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Hawking’s discovery that black holes can evaporate through radiation emission has posed a number of
questions that with time became fundamental hallmarks for a quantum theory of gravity. The most famous
one is likely the information paradox, which finds an elegant explanation in the Page argument suggesting
that a black hole and its radiation can be effectively represented by a random state of qubits. Leveraging
the same assumption, we ponder the extent to which a black hole may display emergent symmetries,
employing the entanglement asymmetry as a modern, information-based indicator of symmetry breaking.
We find that for a random state devoid of any symmetry, a Uð1Þ symmetry emerges and it is exact in the
thermodynamic limit before the Page time. At the Page time, the entanglement asymmetry shows a finite
jump to a large value. Our findings imply that the emitted radiation is symmetric up to the Page time and
then undergoes a sharp transition. Conversely the black hole is symmetric only after the Page time.
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Introduction. Black holes usually put quantum mechanics
on the spot. A long standing puzzle is whether information
is lost after they evaporate, contradicting the unitarity of
quantum mechanics [1,2]. In the 1990s, Don Page took a
significant stride toward its understanding with a very
simple argument [3,4]: by approximating the black hole
and the radiation with a random state of qubits, he showed
that quantum unitarity implies that the entanglement
entropy of the radiation emitted in the process first grows
and then it decreases, going back to zero when the black
hole disappears. A series of recent calculations [5–8]
have shown in specific quantum gravity models using
replica wormholes that the entanglement entropy of the
radiation actually follows this behavior, and information is
preserved.
A natural follow up question is: what are the implications

of quantum unitarity to symmetries in the evaporation of a
black hole? Many different analysis have argued that exact
global symmetries should be explicitly broken in consistent
quantum gravity models [9–14]. In particular, a unitary
black hole evaporation would forbid the existence of global
symmetries [15]. Motivated by these works, we examine

here how a broken global Uð1Þ symmetry evolves during
the black hole evaporation using the original model of
Page, which assumes that the dynamics of the black hole is
highly chaotic. A very suitable tool for this purpose is
the entanglement asymmetry, a quantity that measures
how much a symmetry is broken in a part of a system,
which has been recently introduced in Ref. [16] in the
context of nonequilibrium many body quantum systems,
see also [17–24].

Basic setup. Let us consider a quantum system consisting
of two spatial parts S ¼ A ∪ B in which the Hilbert space
factorises asHA ⊗ HB, being dA and dB the dimensions of
HA andHB, respectively. In the analysis of the evaporation
of a black hole, one of the subsystems, e.g. B, represents the
black hole while the complementary, A, is identified with
the radiation emitted during the process. Initially, the sub-
system corresponding to the radiation is empty, A ¼ ∅,
and, therefore, B ¼ S. As the black hole evaporates, the
degrees of freedom of B are transferred to A until B ¼ ∅
and A ¼ S, point at which the black hole is completely
evaporated. Accordingly in this process the time can be
identified as t ∝ log dA. A usual assumption to characterize
this process is to presume that the state shared by A and B at
any time is a typical pure state [4]. The crucial result of
Page [3] is that, if we take a random ensemble of pure
states distributed according to the Haar measure and we
average their entanglement entropies S1, we find that, up to
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subleading corrections,

E½S1� ¼ minðlogdA; log dBÞ þOð1Þ; ð1Þ

where E½·� denotes the average over the ensemble of Haar
random states. Equation (1), commonly referred to as the
Page curve, indicates that the entanglement entropy of the
emitted radiation (and of the black hole) initially grows at
maximum rate; this is attributed to the creation of entangled
pairs between the degrees of freedom trapped inside the
black hole and those escaping to the region A (dA < dB).
The entanglement reaches a maximum when dA ¼ dB,
defining the Page time. As the black hole continues to
evaporate beyond the Page time, the (entanglement)
entropy decreases. This reduction is physically explained
by the emission of particles already entangled with the
radiation. Ultimately, the entanglement entropy reaches
zero when the black hole is entirely evaporated
(log dB ¼ 0). This implies that there is no loss of informa-
tion, thereby reconciling black hole evaporation with
unitary quantum evolution.
In this paper, we consider generic Haar random pure

states breaking any possible symmetry. Our focus is on
understanding the destiny of a broken global Uð1Þ sym-
metry by assessing the entanglement asymmetry of A, that
quantifies the extent to which symmetry is broken within
the subsystem. In the context of an evaporating black hole,
our calculation corresponds to the time evolution of the
asymmetry of the radiation. The same problem was also
addressed in Ref. [25] but without the lens of entanglement
asymmetry.
For simplicity, we choose a system of L ¼ lA þ lB

