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Superrotations at spacelike infinity
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We propose a consistent set of boundary conditions for gravity in asymptotically flat spacetime at
spacelike infinity, which yields an enhancement of the Bondi-Metzner-Sachs group with smooth
superrotations and new subleading symmetries. These boundary conditions are obtained by allowing
fluctuations of the boundary structure which are responsible for divergences in the symplectic form, and a
renormalization procedure is required to obtain finite canonical generators. The latter are then made
integrable by incorporating boundary terms into the symplectic structure, which naturally derive from a
linearized spin-two boundary field on a curved background with positive cosmological constant. Finally,
we show that the canonical generators form a nonlinear algebra under the Poisson bracket and verify the

consistency of this structure with the Jacobi identity.
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Introduction. Gravity in four-dimensional asymptotically
flat spacetime constitutes a model for a large range of
phenomena, from the scattering of elementary particles to
the description of astrophysical systems below the cosmo-
logical scale. It came as a surprise when Bondi, van der Burg,
Metzner, and Sachs highlighted that the asymptotic sym-
metry group of such spacetimes is not only Poincaré, but an
infinite-dimensional enhancement of the latter, called the
(global) BMS group [1,2], which is a semidirect product
between the Lorentz group and the supertranslations.

It was later shown that this asymptotic symmetry group
could itself be consistently enhanced by including all the
conformal transformations on the two-dimensional celestial
sphere, called the superrotations [3—6] (see also [7—10]).
Further extensions were obtained by considering asymptoti-
cally locally flat spacetimes with fluctuating boundary metric
at null infinity, allowing for all the diffeomorphisms on the
celestial sphere [11-15], or Weyl symmetries [16,17], see
e.g. [18,19] for recent reviews.

The BMS symmetries play a major role in the under-
standing of the infrared structure of quantum gravity [20].
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Remarkably, assuming antipodal matching conditions
between past and future null infinity, it was shown that the
supertranslation Ward identity is equivalent to Weinberg’s
leading soft graviton theorem [21,22]. Similarly, superrota-
tion invariance of the gravitational scattering was shown to be
related to the subleading soft graviton theorem [23-25] at all
orders of perturbation [26—34]. The BMS transformations
were also explicitly connected to memory effects, which
constitute potential observable phenomena in gravitational
astronomy (see e.g. [35]). More precisely, the supertransla-
tions describe a displacement memory effect [36], while the
superrotations correspond to spin [37], center-of-mass [38]
and superboost/velocity kick memories [13].

The global BMS symmetries were originally discov-
ered by studying the boundary structure of asymptotically
flat spacetimes at null infinity. Strikingly, while the
Poincaré symmetries had been found for a long time at
spacelike infinity [39], it is only recently that the BMS
group has been uncovered there [40-43]. The advantage
of working at spacelike infinity is that it requires less
regularity assumptions on the class of spacetimes that
are considered, since it does not assume the existence
of a smooth null infinity [44-49]. Furthermore, as dis-
cussed in [40-42,50-55], it allows to derive the antipo-
dal matching conditions necessary to establish the
equivalence between BMS Ward identities and soft
theorems [21,22,24] in a well-posed formulation of the
scattering problem.

However, up to now, only the global version of the BMS
group has been found at spacelike infinity. In particular, the
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superrotations are still missing, and due to their crucial role
for the physics in asymptotically flat spacetime, it is of
paramount importance to find these symmetries at space-
like infinity. In this paper, we address this challenging
problem through a purely Hamiltonian approach and derive
a phase space at spacelike infinity that accommodates
smooth superrotations, coined as Spi superrotations
(this terminology is introduced by analogy with the Spi
supetranslations of [56-58]). To do so, inspired by the
analysis at null infinity [11-13], we propose a new set of
boundary conditions for asymptotically locally flat space-
times by relaxing those considered in [40-43] and
allowing some fluctuation of the boundary structure.
This makes the analysis technically very demanding and
requires the use of recently developed methods: (i) a
renormalization of the action and the symplectic form is
necessary to ensure the finiteness of the canonical gen-
erators (see e.g. [13,16,17,59-73]); (ii) a field-dependent
redefinition of the symmetry parameters [50,65,74—80],
as well as the introduction of boundary degrees of
freedom [81-83], are needed to render the canonical
generators integrable; (iii) the treatment of nonlinear terms
to compute the resulting asymptotic symmetry algebra,
which is reminiscent of what happens in higher dimensions
where already the global BMS group is realized as a
nonlinear algebra at spacelike infinity [84,85].

