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Laser pulse collisions are a promising tool for the investigation of light-by-light scattering phenomena
induced by quantum vacuum fluctuations. Using the numerical code based on the vacuum emission picture
and put forward in [1], we observe a strong dependence of the signal features on the transverse profiles of
the colliding laser pulses in the interaction region. For a probe beam tailored such as to feature an annular
far-field profile and a pronounced on-axis focus peak counterpropagating a pump beam at zero impact
parameter, the signal’s main emission direction can undergo the analog of a phase transition with the beam-
waist ratio of the pulses serving as a control parameter. Depending on the pump’s beam profile, this phase
transition can be first order (e.g., for a pump with a flat-top far-field profile) or second order (e.g., for a
Gaussian pump). From the simulation data, we determine the critical point and extract the corresponding
critical exponent for the second-order transition of the main emission direction of the signal in the far field.
For this, we improve the performance of the above numerical code, using the phase transition analogs as an
example to illustrate the capabilities and limitations of the code and current workflows.
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I. INTRODUCTION

Nonlinear interactions of electromagnetic fields in vac-
uum are a long-standing prediction of quantum electrody-
namics (QED) [2,3]. For a precise and quantitative
verification of these interactions, the collision of macro-
scopically controllable, ultra-intense laser pulses is a
promising experimental pathway in many laboratories
worldwide. This could provide access to the plethora of
phenomena induced by quantum vacuum fluctuations of
charged matter degrees of freedom; see [4–10] for reviews.
The direct route to experimental investigation is hampered

by the diminutiveness of the effect, as can be seen on the
quantum level from the small photon-photon cross section at
low frequency [11–14], requiring a careful and delicate
separation of the small signal from the expectably large
background.Many ideas and concepts have been put forward
in recent years to solve this problem; cf., e.g., [15–26].
A particularly promising idea is the use of tailored probe
beams in order to realize a dark-field setup, which combines

the virtues of a geometrical signal-to-background separation
with the still sizable scattering rates in the forward direction
of the probe in a comparatively simple configuration involv-
ing only two counterpropagating beams [21,23,27].
A similar scheme has already experimentally proved of
value in high-harmonic generation [28,29] and has become a
cornerstone of an intended discovery experiment of vacuum
birefringence at the HED-HIBEF beamline at the European
XFEL [30].
While theoretical tools for the prediction of observables

for realistic laser pulses have also evolved substantially in
the past years (see [10,31] and references therein), ana-
lytical methods are often limited to validity regimes of
necessary approximations. A particularly efficient analyti-
cal modeling of realistic laser pulses is often achieved by
using paraxial beams together with the approximation of
taking the formal limit of an infinite Rayleigh range [32,33].
This approximation can, for instance, be quantitatively well
controlled for nonextremal focusing and sufficiently small
pulse durations [34].
For general beams and collision geometries, powerful

numerical methods are highly desired. In addition to
methods that aim at numerically solving the QED-induced
nonlinear Heisenberg-Euler-Maxwell equations in a gen-
eral fashion [35–37], methods that are designed to directly
compute the relevant observables have turned out to be
particularly fruitful for the description of pulse collisions.
In the present work, we use the VacEm code [1] which is
based on the vacuum emission picture [38,39]. The latter
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effectively reduces the computation of the quantum-
induced signatures to performing a space-time Fourier
transformation of the field distribution in the interaction
region; the corresponding numerical task can be faced in
various ways [18,40,41]. Specifically, the VacEm code
has been used in various studies requiring quantitative
accuracy [1,27,42,43].
In the present work, we highlight and analyze a phe-

nomenon in the quantum-vacuum signatures of colliding
pulses that is reminiscent of a phase transition in statistical
physics. We demonstrate that both its qualitative and
quantitative properties depend sensitively on the beam
properties such that the use of an accurate computational
method is mandatory. More specifically, we use a probe
beam with an annular far-field profile but a pronounced on-
axis peak in the focus colliding head on with a strong pump
pulse, and we study the angular distribution of quantum-
induced signal photons arising from the interaction region.
We confirm that the far-field emission characteristics of the
signal can be peaked either in the direction of the probe’s
beam axis or at a finite angular offset [21] depending on
various details, specifically the relative beam waists of the
colliding pulses and the transverse beam profiles.
Interestingly, our results can be phrased in the language of

critical phenomena with the main emission direction of the
signal serving as an order parameter that can undergo an
apparent symmetry transition from on axis to off axis
depending on the pump properties serving as control
parameters. As the computation of observables in the critical
region—specifically the location of the phase transition, its
order, and a corresponding critical exponent in the case of a
second-order transition—requires a substantial numerical
accuracy, we use the present investigation also as amotive to
improve the VacEm code as well as study its convergence
with critical discretization parameters, as initiated in [44].
We observe that the accurate modeling of flat-top beam
profiles, which are rather generic in experiments, can pose a
numerical challenge. Addressing this challenge, our code
improvements target the computational cost. More specifi-
cally, the improvements significantly reduce the computa-
tion time, memory, and storage demand. The extensive
simulations of flat-top beams are thus made feasible in
practice.
Our suggestion to phrase the quantum vacuum phenom-

ena studied in this work in terms of critical phenomena may
be useful for future studies of possible aspects of univer-
sality of the transition phenomenon. Specifically, second-
order phase transitions in statistical systems exhibit a large
degree of universality induced by fluctuations and near-
conformal self-similar behavior in the vicinity of the
phase transition [45–47]. The language of critical phenom-
ena has also been useful in the characterization of gravi-
tational collapse [48,49] as well as QED vacuum decay in
terms of the Schwinger effect [50,51] with the degree of
universality being an active research field in each of these

cases [52–57]. Within strong-field QED, a critical point
has also been discovered in the momentum spectrum for
nonlinear Breit-Wheeler pair production with the width of
the photon wave packet serving as a control parameter [58].
This article is organized as follows: Section II provides a

brief introduction to the vacuum emission picture, explains
how numerical simulations allow us to study arbitrary field
configurations, and discusses the capabilities and limitations
of our current approach. Section III elucidates the use of
tailoring laser fields to achieve certain desired signal
profiles. Here, we demonstrate that our results for laser
pulse collisions can be phrased in terms of a phase transition
analog. At the same time, our work serves as an illustration
of the broad abilities of the improved VacEm code.
Section IV concludes this work and presents an outlook.
Appendixes A–C provide the technical details for code
improvements, artifact suppression, and error estimation.
In line with the literature, we use Heaviside-Lorentz

units with c ¼ ℏ ¼ ε0 ¼ 1 and the metric gμν ¼
diagð−1;þ1;þ1;þ1Þ for the conceptual discussion; the
numerical code as well as the description in the corre-
sponding sections below use SI units and the metric
gμν ¼ diagð1;−1;−1;−1Þ.

II. SIGNAL PHOTONS IN THE VACUUM
EMISSION PICTURE

Let us briefly summarize the formalism for computing
the signatures of quantum vacuum nonlinearities in high-
intensity laser pulse collisions. We pay special attention to
the assumptions, approximations, and the resulting ana-
lytical error. We focus on the numerical simulation of these
signatures, discussing the parameters which control simu-
lation accuracy and cost.

