
Roberge-Weiss periodicity and singularity in a hadron resonance gas model
with excluded volume effects

Riki Oshima ,1,* Hiroaki Kouno ,1,† and Kouji Kashiwa 2,‡

1Department of Physics, Saga University, Saga 840-8502, Japan
2Fukuoka Institute of Technology, Wajiro, Fukuoka 811-0295, Japan

(Received 2 February 2024; revised 18 November 2024; accepted 2 December 2024; published 22 January 2025)

Quantum chromodynamics (QCD) with pure imaginary baryon number chemical potential μ ¼ iθT,
where T is temperature and θ is a real number, has the Roberge-Weiss periodicity. We study the
θ-dependence of the baryon number density and the pressure in the hadron resonance gas model with
excluded volume effects of baryons. It is shown that the baryon number density and the pressure are smooth
periodic functions of θ at low or high temperature. However, they have singular behavior at θ ¼ ð2kþ 1Þπ
where k is an integer, when T ∼ 211 MeV. This temperature is consistent with the Roberge-Weiss
transition temperature TRW obtained by lattice QCD simulations. This singularity can be explained by the
dual excluded volume effects in which the roles of pointlike and nonpointlike particles are exchanged each
other in the ordinary excluded volume effects. It is also indicated that the excluded volume effect is visible
just below TRW and is directly detectable by the lattice QCD simulation at finite θ. We compare the results
with the one obtained by the Polyakov-loop extended Nambu–Jona-Lasinio model.
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I. INTRODUCTION

Determination of the phase diagram of quantum chromo-
dynamics (QCD) is an important subject not only in nuclear
and particle physics but also in cosmology and astrophys-
ics; see, e.g., Ref. [1] and references therein. However,
when the baryon number chemical potential is finite and
real, the fist principle calculation, namely, the lattice QCD
(LQCD) simulation, is not feasible due to the infamous sign
problem; see Refs. [2,3] as an example. To circumvent the
sign problem, several methods are proposed and inves-
tigated, although, at present, these methods are not com-
plete and we do not have adequate information on the
equation of state (EoS) at finite real baryon density.
One possible way to avoid the sign problem is to use the

LQCD results with the imaginary baryon number chemical
potential; see Refs. [4–8] as an example. When the baryon
number chemical potential μ is pure imaginary, there is no
sign problem. One can perform LQCD simulations at finite
pure imaginary μ, and then make an analytic continuation
from the quantities at imaginary μ to those at real μ.

Alternatively, one may determine the unknown parameters
of an effective model of QCD using the LQCD results at
finite imaginary μ. After determining the parameters, the
model calculations can be performed at real μ [9].
It is known that the LQCD results at μ ¼ 0 are in good

agreement with those obtained by the hadron resonance gas
(HRG) model when temperature T is not so large. Usually,
the ideal gas approximation is used for the calculations in
the HRG model. However, it is expected that repulsive
effects among baryons are important at high baryon number
density. If the repulsion is absent, baryon matter is realized
at a sufficiently large baryon density [10]. One of the
traditional treatments for such repulsion is to consider
excluded volume effects (EVE) among baryons [11–15].
EVE successfully prevents baryon matter from realizing at
sufficiently large baryon density [11]; for the recent review,
see, e.g., Ref. [16] and references therein. The availability
of the HRG model with EVE may be checked by using the
LQCD results at finite imaginary μ.
The grand canonical QCD partition function ZðθÞ with

pure imaginary quark chemical potential (μq ¼ μ=3 ¼ iθqT)
has the Roberge-Weiss (RW) periodicity [17] as

Z

�
θq þ

2π

3

�
¼ ZðθqÞ; ð1Þ

whereT is the temperature and θq ∈R. This periodicity is the
remnant of the Z3-symmetry of pure gluon theory. At low
temperature,ZðθqÞ is expected to be a smooth function of θq.
However, at high temperature above the RW temperature
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TRW, it has a singularity at θq ¼ ð2kþ 1Þπ=3 where k∈Z.
This singularity is called the RW transition. TRW for 2þ 1
flavor QCD is estimated as about 200 MeV by LQCD
simulations [18–20].
In the HRG model with pure imaginary baryon number

chemical potential μ ¼ iθT, the RW periodicity is trivial,
since the model has a trivial periodicity