Note. This paper is accompanied by some Supplemental
Material [86] collecting technical and intermediate results
that are not essential to follow the reasoning, but shall be
quoted for the interested reader. Equations reported in this
appended document are numbered as (S.N).

Solution space. The canonical action for Einstein’s gravity
in four dimensions is given by [8§7-89]

8:/dtd3x£H, Ly :fc"fg,-j—NH—N"H,- (1)
where g;; is the three-dimensional metric on the (spacelike)
constant time slices, 7'/ its conjugate momentum and N, N’
correspond respectively to the lapse and shift functions. We
work in units such that 162G = 1. We write R;; the spatial
Ricci curvature, R its trace, i the spatial covariant
derivative and g = det g;;. The variation of the action with

respect to the lapse and the shift yields the Hamiltonian and
momentum constraints

1 . 1
H: —\/§R+7§(ﬂjﬂij—§ﬂ2> %0,

H, = —21,0,; ~ 0. (2)

li
In the following of the paper, the weak equality symbol =
denotes the equality on the constraint surface. We introduce
spherical coordinates x' = (r, x*) on constant time slices

and we are interested in the asymptotic behavior of the
dynamical fields around spacelike infinity, located on the
two sphere of radius » — +oc0. We propose the following
boundary conditions:

By
2

r

grr:1+7rr+ +O(r_3)’
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Gra = g + TA + O(r2),

gap = 1*Gag + rhag + ho) + O ),
ﬁ.rr

= rprr +7—1.rr +ﬁ+ O(r—Z)’

r

—rA

=rA T
= ”T + % +O(r7?),

pAB  zAB /B
B = T+7+%+ 0(7_4), (3)

where the transverse boundary metric G,z is a general
metric on the two-dimensional sphere. We also impose the
following parity conditions:

Gap ~ h,, ~ even, PAB ~ odd,

7" — 7+ h,P—Ph,, ~odd, (4)
under the antipodal map x*+— —x* on the sphere.
Throughout, we denote the trace of any tensor 7,z on
the sphere by T = GABT 5.

These boundary conditions are weaker than those con-
sidered in [40—43] since now, the leading orders G .z, P45
and P’ are allowed to fluctuate (by this, we mean that they
are not fixed on the solution space). One recovers the
boundary conditions of [40—43] by setting P,z = 0 = P'"
and G, = 745, the unit-round sphere metric. In particular,
the parity conditions (4) generalize those of these previous
references, in which #,, and the combination (7' — 7)
were already assumed to have odd parity, and the parity of
G 45 agrees with the one of the unit-round sphere metric.
The relaxation of the definition of asymptotic flatness
considered here is inspired by the analysis at null infinity,
where fluctuations of the transverse boundary metric are
required to obtain Diff(S?) superrotations [11-13]. Taking
into account the falloff conditions

N=1+0(""), N=0", NA=072), (5
on the lapse and the shift one can show that the present
boundary conditions are compatible with the typical
behavior of asymptotically locally flat spacetime, i.e.,
the Riemann tensor vanishes when r — +oo0.

The boundary conditions (3) and (4) are invariant under
hypersurface deformations generated by
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&= rb+f+§—|—(9(r‘2),

&= W+=+007),
A el
&=t 00, (6)

where &+, &, and & denote respectively infinitesimal
deformations in the normal, radial and angular directions.
In Eq. (6), the parameters f, W, ¢, €, et e‘(“z) are arbitrary

functions on the sphere, and b, Y* are parity-odd functions
by consistency with Eq. (4). Acting on the radial expan-
sions in Eq. (3) with the deformations (6) in the standard
way, see e.g. [87,88], yields the transformations of each
field defined in these expansions.

For the BMS boundary conditions of [40-43], fixing the
leading structure yields Ly7,5 = 0and D4Dgh + 745b = 0
whose solutions define the Lorentz generators (Y4 para-
metrizes the three rotations and b the three boosts). In our
case, Y2 and b are not forced to obey these constraints and
contain an infinite tower of modes, which we will identify
later as the Spi superrotations. Moreover, it can be shown that
one can consistently set 1, =0 = h,, by adjusting the
subleading parameters e and ef‘z), which we will assume

from now on.

