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The expansion of the Universe in fðR; TÞ gravity is studied. By focusing on functions of the form
fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, we assert that present-day acceleration can be achieved if the functional form of
f2ðTÞ either grows slowly or falls as a function of T. In particular, we demonstrate that when f2ðTÞ ∝ T−1,
the Universe transitions to exponential growth at late times, just as it does in the standard cosmological
model. A comparison of predictions of this model with type Ia supernovae shows that this model fits the
data as well or even slightly better than the standard cosmological model without increasing the number
of parameters.
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I. INTRODUCTION

For over two decades, we have known that the expan-
sion of the Universe is accelerating. Originally this was
shown by studying type Ia supernovae (SNe Ia) [1–3].
Measurements of the cosmic microwave background
radiation [4] and baryon acoustic oscillations show the
same thing [5].
The simplest and most common explanation is to

assume that there is a cosmological constant Λ, such that
the gravitational action normally proportional to the
curvature scalar R is modified to Rþ 2Λ. The evidence
[4] indicates that the Universe is close to spatially flat, and
the resulting Λ cold dark matter (ΛCDM) model fits well
with available data.
However, many alternatives have been considered,

including modifications of gravity. In fðRÞ gravity, the
curvature term R is modified to be some function of the
curvature scalar [6]. Another alternative, proposed first by
Harko et al., is to consider a contribution of the form
fðR; TÞ, where T is the trace of the stress-energy tensor [7].
To find T, it is first necessary to derive the stress-energy

tensor from the matter Lagrangian Lm. When dealing with
ordinary matter or dark matter, the matter Lagrangian comes
from either the standard model Lagrangian or whatever
extension is responsible for dark matter, thus making the
explicit form of the stress-energy tensor either complicated
or unknown. A common strategy in both standard general
relativity and in these modified theories is to assume a
perfect fluid stress-energy tensor. The method for doing this
in general relativity is well known [8], but there are
additional complications that occur in modified gravity,
as pointed out by [9] and later elaborated by [10]. Multiple

papers [7,11–15] ignore these complications, making their
conclusions suspect. One attempt to bypass the ambiguity is
proposed by [16]. However, this attempt contained some
sign inconsistencies, partially due to errors in the literature
related to the metric conventions, and a detailed analysis of
their work leads us to conclude that this approach is not
productive.
One of the simplest examples that can be considered is

when fðR; TÞ is additively separable, such that

fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ: ð1Þ

As pointed out by [10], in such theories, f2ðTÞ can, in
principle, be incorporated into the matter Lagrangian Lm
and, as such, perhaps should not be considered as a
modification of gravity at all. This is indeed the argument
of [17]. However, whether this is considered as a modifi-
cation of gravity or not, we can still ask the question of
whether such a theory can account for the accelerating
expansion of the Universe.
In this paper, we focus on the question of how one can

reproduce a currently accelerating universe with a theory
of the form of Eq. (1). Since we are focusing on the effects
of the stress-energy term, we use f1ðRÞ ¼ R and use the
simplest possible form f2ðTÞ ¼ λTϵ. As pointed out
by [17], if we choose ϵ ¼ 2, then standard model con-
straints at the weak scale places strong limits on λ. At the
much lower energy densities relevant in current-day
cosmology, the new term would be irrelevant compared
to other terms in the action such as Lm. This argument
generalizes to conclude that any ϵ > 1 is irrelevant for
present-day cosmology, and we will focus on ϵ < 1. The
case when ϵ ¼ 0 corresponds to the standard ΛCDM. For
comparison we will choose ϵ ¼ −1, which should have an
effect on the late-time Universe. We also assume the*Contact author: ecarlson@wfu.edu
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Universe is flat, so as to not introduce unnecessary addi-
tional parameters. Thus our alternative has the same
number of parameters as standard ΛCDM, since the
cosmological constant Λ is replaced by the new coupling
constant λ.
In Sec. II, the fðR; TÞ formalism is laid out, yielding the

modified Einstein’s equations. In Sec. III, perfect fluids as
discussed by [8,10] are reviewed for the particular case of
fðR; TÞ ¼ Rþ λTϵ. Then in Sec. IV, the scale factor of the
Universe as a function of time is derived for our model and
compared to ΛCDM results. Finally in Sec. V, SNe Ia data
from the Pantheon dataset [18–20] are compared against
both our model and ΛCDM.
Throughout, we use conventions where c ¼ ℏ ¼ 1, the

signature of the metric is ðþ;−;−;−Þ, and the Riemann
and Ricci Tensors are defined by Rα

μβν ¼ ∇βΓα
μν − � � � and

Rμν ¼ Rα
μαν respectively.