qubits, i.e. dA ¼ 2lA and dB ¼ 2lB . The local basis for each
qubit k ¼ 1;…; L is given by the states j0ik and j1ik, with
global vacuum j0i ¼⊗k j0ik. We prepare the system in a
pure state Uj0i, where U is a 2L × 2L unitary matrix taken
from the Haar random ensemble. The state of the sub-
system A is described by the reduced density matrix
ρA ¼ TrBðUj0ih0jU†Þ. We further consider the charge
operator Q ¼PL

k¼1 j1ikh1jk, which counts the number
of excitations and generates a global Uð1Þ symmetry
group. This charge is local in the sense that Q ¼
QA þQB. A generic matrix U provides a state Uj0i that
is not an eigenstate of Q. As a consequence, ½ρA;QA� ≠ 0
and, therefore, ρA breaks the Uð1Þ symmetry generated
byQ. This is different from considering states that preserve
the symmetry Q and leading to symmetry resolved Page
curves [25–28].
In this setup, the entanglement asymmetry [16] is

defined by introducing the auxiliary reduced density matrix
ρA;Q ¼PqΠqρAΠq, with Πq the projector on the eigen-
space of QA of charge q∈Z, satisfying ½ρA;Q;QA� ¼ 0. We
can then define the entanglement asymmetry in terms of the
n-Rényi entropy SnðρÞ ¼ 1

1−n log TrðρnÞ as

ΔSðnÞA ¼ SnðρA;QÞ − SnðρAÞ: ð2Þ

The von Neumann asymmetry is obtained in the limit
n → 1. We will show that the choice of n is not important
for the resulting physics. The entanglement asymmetry
satisfies two essential properties to be a quantifier of

symmetry breaking [29]: it is non-negative ΔSðnÞA ≥ 0

and ΔSðnÞA ¼ 0 if and only if ½ρA;QA� ¼ 0; that is, when
ρA respects the symmetry generated by Q (i.e. ρA;Q ¼ ρA).

In the context of resource theory, ΔSð1ÞA has been also
studied in Refs. [30–33].

Analytic calculation for integer n ≥ 2. To calculate ana-
lytically the entanglement asymmetry over an ensemble of
Haar random states fUj0ig, we assume that we may replace
E½log TrðρnA;QÞ� with logE½TrðρnA;QÞ�, (same for ρA).
Although the two expressions are not strictly equal, we
check numerically that bringing the average “inside the
logarithm” is a good approximation up to exponentially
small sub-leading corrections in the system size L. This
may be expected based on arguments exploiting the
concentration of Haar measure.
The main advantage of this approximation is that, using

the Fourier representation of the projector Πq, E½TrðρnA;QÞ�
can be written as

E½TrðρnA;QÞ� ¼
Z

π

−π

dα1 � � � dαn
ð2πÞn E½ZnðαÞ�; ð3Þ

in terms of the averaged charged moments of ρA [16]

ZnðαÞ ¼ Tr

 Yn
j¼1

ρAeiαjjþ1QA

!
; ð4Þ

where α ¼ fα1;…; αng, αjjþ1 ¼ αj − αjþ1 and αnþ1 ≡ α1.
The latter can be computed adapting the standard methods
employed to obtain the n-Rényi entropy in random unitary
circuits [34,35]. In essence, U is associated with a tensor
with two pairs of indices, one for each regions A and B. The
tensor can be represented graphically by a rectangle with
lower (upper) legs associated to their input (output) degrees
of freedom. The state Uj0i is expressed using a single copy
of such a tensor, while Uj0ih0jU† involves the bra and the
ket, so it can be represented by two layers of U. Therefore,
ZnðαÞ is a sequence of 2n layers sewn together as shown in
Fig. 1 for n ¼ 2.
In formulas, the average of ZnðαÞ amounts to compute

E½ZnðαÞ� ¼ h−þ;αjE½U⊗n ⊗ ðU�Þ⊗n�j0i⊗2n; ð5Þ

where we have introduced the states

j−þ;αi ¼ ⨂
k∈A

j−;αik ⨂
k∈B

jþik; ð6Þ
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with

jþik ¼
X1

faj¼0g
⨂
n

j¼1

ðjajik ⊗ jajikÞ ð7Þ

and, assuming anþ1 ≡ a1,

j−;αik ¼
X1

faj¼0g
⨂
n

j¼1

ðeiαjjþ1aj jajik ⊗ eiαjþ1jþ2ajþ1 jajþ1ikÞ:

ð8Þ

The definition of the conjugate operator U� depends on the
choice of the local basis, which is fixed by Eqs. (7) and (8).
The Haar average of the tensor product of unitary

matrices in Eq. (5) can be calculated with the well-known
formula [36,37]