Symplectic  structure. Taking one variation of the
Lagrangian density £y = Lydtd3x gives

5[:].] = (Aljégl] + Bl'jéﬂ'ij)d[d?’x - d@ (7)

where AV = 0, B;; = 0 are the Hamilton (Einstein) equa-
tions and the three-form @ is the presymplectic potential
obtained by keeping the boundary terms in the integrations
by parts and from which the presymplectic current @ = 60
derives. Given any Cauchy slice X, the presymplectic
structure Q = [; @ is then given by [87,88]

Q[églj,éﬂu] = /2d3x5ﬂij VAN 59!/ (8)

For our boundary conditions (3), the latter is linearly
divergent in r due to the fluctuation of the leading fields
G4p, PAB. To renormalize these divergences, we supple-
ment the action with some appropriate boundary term B,
ie. Ly =Ly —dB [60-64]. We have

5B
oB = 5500 -0,

where ¢ collectively denotes relevant boundary degrees of
freedom. The incorporation of the boundary term then
modifies the presymplectic potential as [60-64]

W), = 50b (9)

0 =0-5B-4dd,, ®=w+do, (10)

such that the new symplectic structure

Q[égi]w 57fij] = /

dSX(sﬂ.'ij Aég,j—i—j{ ), (11)
z [

is modified by a surface term on the sphere at infinity.
Divergent parts in B can be fixed in such a way that (i) the
modified symplectic structure (11) is finite in the r — 400
limit, hence ensuring finiteness of the canonical generators,
and (ii) the variation of the action is finite on-shell. We refer
to Eq. (S.20) for the explicit expression.

Charge algebra. Contracting the renormalized symplectic
form (11) with a gauge transformation &; yields the
following canonical generator

5/d3x(§LH+.f;in) =15,Q + lim Ke  (12)
> r—>—+00

The surface charge I_C,: is finite but nonintegrable, i.e. it is not
a o-exact term on the phase space. Analogously to [40-43]
(see also [50,65,74-76,78-80]), we perform a field-depen-
dent redefinition of the parameters f +— T, ¢ — €, given
explicitly by Eq. (S.15), and we require that the new
parameters 7, € are field-independent, 67 = 0 = &€, so that
the remaining obstruction to integrability only involves
variations of the fluctuating boundary structure G, 5, PA5.

To resolve this remaining issue, we introduce a couple
of boundary fields, i.e. a symmetric tensor C,p and a
symmetric tensor density FA and modify the boundary
symplectic structure as

Wy, = Wy + dz.X(épAB A 5CAB + 5FAB AN SGAB)' (13)

Then, we are free to prescribe the transformation laws of
the new fields (Cup, FAP) in such a way that the modifi-
cation brought by (13) to the charge absorbs the remaining
nonintegrability, and we refer to Egs. (S.24) and (S.25) for
the explicit expressions. Furthermore, the new term in
Eq. (13) brings a supplementary integrable piece in the
charge that reads as

Kioy) == ]4 EelpHOD + YR (14)

Here, H(CF) and H'"") are given by

HEP) = /G(DADECyp — (A + 1)C)
2 - - 1 -, - _
-7 [ngg ~ PF— 1 (P3P}~ P)C|.

HE‘C’F) = —2DyF®, + PE(D4C§ — 2DCY), (15)
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which remarkably correspond to the Hamiltonian and
momentum constraints for three-dimensional linearized
gravity on a curved background with positive cosmological
constant [90], the latter being described by the spatial
metric G5 and the canonical momentum PAZ,

The fact that the background has a positive cosmological
constant should be expected from the asymptotic analyses
of Beig [56], Beig and Schmidt [57], Ashtekar and
Romano [58] and Friedrich [91] where, using projective
geometry, spacelike infinity is a de Sitter hyperboloid.
Moreover, from (14), b and Y may respectively be thought
as the parameters of normal and tangential deformations of
the boundary theory.

Incorporating all the modifications, the final expression
of the charge is integrable and found to be

Kelgij )= f{ d?x [ZT\/EEW +2YA(Gapa(5) + hapi™®)
[

+2W (" =7+ h, P—PABh,p)
15V G2k + k2 + KBk — 3R, k)

2b T
+E +€\/5+6’P] +K(5y). (16)

where the fields k45 and I_cf; appear in the radial expansion
of the extrinsic curvature K45 of the sphere,

1 1o, 1
Kj= =84+ 5k + kO3 + 007", (17)

The terms collected in square brackets in Eq. (16) formally
reproduce the result of [41-43], except for the last two
terms in the first line, which are sensitive to the boundary
momentum P42, and the last two terms in the second line,
which involve subleading symmetry parameters. As a
consequence of the parity conditions (4), only the parity-
even part of 7 and the parity-odd part of W generate
improper gauge transformations, the BMS supertransla-
tions. However, by contrast with the analysis of [41-43], b
and Y4 are now arbitrary parity-odd functions that no
longer obey the conformal Killing equations on the sphere.
The additional modes in » and Y* compared to the Lorentz
generators are identified with the Spi superrotations.
Finally, we also find new large gauge symmetries asso-
ciated with the parity-even part of the subleading parameter
€ and the parity-odd part of ¢” in the charge expression (16).
Writing I_Cé = 6K ¢ and defining the generators