A. Vacuum emission picture

We start from the one-loop Heisenberg-Euler Lagrangian
to leading order in a weak-field expansion [11],

L1-loop
HE ¼ α

90π

4F 2 þ 7G2

E2
cr

þOðF6Þ; ð1Þ

with elementary charge e, electron mass me, and also

setting the scale for the critical field strength, Ecr ¼ m2
e
e ≈

1.32 × 1018 V=m. The weak-field expansion is formulated
in terms of the relativistic invariants

F ¼ 1

4
FμνFμν ¼ 1

2
ðB2 − E2Þ; ð2aÞ

G ¼ 1

4
FμνF̃μν ¼ −B · E: ð2bÞ

Here, Fμν denotes the field strength tensor of the applied
electromagnetic field and F̃μν ¼ 1

2
εμναβFαβ its Hodge dual.
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The higher orders in Eq. (1) are suppressed by correspond-
ing powers of the critical field strength and can be
derived to arbitrarily high order from the full expression,
cf. [2,4,9,59].
Equation (1) is the relevant interaction term for the study

of signatures of quantum vacuum nonlinearities in currently
achievable high-intensity laser pulse collisions. In addition
to the weak-field expansion and the one-loop approxima-
tion, it relies on the assumption of the fields varying slowly
on scales of the (reduced) Compton wavelength ƛC ≈
3.86 × 10−13 m and Compton time τC ≈ 1.29 × 10−21 s.
For state-of-the-art and near-future laboratory parameters,
the dominant error arises from the loop expansion with the
subleading two-loop terms contributing corrections on the
1% level. While the latter are fully computable [4,60–62],
we consider this as an incentive to aim for a numerical error
well below this higher-loop level such that numerical
predictions can reliably cover two-loop accuracy in future
studies.
In the vacuum emission picture, the signal amplitude

follows as

SðpÞðkÞ ¼ hγβðkÞjΓ1-loop
HE j0i; ð3Þ

where hγβðkÞj is the one photon statewith linear polarization
β∈ ½0; 2πÞ and wave vector k. The interaction of the
colliding laser pulses is encoded in the effective action
Γ1-loop
HE ¼ R

d4xL1-loop
HE , and j0i denotes the vacuum state.We

emphasize that Eq. (3) accounts only for the zero-to-one
signal-photon transition. Processes generating two or more
signal photons are neglected, as they are typically sup-
pressed relative to the single signal-photon emission [63].
To evaluate Eq. (3), we decompose the field as Fμν →

Fμν þ fμν into an intense background Fμν treated as
classical and fμν considered as an operator-valued signal.
For the one-signal-photon amplitude, it suffices to consider
the leading order of the expansion of Eq. (1) around the
background,

L1-loop
HE ðF þ fÞ ¼ L1-loop

HE ðFÞ

þ fμν
∂L1-loop

HE ðFÞ
∂Fμν þOðf2Þ: ð4Þ

Combining Eqs. (1)–(4), we can write the signal amplitude
as [32]

SβðkÞ ¼ A
Z

d4x eikx

× ½4ðeβ · E − eβþπ
2
· BÞF

þ 7ðeβ · Bþ eβþπ
2
· EÞG�; ð5Þ

where A ¼ 1
i

e
4π2

m2
e

45

ffiffi
k
2

q
ð e
m2

e
Þ3, and k ¼ k0 ¼ jkj denotes the

wave number. The linear polarization vectors eβðkÞ; eβþπ
2
ðkÞ

form an orthonormal basis together with the normalized
wave vector ek ¼ k=k. We also use the short form
kx ¼ kμxμ. The (energy and emission angle resolved)
differential number of signal photons is given by

d3 NβðkÞ
d3k

¼ 1

ð2πÞ3 jSβðkÞj2; ð6Þ

where d3k ¼ k2 dk dΩ and dΩ ¼ sinðϑÞdϑ dφ. In this
work, we do not resolve signal-photon polarizations but
sum over both orthogonal polarization directions. Of
course, the VacEm code provides fully polarization
resolved information.

B. Numerical implementation

The VacEm code is a numerical simulation code intro-
duced in [1]. Given an arbitrary EM field configuration and
parameters defining the simulation domain, it computes the
signal amplitude Eq. (5) in two parts Sa=b such that
SβðkÞ ¼ AðsinðβÞSaðkÞ þ cosðβÞSbðkÞÞ. In order to reduce
the number of operations and enable using fast Fourier
transform (FFT) for the main computational task, the
implementation works with the reformulated equations

SaðkÞ ¼
Z

dt eickt½e1 · Q̂ − e2 · R̂�; ð7aÞ

SbðkÞ ¼
Z

dt eickt½e2 · Q̂þ e1 · R̂�; ð7bÞ

where e1 and e2 denote some basis vectors for the polari-
zationdirection such that eβðkÞ¼ sinðβÞe1ðkÞþcosðβÞe2ðkÞ.
We define

Q̂ ¼
Z

d3x e−ik·xQ with Q ¼ 4EF þ 7BG; ð8aÞ

R̂ ¼
Z

d3x e−ik·xR with R ¼ −4BF þ 7EG: ð8bÞ

The numerical implementation is now straightforwardly
given by

R
dt →

P
tΔt and

R
d3x e−ik·x → FFT3; see

Appendix A for a pseudocode representation.
The simulation grid (in position space) is controlled

by 8 parameters. There are 4 parameters defining the
simulation domain ðLt; Lx; Ly; LzÞ and 4 parameters defin-
ing the number of grid points in each dimension
ðNt; Nx; Ny; NzÞ. There are multiple aspects to consider
when choosing these parameters. The simulation grid must
capture the interaction of the laser pulses in extent and
resolution. Furthermore, the numerical error generally
shrinks for larger parameter values, but the computational
cost grows. The former is a minimum requirement, whereas
the latter is an optimization problem.
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It is useful to consider the grid resolution ðΔt, Δx, Δy,
Δz) with Δμ ¼ Lμ=Nμ. Focusing on the counterpropagat-
ing scenario, the relevant scales for the temporal parameters
are set by the pulse durations τi and wavelengths λi, where
i∈N labels the laser pulse, i.e., Lt ¼ LtðτiÞ, Δt ¼ ΔtðλiÞ.
We require a sufficiently small Δt in order to achieve
convergence of the time integration. For the spatial param-
eters, we connect the longitudinal extent along the beam
axis to the extent in time Lk ¼ LkðLtÞ and adjust the
transversal extent L⊥ ¼ L⊥ðw0;iÞ as a function of the beam
waists w0;i.
Similar considerations can be made in k space. Since

Δkx;y;z ¼ 2π=Lx;y;z and kx;y;z;max ≈ 2π=ð2Δxx;y;zÞ, the
desired/required k space properties constrain the choice
of the spatial parameters Lx;y;z and Nx;y;z.
Computational cost is only affected by Nμ. The required

number of operations scales with NtNxNyNz logðNxNyNzÞ
and the required memory with NxNyNz. We are mainly
limited by memory, in particular, memory size. Appendix A
provides insight into the memory usage. Memory band-
width and latency additionally play a crucial role when
considering the processor-memory bottleneck (perfor-
mance gap) [64]. The original VacEm code runs on one
node and calls FFTW [65,66] for parallel FFT3. In this
work, improvements to the computation time and memory
usage were implemented. Multinode parallelism of the time
integration and single-precision float operations were
added to the feature set; see Appendix A and [44]. To
resolve the still existent memory bottleneck, FFT3 with
distributed-memory parallelism should be implemented in
the future.
Given the current code status and hardware performance,

a careful choice of all 8 simulation domain parameters can
largely suppress numerical artifacts at a reasonable com-
putational cost. Aliasing can be avoided by choosing Δμ
such that the sampling rate is above the Nyquist rate of the
involved frequencies. Spectral leakage caused by window-
ing is unavoidable and can only be suppressed by increas-
ing Lx;y;z. In Sec. III, we quantify the impact of numerical
artifacts. This work demonstrates the current capabilities of
the VacEm code.