ZHRGðθ þ 2πÞ ¼ ZHRGðθÞ; ð2Þ

and θ ≔ 3θq. In the case of the free hadron resonance gas,
ZHRGðθÞ is a smooth function of θ at any temperature.
However, it may have a singularity when interaction effects
such as EVE are taken into account.
In this paper, we study the θ-dependence of the baryon

number density and the pressure in the HRG model with
EVE when the imaginary baryon number chemical poten-
tial is introduced, and analyze the mechanism of EVE at
finite imaginary μ. It is shown that the baryon number
density and the pressure have a singular behavior at θ ¼
ð2kþ 1Þπ when T ∼ 211 MeV, while they are smooth
functions of θ at lower and higher temperature. This result
is consist with the previous result in Refs. [21,22] where the
singularity of the HRG model with EVE was reported and
its impacts were discussed, although our model is some-
what different from the previous ones. The singularity is
understood by the dual EVE in which the roles of pointlike
and nonpointlike particles are exchanged. The temperature
T ∼ 211 MeV is compatible with TRW estimated by LQCD
simulations. We also compare the results with the ones
obtained by the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model [23–28] in which the quark degree
of freedom is contained.
This paper is organized as follows. In Sec. II, the RW

periodicity and transition are briefly reviewed. In Sec. III,
we show our formulation of the HRG model with EVE.
The concept of dual EVE is also explained. In Sec. IV,
numerical results are shown. Section V is devoted to the
summary and discussions.

II. ROBERGE-WEISS PERIODICITY
AND TRANSITION

The grand canonical partition function of QCD with
imaginary μ ¼ iθqT is given by

ZðθqÞ ¼
Z

DψDψ̄DAμe−SðθqÞ; ð3Þ

where

SðθqÞ ¼
Z

β

0

dτ
Z

∞

−∞
d3xLðθqÞ; ð4Þ

with

LðθqÞ ¼ ψ̄ðγμDμ −m0Þψ −
1

4
F2
μν − i

θq
β
ψ̄γ4ψ ; ð5Þ

here ψ , Aμ, Dμ, Fμν and m0 are the quark field, the gluon
field, the covariant derivative, the field strength of gluon
and the current quark mass matrix, respectively, and
β ¼ 1=T. The Euclidean notation is used in Eqs. (3)–(5).
To eliminate the θq-term from the action, we perform the

following transformation of quark field:

ψ ↦ exp

�
i
τθq
β

�
ψ : ð6Þ

However, as a result, the antiperiodic temporal boundary
condition ψ is changed as follows:

ψðx; βÞ ¼ − exp ðiθqÞψðx; 0Þ: ð7Þ
This means that θq can be considered as the phase of the
temporal boundary condition of quarks.
We perform another change of the quark and gluon fields

Aμ ↦ Uðx; τÞAμU−1ðx; τÞ − i
g
ð∂μUðx; τÞÞU−1ðx; τÞ;

ψ ↦ Uðx; τÞψ ; ð8Þ
where g is a coupling constant, Uðx; τÞ are elements of
SUð3Þ with the temporal boundary condition Uðx; βÞ ¼
z3Uðx; 0Þ and z3 ¼ expði2πk=3Þ is a Z3 element. The
action SðθÞ is invariant under this Z3 transformation but the
quark boundary condition is changed as

ψðx; βÞ ¼ − exp

�
i

�
θq þ

2πk
3

��
ψðx; 0Þ: ð9Þ

Hence, under the Z3 transformation, θq in ZðθqÞ is changed
into θq þ 2πk

3
and we obtain the RW periodicity (1) [17].

Dynamical quarks break the Z3-symmetry but the RW
periodicity appears as a remnant of the Z3-symmetry.
At low temperature below the RW transition temperature

TRW, the baryon number density nQ=3, where nQ is the
quark number density, is a smooth function of θ. However,
at high temperature above TRW, it is discontinuous at
θq ¼ ð2kþ 1Þπ=3 due to the degeneracy of the ground
state. For illustrations, in Fig. 1, we show the θq-depend-
ence of nQ=3 obtained by the PNJL model [23–28] which is
one of the most successful effective models of QCD. It is
well known that the PNJL model can reproduce several
important features of QCD at finite imaginary μ; for
example, see Ref. [29] as a review. We also show the
θq-dependence of pressure PPNJL in Fig. 2. PPNJL is a
smooth function of θq when T < TRW, while it has a cusp at
θq ¼ �π=3 when T > TRW. The RW periodicity and the
RW transition are also confirmed by LQCD simulations
and TRW is estimated as 195–208 MeV for the 2þ 1 flavor
LQCD simulation [18–20].
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III. FORMULATION

In this section, we show the detailed formulation of the
HRG model with EVE at finite T.