Gelgyjo ] = / Er(EH + EM) + Kol (18)

of the asymptotic symmetries, an intricate and lengthy
computation shows that

{Ge,2 G, Haij 771 = Galgij, 7] + Ag, g, [9:5, 77] - (19)

on the constraint surface (2), where {G;: .G, } = 6,5, is
the Poisson bracket and & is parametrized by

YA=YB0,Y5 +GABb dgh, — (1< 2),
I;:Y‘?aAbz—(l(—)z), W:Y‘?aAWZ—bsz—(lez),
’j—': Y?aATz —3b1W2 —GABaAbIC)BWZ —bIGABDADBWZ

-(1+2),
eé=YB0ze,+b,G*BD Dyey +4b 5 —biesR—(1<2),
ér:YlBaB€£+b1€2—(1(—)2). (20)

Despite the resemblance with the results of [41], the
parameters b and Y4 now contain an infinite tower of
Spi superrotations modes. We also find two Abelian ideals
associated with e and €”, on which the superrotations are
acting nontrivially. Notice that the structure constants (20)
now depend explicitly on the particular solution through
the presence of G 5. Technically, this mathematical struc-
ture is referred to as a Lie algebroid [92-94], and naturally
appears when the boundary structure is allowed to fluctuate
on the phase space [63,64,95]. Moreover, the asymptotic
symmetry algebra (19) admits the following nonlinear
contribution:

Agg = 2j§2 d*x(b,Ty — byT1)Ph,,. (21)

This term would be invisible in a linear treatment of
infinity. It is reminiscent of the appearance of a field-
depend two-cocycle in the charge algebra at null infinity in
presence of superrotations [6,13,93]. As a nontrivial con-
sistency check, we verified explicitly that the Jacobi
identity

{Ge, . {Ge,. Ge, } } + cyelic(1,2,3) ~ 0 (22)

is satisfied. Interestingly, the presence of the nonlinear
contribution (21) is absolutely essential for this computa-
tion to work, due to the field-dependence of the structure
constants in Eq. (20).

Discussion. In this work, we proposed a consistent set of
boundary conditions at spacelike infinity allowing for an
enhancement of BMS symmetries with smooth Spi super-
rotations. An interesting observation is that these symmetries
have the same parity as the Lorentz symmetries, which was
shown in [40-43,51,52] to be consistent with the antipodal
matching conditions advocated in [21,22,24]. Therefore, our
analysis extends the compatibility with the antipodal match-
ing conditions for superrotation symmetries.

We believe that the Spi superrotations identified here can
be matched with the generalized BMS symmetries [11-13]
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uncovered at null infinity, and which manifest here in a
unusual basis adapted to Hamiltonian decomposition in
time and space. The precise relation between spacelike and
null infinity requires using suitable coordinate systems as
Beig-Schmidt [56,57] or Friedrich [91] gauges, along the
lines of [40,41,51,96], which has still to be understood with
our relaxed boundary conditions. In this setup, it would
also be beneficial to identify the geometric structure
associated with the boundary conditions discussed in
this paper. These important questions will be addressed
elsewhere.

Besides the Spi superrotations, we also found two
infinite towers of charges associated with the subleading
symmetry parameters € and ¢”. These subleading sym-
metries are Abelian and in a semidirect sum with the
Spi superrotations. This echoes some recent results
obtained at null infinity by relaxing Bondi gauge fixing
conditions [5,9,16,68-70,97-100]. It would be interesting
to further explore this intriguing resemblance.

Interestingly, in the process of rendering the charges
integrable, the self-consistency of the Hamiltonian analysis
led us to add new fields at the boundary, see Eq. (13). The
latter were reinterpreted as the canonical variables for a
linearized spin-two field theory at the boundary. The
emergence of these boundary degrees of freedom is
reminiscent of the edge mode fields [101-103], which
have been argued in [104,105] to be useful to obtain
integrable charges. Our analysis constitutes an explicit
realization of this proposal.

Finally, let us emphasize that this work combined the
powerful machinery of the Hamiltonian formalism previ-
ously applied at spacelike infinity, together with covariant
phase space techniques developed in parallel mostly at null
infinity. In particular, this is the first time that the
renormalization of the symplectic structure is applied in
the Hamiltonian formalism at spacelike infinity. This
somehow concludes a long programme of finding the
complete set of BMS symmetries at spacelike infinity,
which started with the seminal work of Regge and
Teitelboim [39], and has then known a decisive turning
point with the beautiful series of papers of Henneaux and
Troessaert [41-43].
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