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In the framework of modular transformations, we reformulate the recently proposed hadron-quark
hybrid model when the imaginary baryonic chemical potential is introduced. In this case, the number
density of the hybrid model is obtained by the modular transformation of the complex number densities of
the baryons (antibaryons) and the quarks (antiquarks). We can regard these number densities as the basis in
the complex plane. As a result, we can consider the torus, which is characterized by the basis. Since the
complex structure of the torus is invariant under the modular transformation, we can extract the topological
property of the hadron-quark system using the untransformed baryon (antibaryon) and the quark
(antiquark) number densities. We apply this model to analyze the Roberge-Weiss transition. It is shown
that the torus vanishes at the baryonic chemical potential where the Roberge-Weiss transition appears
because the number density of baryons (antibaryons) is not linearly independent of the number density of
quarks (antiquarks). When the temperature T is lower than the Roberge-Weiss transition temperature TRW,
the torus shrinks smoothly to the one-dimensional object at the Roberge-Weiss transition point, but the
discontinuity does not appear. On the other hand, the discontinuity of the geometrical object appears
when T > TRW. We also calculate the modulus of the torus and transform it into the fundamental region.
The transformed moduli are symmetric below TRW, but the symmetry is broken above TRW.
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I. INTRODUCTION

Determination of the phase diagram of quantum chromo-
dynamics (QCD) is an important subject not only in nuclear
and particle physics but also in cosmology and astrophys-
ics; see, e.g., Ref. [1] and references therein. However,
when the baryon number chemical potential μ is finite and
real, the fist principle calculation, that is, the lattice QCD
(LQCD) simulation, is not feasible due to the infamous sign
problem; see Refs. [2,3] as an example. To circumvent the
sign problem, several methods are proposed and inves-
tigated, although, at present, these methods are not com-
plete, and we do not have adequate information on the
equation of state (EoS) at finite real baryon density.
One possible way to avoid the sign problem is to use the

LQCD results with the imaginary baryon number chemical

potential; see Refs. [4–8] as an example. When the baryon
number chemical potential μ is pure imaginary, there is no
sign problem. One can perform LQCD simulations at finite
pure imaginary μ, and then make an analytic continuation
from the quantities at imaginary μ to those at real μ.
Alternatively, one may determine the unknown parameters
of an effective model of QCD using the LQCD results at
imaginary μ. After determining the parameters, the model
calculations can be performed at real μ [9]. One can also
construct the canonical partition function with fixed baryon
number from the grand canonical partition function with the
pure imaginary chemical potential [10]. In principle, the
grand canonical partition function with the real chemical
potential can be constructed from the canonical ones.
However, at present, these approaches are far fromperfection.
QCD at imaginary μ itself has very interesting properties

and may provide us with an important insight into the
physical QCD at real μ. The grand canonical partition
function ZðθQÞ with pure imaginary quark chemical poten-
tial (μQ ¼ μ=3 ¼ iθQT) has the Roberge-Weiss (RW)
periodicity [10] as

Z

�
θQ þ 2π

3

�
¼ ZðθQÞ; ð1Þ
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where T is the temperature and θQ ∈R. This periodicity is
the remnant of the Z3 symmetry of pure gluon theory. At
low temperature, ZðθQÞ is a smooth function of θQ.
However, at high temperature above the RW temperature
TRW, it has a singularity at θQ ¼ ð2kþ 1Þπ=3 where k∈Z.
This singularity is called the RW transition [10]. Figure 1
shows a schematic phase diagram of the RW transitions.
The order of the end point of the RW transition line, which
is called the RW endpoint, has not yet been determined
definitively. TRW for 2þ 1 flavor QCD is estimated as
about 200 MeV by LQCD simulations [11–13]. The RW
transition is well described by quark models such as the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [14,15]. However, such a quark model fails to
reproduce the EoS of QCD matter at low temperature.
The numerical results obtained by the hadron resonance

gas (HRG) model are known to agree well with the LQCD
results if T is not so high. Usually, the ideal gas approxi-
mation is used for the calculations in the HRGmodel. In the
HRG model with pure imaginary baryon number chemical
potential μ ¼ iθT ¼ i3θQT, the RW periodicity is trivial,
since the model has a trivial periodicity,

ZHRGðθ þ 2πÞ ¼ ZHRGðθÞ: ð2Þ

In the case of the free hadron resonance gas model,
ZHRGðθÞ is a smooth function of θ at any temperature.
Of course, such a simple hadron model cannot reproduce
the RW transition.
The RW transition is expected to have a strong relation to

the deconfinement transition. A construction of the hybrid
model, which can reproduce the low- and high-temperature
properties of LQCD results as well as the RW transition, is
desirable. In this paper, we reformulate the recently pro-
posed hadron-quark hybrid model [16] in the framework of
the modular transformation when the pure imaginary bar-
yonic chemical potential is introduced. The baryonic num-
ber density ñb of the hybrid model is given by