A. Excluded volume effects

Consider N nonpointlike particles in the system with
volume V; see the top panel of Fig. 3. We regard that this
system is equivalent to the system of N pointlike particle in
the effective volume V − vN where v is the volume of a
nonpointlike particle [11]; see the bottom panel of Fig. 3.
Hence, we obtain

np ¼
N

V − vN
¼ n

1 − vn
; ð10Þ

where n ¼ N=V is the number density of nonpointlike
particles and np is the one ofN pointlike particles. Then, we
obtain the number density n as
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FIG. 1. The top (bottom) panel shows the θq-dependence of
the imaginary part of the baryon number density nq=3 when
T ¼ 150 MeV (250 MeV) in the PNJL model; see the Appendix
for details of the model. Note that TRW ¼ 201 MeV in this
model. The discontinuities of nq appear at θq ¼ �π=3 in the
bottom panel.
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FIG. 2. The top (bottom) panel shows the θq-dependence of the
pressure PPNJL when T ¼ 150 MeV (250 MeV) in the PNJL
model; see the cusps of PPNJL appear at θq ¼ �π=3 in the
bottom panel.

FIG. 3. The top and bottom panels show the schematic figure of
the N nonpointlike particles in volume V and the N pointlike
particles in the effective volume V − vN, respectively.
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n ¼ np
1þ vnp

: ð11Þ

Note that Eqs. (10) and (11) are valid only when the
denominator is not zero. n can not exceed the upper
bound 1=v when np is real and positive, and n → 1=v
when np → ∞.
If we replace v by −v, Eq. (10) is changed into

np ¼
n

1þ vn
: ð12Þ

Hence, np → 1=v, when n → ∞. In this paper, we call this
effect “dual EVE.” The dual EVE seems to be unnatural,
since it is equivalent to EVE with a negative particle
volume. However, later, we show that dual EVE actually
occurs when the chemical potential is pure imaginary.

B. Hadron resonance gas model with excluded
volume effects at finite temperature

Here, we consider the HRG model with EVE. At zero
temperature, EVE is usually introduced for the baryon
number NB. However, at finite temperature, the number Nb
of baryons and the number Na of antibaryons do not vanish
even if NB ¼ Nb − Na is zero. Hence, according to the next
policy [12], we introduce EVE into the HRG model.
(1) Since EVE represents the effects of the repulsion

forces among baryons, a baryon is affected by EVE
of other baryons, but is not affected by EVE of
antibaryons.

(2) Inversely, an antibaryon is affected by EVE of other
antibaryons, but is not affected by EVE of baryons.

(3) Mesons are not affected by EVE. We treat the meson
gas as a free gas of pointlike particles for simplicity.

Therefore, the baryon number density nB of the system is
given by

nBðμÞ ¼ nbðμÞ − naðμÞ; ð13Þ
with

nbðμÞ ¼
nbpðμÞ

1þ vnbpðμÞ
; ð14Þ

naðμÞ ¼
napðμÞ

1þ vnapðμÞ
¼ nbpð−μÞ

1þ vnbpð−μÞ
¼ nbð−μÞ; ð15Þ

where nb, na, nbp and nap is the number densities of baryons,
antibaryons, pointlike baryons and pointlike antibaryons,
respectively. Here, we have assumed that v is the same for all
baryons and antibaryons for simplicity. In numerical calcu-
lations, we set v ¼ 4πr30=3 with r0 ¼ 0.8 fm.
Note that nB is an odd function of μ. Hence, when μ is a

pure imaginary number, nB is also a pure imaginary
number, although nb and na are complex numbers in
general. The relations

Renb ¼ Rena; ð16Þ

Imnb ¼ −Imna ð17Þ

with

Renb ¼
Renbpð1þ vRenbpÞ þ vðImnbpÞ2
ð1þ vRenbpÞ2 þ v2ðImnbpÞ2

;

Imnb ¼
iImnbp

ð1þ vRenbpÞ2 þ v2ðImnbpÞ2
;

Rena ¼
Renapð1þ vRenapÞ þ vðImnapÞ2
ð1þ vRenapÞ2 þ v2ðImnapÞ2

;

Imna ¼
iImnap

ð1þ vRenapÞ2 þ v2ðImnapÞ2
; ð18Þ

are realized since Renbp ¼ Renap and Imnbp ¼ −Imnap,
and thus the relation

nB ¼ 2iImnb ¼ −2iImna; ð19Þ

is manifested for Eq. (13).
When the free gas approximation is used, the concrete

forms of nbp and nap of ith baryon are given by

nbp;i ¼
gs;i
2π2

Z
∞

0

dpp2
1

expfβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
−μÞgþ 1

; ð20Þ

nap;i ¼
gs;i
2π2

Z
∞

0

dpp2
1

expfβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
þμÞgþ 1

; ð21Þ

where gs;i and Mi are the spin degeneracy and the mass of
the ith baryon, respectively. If we use the Boltzmann
distribution instead of the Fermi distribution, Eqs. (20)
and (21) are reduced to

nbp;i ¼ Aiðcos θ þ i sin θÞ; ð22Þ

nap;i ¼ Aiðcos θ − i sin θÞ; ð23Þ

with

Ai ¼
gs;i
2π2

Z
∞

0

dpp2e−β
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
; ð24Þ

when μ is pure imaginary. Hence, the relation

Re½nbpðθÞ� ¼ Re½napðθÞ�

¼ Im

�
nbp

�
θ þ π

2

��

¼ −Im
�
nap

�
θ þ π

2

��
; ð25Þ

is satisfied.
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In Ref. [12], the following simple form of pressure PB of
the baryon and antibaryon system with EVE was used;