II. f ðR;TÞ FORMALISM

In fðR; TÞ gravity, the Ricci scalar R appearing in the
Einstein-Hilbert action is replaced by an arbitrary function
fðR; TÞ, where T is the trace of the stress-energy tensor, to
yield an action given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð2aÞ

L ¼ Lm −
1

2κ2
fðR; TÞ; ð2bÞ

where κ2 ¼ 8πG. Varying the action with respect to the
metric and identifying the stress-energy tensor as

Tμν ¼
2ffiffiffiffiffiffi−gp δSm

δgμν
ð3Þ

leads to the fðR; TÞ-Einstein’s equations

ðRμνþgμν□−∇μ∇νÞfR−
1

2
fgμν¼ κ2Tμν−fT

∂T
∂gμν

; ð4Þ

where the subscripts on f denote partial derivatives [7].
Standard gravity with a cosmological constant Λ can be
recovered by choosing fðR; TÞ ¼ Rþ 2Λ. Note that the
stress-energy is not conserved in these models [7,21].1

Taking the divergence of Eq. (4) gives

κ2∇μTμν ¼ ∇μ

�
fT

∂T
∂gμν

�
−
1

2
fT∇νT: ð5Þ

III. PERFECT FLUIDS

In general relativity, one is rarely interested in the
detailed fundamental Lagrangian. We would prefer to treat
the matter content as a perfect fluid. A perfect fluid is
described in terms of its local four-velocity uμ normalized
so that uμuμ ¼ 1, the comoving number density n, and the
entropy per particle s. We expect both the particle number
and entropy must be conserved, i.e.

0 ¼ ∇μðn uμÞ; ð6aÞ

0 ¼ ∇μðsn uμÞ: ð6bÞ

The stress-energy tensor is given by

Tμν
PF ¼ ðρþ pÞuμuν − pgμν; ð7Þ

where ρ ¼ ρðn; sÞ is the energy density and p ¼ pðn; sÞ is
the pressure. If stress-energy is conserved then, using the
equation ∇μTμν ¼ 0, it can be shown that the energy
density and pressure are related by

n
∂ρ

∂n
¼ ρþ p: ð8Þ

We will discover when considering nonstandard gravity
that the naive number density and stress-energy tensor are
not always conserved; nonetheless, wewill treat Eq. (8) as a
definition for the naive pressure p.
In standard gravity, it is common to assume Lm ¼ p [7],

but it is worth understanding the origin of this expression,
which for nonstandard gravity turns out not to be so simple,
as was pointed out by [8]. We start with the form

Lm ¼ −ρðn; sÞ þ JμðβA∇μα
A − s∇μθ −∇μφÞ; ð9Þ

where Jμ ¼ nuμ is the current density, αA are a set of index
functions used to label fluid flow line, and βA; θ, and φ are
Lagrange multipliers used respectively to ensure that
current flows along the flow lines, entropy is conserved,
and the current is conserved. The number density n is now
to be interpreted as an implicit function of Jμ, given by

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνJμJν

p
: ð10Þ

Working with the full Lagrangian equation (2b), the
stress-energy tensor and its trace are given by

Tμν ¼ ðρþ pÞuμuν − gμνLm; ð11aÞ

T ¼ ðρþ pÞ − 4Lm; ð11bÞ

while the variation of T with respect to the metric can be
determined, using Eq. (10), as1Note a missing term from [7] is corrected in [21].
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∂T
∂gμν

¼ −
1

2
uμuν

�
4þ n

∂

∂n

�
ðρþ pÞ: ð12Þ

Considering the additively separable form of Eq. (1) and
the equations of motion of Eq. (9) [8,10]2