III. QUANTUM-VACUUM SIGNATURES FROM
TAILORED-PULSE COLLISIONS

A. Pulse collisions in a dark-field scheme

Collisions of ultra-intense laser pulses lead to the
generation of scattered photons as a signature of the
fluctuation-induced effective nonlinear interactions
between electromagnetic fields and thus of the violation
of the superposition principle by the quantum vacuum.
With two generic laser pulses, the largest signal is produced
in a counterpropagating head-on collision. However, a
straightforward detection in experiment is hampered by
the fact that the quantum-induced signal photons are

predominantly scattered into the forward direction [8,9].
This makes it challenging to separate the signal from the
huge photon background of the driving laser pulses.
A promising idea to address this challenge is given by

the dark-field scheme [21,23] which we also use in the
following. Here, an annular pulse is tailored by blocking a
central part of the transverse far-field profile of the
incoming pulse such that the outgoing pulse also features
a field-free central region around its beam axis while a
peaked on-axis field is retained in its focus. This tailored
pulse is considered as the probe pulse going into the
positive y direction in our setup; see Fig. 1. The probe pulse
hits a counterpropagating pump pulse, both considered to
be optimally aligned at the collision point, which we
choose as the origin of our coordinate system. A crucial
point now is that the signal photons being scattered into the
forward direction of the probe pulse have the chance to
propagate into the forward shadow of the annular pulse. If
the shadow is sufficiently dark, a detector positioned inside
the dark-field region has the chance to detect the signal
photons above the shadow-suppressed background.
Focusing on the signal in the forward direction of the

probe, the dominant contribution to the signal amplitude
stems from the interaction in the focus region. Due to
energy and momentum conservation, the dominant term in
the signal amplitude Eq. (5) is linear in the probe and
quadratic in the pump pulse, cf. [63],

SβðkÞj∼Eprobe
∝
Z

d4x eikx½EprobeðxÞjEpumpðxÞj2

× Θðθ;φ; βÞ�; ð9Þ

whereΘ is some function defining the details of the angular
dependence. Therefore, it is instructive to take a closer look
at the probe field and the pump intensity in the focus.
More specifically, we use a pulsed annular flat-top beam

as the probe field, while we study both a pulsed Gaussian
beam or a pulsed flat-top beam as the pump field. In the
focal ðx; zÞ plane, we choose the polarization of both beams
in the z direction.

FIG. 1. Sketch of the collision setup showing the annular flat-top
probe in red propagating towards the positive y direction and the
counterpropagating Gaussian or flat-top pump in blue colliding in
the interaction point (IP) at ðx; y; zÞ ¼ ð0; 0; 0Þ. The increasing
opacity indicates the evolution forward in time. The colored
arrows indicate their respective propagation directions.
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The annular flat top and its special case, the flat top, are
analytically known in the interaction region. A Maxwell
solver makes them available at any time step t; see
Appendix A. For instance, the electric field component
of a linearly polarized beam (oscillation frequency ωI)
propagating in the y direction (ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
) in the focus

region is given by [63]

EIðt; xÞ ¼ 2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=e
1þ ν

r
e−ð

y−t
τI=2

Þ2

×

2
64J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−1=eÞ

1þν

q
2ρ
wI

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−1=eÞ

1þν

q
2ρ
wI

− ν
J1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1−1=eÞ
1þν

q
ν 2ρ
wI

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−1=eÞ

1þν

q
ν 2ρ
wI

3
75

× cosðωIðy − tÞÞ; ð10Þ

with the corresponding Gaussian peak field amplitude [67]

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

ffiffiffi
2

π

r
WI

πw2
I τI

s
ð11Þ

expressed in terms of the pulse energy WI, waist wI, and
1=e2 (on intensity level) pulse duration τI. The subscript I
emphasizes the validity limited to the interaction region, J1
is the Bessel function of first kind at order 1, and ν ¼
ðθin=θoutÞ2 is the blocking fraction for the annular flat top
with inner and outer far-field radial divergences θin, θout. In
the remainder of this work, we assume ν ¼ 1=4 for the
annular flat top and, of course, ν ¼ 0 for the flat top.
In Fig. 2, we depict the transverse focus profiles of the

annular flat-top beam amplitude, and of the intensities for
the flat-top beam and the Gaussian beam along the trans-
versal x direction; cf. Eq. (9). Throughout this work, the
pulse parameters are given by the wavelength λ ¼ 800 nm,
pulse duration τFWHM ¼ 20 fsð¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2Þ=2p
τÞ, and pulse

energy W ¼ 25 J corresponding to a petawatt-class high-
intensity pulse. We somewhat arbitrarily keep the probe’s
beam waist fixed at w0;1 ≈ 2.18 μm. The pump’s beam
waist w0;2 is varied to obtain different ratios w0;2=w0;1.
While the relative polarization could be optimized for
certain observables such as polarization flip or total photon
yield [67], it is not really of importance for our purpose
since it just modifies the overall factor for the signal
amplitude.
From Fig. 2, it is obvious that the Gaussian beam has a

Gaussian transversal profile in the focal plane. By contrast,
the flat-top beams exhibit a nontrivial Airy-ring structure in
the focal plane. Because the quantumvacuum signal is peak-
field driven, it is clear that the dominant contribution to the
signal will arise from the focal region where the maxima of
both pulses have the largest overlap. On the other hand, it is
also clear that the precise angular distribution of the signal
photons depends on the details of the laser beam structure.

In particular, the much richer transverse structure of a flat-
top pump suggests a qualitative difference of the behavior of
the angular signal distribution in comparison to that driven
by a Gaussian pump.

B. A phase transition analog

In the present work, we focus on a specific phenomenon
of the angular signal-photon distribution which can be
phrased in the language of a phase transition. As sym-
metries play a prominent role in the theory of phase
transitions, we first note that in the present counterpropa-
gating setup the composite field profile of the colliding
laser pulses features a rotational O(2) symmetry about the
propagation axis. This rotational symmetry is broken on the
level of the field vectors. It turns out that this breaking, of
course, results in a similar breaking of the rotational
symmetry of the quantum-induced signal photons in terms
of their transversal polarization state. In addition, the
number of signal photons depends on the relative polari-
zation of the colliding pulses [67]. Nevertheless, the
polarization-averaged signal-photon amplitude again inher-
its the rotationally O(2) symmetry.
The following argument illustrates that such a phase

transition analog with respect to the realization of this
symmetry must exist. In view of Fig. 2, we can envision
the possible interaction scenarios depending on the ratio of
pump beam waist w0;2 and the probe beam waist w0;1.
Regardless of the pump type, there exist two limiting
cases [21]: In the limit of a small pump beam waist
w0;2=w0;1 ≪ 1, the pump predominantly interacts with
the main peak of the annular flat top, which effectively
corresponds to the collision of two pulses with a single-
peak focus structure, similar to two Gaussian peaks. Hence,
we expect the signal to also exhibit a single peak structure
which—due to the O(2) symmetry—should lie on axis in
the forward direction (positive y axis).

FIG. 2. Transverse profile of the probe amplitude (aft) and the
pump intensity (ft, g) in the focus; cf. Eq. (9) (aft: annular flat top;
ft: flat top; g: Gaussian; w0;2=w0;1 ¼ 1.9; see text for all other
relevant parameters).
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In the opposite limit of a large pump beam waist
w0;2=w0;1 ≫ 1, the pump pulse can be well approximated
by a plane wave over the extent of the probe focus region.
This implies that the pump cannot transfer a relevant
amount of transverse momentum to the probe field. We
thus expect the angular distribution of the signal to
resemble the probe in the far field. For the present case
of an annular probe pulse, we also expect the signal to
feature an annular structure in the transverse ðx; zÞ plane.
For instance, for the signal intensity along the x axis at

z ¼ 0 and in the far field at sufficiently large y, we expect a
single-peak structure for w0;2=w0;1 ≪ 1 with the peak at
x¼0 on axis and a double-peak structure for w0;2=w0;1 ≫ 1

with the peaks at jxj > 0 off axis. (Below, we use an angle
variable instead of the x axis, but the features remain the
same.) Flipping the sign of the signal-photon distribution in
the far field, its shape and behavior resemble that of a
Landau-Ginzburg-type potential for an order parameter
across a phase transition.
For intermediate values of w0;2=w0;1, it is clear now that a

transition between a single- and a double-peak structure
needs to take place. From the analog to a phase transition,
we can infer that this transition can occur in various ways:
The transition can be smooth, similar to a second-order
transition such that the positions of the double peaks evolve
continuously from the single peak for increasing w0;2=w0;1

as found analytically for the collision of an annular
flattened-Gaussian probe with a Gaussian pump beam
in [21]. Alternatively, the double peaks can appear in
addition to the single peak exhibiting a coexistence of all
peaks for a certain interval of w0;2=w0;1 values. This would
correspond to a first-order phase transition.