ñb ¼
nb

1þ ðnb=nqÞ
; ð3Þ

where nb and nq are the number density of baryons and
a one-third of the number density of quarks, respec-
tively. Similarly, the antibaryonic number density of the
hybrid model is given using the number densities of
antibaryons and antiquarks. When nq is nonzero,
Eq. (3) can be rewritten as

τ0 ≡ ñb
nq

¼ τ

τ þ 1
; ð4Þ

where τ≡ nb=nq. At the imaginary baryonic chemical
potential, τ is a complex number in general. Hence,
Eq. (4) is a kind of modular transformations. For a detail
description of the modular transformation, see Sec. III.
We regard nb and nq as the basis in the complex plane.

As a result, we can consider the lattice and the torus, which
are characterized by the basis, or equivalently, their ratio τ
which is called modulus of the torus. For a brief review of
the lattice and the torus, see the Appendix. Since the
complex structure of the torus is invariant under the
modular transformation (4), we can extract the topological
property of the hadron-quark system using the untrans-
formed baryon (antibaryon) and the quark (antiquark)
number densities. Using the torus, we qualitatively analyze
the RW transition. The torus vanish if nb and nq is not
linearly independent. In fact, when T < TRW, the torus
shrinks smoothly to the one-dimensional object at
θ ¼ ð2kþ 1ÞπðθQ ¼ ð2kþ 1Þπ=3Þ, but the discontinuity
does not appear. On the other hand, the discontinuity of the
geometrical object appears there when T > TRW.
This paper is organized as follows. In Sec. II, the RW

periodicity and transition are briefly reviewed. In Sec. III, we
briefly summarize the modular transformation. In Sec. IV,
the hybrid model is reformulated within the framework of
modular transformation. In Sec. V, the RW transition is
qualitatively analyzed using the hybrid model. Section VI is
devoted to the summary and discussions.

II. ROBERGE-WEISS PERIODICITY
AND TRANSITION

The grand canonical partition function of QCD with
imaginary μQ ¼ iθQT is given by

ZðθQÞ ¼
Z

DψDψ̄DAμe−SðθQÞ; ð5Þ

where

SðθQÞ ¼
Z

β

0

dtE

Z
∞

−∞
d3xLðθQÞ; ð6Þ

with

FIG. 1. The schematic phase diagram of the RW transitions.
The three solid lines show the RW transition lines. The dots at the
end of the lines are the RW end points.
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LðθQÞ ¼ ψ̄ðγμDμ −m0Þψ −
1

4
F2
μν − i

θQ
β
ψ̄γ4ψ ; ð7Þ

here ψ , Aμ, Dμ, Fμν, and m0 are the quark field, the gluon
field, the covariant derivative, the field strength of gluon
field, and the current quark mass matrix, respectively, and
β ¼ 1=T. The Euclidean notation is used in Eqs. (5)–(7).
We perform the gauge transformation,

Aμ ↦ Uðx; tEÞAμU−1ðx; tEÞ −
i
g
ð∂μUðx; tEÞÞU−1ðx; tEÞ;

ψ ↦ Uðx; tEÞψ ; ð8Þ

where g is a coupling constant, Uðx; tEÞ are elements of
SUð3Þ with the temporal boundary condition Uðx; βÞ ¼
z3Uðx; 0Þ, and z3 ¼ expð−i2πk=3Þ is a Z3 element with
k∈Z. The action SðθQÞ is invariant under this trans-
formation but the quark boundary condition changes into

ψðx; βÞ ¼ − exp

�
i
2πk
3

�
ψðx; 0Þ: ð9Þ

Next, we perform the following transformation of quark
field:

ψ ↦ exp

�
−i

2πktE
3β

�
ψ : ð10Þ

Then, the boundary condition changes into the ordinary
antiperiodic one,

ψðx; βÞ ¼ −ψðx; 0Þ; ð11Þ

but the chemical potential term in the QCD Lagrangian
density (7) also changes into

−i
ðθQ þ 2πk=3Þ

β
ψ̄γ4ψ : ð12Þ

Hence, we obtain the RW periodicity (1). Dynamical
quarks break the Z3 symmetry but the RW periodicity
appears as a remnant of the Z3 symmetry [10]. In the
following, we concentrate our discussions on the region
0 ≤ θQ ≤ 2π