PB ¼ Pbp

1þ vnbp
þ Pap

1þ vnap
; ð26Þ

where Pbp and Pap are the pressures of pointlike baryons
and antibaryons, respectively. However, this form of
pressure does not satisfy the thermodynamical relation
∂PB
∂μ ¼ nB accurately. Then, we do not use the form (26). In
this paper, the μ-dependence of baryon pressure PB with
EVE is given by

PBðμÞ ¼ PbðμÞ þ PaðμÞ ¼ PbðμÞ þ Pbð−μÞ; ð27Þ

with

PbðμÞ ¼
Z

μ

0

dμ0nbðμ0Þ þ Pbð0Þ; ð28Þ

where the initial conditions are given by

Pbð0Þ ¼
Z

0

−∞
dμ0nbðμ0Þ; ð29Þ

respectively. In this formulation, the thermodynamical
relation is automatically satisfied. Note that it is natural
to assume Pbð−∞Þ ¼ Pað∞Þ ¼ 0. In numerical calcula-
tions, we include all hadrons that are expected to be
composed of a light quark only and are listed in the list
of particle data [30].
In Refs. [21,22,31], the different formulation of EVE

effects was used. In the formulation, the transcendental
equations

PbðT; μÞ ¼ PbpðT; μ − bPbÞ; ð30Þ

PaðT; μÞ ¼ PapðT; μ − bPaÞ; ð31Þ

are required, where PbpðPapÞ is the pressure of the pointlike
baryons (antibaryons) and b is the parameter which
represents baryon (antibaryon) volume. In this paper, we
call this formulation EVETC model, and call our formu-
lation EVE model. In the next section, we compare the
results of our formulation with those of EVETC.

IV. NUMERICAL RESULTS

In this section, we show our numerical results for the
HRG model with EVE. First, we compare the results of the
two formulations of EVE. Next, we show the θ-dependence
of the baryon number density and the pressure, and discuss
the effects of EVE below TRW. We also show the same
quantities above TRW. Finally, we show the T-dependence
of the pressure at θ ¼ π and μ ¼ 0ðθ ¼ 0Þ.

A. Comparison of two formulation

In this subsection, we compare two formulations.
Figure 4 shows the T-dependence of the pressure of the

HRG model when μ ¼ 0 and b ¼ v ¼ 4πr3
0

3
¼ 2.14 fm3. We

see that the exclude volume effects of EVE model is
somewhat weaker than those of EVETC model, but the
difference between two models is small. Figure 5 is similar
to Fig. 4 but b ¼ 1.315 fm3 is used. We see that the result
of EVE almost coincides with that of EVETC. In this case,
it seems that the deference of the two models can be
eliminated by retuning the parameter b. Figure 6 shows
T-dependence of the pressure of HRG model when

μ ¼ 500 MeV and b ¼ v ¼ 4πr3
0

3
. We see that the difference

between EVE and EVETC is small. Figure 7 is similar to
Fig. 6 but b ¼ 1.315 fm3 is used. Again, we see that the
result of EVE almost coincides with that of EVETC. Next,
we examine the results at imaginary μ ¼ iθT. Figure 8
shows the T-dependence of the pressure of the HRG model
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FIG. 4. The T-dependence of the pressure when μ ¼ 0 and
b ¼ v ¼ 4πr30=3. The solid, dashed, and dotted lines show the
results obtained by the HRG models with EVE (P), without EVE
(Pp), with EVETC, respectively.
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FIG. 5. The T-dependence of the pressure when μ ¼ 0, v ¼
4πr30=3 and b ¼ 1.315 fm3. The solid, dashed, and dotted lines
show the results obtained by the HRG models with EVE (P),
without EVE (Pp), with EVETC, respectively.
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when θ ¼ π
2
and b ¼ v ¼ 4πr3

0

3
. We see that the difference

between EVE and EVETC is small. Figure 9 is similar to
Fig. 8 but b ¼ 1.315 fm3 is used. The result of EVE almost
coincides with that of EVETC. Comparison at the RW
transition point will be shown in Sec. IV D.