0 ¼ ∇μf½1þ 2κ−2f02ðTÞ�Jμg; ð13aÞ

0 ¼ ∇μfs½1þ 2κ−2f02ðTÞ�Jμg; ð13bÞ

0 ¼ ½1þ 2κ−2f02ðTÞ�Jμ∇μα
A; ð13cÞ

0 ¼ −∇μfβA½1þ 2κ−2f02ðTÞ�Jμg; ð13dÞ

0 ¼ −
�
1þ 2

κ2
f02ðTÞ

��
∂ρ

∂s
þ Jμ∇μθ

�

−
1

2κ2
f02ðTÞ

∂

∂s
ðρþ pÞ; ð13eÞ

0 ¼
�
1þ 2

κ2
f02ðTÞ

��
βA∇μα

A − s∇μθ −∇μφ −
∂ρ

∂n
uμ

�

−
1

2κ2
f02ðTÞuμ

∂

∂n
ðρþ pÞ: ð13fÞ

We immediately note from Eqs. (13a) and (13b) that the
naive number density n and entropy density s are not
conserved. One can obtain the “on-shell”matter Lagrangian
to be

Lm ¼ pþ f02
2κ2 þ 4f02

n
∂

∂n
ðρþ pÞ; ð14Þ

where the bars mean that the functions are to be evaluated
using Eq. (13f) to eliminate all variables except the number
density n and entropy per particle s. It is then trivial to see
that, in standard gravity, Lm ¼ p will occur, but this
equation is not valid when f2ðTÞ is nontrivial.
In order to reproduce Einstein’s equations, the function

must be fðR; TÞ ¼ R. The next simplest version of fðR; TÞ
should also contain contributions from the stress-energy
tensor, in the form of its trace. A suitable additively
separable function should be of the form

fðR; TÞ ¼ Rþ λTϵ; ð15Þ

where λ is a coupling constant and ϵ is an arbitrary real
number. The choice of the exponent ϵ will govern how the
modified theory will differ from conventional gravity. In
ordinary gravity, T ∝ R, and therefore if ϵ > 1, we should
not be surprised to find that the modification is most
important at early times when the density is high. What we

want is a contribution that will cause significant changes
only in the late Universe when densities are low, which can
account for the currently accelerating Universe, which
suggests we should try ϵ < 1. In particular, for ϵ ¼ 0,
the “new” term corresponds to simply a cosmological
constant with λ ¼ 2Λ. To explore a truly new scenario,
we instead focus on other values of ϵ.
Continuing with this form of function, combining

Eqs. (11a) and (14), the on-shell stress-energy tensor
becomes

T̄μν ¼ TPF
μν − gμν

ϵλ

2κ2T̄1−ϵ þ 4ϵλ
n
∂

∂n
ðρþ pÞ. ð16Þ

Taking the trace, using Eq. (8), and rearranging yields

0 ¼ TPF − T̄ −
2λϵ

κ2
T̄ϵ −

2λϵ

κ2
T̄ϵ−1

�
4þ n

∂

∂n

�
p: ð17Þ

This equation should be thought of as an implicit equation
for T̄ in terms of n and s.

IV. THE SCALE FACTOR

The initial motivation for considering dark energy was
the study of SNe Ia. A plot of the luminosity distance versus
redshift z seemed to indicate that, unlike a matter- or
curvature-dominated universe, the Universe was currently
accelerating its expansion. It is useful to understand how
this comes about in the standard ΛCDM model, with
fðR; TÞ ¼ Rþ 2Λ. We assume a spatially flat universe,
with metric

ds2 ¼ dt2 − a2ðtÞðdr2 þ r2dΩ2Þ; ð18Þ

where a is an arbitrarily normalized scale factor. It is
evident from Eq. (13a) that in this case the number density
n is conserved, and in the nonrelativistic current universe
we would have ρ ∝ n, so that ρa3 will be a constant. The
tt-component of Eq. (4) is then

3

�
ȧ
a

�
2

¼ κ2ρþ Λ: ð19Þ

This equation can be solved exactly to yield

a ∝ sinh2=3ð3
2
HΛtÞ, where HΛ ¼

ffiffiffiffiffiffi
1
3
Λ

q
, which up to an

arbitrary normalization constant has the asymptotic forms

aðtÞ ¼
(
Nð3tÞ2=3 t → 0

NH−2=3
Λ expðHΛtÞ t → ∞:

ð20Þ

Can we get a similar outcome from fðR; TÞ gravity? We
will assume again that the space metric is flat, given by
Eq. (18). The situation is complicated because quantities
like the energy and pressure derived just from the matter

2Note that a sign error from [10] has been corrected in
Eq. (13e).
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Lagrangian Lm will not be conserved, nor will be the
number density. However, since the energy density ρ and
pressure p are being derived simply from the matter
Lagrangian, we expect that in the nonrelativistic era, the
pressure will still be p ¼ 0. We expect the naive energy
density ρ ∝ n because they are both derived from the
standard matter Lagrangian Lm.
To explore this model explicitly, we will focus on the

model given by Eq. (15), with ϵ ¼ −1. This reduces
Eq. (17) to

ρ ¼ T̄ −
2λ

κ2T̄
; ð21Þ

which can be solved for T̄ to yield

T̄ ¼ 1

2

�
ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 8λ

κ2

r �
; ð22Þ

where the positive square root is favored so that T̄ ¼ ρ in
the limit where the energy density is large or the coupling λ
is small. Because of how useful Eq. (21) is for rewriting the
energy density in terms of the stress-energy trace, this
equation will henceforth be used throughout our work
without referencing it.
Assuming a flat Friedmann-Lemaître-Robertson-Walker

metric, i.e. Eq. (18), the first Friedmann equation can be
obtained in terms of T̄ by combining Eqs. (4), (12), and
(15) for ϵ ¼ −1 to yield

3

�
ȧ
a

�
2

¼
�
κ2 −

5λ

2T̄2

��
T̄ −

2λ

κ2T̄

�
þ λ

T̄
: ð23Þ

From Eq. (13a), the effective current density

J0μ ¼
�
1 −

2λ

κ2T̄2

�
Jμ ¼ ρ

T̄
ðn uμÞ ð24Þ

must be conserved, i.e. ∇μJ0μ ¼ 0. Recalling that ρ ∝ n,
this implies that the ρ2a3=T̄ is constant, which we write as

ρ2

T̄
a3 ¼ 12N3

κ2
; ð25Þ

where the constant was chosen for later comparison and N
is an arbitrary normalization factor. Rewriting the energy
density in terms of the stress-energy trace yields the
relations

a ¼
�
12

κ2

�
1=3

N
T̄�

T̄2 − 2λ
κ2

�
2=3 ; ð26Þ

ȧ
a
¼ −

� ˙̄T
T̄

��
κ2T̄2 þ 6λ

3κ2T̄2 − 6λ

�
: ð27Þ

It is useful to define an expansion parameter Hλ, a rescaled
time τ, and a rescaled stress-energy trace x by the equations

Hλ ¼
�
κ2λ

18

�
1=4

; ð28aÞ

τ ¼ Hλt; ð28bÞ

T̄ðtÞ ¼ xðτÞ
ffiffiffiffiffi
2λ

κ2

r
: ð28cÞ

Substituting Eq. (27) into (23) and rewriting in terms of the
rescaled quantities gives the differential equation

dx
dτ

¼ −
3ðx2 − 1Þ
x2 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x4 − 7x2 þ 5

2x

r
; ð29Þ

effectively describing the behavior of the energy density.
For the early Universe, the energy density is infinite

while for the late Universe, the energy density approaches a
constant, i.e. x → ∞ and x → 1þ δx respectively. Solving
Eq. (29) in these limits yields

xðτÞ ¼
8<
:

2
9τ2

τ → 0;

1þ α exp
�
− 3

2
τ
�

τ → ∞;
ð30Þ

where α ≈ 0.9844 was determined numerically. This leads
to a scale factor which has the asymptotic behavior

aðtÞ ¼
(
Nð3tÞ2=3 t → 0;

NH−2=3
λ ð ffiffiffi

2
p

αÞ−2=3 expðHλtÞ t → ∞:
ð31Þ

We note that this is nearly identical to Eq. (20), the only
difference being an overall scale increase in this model that
is smaller by a factor of ð ffiffiffi

2
p

αÞ−2=3 ≈ 0.8021. The behavior
of the Hubble parameter is shown in Fig. 1. However, there
is no particular reason to assume the asymptotic Hubble
constants HΛ and Hλ should match, since the goal of these
models is not to make the Universe with particular future
behavior, but instead to match the observed redshift-
luminosity curves.