C. Numerical simulation

Using the VacEm code with improved performance, we
show in the following that both types of transitions can
occur depending on the properties of the pump (flat-top vs.
Gaussian pump). This difference can again be motivated
from Fig. 2. For the case of a Gaussian pump, continuously
more and more side peaks (Airy rings) in the focal region of
the annular flat top contribute to the interaction the larger
the ratio w0;2=w0;1. By contrast, for the flat-top pump, the
side peaks on the fringes of the focal region go through
cycles of alignment and misalignment when varying
w0;2=w0;1.
Our investigation of the two setups of counterpropagat-

ing axisymmetric pulse collisions defined above uses the
following simulation parameters: Lt ¼ 4τ; Ly ≈ 6cτ; Lx;z ≈
18.5w0;2;max and a grid resolution Δμ equivalent to 7.5
points per period λ=c and wavelength k̃x;y;z=ð2πÞ, where
k̃x;y;z are the estimated maximum wave numbers along each
spatial axis. At this resolution, we resolve frequencies up to
ðλ=3Þ−1 along the propagation direction. This would even
be sufficient to account for photon merging [24,68–73],

a nonlinear phenomenon that is found to be strongly
suppressed in our setup.
The reasoning behind the choice of Lx;y;z is discussed in

Appendix B. The simulations make use of single-precision
floating-point operations. The latter provide a significant
increase in efficiency at basically no impact on the final
accuracy of our result, as the numerical error is dominated
by other sources; see Appendix A. The pump’s beam waist
w0;2 is varied between 2.0 μm and 8.0 μm in steps of
0.67 μm, i.e., w0;2=w0;1 between 0.92 and 3.7 in steps of
0.31. This gives us 10 values for w0;2 and encompasses the
expected transition region. After establishing this broad
range, we zoom in to better resolve the transition. An
additional 10 data points are obtained for w0;2 between
4.1 μm and 4.6 μm in steps of 0.061 μm, i.e., w0;2=w0;1

between 1.9 and 2.1 in steps of 0.028 in order to study the
nature of the transition.
We employ the VacEm code to simulate the signal

amplitude Eq. (5) for each value of w0;2. From this, we
compute the corresponding differential number of signal
photons, Eq. (6). Our observable of choice for visualizing
the resulting data is dN=dΩjϑ¼90°; i.e., we integrate the
differential number of signal photons over k and study it in
the ðx; yÞ plane at polar angle ϑ ¼ 90°. The spherical
coordinate system ðr; ϑ;φÞ is defined such that r is the
radial distance, ϑ is the polar angle between the z axis and
the radial axis, and φ is the azimuthal angle between the
x axis and the radial axis. Figures 3 and 4 show the signal
profiles for the range of pump beam waists w0;2 in the
vicinity of the phase transition as a function of the
azimuthal angle φ near and across the forward propagation
direction φ ¼ 90°.

FIG. 3. Differential number of signal photons in the ðx; yÞ plane
as a function of the azimuthal angle with φ ¼ 90° denoting the
forward propagation direction of the probe (annular flat top) and
signal. For the Gaussian pump setup, we observe the continuous
emergence of a double-peak structure with the pump waist w0;2

between 4.1 μm (dark blue) and 4.6 μm (light blue) in steps of
0.061 μm. The peaks of the individual curves are marked by a
cross ð×Þ. This transition is analogous to a second-order phase
transition.
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In Fig. 3, we depict the data for the collision of the
annular flat-top probe with the Gaussian pump for pump
waists w0;2 between 4.1 μm (dark blue) and 4.6 μm (light
blue) in steps of 0.061 μm. The topmost dark blue curve in
Fig. 3 belongs to the smallest pump waist w0;2, exhibits a
single-peak structure on the propagation axis at φ ¼ 90°,
and resembles a flattened Gaussian [74]. For even smaller
w0;2 (not shown in the figure), the signal profile converges
towards a Gaussian shape. For increasing pump waist w0;2,
the central peak broadens even further and evolves
smoothly into a double peak with the two peaks moving
further outward away from the propagation axis [21]. The
main emission directions are marked by a cross ð×Þ. The
transition from the single peak on axis to the double peaks
off axis is continuous and—using the peak position φpeak

(in the branch φ ≥ 90°) as an order parameter—resembles a
phase transition of second order.
In Fig. 4, we show the data for the collision of the same

probe (annular flat top) with the flat-top pump for the same
range of pump beam waists. The particular features of the
topmost dark blue curve can be explained by the already
growing left and right peaks. For smaller w0;2 (not shown in
the figure), this effect is not yet visible, and a Gaussian
shape is approached. For an increasing pump beam waist
w0;2, the side peaks become more pronounced, and we
observe a coexistence region of w0;2 values where the side
peaks as well as the central peak are local maxima marked
by a cross ð×Þ. This coexistence makes the transition
resemble a first-order phase transition. For larger w0;2

beyond the coexistence region, the differential number of
signal photons on the propagation axis at φ ¼ 90° becomes
a local minimum. The lowermost light blue curve belongs
to the largest w0;2 values of the plot.

From the markings, a qualitative difference in the
transition process, as compared to the analogous scenario
with a fundamental Gaussian pump, is evident.
Counterpropagating axisymmetric collision of the annular
flat-top probe and the Gaussian pump in Fig. 3 shows a
continuous formation of the left and right peaks from the
center. The central peak effectively dissolves into the outer
peaks. In contrast, the counterpropagating axisymmetric
collision of the annular flat-top probe and the flat-top pump
in Fig. 4 shows that the outer peaks start to form
independently of the central peak. There is even a period
during the transition where the outer peaks and the central
peak exist simultaneously.
Both figures clearly reflect the expectations of the

limiting cases: For a small pump beam waist, only the
interactions of the central focal peaks are relevant and lead
to a formation of a signal peak on axis. For larger pump
beam waists, the pump eventually resembles a plane wave
and the signal takes over the annular far-field profile of
the probe. Of course, for the beam waists shown in the
figures, we are still far away from the plane-wave limit
w0;2=w0;1 → ∞.
To further quantify the transition, we study the depend-

ence of the main emission direction of the signal photons
φpeak (in the branch φ ≥ 90°) on the beam-waist ratio
w0;2=w0;1 in Figs. 5 and 6.
In these plots, we include a broader range of w0;2 values

than used in Figs. 3 and 4. In the language of critical
phenomena, it is obvious from these figures that the beam-
waist ratio w0;2=w0;1 can be identified as a control

FIG. 4. Differential number of signal photons in the ðx; yÞ plane
as a function of the azimuthal angle with φ ¼ 90° denoting the
forward propagation direction of the probe (annular flat top) and
signal. For the flat-top pump setup, the double-peak structure
emerges while the central peak still exists. The graphs span a
range of pump waists w0;2 between 4.1 μm (dark blue) and
4.6 μm (light blue) in steps of 0.061 μm. The peaks of the
individual curves are marked by a cross ð×Þ. This transition is
analogous to a first-order phase transition.