3
ð0 ≤ θ ≤ 2πÞ, since the properties of the RW

transition in the other regions are similar to those of this
region.
At low temperature below the RW transition temperature

TRW, the phaseϕ of the expectation valueΦ of the Polyakov
loop is a smooth function of θQ. There is a tendency that
ϕ cancels the effect of θQ and the approximate relation
ϕ ¼ −θQ holds; see Fig. 2. However, at high temperature
above TRW, ϕ is discontinuous at θQ ¼ π=3 due to the
degeneracy of the ground state. LQCD simulations indicate
the following approximate θQ-dependence of ϕ:

ϕ ¼

8>><
>>:

−θQ
�
T < TRW; 0 < θQ < 2π

3

�
0

�
T > TRW; 0 ≤ θQ < π

3

�
− 2

3
π

�
T > TRW;

π
3
< θQ ≤ 2π

3

�
:

ð13Þ

See Fig. 2 and, also see, e.g., Fig. 7 in Ref. [9] and the
references therein.
This relation is also well explained by the effective

model of QCD, such as the Polyakov-loop extended
Nambu–Jona-Lasinio (PNJL) model [9,14,15,17–24]. In
the PNJL model, the θQ dependence appears only in the
form of ΦeiθQ ¼ jΦjeiðϕþθQÞ. Hence, at low temperature, ϕ
tends to cancel the effects of θQ, and the approximate
relation ϕ ¼ −θQ holds. At high temperature, the θQ-
independent Polyakov-loop potential that originates in
the pure gluon sector of QCD has Z3-symmetric three
minima with ϕ ¼ 0, − 2π

3
and − 4π

3
, respectively. Due to the

effects of the quark part that breaks the Z3 symmetry
explicitly, one of these minima becomes the vacuum of the
system. When 0 ≤ θQ < π

3
, ϕ ¼ 0, but ϕ jumps from 0 to

− 2π
3
at θQ ¼ π

3
ðθ ¼ πÞ, that is, at the RW transition point.

It is well known that the PNJL model can reproduce the
other several important features of QCD; for example, see
Ref. [25] as a review. However, at low temperature, the
PNJL model fails to reproduce the EoS of the LQCD
simulation. Hence, a hybrid model that simultaneously
includes the quark and hadron degrees of freedom is
needed.

III. MODULAR TRANSFORMATION

In this section, we briefly review the modular trans-
formation. The modular transformation is defined by

FIG. 2. The approximate θQ dependence of the phase ϕ of the
Polyakov loop Φ. The dotted and solid lines show the relations at
T < TRW and T > TRW, respectively. When T > TRW, the
discontinuity of ϕ appears at θQ ¼ π=3.
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τ0 ¼ fðτÞ¼ aτþb
cτþd

ða;b;c;d∈Z;Δ¼ ad−bc¼ 1Þ;
ð14Þ

where τ is a complex variable and ImðτÞ ≠ 0. If we put
τ ¼ z2

z1
where z1 and z2 are nonzero complex variables,

Eq. (14) is rewritten as

τ0 ¼ z02
z01

¼ aτ þ b
cτ þ d

¼ aðz2=z1Þ þ b
cðz2=z1Þ þ d

¼ az2 þ bz1
cz2 þ dz1

; ð15Þ

or

�
z02
z01

�
¼

�
a b

c d

��
z2
z1

�
: ð16Þ

The 2 × 2 matrix which appears here is an element of
SLð2;ZÞ. Note that not only E but also −E is an identity
transformation, where E is a 2 × 2 unit matrix.
The modular transformation (14) is generated by the

following two transformations and their inverses.
S transformation:

�
z02
z01

�
¼S

�
z2
z1

�
≡
�
0 −1
1 0

��
z2
z1

�
¼
�−z1

z2

�
; ð17Þ

with τ0 ¼ − 1
τ.

T transformation:

�
z02
z01

�
¼ T

�
z2
z1

�
≡
�
1 1

0 1

��
z2
z1

�
¼
�
z2þ z1
z1

�
; ð18Þ

with τ0 ¼ τ þ 1.
Note that the S transformation changes the sign of

ReðτÞ but does not change the sign of ImðτÞ. The T
transformation changes ReðτÞ but does not ImðτÞ.
Consequently, Imðτ0Þ > 0ð< 0Þ when ImðτÞ > 0ð< 0Þ.
The modular transformation does not change the sign
of ImðτÞ.
If z1 and z2 are linearly independent in the complex

plane, we can consider a two-dimensional lattice Λ,

Λ ¼ fn1z1 þ n2z2 ∈Cjn1; n2 ∈Zg; ð19Þ

in the complex plane. That is, z1 and z2 are the basis of this
lattice. We can consider the torus defined by the quotient
space C=Λ. τ is called a “modulus” of the torus. See the
Appendix. The modular transformation (16) is a base
conversion, but this conversion does not change the
similarity of lattice and, hence, the complex structures of
the torus.
The modulus of the torus has ambiguity, since the

modular transformation does not change the complex
structure of the torus. However, it is known that τ can

be transformed into the following fundamental region Dup

by the series of S and T transformations (hence, by the
modular transformation), when ImðτÞ > 0:

Dup ¼
�
τj − 1

2
≤ ReðτÞ ≤ 1

2
; jτj ≥ 1; ImðτÞ > 0

�
:

Note that the left boundary of Dup can be changed into the
right boundary by the T transformation. For a given τ, the
transformed modulus is uniquely determined when jτj ≠ 1.
As is shown in Sec. V, τ is transformed into the boundary of
Dup when jτj ¼ 1. Similarly, when ImðτÞ < 0, τ can be
transformed into the fundamental region,

Dlow ¼
�
τj − 1

2
≤ ReðτÞ ≤ 1

2
; jτj ≥ 1; ImðτÞ < 0

�
;

by the modular transformation. Note that the modular
transformation cannot transform τ in the lower half plane
into the one in the upper half plane.

IV. HADRON-QUARK HYBRID MODEL

First, we briefly review the hybrid model recently
proposed in Ref. [16]. Suppose nb and na are the number
densities of pointlike baryons and antibaryons, respec-
tively. We can effectively include the repulsive interaction
among baryons (antibaryons) in the model by considering
the excluded volume effects (EVE). For the EVE, see, e.g.,
Ref. [16] and the references therein. The modified number
density ñb (ña) of baryons (antibaryons) is given by

ñb ¼
nb

1þ vnb
; ña ¼

na
1þ vna

; ð20Þ

where v is the volume of a baryon (an antibaryon). The net
baryon number density is given by nb − na. Other thermo-
dynamic quantities such as the pressure and the energy
density can be obtained by using thermodynamic relations.
However, when nbðnaÞ → ∞, ñb (ña) approaches the
constant value 1=v, the EoS of baryon matter becomes
very hard and the speed of sound exceeds 1 [16]. The
causality is easily violated. Hence, the T and/or μ depend-
ence of v is very important.
Hereafter, we concentrate our discussion on baryons,

since the discussion on antibaryons is similar to that on
baryons. Since the baryon consists of three quarks, we put
v ¼ 1=nq where nq is a one-third of the number density of
the quark in a pure quark model such as the PNJL model.
The number density of baryons is given by

ñb ¼
nb

1þ ðnb=nqÞ
: ð21Þ

If we use the HRG model for the calculation of nb, nb=nq
becomes much larger than 1 when T or μ is large. Hence, ñb
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approaches nq. Then, the system can be regarded as quark
matter. In this way, the natural hadron-quark hybrid model
is obtained. When nb is large, finite size baryons merge
each other and form quark matter.
It should be remarked that the relation v ¼ 1=nq is not

valid in the limit T, μ → 0 where nq also approaches 0. It is
known that nucleon has a finite volume v0 ¼ 4π

3
r30 with

r0 ∼ 0.8 fm in vacuum. In Ref. [16], v, which interpolates
1=nq and v0, is used. However, in this paper, we restrict our
discussion to the region where T is above or just below
TRW. Hence, we use the simple relation v ¼ 1=nq in
this paper.
Putting τ ¼ nb=nq, we define

τh ≡ ñb
nq

¼ nb=nq
ðnb=nqÞ þ 1

¼ τ

τ þ 1

¼ nb
nb þ nq

¼ n0b
n0q

; ð22Þ

where n0q ¼ nq þ nb and n0b ¼ nb. When μ is imaginary, nb
and nq are complex in general. Hence, Eq. (22) is nothing
but a modular transformation (14) with a ¼ c ¼ d ¼ 1 and
b ¼ 0. Note that this transformation is induced by the
matrix product T ST . In fact, we can rewrite (22) as

τh ¼
−1
τ þ 1

þ 1: ð23Þ

Hence, we obtain the following conclusions.
(1) When nb and nq are linearly independent, we can

consider the two-dimensional lattice and the corre-
sponding torus, which is characterized by nq and nb.
See Fig. 3.

(2) Equation (22) does not change the complex structure
of the torus. Hence, only the information of the
untransformed quantities nq and nb is needed to
analyze the complex structure of the torus.