V. LUMINOSITY DISTANCE AND OBSERVATION

The relationship between the luminosity distance and
redshift can be understood as

dL ¼ a0ð1þ zÞ
Z

t0

t

dt0

aðt0Þ ; ð32Þ

where t0 is the time value for the present and a0 ¼ aðt0Þ. In
the ΛCDM model,
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H0dL ¼ ð1þ zÞ
Z

1

1
1þz

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛψ

4 þ Ωmψ
p ; ð33Þ

where ΩΛ þ Ωm ¼ 1.
Similarly for the considered fðR; TÞ theory, a relation

between the two can be determined starting by combining
Eqs. (27)–(29), followed by evaluating at the present time,

Hλ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x3

4x4 − 7x2 þ 5

s 						
τ¼τ0

: ð34Þ

Then by inserting Eq. (26) in terms of xðτÞ and (34) into
(32) yields

H0dL ¼ ð1þ zÞ
2
4 1

ðx2 − 1Þ2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x4 − 7x2 þ 5

2x

r 3
5
τ¼τ0

×
Z

τ0

τ

ðxðτ0Þ2 − 1Þ2=3
xðτ0Þ dτ0; ð35Þ

where

1þ z ¼
�

x

ðx2 − 1Þ2=3
�
τ¼τ0

ðx2 − 1Þ2=3
x

: ð36Þ

From the luminosity distance dL, the distance modulus μ
can easily be determined using

μ ¼ 5 log10

�
dL

10 pc

�
: ð37Þ

Figure 2 shows the 1048 supernovae data from the
Pantheon dataset [18–20], superimposed with the best fit
curves for both our model and ΛCDM. As is clear, the two
theories for an appropriate choice of parameters yield
virtually indistinguishable curves. To clarify what is going
on, we have included Fig. 3, which shows the difference
between fðR; TÞ predictions and the best fit ΛCDM, for
different values of λ. Also included in Fig. 3 are the
“binned” supernovae data. Again, at least visually, it is not
obvious which theory is better.
To find the best fit values for both our model andΛCDM,

we minimize χ2 with respect to M, given by

χ2 ¼
Xn
i¼0

�
μðziÞ −mi þM

σi

�
2

; ð38Þ

10–2 10–1 100

34

36

38

40

42

44

46

z

μ

Distance Modulus

FIG. 2. The distance modulus μ ¼ m −M as a function of the
redshift factor z. The points represent data taken from the
Pantheon survey provided by [18]. The solid line corresponds
to the best fit ΛCDM model. The dashed line represents the best
fit of our model at τ0 ¼ 0.937.

10–1 100
–0.20

–0.15

–0.10

–0.05

0.00

0.05

0.10

z

Δ
μ

Residual Distance Modulus

FIG. 3. The difference Δμ ¼ μf − μΛ between fðR; TÞ distance
modulus and the best fit standard ΛCDM modulus. Solid lines
correspond to τ0 values 0.90, 0.92, 0.94, 0.96, and 0.98 from
bottom to top. The dashed line represents the best fit of our model
at τ0 ¼ 0.937. The points represent data taken from the Pantheon
binned data provide by [18]. For fitting purposes, the full
Pantheon dataset was used.