E½U⊗n ⊗ ðU�Þ⊗n� ¼
X

σ1;σ2 ∈Sn

Wgðσ1σ−12 Þjσ1ihσ2j; ð9Þ

where Sn is the symmetric group, jσi ¼⊗L
k¼1 jσik, and

jσik ¼
X1

faj¼0g
⨂
n

j¼1

ðjajik ⊗ jaσðjÞikÞ: ð10Þ

The Weingarten coefficients WgðσÞ in Eq. (9) can be
determined analytically. Up to exponentially small correc-
tions in L, they are WgðσÞ ¼ 2−nLδσ;Id where Id∈Sn

stands for the identity permutation [38]. This significantly
simplifies the analytic calculation of E½ZnðαÞ�, as we only
have to consider the diagonal terms σ1 ¼ σ2 in Eq. (9).
Being the corrections exponential, the asymptotic form
works perfectly even for small L, as we numerically check
for several values of n.
Combining all the previous ingredients and computing

the overlaps involving the states in Eqs. (6) and (9), we find

E½ZnðαÞ� ¼
1

2nL

X
σ ∈Sn

 X1
faj¼0g

Yn
j¼1

δaj;aσðjÞ

!
L−lA

×

 X1
faj¼0g

Yn
j¼1

ei2αjjþ1ajδajþ1;aσðjÞ

!
lA

: ð11Þ

Note that, taking α ¼ 0 in this formula, we straight-
forwardly obtain an analytic expression for the averaged
n-Rényi entanglement entropy SnðρAÞ, which we plot in the
upper panel of Fig. 2. For large L, it tends to the original
result by Page in Eq. (1) (we recall that the Page curve is
valid for Rényi entropies of arbitrary order, while exact
analytic expressions at finite size exist for n ¼ 1, see
Ref. [39] for a recent review).
Plugging Eq. (11) in Eq. (3), we obtain the averaged

asymmetry. In particular, for n ¼ 2 the resulting expression
is very simple,

E½ΔSð2ÞA � ¼ − log

�
1

22lA−L þ 1

�
1þ 2−L

ð2lAÞ!
ðlA!Þ2

��
: ð12Þ

FIG. 2. Averaged 2-Rényi entanglement entropy (upper panel)
and entanglement asymmetry of A (lower panel) for Haar random
pure states as a function of the subsystem size lA for different
fixed total system sizes L. In the upper panel, E½S2ðρAÞ� is
obtained from Eq. (11) taking n ¼ 2 and α ¼ 0. In the lower
panel, the curves represent Eq. (12).

FIG. 1. Graphical representation of the charged moments Z2ðαÞ
in Eq. (4).
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We plot this expression in the lower panel of Fig. 2 as a
function of the subsystem size lA, choosing different fixed
values of L.

Large-L asymptotics for generic n. In the large-L limit, the
two dominant terms in Eq. (11) correspond to the permu-
tations σðjÞ ¼ j (identity) and σðjÞ ¼ jþ 1, and the
resulting asymptotic charged moments are

E½ZnðαÞ� ∼ 2ð1−nÞlA þ 2ð1−nÞðL−lAÞ
Yn
j¼1

cosðαjjþ1ÞlA : ð13Þ

Plugging this expression into Eq. (3), we find that

E½ΔSðnÞA � ∼
�
0; lA < L=2;

1=2 logðlAπn1=ðn−1Þ=2Þ; lA > L=2:
ð14Þ

From this equation, the analytic continuation for the asymp-
totics of the von Neumann asymmetry (i.e., n → 1) yields

E½ΔSð1ÞA � ¼ 1=2 logðlAπ=2Þ þ 1=2 for lA > L=2. For
n ¼ 2, this result could have been alternatively derived
using the methods of Ref. [25].

Numerical check. We have checked our prediction in
Eq. (11) against numerically-exact computations at finite
size. We generate the initial state Uj0i, where U is drawn
from the uniform distribution over the unitary groupUð2LÞ.
For each lA, we take a number of samples making
statistical errors sufficiently small (in practice, ∼102 is

enough for our purposes). The average asymmetry E½ΔSðnÞA �
is then obtained by averaging over all the samples. In Fig. 3,

we show the results for L ¼ 5, 10 and different values of n
(symbols) and we compare them using the analytical
prediction in Eq. (11), finding a remarkable agreement
even for small system sizes. Such agreement confirms that
all neglected terms are exponentially suppressed in L. We
omit the error associated with the finite-number of samples
since it is smaller than the symbol size.