It should be remarked that we cannot consider the lattice
and torus if nb and nq are not linearly independent. In the
next section, we show that this case really occurs at the RW
transition point.

V. QUALITATIVE ANALYSES OF THE
ROBERGE-WEISS TRANSITION BASED
ON MODULAR TRANSFORMATION

In this section, we analyze the Roberge-Weiss transition
qualitatively by using the hybrid model based on the
modular transformation. We use the HRG model for the
hadron model and the PNJL model for the quark model
with the Boltzmann approximation, which is a good
approximation when jReðμÞj is not so large. We concentrate
our discussion on baryons and quarks, since the discussions
on antibaryons and antiquarks are similar to those on
baryons and quarks. For simplicity of the notation in this
section, we use μ and θ instead of μq and θQ.

A. Vanishing of the torus

When the Boltzmann approximation is used, the number
density nb of baryons in HRG model is given by

nb ¼ BðTÞeμ=T ≡
�X

i

BiðTÞ
�
eμ=T; ð24Þ

where

BiðTÞ ¼
gs;i
2π2

Z
∞

0

dpp2e−
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
=T; ð25Þ

here gs;i andMi are the spin degree of freedom and mass of
ith baryon, respectively. Under the same approximation,
the one-third of number density of quarks in PNJL model is
given by

nq ¼ QðTÞΦeμ=ð3TÞ

≡
�X

f

QfðTÞ
�
Φeμ=ð3TÞ; ð26Þ

where

QfðTÞ ¼
gs;f
2π2

Z
∞

0

dpp2e−
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

f

p
=T; ð27Þ

here gs;f andMf are the spin degree of freedom and mass of
the flavor f quarks, respectively, and Φ is the averaged
value of the (traced) Polyakov loop.
The (untransformed) modulus of the torus constructed

from nq and nb is given by

τ ¼ jτjeiΔϕb−q ¼ nb
nq

¼ BðTÞ
QðTÞjΦj e

iðϕb−ϕqÞ; ð28Þ

where ϕb and ϕq are the phases of nb and nq, respectively.
When μ ¼ iθTð0 ≤ θ < 2πÞ, the phase ϕb of nb is

given by

ϕb ¼ θ; ð29ÞFIG. 3. The unit lattice and the torus.
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where we have omitted the trivial ambiguity 2nπ with an
arbitrary integer n.
As was mentioned in Sec. II, at low temperature below

TRW, there is a tendency that the phase ϕ of Φ cancels the
effect of θ. Hence, the phase ϕq of nq is approximately
given by

ϕq ¼
θ

3
þ ϕ ¼ 0: ð30Þ

In particular, it seems that Eq. (30) holds exactly when
θ ¼ 0; π in LQCD simulation. See, e.g., Fig. 7 in Ref. [9]
and references therein. The phase of the modulus τ is
given by

Δϕb−q ¼ ϕb − ϕq ¼ θ: ð31Þ

At θ ¼ π, nb is antiparallel to nq, and, hence, it is not
linearly independent with nq. There, the torus shrinks
smoothly to a one-dimensional object. Although there is
no discontinuity of Δϕb−q below TRW, in this sense, the
point θ ¼ π is special. Of course, nb is parallel to nq also at
θ ¼ 0, but this fact is trivial since θ itself vanishes.
As was also mentioned in Sec. II, at high temperature

above TRW, ϕ is given by

ϕ ¼
�
0 ð0 ≤ θ < πÞ
− 2

3
π ðπ < θ ≤ 2πÞ : ð32Þ

Note that two vacua with ϕ ¼ 0 and −2π=3 are degenerated
at θ ¼ π. The phase ϕq is given by

ϕq ¼
(

1
3
θ ð0 ≤ θ < πÞ

1
3
θ − 2

3
π ðπ < θ ≤ 2πÞ : ð33Þ

Hence, the phase of τ is given by

Δϕb−q ¼ϕb−ϕq¼
(

2
3
θ ð0≤ θ< πÞ

2
3
θþ 2

3
π ðπ< θ≤ 2πÞ : ð34Þ

We see that Δϕb−q is not continuous at θ ¼ π, and, hence,
the correspondent torus does not.

B. Calculation of moduli
in the fundamental region

To proceed the analyses further, we use the following
approximation and assumption.
(1) In PNJL model, QðTÞ depends on θ, since the chiral

condensates depend on θ. jΦj also depends on θ. We
neglect these θ dependences. In this approximation,
jτj does not depend on θ either. This approximation
is valid since our main interests are the behavior of τ
near the RW transition point θ ¼ π.