0 1 2 3 4

1.0

1.2

1.4

1.6

1.8

2.0

H t

H
H

FIG. 1. The behavior of the Hubble parameter as a function of
time in the ΛCDM (solid) and fðR; TÞ (dashed) models. The end-
time value H∞ corresponds to HΛ or Hλ for ΛCDM and fðR; TÞ
respectively.
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where zi, mi, and σi are the corrected redshift, apparent
magnitude, and error in the apparent magnitude of the
supernovae data, while M is the absolute magnitude. Then,
we scanned through various values of τ0 and found a
minimum for our model at τ0 ¼ 0.937� 0.014. The value
of λ can be determined by combining Eqs. (28a) and (34),
resulting in

λ ¼
�

x6

ð4x4 − 7x2 þ 5Þ2
�
τ¼τ0

72H4
0

κ2
: ð39Þ

Subsequently using the best estimate τ0 yields

λ ≈ ð0.246� 0.005Þ 72H
4
0

κ2
: ð40Þ

For H0 ¼ 71.5 km=s=Mpc, this corresponds to λ ¼
5.57ð12Þ × 10−76 eV6. Our model does not naturally
explain the smallness of this parameter; it must simply
be treated much like the cosmological constant Λ
in ΛCDM.
As in the standard ΛCDM model, Hubble’s constant H0

and the absolute magnitude M for SNe Ia are degenerate
parameters [18]. Recalling that for the ϵ ¼ 0 case the
fðR; TÞ model is equivalent to the ΛCDM model, the
second parameter used in both theories is λ. In both cases
there are 1046 degrees of freedom.
Our best fit for the ΛCDM yields χ2 ¼ 1035.68 for the

value of ΩΛ ¼ 0.716 where ΩΛ þ ΩM ¼ 1, while for our
fðR; TÞmodel, multiple τ0 values were tried in order to find
the minimum χ2 ¼ 1032.64 at the best fit value of
τ0 ¼ 0.937. Even though the χ2 scores suggest our model
has a slight advantage in fitting the SNe Ia data, it is not
enough to significantly favor our model over ΛCDM.
For the best fit values, the two models yield essentially

the same values of M: at H0 ¼ 71.5 km=s=Mpc. This

results in a best fit value of M ¼ −19.32 for our theory,
compared to the conventional ΛCDM model value
of M ¼ −19.31.

VI. CONCLUSION

We have studied the expansion of the Universe in
fðR; TÞ gravity with fðR; TÞ ¼ Rþ λT−1 assuming a flat
Universe. Like ΛCDM, we found an exponential growth
transition from the matter-dominated era to present-day
cosmology when considering the analysis of [10]. We also
compared our predictions for luminosity distance versus
redshift with SNe Ia data [18]. Our results show that this
new model is competitive with, or even slightly better
than, ΛCDM.
It is clear from our analysis that supernovae data

indicate an accelerating Universe, but current data cannot
necessarily distinguish the cause of such acceleration.
Since our fðR; TÞ model fits the data well, as evident in
Fig. 3, the deviation between standard and nonstandard
cosmologies is most evident at high redshift so that more
supernovae at high z are needed to differentiate between
these models.
In future work, we intend to study alternative models; for

example fðR; TÞ ¼ Rþ λTϵ for other values of ϵ < 1. We
also hope to understand how our model affects the
fluctuations in the cosmic microwave background radiation
and possible modifications in the large scale structure.
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[21] Barrientos O. José and Guillermo F. Rubilar, Comment on
“fðR; TÞ gravity”, Phys. Rev. D 90, 028501 (2014).

COMPARISON OF fðR; TÞ … PHYS. REV. D 111, 024074 (2025)

024074-7

https://doi.org/10.1103/PhysRevD.94.024034
https://doi.org/10.1103/PhysRevD.94.024034
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.95.123536
https://doi.org/10.1103/PhysRevD.95.123536
https://doi.org/10.1140/epjc/s10052-017-5413-5
https://doi.org/10.1088/1475-7516/2018/03/044
https://doi.org/10.1088/1475-7516/2018/03/044
https://doi.org/10.1140/epjc/s10052-021-08920-4
https://doi.org/10.1088/1475-7516/2024/05/064
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/1538-4357/ac9f49
https://doi.org/10.3847/2041-8213/ab04fa
https://doi.org/10.3847/2041-8213/ab04fa
https://doi.org/10.1103/PhysRevD.90.028501

	Comparison of f(R,T) gravity with type Ia supernovae data
	I. INTRODUCTION
	II. f(R,T) FORMALISM
	III. PERFECT FLUIDS
	IV. THE SCALE FACTOR
	V. LUMINOSITY DISTANCE AND OBSERVATION
	VI. CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	References