Discussion and physical interpretation. Equation (14) is
the main result of this work: it tells us that, for lA < L=2,
the asymmetry vanishes, meaning that the Uð1Þ symmetry
is typically restored in the subsystem A. At the Page time,
lA ¼ L=2, the asymmetry shows a sharp jump, i.e. the
Uð1Þ symmetry is suddenly broken, and then it increases
logarithmically for lA > L=2. A remarkable consequence
of Page’s result (1) is that typical states have almost
maximal bipartite entanglement. Something similar hap-
pens for the entanglement asymmetry: In Ref. [16], it was
shown that the entanglement asymmetry for the product
states that maximally break a Uð1Þ symmetry is exactly
1=2 logðlAπn1=ðn−1Þ=2Þ for large lA (there are no indica-
tions that this bound is valid for entangled states, but some
arguments have been provided for physical states [22]).
According to Eq. (14), this is precisely the asymmetry that
typical states display for lA > L=2 and large L. This
implies that at the Page time the asymmetry displays the
largest possible jump.
It may initially seem surprising that a typical random

nonsymmetric state possesses a symmetry. Yet, this fact is
intuitive in light of the decoupling inequality [40], which
states

E
�����ρA −

1
2lA

����
1

�
2

≤ 2lA−lB ; ð15Þ

where k · k1 stands for the L1 norm. Physically, this
inequality implies that for large sizes the reduced density
matrix ρA is exponentially close to the (normalized) identity
for lA < lB. As a consequence, one expects that also
their asymmetries are close (the asymmetry of the identity
being vanishing because there are no off-diagonal terms).
Conversely, for lA > lB, the right hand side of the
above inequality becomes exponentially large and there
is no bound.
The sharp transition in the radiation from a symmetric to

a nonsymmetric state has been noted in Ref. [41] in the
context of a specific gravity theory, using a quantity akin to
Z2ðαÞ and the replica wormhole formalism. The jump at the
Page time is associated with the emergence of an “island”
[5], a region inside the black hole that contributes to the
entanglement entropy of the radiation, see also [15,42].

Outlooks. We have studied the averaged entanglement
asymmetry in Haar random states. Our main result is given
by Eq. (14) showing that in the thermodynamic limit the

FIG. 3. Averaged n-Rényi entanglement asymmetry of A for
Haar random pure states as a function of the subsystem size lA
for fixed total system size L ¼ 5 (filled symbols), L ¼ 10 (empty
symbols) and different n. The solid continuous lines are obtained
plugging Eq. (11) into Eq. (3). The symbols are the numerical
data obtained via numerically exact computations. For n ¼ 1, the
dashed line only joins the numerical data as a guide for the eyes.
Statistical errors are not visible at the scales of the plot.
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entanglement asymmetry is vanishing for lA < L=2 and,
after a finite jump at l ¼ L=2, it grows logarithmically in
lA for lA > L=2. We note that our choice of a Uð1Þ
symmetry generator Q, is completely arbitrary, since we do
not have a Hamiltonian fixing the conserved charges.
However, given the inequality (15), it is natural to expect
that a similar behavior is found for larger symmetry groups.
This is especially true in the case of Abelian symmetries,
while technical complications and nontrivial differences
may appear in the case of non-Abelian symmetries.
Therefore, by modeling an evaporating black hole with a
pure random state, symmetries should be broken as we
predict, for any choice of the charge.
Our result has interesting implications for an evaporating

black hole: the emitted radiation is symmetric before the
Page time, even in the absence of any symmetry; con-
versely it undergoes a significant (potentially maximal)
symmetry breaking shortly afterward. The transition
between the two regimes is discontinuous and it is
reminiscent of the decoding transition by Hayden and
Preskill [40]. If we choose a proper quantum field theory
with a specific Hamiltonian for describing the black hole,
our findings imply that it would be impossible to determine
whether the theory has a conserved charge without collect-
ing at least half of the black hole’s radiation. Note that the
asymmetry of the black hole (obtained by looking at lB)

displays the opposite behavior: it is maximal before the
Page time and it vanishes after.
Looking forward, it is desirable to compute the asym-

metry of the radiation in more realistic settings, including
dynamical models of evaporating black holes (e.g., those in
Refs. [40,43]) or by leveraging the holographic correspon-
dence, akin to the approaches taken for the Page curve,
see e.g. [44–48]. Additionally, it is worthwhile to explore
methods for experimentally investigating the entanglement
asymmetry and its transition at the Page time in analog
gravity settings [49–51].

Note added. After the submission of this manuscript, a
complementary work appeared in the arXiv [52] showing
the validity of our results even in the context of random
unitary circuits.
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