(2) As is seen in (21), ñb ∼ nb when jnb=nqj ≪ 1, while
ñb ∼ nq when jnb=nqj ≫ 1. Hence, we assume jτj <
1 when T < TRW, and jτj > 1 when T > TRW.

Under these approximations and assumptions, for the
fixed value of jτj, we calculate τ as a function of θ, then
transform it into the fundamental region Dup or Dlow. We
denote the transformed τ by τf. Note that ImðτÞ > 0 when
0 < θ < π, while ImðτÞ < 0 when π < θ < 2π. τ is trans-
formed into Dup (Dlow) when 0 < θ < π (π < θ < 2π).
Since the transformation into the fundamental region
is not continuous transformation, we calculate about
7200–72,000 points for each figure and denote them by
dots. Note that the dots often seem to form the solid line.
Figure 4 shows the moduli τ and τf when T < TRW and

jτj ¼ 0.5. τ and τf are symmetric with respect to the line
ReðτÞ ¼ 0. There is a left-right symmetry. Although the
torus vanishes at θ ¼ π, τ is continuous there.
Figure 5 shows the moduli τ and τf when T < TRW and

jτj ¼ 0.95. Again, the transformed τf is symmetric with
respect to the line ReðτÞ ¼ 0.
When the order of the end point of the RW transition line

is second-order, we can consider the limit T → TRW � 0
and jτj ¼ 1. Figure 6 shows the moduli τ and τf when
T → TRW − 0 and jτj ¼ 1. We see that τ is transformed into
the boundary of the fundamental region. τ and τf are
symmetric with respect to the line ReðτÞ ¼ 0. Note that the
left boundary can be transformed into the right one by T
transformation and vice versa.
Figure 7 shows the moduli τ and τf when T → TRW þ 0

and jτj ¼ 1. τ is not symmetric with respect to the line
ReðτÞ ¼ 0, but τf is, since the left boundary of the
fundamental region can be transformed into the right

FIG. 4. τ and τf when T < TRW and jτj ¼ 0.5. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð0.5; 0Þ,
τðθ → π � 0Þ ¼ ð−0.5; 0Þ, and τðθ → 2πÞ ¼ ð0.5; 0Þ, while
the absolute values of τfðθ → 0Þ, τfðθ → π � 0Þ, and
τfðθ → 2πÞ are large.
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one by the T transformation and vice versa. Also note
that τf in Fig. 7 resembles that in Fig. 6, but the value of
τfðθ → πÞ is different. In this sense, the symmetry is broken
even for τf in Fig. 7. Also note that τ ¼ ð−0.5;� ffiffiffi

3
p

=2Þ is a
fixed point of the modular transformation ST . This trans-
formation generates a discrete subgroup of the modular
group, namely, Z3 group, since ðST Þ3 is an identity trans-
formation. It is known that this property is related to the
residual Z3 symmetry in modular flavor symmetry [26].

Figure 8 shows the moduli τ and τf when T > TRW and
jτj ¼ 1.05. The transformed τf resembles the one with
jτj ¼ 0.95. This feature is originated in the fact that τ can be
transformed into −1=τ by the S transformation. However,
not only τ but τf are not symmetric with respect to the line
ReðτÞ ¼ 0. The left-right symmetry is broken at high
temperature.
Figure 9 shows the moduli τ and τf when T > TRW and

jτj ¼ 2. Not only τ, but also τf are not symmetric with
respect to the line ReðτÞ ¼ 0. The transformed τf resembles
the one with jτj ¼ 0.5, but the left-right symmetry is
broken.
In Fig. 10, we summarize the image of the RW transition

based on the torus deformations. When T < TRW, the torus
shrinks to the one-dimensional object at θ ¼ π smoothly,
and then the object transforms into another torus ImðτÞ of
which has an opposite sign, but a discontinuity does not
appear. Since the modular transformation cannot change
the sign of ImðτÞ, the torus with a positive ImðτÞ cannot be
smoothly transformed into the one with a negative ImðτÞ
without shrinking of the torus. When, T > TRW, the torus
changes discontinuously at θ ¼ π. The structure of the
torus with modulus τ at high T is similar to that with
modulus −1=τ at low T but the left-right symmetry is
broken at high T.
Note that we have used the θ dependence of the phase of

the Polyakov loop as a dynamical input. Although the
structure of the torus is invariant under modular trans-
formation, the dynamics itself is related to the details
of the modulus, namely the structure of EoS. In Fig. 11,
we show τh given by Eq. (22) in the hybrid model.

FIG. 5. τ and τf when T < TRW and jτj ¼ 0.95. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð0.95; 0Þ,
τðθ → π � 0Þ ¼ ð−0.95; 0Þ, and τðθ→ 2πÞ¼ ð0.95;0Þ while the
absolute values of τfðθ → 0Þ, τfðθ → π � 0Þ, and τfðθ → 2πÞ
are large.

