK ¼ 0 [68].
As shown in [19], the tree-level scalar three-point coef-
ficients CIK involving more than two massive scalars have
poles at Δ ¼ Δ1 þ Δ2 þ 2n for n∈N, which implies that
the full CIK also have the same poles as we discussed
above. Then since Δ ¼ Δ1 þ Δ2 þ 2n is meromorphic and
ReðΔ1 þ Δ2 þ 2nÞ ¼ 1 has solutions for ðΔ1;Δ2Þ∈C2,
by the property 2, ρIF must contain double-trace poles at
Δ ¼ Δ1 þ Δ2 þ 2n for n∈N nonperturbatively [69].

V. DISCUSSION

The celestial optical theorem (16) can serve as a
nonperturbative bootstrap equation in celestial holography.
While we have focused on the 2-to-2 scattering, this
equation can be trivially generalized to arbitrary scatter-
ings, resulting in a complete set of bootstrap equations of
CPW coefficients. We have derived several analyticity
properties of CPW coefficients, and it would be in-
triguing to explore numerical methods for solving these
equations.
There are two other ingredients in celestial holography—

the conformally soft theorem [70,71] and the w1þ∞
symmetry [72]. We expect that our equations, together
with the constraints from the conformally soft theorem and
the w1þ∞ symmetry, would provide a more precise pre-
scription for celestial bootstrap.
The positivity (18) provides a criterion to discriminate

which CFT can be celestial, i.e., corresponding to a unitary
bulk theory. Moreover, it also reminds us the cosmological
bootstrap [73,74], where the dS unitarity implies that the
CPW coefficient itself is nonnegative, instead of the
imaginary part. Recent attempts trying to relate celestial
amplitudes with (E)AdS/dS correlators can be found
in [24,75–77].
Another avenue is to explore the implication of the

S-matrix crossing symmetry on the CPW coefficients. The
two central ingredients in the modern S-matrix bootstrap are
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unitarity and crossing symmetry, see, e.g., [20–22,78–81],
and the former have been encoded in the celestial optical
theorem. It would be of great interest to study the celestial
counterpart of the bulk crossing symmetry.We expect that the
crossing symmetry of S-matrix would provide another set of
equations on the CPW coefficients.
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