FIG. 5. Main emission direction of the far-field signal-photon
distribution for an annular flat-top probe colliding with a
Gaussian pump as a function of the pump-to-probe waist ratio
w0;2=w0;1 across the transition. Interpreting the main emission
direction (in the branch φ ≥ 90°) as an order parameter, we
observe a continuous second-order phase transition. The blue
curve represents the power-law fit Eq. (12) for the critical
parameters of the transition region. The orange curve depicts
the analytical estimate (13). The double logarithmic plot in the
inset illustrates that the critical region is well described by this
simple scaling law Eq. (12) with a critical exponent β.
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parameter while the peak position φpeak serves as an order
parameter.
For the case of a Gaussian pump (Fig. 5), the second-

order nature of the phase transition is not only confirmed by
the qualitative aspects of the graph. We can also quantify
the analogy further by fitting the data to a power law as
suggested by conventional critical phenomena. Using the
fit model

φpeakjtransition ¼ C

�
w0;2 − w0;2;c

w0;1

�
β
þ π

2
; ð12Þ

with parameters C, β, and w0;2;c, we find for the
critical exponent of the order parameter β ¼ 0.372�
0.014. For the critical beam waist, we obtain w0;2;cjg ¼
ð4.1736� 0.0037Þ μm, implying a precise result for the
critical beam-waist ratio ðw0;2;c=w0;1Þjg ¼ 1.9121� 0.0017
which plays the role of the critical point. The fit includes all
data points ofFig. 5withφpeak > 90° except for the five right-
most points. The errors account for only a part of the
discretization errors; see discussion below. In the inset of
Fig. 5, the double logarithmic representation demonstrates
that the power law Eq. (12) indeed describes the critical
region rather accurately over 2 orders of magnitude.
An analytical estimate for the main emission direction

for the scenario with a Gaussian pump can be readily
extracted from Eq. (3.110) of [63]. Demanding the second
derivative of this expression for ϑ to vanish identically,
we infer

φpeak ¼ δφþ π

2
; ð13Þ

with δφ ¼ 0 for w0;2 ≤ w0;2;c and δφ implicitly defined by

I1

�
A
w0;2

λ
δφ

�
e−

1−ν
2
ðAπÞ2 ¼ ffiffiffi

ν
p

I1

� ffiffiffi
ν

p
A
w0;2

λ
δφ

�
ð14Þ

for w0;2 ≥ w0;2;c. Here, I1 denotes the modified Bessel

function of the first kind and A ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−1=eÞ

1þν

q
w0;2

w0;1
.

The analytical estimate for the critical beam-waist ratio
is [63]

ðw0;2;c=w0;1Þjg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1 − 1=e
1þ ν

1 − ν
lnð1=νÞ

s
; ð15Þ

which yields ðw0;2;c=w0;1Þjg ≃ 1.9118 for ν ¼ 1=4 as con-
sidered in the present work. Applying the fit model Eq. (12)
to the analytical estimate Eq. (13) in the same range (but
starting at the critical point) yields β ¼ 0.4370� 0.0038.
For the critical point, we observe a remarkable agreement
of the analytical estimate resorting to an infinite Rayleigh
range approximation with the result of the full numerical
calculation. The critical exponent shows a larger deviation.
In fact, it is expected that the critical point can be more
accurately fitted than the critical exponent since the number
and range of data points is small and therefore sufficiently
captures only the “location” as a local property but not the
“steepness” as an extended feature of the transition.
Additionally, it is important to consider that the error in
Fig. 5 is significantly smaller than the total numerical error;
see discussion below.
We note that the critical point could, of course, be

straightforwardly inferred also from the discretized scan of
the parameter space. At the current discretization step size,
this yields ðw0;2;c=w0;1Þjg ¼ 1.902� 0.014 which is con-
sistent with the fit result but less precise.
For the case of a flat-top pump, the order parameter

undergoes a first-order phase transition analog as shown in
Fig. 6. The jump in the order parameter goes hand in hand
with the observation of a coexistence region as it is obvious
from Fig. 4. The critical point in terms of the critical beam-
waist ratio for the flat-top pump setup is given by
ðw0;2;c=w0;1Þjft ¼ 1.930� 0.014 based on the discretized
scan in w0;2.
Note that the critical points for the Gaussian pump and

the flat-top pump setup are close. Because the flat-top
pump considered here can be understood as the limiting
case of an infinite-order flattened-Gaussian beam [63,74],
the class of flattened-Gaussian beams naturally provides a
smooth interpolation between Gaussian and flat-top beams.
Therefore, we expect a continuous interpolation between
the phase transition analogs in Figs. 5 and 6. Since the
flattened-Gaussian beams of order one or higher exhibit an
Airy-ring structure, it remains an interesting open question
for the future as to whether the transition from second to
first order occurs at a critical value of the order of the
flattened Gaussian.

FIG. 6. Main emission direction of the far-field signal-photon
distribution for an annular flat-top probe colliding with a flat-top
pump as a function of the pump-to-probe waist ratio w0;2=w0;1
across the transition. Interpreting the main emission direction
(in the branch φ ≥ 90°) as an order parameter, we observe a
discontinuous first-order phase transition marked by a finite jump
of the order parameter.
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As discussed in much more detail in Sec. II B, the
computations leading to the results presented in this section
are subject to numerical errors and artifacts. With regard to
the transverse focus profiles involved, cf. Fig. 2, it is clear
that resolving the flat-top beams requires particular care.
Since the simulation is confined to a finite volume, we
unavoidably lose information. Specifically, cutting off
the spatial directions transverse to the beam axes of the
driving laser fields goes along with a loss of information
that is significant for preserving the relevant beam-profile
information.
In the focus, the flat-top structure is encoded in the

transversal structure on the fringes of the central peak.
Therefore, it is advisable to choose the transversal domain
such that the field is cut off at extrema in the focal plane. In
this way, the spectral leakage during the FFT3 caused by the
discontinuities in the periodic continuation is minimized.
For the estimate of the errorΔφpeak in Figs. 5 and 6, we have
repeated the simulation for a range of values of the trans-
versal length parameters 2w0;2;max ≤ Lx;z ⪅ 18.5w0;2;max.
A Richardson extrapolation [75] is then used to obtain an
error estimate. Thus, the error corresponds to the limit of
accounting for the complete Airy-ring structure of the
annular flat-top probe and its effect on the signal’s main
emission direction, i.e., the qualitative features of the phase
transition analogs. A detailed discussion of the variation of
Lx;z in order to estimate the resulting error is provided in
Appendix C.
Additionally, we discuss the impact of the finite propa-

gation lengths Lt;y and grid resolution Δμ. The estimated
errors from these discretization parameters for the quali-
tative features of Figs. 5 and 6 are found to be small.
An estimate for the total discretization error can be obtained
by assuming linear convergence in all discretization
parameters. In this case, we obtain ðw0;2;c=w0;1Þjg ¼
1.9065� 0.0066 and β ¼ 0.417� 0.083, which is in
satisfactory agreement with both the simulation result
elaborated above and the analytical estimate. Details are
provided in Appendix C.