B. Below TRW

In this subsection, we show the θ-dependence of the
baryon number density and the pressure, and discuss the
effects of EVE below TRW. Figure 10 shows the real and
imaginary parts of nb and nbp as a function of θ when
T ¼ 150 MeV. We see that the real (imaginary) part is an
even (odd) function of θ. We do not show the results of the
antibaryon contributions explicitly, since conditions (16)
and (17) are satisfied. As is expected, the relation
Re½nbpðθÞ� ¼ Im½nbpðθ þ π

2
Þ� is approximately satisfied.

The same relation is also approximately satisfied for nb
since EVE is negligible. Although we do not show all
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FIG. 6. The T-dependence of the pressure when μ ¼ 500 MeV
and b ¼ v ¼ 4πr30=3. The solid, dashed, and dotted lines show
the results obtained by the HRG models with EVE (P), without
EVE (Pp), with EVETC, respectively.
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FIG. 7. The T-dependence of the pressure when μ ¼ 500 MeV,
v ¼ 4πr30=3 and b ¼ 1.315 fm3. The solid, dashed, and dotted
lines show the results obtained by the HRG models with EVE
(P), without EVE (Pp), with EVETC, respectively.
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FIG. 8. The T-dependence of the pressure when θ ¼ π
2
and

b ¼ v ¼ 4πr30=3. The solid, dashed, and dotted lines show the
results obtained by the HRG models with EVE (P), without EVE
(Pp), with EVETC, respectively.
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FIG. 9. The T-dependence of the pressure when θ ¼ π
2
, v ¼

4πr30=3 and b ¼ 1.315 fm3. The solid, dashed, and dotted lines
show the results obtained by the HRG models with EVE (P),
without EVE (Pp), with EVETC, respectively.
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FIG. 10. The θ-dependence of the real and imaginary parts of
number density of baryons when T ¼ 150 MeV. The solid,
dashed, dotted and dot-dashed lines show the results of Renb,
Imnb, Renbp and Imnbp, respectively.
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results explicitly, the relation (25) is almost satisfied for nbp
and nap but is largely broken for nb and na, when the
temperature is large and EVE is not negligible. We also
remark that, as in the case with T ¼ 150 MeV, Imnbp ¼
Imnap ¼ 0 and Renbp ¼ Renap < 0 are always satisfied at
any temperature when θ ¼ �π. This is a very important
property, as shown later. Figure 11 shows the imaginary part
ImnB of baryon number density as a function of θ when
T ¼ 150 MeV. We see that EVE is negligible in this case.
Figure 12 shows the real and the imaginary parts of nb as

a function of θ when T ¼ 185 MeV. We see that the
equality Re½nbðθÞ� ¼ Im½nbðθ þ π

2
Þ� is broken largely by

EVE. Figure 13 is the same as Fig. 11 but for
T ¼ 185 MeV. Note that the temperature T ¼ 185 MeV
is just below TRW obtained by LQCD simulations. In this
case, EVE is visible. These results indicate that the effects
of EVE can be seen strongly at moderate T. Figure 14
shows the baryon pressure PB as a function of θ; we do not
show the meson pressure since it does not depend on θ in
our model. Both PB and PBp are smooth functions of θ.
EVE is also visible in pressure.

C. Above TRW

Figure 15 is the same as Fig. 11 but for T ¼ 210.8 MeV.
In this case, ImnB seems to be discontinuous at θ ¼ �π.
The result resembles the one obtained by the PNJL model
in the bottom panel of Fig. 1. However, different from the
PNJL case, the height of the peak (the depth of the negative
peak) increases as the minimal interval Δθ in the horizontal
axis decreases in numerical calculation. It is very interest-
ing that the temperature T ¼ 210.8 MeV is slightly larger
than TRW obtained by LQCD simulations. As is mentioned
above, Imnbp ¼ Imnap ¼ 0 and Renbp ¼ Renap < 0 are
always satisfied at any temperature when θ ¼ �π. Hence
θ ¼ �π, the first and third ones of Eq. (18) reduce to

Renb ¼
Renbp
DðTÞ ¼ Rena ¼

Renap
DðTÞ ; ð32Þ

when

DðTÞ ¼ 1þ vRenbp ¼ 1þ vRenap; ð33Þ
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does not vanish. Figure 16 shows DðTÞ as a function of T
when θ ¼ π:DðTÞ ¼ 0 at T ¼ 210.8 MeV. This means
Renbp ¼ Renap ¼ −1=v. The vanishing of DðTÞ makes nB
singular at T ¼ 210.8 MeV.
If we define n0 ¼ −Renb ¼ −Rena and n0p ¼ −Renbp ¼