FIG. 6. τ and τf whenT → TRW − 0 and jτj ¼ 1. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð1.0; 0Þ,
τðθ → π � 0Þ ¼ ð−1.0; 0Þ, and τðθ → 2πÞ ¼ ð1.0; 0Þ while
τfðθ → 0Þ, τfðθ → π � 0Þ, and τfðθ → 2πÞ show divergent
behaviors.

FIG. 7. τ and τf whenT → TRW þ 0 and jτj ¼ 1. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð1.0; 0Þ,
τðθ → π − 0Þ ¼ ð−0.5; ffiffiffi

3
p

=2Þ, τðθ → π þ 0Þ ¼ ð−0.5;− ffiffiffi
3

p
=2Þ,

τðθ → 2πÞ ¼ ð1.0; 0Þ, τfðθ→ π−0Þ¼ ð�0.5;
ffiffiffi
3

p
=2Þ, and τfðθ →

π þ 0Þ ¼ ð�0.5;−
ffiffiffi
3

p
=2Þ while τfðθ → 0Þ and τfðθ → 2πÞ show

divergent behaviors.
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When T → TRW − 0 and jτj ¼ 1, τh forms the line
ReðτhÞ ¼ 0.5. In fact, it is easily shown

τh ¼
1

e−iθ þ 1

¼ 0.5þ i
sin θ

2ðcos θ þ 1Þ : ð35Þ

Although it is not clear in the figure, τh ¼ 0.5þ iy
with y ¼ −

ffiffiffi
3

p
=2 ∼

ffiffiffi
3

p
=2 when T → TRW þ 0. Note that

Eq. (35) is also valid for this case if we replace θ by Δϕb−q
in Eq. (34). When T < TRW and jτj < 1, τh forms a circle. It
can be shown that

τh¼
1

jτj−1e−iθþ1
¼ 1

2
− sþxþ iy;

x¼ stþ 1
2
ðjτj2−1Þ
t

; y¼ jτjsinθ
t

;

x2þy2¼ s2−
1

4
> 0;

s¼−
1

2

jτj2þ1

jτj2−1
; t¼ 2jτjcosθþ1þjτj2: ð36Þ

Since s2 − 1=4 is real positive constant which does not
depend on θ, τh forms a circle. The circle vanishes in the
limit jτj → 0. The center of the circle is given by

ðx0; y0Þ ¼
�
1

2
− s; 0

�
: ð37Þ

As jτj increases from 0, the right side of the circle
approaches the line ReðτhÞ ¼ 0.5, although x0 moves the
opposite direction. When T > TRW and jτj > 1, τh forms an
arc. Note that Eq. (36) is valid also for jτj > 1 if we replace
θ by Δϕb−q in Eq. (34). As jτj decreases from ∞, the arc
approaches the line ReðτhÞ ¼ 0.5, although x0 moves in the
opposite direction. This figure also indicates the phase
transition at jτj ¼ 1.
It is also very interesting that the first equations of (35)

and (36) have the same θ dependence as the Fermi
distribution function with complex chemical potential,
and τ ¼ jτjeiθ has the same one as the Boltzmann distri-
bution, although the physical meanings of τh and τ are
different from those of the distribution functions. Hence,
these equations also indicate that the Boltzmann distribu-
tion can be transformed into the Fermi distribution by the

FIG. 8. τ and τf when T > TRW and jτj ¼ 1.05. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð1.05; 0Þ,
τðθ→ π−0Þ¼ ð−1.05=2;1.05 ffiffiffi

3
p

=2Þ, τðθ→ πþ0Þ¼ ð−1.05=2;
−1.05

ffiffiffi
3

p
=2Þ, τðθ → 2πÞ ¼ ð1.05; 0Þ, τfðθ → π − 0Þ ¼ ð0.475;

0.909Þ, and τfðθ → π þ 0Þ ¼ ð0.475;−0.909Þ while the absolute
values of τfðθ → 0Þ and τfðθ → 2πÞ are large.

FIG. 9. τ and τf when T > TRW and jτj ¼ 2. The dot-dashed
line and the dots are τ and τf , respectively. τðθ → 0Þ ¼ ð2.0; 0Þ,
τðθ→ π−0Þ¼ ð−1.0; ffiffiffi

3
p Þ, τðθ→ πþ0Þ¼ ð−1.0;− ffiffiffi

3
p Þ, τfðθ →

π − 0Þ ¼ ð0; ffiffiffi
3

p Þ, and τfðθ → π þ 0Þ ¼ ð0;− ffiffiffi
3

p Þ while the ab-
solute values of τfðθ → 0Þ and τfðθ → 2πÞ are large.