D. Universality

For the laser pulse collisions studied above, the language
of critical phenomena is useful to qualitatively classify the
signal emission phenomena as well as to quantify the
second-order transition in terms of a critical scaling law and
a corresponding critical exponent for the order parameter.
This raises the interesting question to which extent the
concept of universality applies to the presently studied
observables.
For the preceding examples, our results indicate that the

qualitative difference between the first- and second-order
transitions originates in the transverse focus profile.
Increasing the waist of the Gaussian pump, the overlap
with the Airy rings of the probe changes smoothly, leading
to a smooth transition. By contrast, the overlap for the case

of a flat-top pump and the annular probe goes through a
sequence of commensurate and incommensurate overlaps,
representing a source for a discontinuous transition. Since
interpolations between Gaussian and flat-top beam profiles
exist in the form of flattened Gaussians [63], it is natural to
expect that the observables in the critical region depend on
the transversal shape of the pulse. For instance, the critical
exponent β is likely to depend on the specifics of the beam
choice. This would correspond to a lower degree of
universality in comparison to critical phenomena in stat-
istical physics.
As an illustration, let us consider again the second-order

transition for the case of a Gaussian pump as a function of
the blocking fraction ν for the annular flat-top probe beam.
It is obvious that the critical exponent β cannot be
independent of ν: In the limit ν → 0, the beam turns from
annular to standard flat-top form, and thus the phase
transition has to vanish. However, for a large blocking
fraction ν → 1 − ϵ, 0 < ϵ ≪ 1, we expect the phase tran-
sition to occur as a stable phenomenon. In order to check
for universality, we use the infinite Rayleigh range approxi-
mation yielding Eqs. (14) and (15) for an analytical
estimate of the critical point and the critical exponent as
a function of ν.
Figure 7 displays the value of the critical point in the

beam-waist ratio as a function of ν. We observe that the
critical point indeed tends to infinity for ν → 0, implying
that the phase transition disappears as expected for ν ¼ 0.
Figure 8 depicts βðνÞ, exhibiting a large variation for

small ν where the phase transition tends to vanish.
Interestingly, the critical exponent βðνÞ is rather indepen-
dent of ν for larger values of the blocking fraction where the
annular nature of the beam becomes more and more
pronounced. In the idealized limit ν → 1− where the

FIG. 7. Analytical estimate Eq. (15) for the location of the
critical point in the beam-waist ratio (onset of a second-order
phase transition in the emission direction) as a function of the
annular-beam blocking fraction ν for the collision with a
Gaussian beam. For ν → 0, the probe beam becomes a flat
top, and thus the phase transition disappears. For any value of
ν∈ ð0; 1Þ, a second-order phase transition is present.
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annular beam is an infinitesimally thin ring of light in the
far field, we approximately find β ≃ 0.43.
In summary, this simple example demonstrates that the

second-order phase transition analog does not extend to
quantitative universality in the sense of distinct universality
classes characterized by specific values for the critical
exponents independent of the precise realization of the
phenomenon. Still, we find indications for an effective
universality in the sense of the critical exponent depending
only weakly on realization details in certain parameter
regions.

IV. CONCLUSIONS AND OUTLOOK

We have performed a theoretical study of the quantum
vacuum signal attainable in collisions of ultra-intense laser
pulses based on the effective action of QED. As an
increasing number of petawatt-class lasers are coming
online nowadays, increasingly refined theoretical methods
in combination with efficient detection schemes are neces-
sary to exploit the full potential of these facilities for the
discovery and exploration of the nonlinear response of the
quantum vacuum at highest intensities.
In the present work, we demonstrate that the qualitative

features of observables can depend strongly on the details
of the laser pulses, making the development and use of
powerful simulation tools important in the future. For the
simple case of a head-on collision of counterpropagating
pulses and using a recently proposed dark-field scheme that
involves an annular probe, we discovered that observables
such as differential numbers of signal photons can undergo
the analog of a phase transition as a function of the beam-
waist ratio. We highlighted that the nature of this phase
transition can depend on the details of the pump beam
profile.

The existence of this phase transition analog can be
understood from the pulse properties in the focal region that
are most relevant for the quantum signal generation. The
way that the signal realizes the axisymmetry of the setup
depends on how the pump pulse interacts with and thereby
resolves the transversal structure of the probe pulse. For a
transversally smooth Gaussian pump, we discovered a
smooth second-order transition in a signal-photon observ-
able as a function of the pump’s beam waist (or equiv-
alently the beam-waist ratio) serving as a control parameter.
For a transversally structured flat-top pump, the phase
transition is of first order.
In the present example, the language of critical phenom-

ena was also useful to quantify the second-order transition
in terms of a critical scaling law and a corresponding
critical exponent for the order parameter. In contrast to such
critical phenomena in statistical physics, we do not observe
an independence of the critical quantities from the details of
the pulse collision, and thus, there is no notion of
universality classes. Still, we observe an effective univer-
sality, i.e., an insensitivity of the critical exponent to
specification details in a larger parameter region.
Another difference to conventional phase transitions is

reflected in the role and realization of the symmetry: Even
though theO(2) axisymmetry is important for the qualitative
discussion of the phase transition in the first place, the phase
transition does not correspond to an order-disorder transition
nor is the symmetry spontaneously broken on one side of the
transition. This is because there is no notion of a ground state
that may or may not respect the symmetry. Instead, the
observables are quantum averages over all possible scatter-
ing states, implying that the observables on both sides of the
transition fully respect the O(2) symmetry.
As a further important remark, it should be emphasized

that the choice of laser parameters made in this work is
particularly suitable for the discussion of the phase tran-
sition analog. By contrast, the parameters are not optimized
for a realistic first-discovery experiment of quantum non-
linearities. For the latter, an optimization of the relative
polarization angles, the choice of blocking fraction of the
annular beam, and the waist size ratio of the beams would
suggest partly very different parameter regimes; see [27,30]
for the discussion of concrete detection schemes.
Finally, we stress again that the present work and the

quantitative analysis of the partly subtle phenomena have
required the use of a reliable numerical simulation code
such as the VacEm code together with some performance
improvements as well as a careful error analysis as detailed
in the appendixes. We believe that the present work serves
as a useful example for the use of such codes as well as a
motivation for their further development in the future.
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APPENDIX A: UNDERSTANDING
AND ADVANCING THE VACEM

SIMULATION CODE

The control of the numerical scheme and the subsequent
error analysis require a deeper understanding of the VacEm
code following [1,44]. There exist two modes of operation:
explicit and solver. As the names suggest, the
explicit mode computes the signal amplitude based
on explicitly defined E, B fields. The solver mode takes
the complex spatial electric-field profile at the focus
Eðt0; xÞ as input and propagates it by solving Maxwell’s
equations in order to provide E, B at arbitrary times t. The
Maxwell solver was developed in [76]. Note that the theory
discussed in Sec. II assumes E, B as real fields. Within the
VacEm code itself and for the present considerations
regarding the Maxwell solver, it is nevertheless convenient
to treat the fields as complex; i.e., for the remainder of this
section, we assume E, B to be complex and use the
replacement E → ℜðEÞ, B → ℜðBÞ in order to make
contact with Sec. II.
The propagation is described in terms of the complex

spectral amplitudes a0pðkÞ defined by

Aðt; xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xÂðt; kÞ; ðA1Þ

Âðt; kÞ ¼ e−ickt
X2
p¼1

epðkÞa0pðkÞ; ðA2Þ

where Aðt; xÞ is the electromagnetic potential and Âðt; kÞ
its spatial Fourier transform. Any pair of spectral ampli-
tudes corresponds to a solution of Maxwell’s equations in
vacuum. The code utilizes the radiation gauge, i.e., Aμ ¼
ð0;AÞ and ∇ · A ¼ 0. Starting with Eðt0; xÞ, the complex
spectral amplitudes can be constructed as

a0pðkÞ ¼ eickt0
1

ick
epðkÞ · Êðt0; kÞ: ðA3Þ

This representation is not unique; for alternatives, see [1].
The propagated spectral amplitudes are given by

apðt; kÞ ¼ e−ickta0pðkÞ; ðA4Þ

allowing us to compute the propagated E, B fields in k
space,

Êðt; kÞ ¼ ick½e1ðkÞa1ðt; kÞ þ e2ðkÞa2ðt; kÞ�; ðA5aÞ

B̂ðt; kÞ ¼ ik½e1ðkÞa2ðt; kÞ − e2ðkÞa1ðt; kÞ�: ðA5bÞ

An inverse Fourier transform (iFFT3) of Eq. (A5) then
gives us E, B at arbitrary times t. Of course, in the
explicit mode, Eqs. (A1)–(A5) are not required.
These preliminary considerations regarding the Maxwell

solver in combination with Sec. II allow us to understand
the algorithmic structure of the VacEm code in List. 1.
Listing 1: Pseudocode algorithm of the VacEm code in

solver mode.