−Renap > 0, Eq. (32) can be rewritten as

n0 ¼ n0p
1 − vn0p

: ð34Þ

Hence, we obtain

n0p ¼
n0

1þ vn0
: ð35Þ

This is nothing but the dual EVE (12). If n0 → ∞,
n0p → 1=v. Figure 17 shows n0 as a function of T when
θ ¼ π. n0 has a divergent behavior when T → 210.8 MeV
where n0p ¼ 1=v; note that the height of the peak (the depth
of the negative peak) increases as the minimal interval ΔT
in horizontal axis decreases in numerical calculation. In this
paper, we call this situation “dual dense packing limit” of
baryons. The dual dense packing of baryons causes the

singularity; note that, although RenB always vanishes, the
effects of Renbp and Renap remain in other thermodynamic
quantities such as ImnB and pressure.
We also note that, when n0 < 0, the interpretation of the

dual EVE is not appropriate in (35). However, n0p → 1=v is
satisfied, when n0 → −∞. Similarly, since Renbp < 0, the
interpretation of the EVE is not appropriate in (32), but
Renb → 1=v is satisfied when Renbp → −∞. Hence, 1=v is
the high temperature limit of Renb at θ ¼ �π.
When the Boltzmann distribution approximation is valid,

we can define a μ-independent effective baryon radius as
follows. In this approximation, DðTÞ is reduced to 1 −
v=v�ðTÞ where

v�ðTÞ ¼ 1

AðTÞ ; ð36Þ

with

AðTÞ ¼
X
i

Ai: ð37Þ

Note that AðTÞ is the amplitude of nbp and nbp when they
oscillate as θ varies. Figure 18 shows an effective baryon
radius r�ðTÞ ¼ ½3v�=ð4πÞ�1=3 as a function of T. We see
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FIG. 15. The θ-dependence of the imaginary part of baryon
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lines show the results of nB and nBp, respectively.
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that r�ðTÞ ∼ r0 ¼ 0.8 fm at T ∼ 211 MeV. This means that
the Boltzmann distribution approximation is valid in
this case.
Figure 19 is the same as Fig. 14 but for T ¼ 210.8 MeV.

PB has a cusp at θ ¼ �π, while PBp does not. The result of
PB resembles the one obtained by the PNJL model in the
bottom panel of Fig. 2. However, different from the PNJL
case, there is a tendency that the depth of the negative peak
increases as the minimal interval Δθ in the horizontal axis
decreases in numerical calculation. The cusp in PB causes
the discontinuity in ImnB. Figure 20 is the same as Fig. 11
but for T ¼ 250 MeV. In this case, Imnb is a smooth
function of θ as in the cases at low temperature. This feature
is different from the PNJL result in Fig. 1 where the
discontinuities appear when T > TRW. Figure 21 is the
same as Fig. 14 but for T ¼ 250 MeV. Again, both PB and
PBp are smooth functions of θ. As is in the case with ImnB,
this feature is different from the PNJL result in Fig. 2 where
the cusps appear when T > TRW. The difference seems to
be originated in the lack of quark degree of freedom in
HRG model.

D. T-dependence of pressure

Figure 22 shows the hadron pressure as a function of T at
θ ¼ π. Note that the meson contribution is included in the
hadron pressure. The pressure P in the HRG model with
EVE has a cusp at T ∼ 210.8 MeV, while Pp in the HRG
model without EVE is a smooth function of T; there is a
tendency that the depth of the negative peak of P (P0)
increases as the minimal interval ΔT in the horizontal axis
decreases in the numerical calculation. Pp increase as
temperature increase when T < 230 MeV, but decreases
T > 230 MeV. This is because the baryon contribution is
negative at θ ¼ π and the decrease of the negative baryon
contribution overcomes the increase of the positive meson
contribution when T > 230 MeV. On the contrary, P
increases as T increases in the high temperature region,
although it has a negative value in the intermediate temper-
ature region.
In Fig. 22, the result obtained by the PNJL model is also

shown. We have subtracted PPNJLðT ¼ 0; μ ¼ 0Þ þ B from
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FIG. 20. The θ-dependence of the imaginary part of baryon
number density when T ¼ 250 MeV. The solid and dashed lines
show the results of nB and nBp, respectively.
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PðT; μÞ where B ¼ ð150 MeVÞ4 is the bag constant. PPNJL
is larger than Pp when T > 229 MeV, while it is smaller
than Pp when T < 229 MeV. If we apply the Gibbs criteria
to this case without EVE, the quark phase (hadron phase) is
realized when T > 229 MeV (T < 229 MeV).
PPNJL is larger than P in the region

T ¼ 204–214 MeV, while it is smaller in the other
regions. If we apply the Gibbs criteria to this case
with EVE, the quark phase is realized in the region
T ¼ 204–214 MeV and the hadron phase is realized
otherwise. However, the HRG model with EVE may
be invalid when T > 210.8 MeV, since it has a singu-
larity. If this interpretation is appropriate, the quark phase
is realized when T > 204 MeV.
It should be noted that the rapid increase of pressure

of the HRG model with EVE in the high temperature
region is caused by the rapid increase of meson con-
tribution. In our model, the meson gas is treated as a free
gas of pointlike particles. It is natural that the meson
contribution is also suppressed in the high temperature
region. For illustration, we assume the following simple
suppression form of the meson pressure.