FIG. 10. The image of the RW transition based on the torus
deformations. The bold arrow is a one-dimensional object.
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modular transformation with the matrix product T ST .
When T → 0, the phase transition occurs at jτj ¼
eðμFR−mFÞ=T ¼ 1 and pF ¼ 0 where mF, μFR and pF are
the fermion mass, the real part of the fermion chemical
potential, and the Fermi momentum, respectively. That is
nothing but the formation of Fermi surface.

VI. SUMMARY

In summary, we have reformulated the recently proposed
hadron-quark hybrid model in the framework of modular
transformation when the imaginary chemical potential
μ ¼ iθT is introduced. We can consider the torus, which
is characterized by the number densities of baryons (anti-
baryons) and quarks (antiquarks). When T < TRW, the
torus shrinks to the one-dimensional objects smoothly at
θ ¼ π and then transforms into the another torus. When
T > TRW, the torus changes discontinuously at θ ¼ π. We
also calculated the modulus of the torus and transformed it
into the fundamental region. The transformed modulus τf at
high temperature resembles that at low temperature, but
the left-right symmetry is broken at high temperature. The
modulus τh of the hybrid model itself also indicates the
phase transition at the RW transition point.
In this paper, we have restricted our discussions on the

region where temperature T is above or just below TRW.
When T is much smaller than TRW, the baryon volume
approaches the constant value v0 and nb is small. Then, the
hybrid model reduces to the ordinary hadron resonance gas
model [27].

We also remark that, in this paper, the θ dependence of
the phase ϕ of the Polyakov loop Φ was used as a
dynamical input. Usually, the absolute value of Φ is used
to classify the phases of QCD. However, the phase ϕ is also
a very important quantity. For example, in Refs. [28,29],
the ϕ distribution in the phase space is used to analyze the
confinement-deconfinement transition in the framework of
persistent homology analyses.
In this paper, we only performed qualitative analyses of

the hybrid model using the θ dependence of the phase of
the Polyakov loop obtained by the lattice QCD and some
phenomenological assumptions. To perform the quantita-
tive analyses, we need to calculate the thermodynamic
potential of the hybrid model and determine the solutions
of the order parameters such as the Polyakov loop and
the chiral condensates within the model. Such studies are in
progress.
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APPENDIX: LATTICE AND TORUS

In this appendix, we briefly review the relation between
the lattice, the torus and the modular transformation. For a
more detailed description, see, e.g., the Chap. 8 in Ref. [30].
When γ; δ∈C − f0g and τ ¼ δ

γ ∉ R,

Λ ¼ fmγ þ nδgðn;m∈ZÞ; ðA1Þ

is called a “lattice” in the complex plane. (See Fig. 12).
Equivalently,

Λτ ¼ fmþ nτðn;m∈ZÞg; ðA2Þ

is also a lattice. See Fig. 13.
The lattice Λ0 is called “similar” to the lattice Λ when

αΛ0 ¼ Λ is satisfied for a nonzero α∈C. It is easily shown
that Λτ is similar to Λ. For the modular transformation (14),
it can be also shown that

Λτ0 ¼ ðcτ þ dÞ−1Λτ: ðA3Þ

Hence, Λτ0 is similar to Λτ.

FIG. 11. The solid lines show τh with jτj ¼ 0.5, 0.66, 0.83, 1,
1.2, 1.5, and 2. When T → TRW − 0 and jτj ¼ 1, τh forms the line
ReðτhÞ ¼ 0.5. When T → TRW þ 0 and jτj ¼ 1, τh ¼ 0.5þ
iyðy ¼ −

ffiffiffi
3

p
=2 ∼

ffiffiffi
3

p
=2Þ. When T < TRW and jτj < 1, τh forms

a circle. As jτj increases, the circle approaches the line
ReðτhÞ ¼ 0.5. When T > TRW and jτj > 1, τh forms an arc.
As jτj deceases, the arc approaches the line ReðτhÞ ¼ 0.5.
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By identifying the opposite edges of the unit lattice, we
can construct the torus T2 the complex structure of which is
characterized by τ. Then, τ is called a “modulus” of the
torus. The torus is the quotient space C=Λ. When the lattice

Λ0 is similar to the lattice Λ, the complex structure of the
torus T20 is the same as that of T2. Hence, the complex
structure of the torus is invariant under the modular
transformation. By considering the torus, we can extract
the topological property, which is invariant under the
modular transformation.
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