INPUT config.ini, Eðt0; xÞ
a01; a02 ⟵ Eq: ðA3ÞðFFT3ðEðt0; xÞÞÞ
Sa;Sb ⟵ 0
FOR t = t_start TO t_stop STEP Δt

a1; a2 ⟵ Eq: ðA4Þða01; a02Þ
Êi; B̂i ⟵ Eq: ðA5Þða1; a2Þ
Ei; Bi ⟵ iFFT3ðÊi; B̂iÞ
F ;G ⟵ Eq: ð2ÞðEi; BiÞ
Qi ⟵ Eq: ð8aÞðEi; Bi;F ;GÞ
Q̂i ⟵ FFT3ðQiÞ
Sa ⟵ Sa þ eickte1 · Q̂
Sb ⟵ Sb þ eickte2 · Q̂
Ri ⟵ Eq: ð8bÞðEi; Bi;F ;GÞ
R̂i ⟵ FFT3ðRiÞ
Sa ⟵ Sa − eickte2 · R̂
Sb ⟵ Sb þ eickte1 · R̂

END FOR
Sa ⟵ SaΔt
Sb ⟵ SbΔt
OUTPUT Sa;Sb

The explicit mode features the same algorithm minus
the computation of E, B and without the need to provide
Eðt0; xÞ as input. Reference [1] implemented List. 1 in the
programming language Python 3 [77].
For the present work, two improvements of the VacEm

code were implemented; see [44] for details. These are
intended to reduce the computational cost. The original
VacEm code is already feature-complete within the vacuum
emission picture in the sense that it simulates the signal
amplitude Eq. (5) for arbitrary EM fields.
The first improvement allows for the use of single-

precision floating-point operations (as an alternative to
Python’s default double precision). Naturally, restricting
the float precision to single nearly halves the required
memory and reduces the computation time. What makes
this a feature for the VacEm code is the fact that the
reduction in float precision does not have any adverse effect
on the significance of the results. The relative error for
double precision is on the order of 10−16 (52 bits for the
significand, rel. error 2−52) and for single precision 10−7
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(23 bits for the significand, rel. error 2−23). Due to
accumulation effects, the actual relative error caused by
the finite float precision is typically 1 to 2 orders of
magnitude larger [FFT3 error growth is OðlogðNxNyNzÞÞ].
For our annular flat-top probe and Gaussian pump setup
using single precision, we find no (additional) error for
φpeak and a relative error of 10−5 for the number of signal
photons in the background-free region Nhole compared to
the double precision result. This precision restriction is well
below the analytical error of the one-loop approximation
around 10−2 and the total numerical error. In fact, when
working on predictions for experiments, half-precision
floating-point operations could be considered (currently
not implemented and therefore not tested). The implemen-
tation of single-precision floating-point operations for the
VacEm code is only done for the three-dimensional arrays,
as all other parts are computationally insignificant in
comparison.
The second improvement is multinode parallelism. The

original VacEm code employs pyFFTW [78] to compute
the FFT3 in parallel. This implementation is restricted to
one node. To reduce computation time, we added paral-
lelism to the time integration through mpi4py [79]. The
allowed values for the number of nodes is restricted to
powers of 2. This is due to the parallel data transfer stage.
The speedup is close to ideal for a small number of nodes.
There are no memory savings. In fact, the full amount of
memory required in the original VacEm implementation is
now allocated on each node; i.e., the total memory usage
scales by the number of nodes plus an additional memory
overhead.
As discussed in Sec. II B, the memory per node is the

main limiting factor for the VacEm code. A lower bound for
the memory usage at double precision is given by [44]

RAMmin ¼ NxNyNzð15 × 128 bit

þ 8 × 64 bitÞ 10
−9 GB
8 bit

; ðA6Þ

since 15 complex128 (a01, a02, Sa, Sb, a1, a2, E, B, Q or
R) and 8 double (F , G, e1, e2) three-dimensional arrays
are allocated at the same time. The only scalable way
around this problem is FFT3 with distributed-memory
parallelism. For the distributed memory allocation and
FFT3 computation, there already exist multiple libraries.
Based on MPI and FFTW, there are mpi4py-fft [80,81],
fftw3-mpi [65,66], pfft [82,83], and p3dfft++
[84,85], all available through the Python wrapper
FluidFFT [86,87]. For different FFT3 implementations
including GPU capabilities, see HeFFTe [88,89]. Yet,
integrating a distributed memory scheme into the current
VacEm code structure is not straightforward.
In addition to these generic improvements, there is some

potential to optimize the algorithm (List. 1) itself, e.g.,
making use of in-place operations.

APPENDIX B: STRATEGIES FOR REDUCING
NUMERICAL ARTIFACTS

The VacEm code’s main operations are the spatial FFT3

and the temporal rectangle-rule integration used to perform
the required space-time integrations. As already previously
stated in Sec. II B, the discrete Fourier transform exposes us
to aliasing and spectral leakage.
Avoiding aliasing is straightforward by sampling above

the Nyquist rate, provided that the maximum frequency in
each spatial dimension is known. For the counterpropagat-
ing axisymmetric pulse collision setups in this work, we
have one propagation direction y and two transversal
directions x, z. The maximumwave number in the direction
of propagation is 2π=λ plus a bandwidth term ∝ 1=ðcτÞ. In
the transversal directions, we only have to resolve wave
numbers of the order of ∝ 1=w0. Thus, we obtain an
estimate of the maximum wave vector k̃x;y;z. For the grid
resolution, we find Ly=Ny ≪ Lx;z=Nx;z. Our spatial grid
sizes at 7.5 points per wavelength range from 63 × 637 ×
63 to 360 × 637 × 360 and are therefore comparatively
lightweight. The numerical cost of simulations without the
symmetry provided by the counterpropagating axisymmet-
ric setup would be much larger since more than one axis
needs to resolve 2π=λ.
To reduce the effects of spectral leakage, the periodic

continuation of the spatial simulation domain should be as
smooth as possible. We focus on the annular flat-top probe,
as it contributes linearly to the signal amplitude. The cutoff
at the boundaries of the simulation domain should be at
extremal points of the annular flat-top beam’s field ampli-
tude at t ¼ 0. Along the propagation direction, we cut off at
the next local minimum after Ly ¼ 6cτ. For the transversal
directions, we set Lx;z ¼ 2w0;2;max with w0;2;max ¼ 8.0 μm
as the lower bound and cut off at the next 10 local minima
as visualized in Fig. 9. This provides a range of Lx;z for the
error estimation in Appendix C. In Fig. 9, the black dotted
lines show the lower bound, and the gray dotted lines
labeled from 0 to 9 show the transverse domain boundaries.
As already mentioned, the domain is always determined for
w0;2;max irrespective of the actual pump beam waist. This
ensures that the probe is always identically resolved for all
pump beam waists, and its resolution is only subject to the
changing extents Lx;z of the simulation in the transverse
directions. On the other hand, for fixed Lx;z, the pump is
best resolved if its beam waist is small. At cutoff 9 used for
the results presented in Sec. III C, this effect is of no
importance anymore.
At last, we have to consider the number of time steps

needed for sufficient convergence of the rectangle-rule
integration in time. Of course, resolving the frequency c=λ
is required. Significantly more time steps are needed for
the rectangle rule to yield a reasonable approximation. We
use Nt ¼ 384 corresponding to 7.5 points per period,
matching the spatial resolution; see [1] for a convergence
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analysis of the VacEm code’s time integration in the all-
optical regime.
Note that in addition to the VacEm code’s intrinsic error

sources, the evaluation of the simulation data is nontrivial.
Most observables relevant to experiment are formulated in
spherical coordinates. A mapping from Cartesian to spheri-
cal coordinates via interpolation is necessary and can cause
artifacts as well as significantly contribute to the total
numerical error.