P0
M ¼ PM exp ½−ðT=T�Þ10� ð38Þ

We set T� ¼ 210.8 MeV. As is seen in Fig. 22, in this
case, the hadron phase is realized in the low temperature
and the quark phase is realized in the high temperature
region (T > 197 MeV). The study of the mechanism
of meson gas suppression is an important subject in
the future.
Figure 23 shows T-dependence of the pressure of HRG

model when θ ¼ π and b ¼ v ¼ 4πr3
0

3
¼ 2.14 fm3. In the

case of EVETC, we found the singular behavior at
T ¼ 190.5 MeV, but could not find the solution when
T > 190.5 MeV. The temperature at which singularity

occurs is somewhat smaller in EVETC than EVE.
Figure 24 is similar to Fig. 23 but b ¼ 1.315 fm3 is used.
The difference of the singularity temperature is somewhat
smaller than that in Fig. 23. As is in Fig. 23, we could not
find the solution of EVETC when T > 201 MeV. It seems
that the singularity temperature and the property of the
pressure above the singularity temperature depend on the
detail description of the model to some degree. However,
qualitatively, the result of EVE is consistent with that of
EVETC below the singularity temperature.
Figure 25 shows the same as Fig. 22 but for μ ¼ 0. We

see that Pp and P are larger than PPNJL at high temperature.
Hence, if we apply the Gibbs criteria to these cases, the
hadron phase is realized at high temperature. On the
contrary, P0 is smaller than PPNJL at high temperature. In
this case, the quark phase is realized at high temperature
(T > 216 MeV). This fact confirms the importance of the
meson pressure suppression.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 160  170  180  190  200  210  220  230  240

P
 [G

eV
  4  ] 

T [MeV] 

with EVE
without EVE
with EVETC

FIG. 23. The T-dependence of the pressure when θ ¼ π and
b ¼ v ¼ 4πr30=3. The solid, dashed, and dotted lines show the
results obtained by the HRG models with EVE (P), without EVE
(Pp), with EVETC, respectively.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 160  170  180  190  200  210  220  230  240

P
 [G

eV
  4  ] 

T [MeV] 

with EVE
without EVE
with EVETC

FIG. 24. The T-dependence of the pressure when θ ¼ π, v ¼
4πr30=3 and b ¼ 1.315 fm3. The solid, dashed, and dotted lines
show the results obtained by the HRG models with EVE (P),
without EVE (Pp), with EVETC, respectively.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 160  180  200  220  240  260  280  300

P
 [G

eV
  4
 ] 

T [MeV] 

with EVE
without EVE

with EVE'
PNJL

FIG. 25. The T-dependence of the hadron (PNJL) pressure
when μ ¼ 0. The solid, dashed, dotted and dot-dashed lines
show the results obtained by the HRG models with EVE (P),
without EVE (Pp), with EVE plus meson gas suppression
(P0 ¼ PB þ P0

M), and the PNJL model, respectively.

OSHIMA, KOUNO, and KASHIWA PHYS. REV. D 111, 014023 (2025)

014023-10



V. SUMMARY

In summary, in this paper, we have studied the baryon
number chemical potential (μ) dependence of the baryon
number density and pressure in the HRG model with
excluded volume effects (EVE) when μð¼ iθTÞ is pure
imaginary. We compare the results with the ones obtained
by the PNJL model in which the quark degree of freedom is
contained.
In the HRG model, the Roberge-Weiss (RW) perio-

dicity, which the QCD grand canonical partition function
has, is trivial. At low temperature and high temperature,
the θ-dependence of the baryon number density and the
pressure are smooth functions of θ. However, they have a
singular behavior at θ ¼ ð2kþ 1Þπ with k∈Z when
T ∼ 211 MeV which is consistent with the RW transition
temperature TRW obtained by lattice QCD (LQCD) simu-
lations. This coincidencemay reflect the simple fact that the
inverse of the baryon radius 1=r0 is roughly estimated as
200 MeV. As T increases, the equality ReðnbðθÞÞ ¼
Imðnaðθ þ π