APPENDIX C: ERROR ESTIMATION
FOR A MULTIDIMENSIONAL
CONVERGENCE PROBLEM

There are eight parameters controlling the simulation
grid of the VacEm code. For each of the four axes spanning
the simulation grid, there is one length Lμ and one number
of points Nμ. Convergence is expected for Lμ → ∞ and
Nμ → ∞. Focusing on just one parameter, Richardson
extrapolation [75] is a universal approach to determine
the convergence rate and the extrapolated true value of an
observable. Due to the axial symmetry of our setups with
regard to the propagation axis (y axis), we can treat the
transverse axis lengths Lx;z ¼ 2π=kx;z ∝ 1=Δφ as one
parameter. Strictly speaking, the axial symmetry is broken
by the polarization which we choose to lie along the z axis.
Yet, an axial symmetry is present for the individual field
components, e.g., Ex, Ey, Ez. This is what matters for us
since the FFT3 acts on these field components. For the
observable φpeak (now considered as a function of the
discretization) in Fig. 5 and 6, the Richardson extrapolation
is given by

φ�
peak ¼ φpeak

�
Δφ
π=2

�

þ C

�
Δφ
π=2

�
p
þO

��
Δφ
π=2

�
pþ1

�
; ðC1Þ

where � marks the extrapolated true value and p is the
convergence rate with regard to the discretization (azimu-
thal resolution or step size) Δφ. At the reference scale π=2,
we get Δφ

π=2 ≪ 1, justifying a truncation at leading order. An
example for the convergence fit of the observable φpeak is
given in Fig. 10 for the case of the annular flat-top probe
and Gaussian pump setup at w0;2 ¼ 8 μm. Studying the
convergence of the VacEm code for different observables,
an oscillatory behavior becomes evident. The Richardson
model Eq. (C1) is unable to fit these oscillations but still
remains a valuable tool for extracting the overall trend,
provided that sufficiently many data points are available. In
Fig. 10, oscillations dominate at low azimuthal resolution,
and therefore the convergence rate cannot be accurately
determined; i.e., the relative error in p is greater than 1.
Adding more data points is costly and partly constrained by
our cutoff requirement discussed in Fig. 9. Nevertheless,
we obtain a reasonable estimate of the extrapolated true
value; here φ�

peakjFig:10 ¼ ð94.631� 0.038Þ°. In view of
these difficulties in model fitting, we use φ�

peak only for
error estimation,

Δφpeak ¼ jφpeak − φ�
peakj: ðC2Þ

Equations (C1) and (C2) can be analogously used for other
observables and their correspondingdiscretization. For a less
complex and more experimentally relevant observable—the
number of signal photons in the background-free region,
Nhole—we encounter weaker oscillations and therefore

FIG. 9. Spectral leakage is reduced by a suitable adjustment of
the boundaries of the simulation domain. In the transversal
directions, we choose the axis lengths Lx;z such that the
boundaries lie in the minima of the probe’s focus profile. The
gray dotted lines labeled from 0 to 9 depict a sequence of
corresponding spatial cutoffs used for our error estimate.

FIG. 10. Convergence of φpeak for the annular flat-top probe
and Gaussian pump setup at w0;2 ¼ 8 μm as a function of the
azimuthal resolution Δφ. The blue curve shows the fit of the
Richardson extrapolation model Eq. (C1).
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better compatibility with the Richardson model; see Fig. 11.
The convergence rate of Nhole can be determined as
pjFig:11 ¼ 1.38� 0.21. The oscillatory convergence behav-
ior can be understood as an artifact of the discretization—
primarily in the context of the FFT3 but also regarding the
construction of a given observable. Increasing Lx;z does not
just add points to the k space grid but, in general, it readjusts
the position of all points, as we keep the grid resolution in
coordinate space fixed. Thus, especially angle-dependent
observables like φpeak undergo significant oscillations dur-
ing convergence. Integration along the discretized axes
smoothens out this problem; cf. Fig. 11.
A scaling of the remaining simulation parameters gives

corrections on the same order of magnitude or smaller for
all test cases that we performed. With the annular flat-top
probe and Gaussian pump setup, an increase of the grid
point density from 7.5 to 9 points per period and wave-
length shows relative corrections on the order of 10−2 for
Nhole and 10−4 for φpeak. Extending the propagation length
Lt;y by one pulse duration τ results in 10−4 for Nhole and no
corrections for φpeak (since the mapping to spherical
coordinates is identical). In general, each simulation
parameter has its own convergence rate for a given
observable. A multidimensional convergence analysis
according to the Richardson model is given by

A� ¼ Aðd1;…; dnÞ þ
Xn
i¼1

ðCid
pi
i þOðdpiþ1

i ÞÞ; ðC3Þ

with observable A, number of simulation parameters n,
discretizations di, convergence rates pi, extrapolated true
value A�, and leading-order constants Ci. Unfortunately,
due to the large number (2nþ 1) of model parameters A�,
pi, Ci, fitting Eq. (C3) is currently not feasible.

Still, Eq. (C3) can be used to obtain an estimate for the
total discretization error in all 8 simulation grid parameters
of the VacEm code. The error for a given observable
ΔAðd1=s;…; dn=sÞ at discretizations di=s, where s > 1 is
an arbitrary scaling factor with respect to some base
discretization di, can be simplified to

ΔAðd1=s;…; dn=sÞ

¼
���Aðd1=s;…; dn=sÞ − Aðd1;…; dnÞ

sp − 1

���; ðC4Þ

under the assumption of an effective convergence rate
pi ¼ p. Using Lt ¼ τ, Ly ¼ 2cτ, Lx;z ¼ 10w0;2;max, a
temporal resolution of 6 points per period λ=c, and a
spatial resolution of 3 points per wavelength k̃x;y;z as the
base discretization before scaling with s ¼ 2, we simulate
the collision of the annular flat-top probe and Gaussian
pump again, now estimating the total discretization error
Eq. (C4) for linear convergence p ¼ 1. The resulting
continuous phase transition in Fig. 12 matches our findings
(Fig. 5) from the main text. This estimate is reliable and acts
as an upper bound provided that the VacEm code’s effective
convergence rate peff ≥ 1. This assumption is plausible but
needs to be verified case by case.
For Nhole, we find a relative error between 7% and 15%.

In the case of φpeak, the discretization error in φ due to the
mapping from the Cartesian grids at discretizations di and
di=2 to spherical coordinates exceeds the estimated total
discretization error (which does not take the spherical
mapping into account). Therefore, the errors shown in
Fig. 12 are the sum of the Δφ at both discretizations.

FIG. 11. Convergence of Nhole for the annular flat-top probe
and Gaussian pump setup at w0;2 ¼ 8 μm as a function of the
azimuthal resolution Δφ. The blue curve shows the fit of the
Richardson extrapolation model.

FIG. 12. Main emission direction of the far-field signal-photon
distribution for an annular flat-top probe colliding with a Gaussian
pump as a function of the pump-to-probe waist ratio w0;2=w0;1
across the transition. The figure is completely analogous to Fig. 5
but accounts for errors from all 8 discretization parameters using
Eq. (C4) and a linear convergence rate p ¼ 1. This yields more
conservative estimates for the critical point ðw0;2;c=w0;1Þjg ¼
1.9065� 0.0066 and the critical exponent β ¼ 0.417� 0.083,
in satisfactory agreement with both the simulation result and the
analytical estimate given in the main text.
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