2
ÞÞ is largely broken by EVE. This breaking

of the equality seems to be important for the singular
behavior at T ∼ 211 MeV. It is very interesting that the
singularity is well explained by the dual EVE in which the
roles of pointlike and nonpointlike particles are exchanged
with each other in EVE. In the picture of the dual EVE, the
dual dense packing causes the singularity. At high temper-
ature above T ∼ 211 MeV, the singularity disappears.
However, it is natural that the HRG model with EVE is
valid only when the temperature is smaller than the
temperature where the singularity appears. Since the dual
EVE is equivalent to the EVE with a negative particle
volume, it may be regarded as attractive force effects. It
considerably lowers the pressure. Hadron matter with
pressure of negative infinity cannot exist. Hadron matter
is compressed and baryons are crushed by the strong
attractive force at θ ¼ ð2kþ 1Þπ when T ∼ 211 MeV.
Hence, the introduction of the quark degree of freedom
is necessary at higher temperature. The thermodynamic
comparison between the HRG results and the PNJL results
ensures this expectation.
It is also very interesting that EVE is visible just before

TRW. EVE may be detectable by the LQCD simulation at
imaginary μ [31]. If the function form of ImnB deviates
from the sine function, the EVE may be significant. In our
calculations, we have treated v as a constant parameter.
However, the T and/or the μ-dependence may be important;
see, e.g., Ref. [32]. Such a dependence may be determined
by the LQCD simulations.
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APPENDIX: PNJL MODEL

Thermodynamic potential density ΩPNJL in the three
flavor PNJL model with the mean field approximation is
given by [23–28]

ΩPNJLðT; μqÞ ¼ UðTÞ þUM þ
X

f¼u;d;s

ΩfðT; μqÞ; ðA1Þ

where

ΩfðT; μqÞ ¼ −2
Z

d3p
ð2πÞ3

h
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q

þ T log ½f−f ðpÞfþf ðpÞ�
i
; ðA2Þ

with

f−f ðpÞ ¼ 1þ 3½ΦþΦ�e−βE
−
f �e−βE−

f þ e−3βE
−
f ;

fþf ðpÞ ¼ 1þ 3½Φ� þΦe−βE
þ
f �e−βEþ

f þ e−3βE
þ
f : ðA3Þ

where Φ, U, UM and Mf are the Polyakov loop, the
Polyakov-loop potential, the mesonic potential and the
effective mass of f-quark, respectively, and E�

f ðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
� μq. The first term of the integrand in

Eq. (A2) is a vacuum contribution. Note that the
Polyakov-loop Φ and its conjugate Φ� are complex, in
general. The effective quark mass Mf is given by

Mf ¼ mf − 4GSσf þ 2GDσ
0
fσ

00
f; ðA4Þ

with

f ≠ f0; f ≠ f00; f0 ≠ f00; ðA5Þ

where mf is the current quark mass of f-quark, GS and GD

are coupling constants of four and six quarks interaction,
and σf is the chiral condensate of f-quark, respectively.
The mesonic part is given by

UM ¼ 2GSðσ2u þ σ2d þ σ2sÞ − 4GDσuσdσs: ðA6Þ

According to Ref. [33], for model parameters, we set
mu;d¼5.5MeV,ms¼140.7MeV,GSΛ2¼ 1.835,GDΛ5 ¼
12.36 and Λ ¼ 602.3 MeV. It should be noted that, to
ensure the conformal limit at high temperature, we intro-
duce a momentum cutoff Λ only in the vacuum part; the
original PNJL model has a cutoff because it is a non-
renormalizable model. For the Polyakov potential, we use
the following form [27]:
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UðT;Φ;Φ�Þ
T4

¼
�
−
aðTÞ
2

Φ�Φþ bðTÞ logf1 − 6Φ�Φ

þ 4ðΦ3 þΦ�3Þ − 3ðΦ�ΦÞ2g
�

ðA7Þ

where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; ðA8Þ

bðTÞ ¼ b3

�
T0

T

�
3

; ðA9Þ

with modified coefficients [14,34]

a0¼2.457; a1¼−2.47; a2¼15.2; b3¼−1.75: ðA10Þ

In numerical calculations, we set T0 ¼ 220 MeV so as to
satisfy TRW ∼ 200 MeV.

The pressure in the PNJL model is given by PPNJL ¼
−ΩPNJL. The number densities of f-quark and antiquark
(nq;f and naq;f) are given by

nq;f ¼ 1

π2

Z
∞

0

dpp2
g−f ðpÞ
f−f ðpÞ

; ðA11Þ

naq;f ¼ 1

π2

Z
∞

0

dpp2
gþf ðpÞ
fþf ðpÞ

; ðA12Þ

where

g−f ðpÞ ¼ 3Φe−βE
−
f þ 6Φ�e−2βE

−
f þ 3e−3βE

−
f ; ðA13Þ

gþf ðpÞ ¼ 3Φ�e−βE
þ
f þ 6Φe−2βE

þ
f þ 3e−3βE

þ
f : ðA14Þ

The solutions of σfðf ¼ u; d; sÞ, Φ and Φ� are determined
so as to minimize ΩPNJL.
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