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We demonstrate that “natural inflation,” also known as “axion inflation,” can be compatible with Planck
2018 measurements of the cosmic microwave background while predicting an exponentially small tensor-
to-scalar ratio, e.g., r ∼ 10−15. The strong suppression of r arises from dynamics of the radial component of
the complex scalar field, whose phase is the axion. Such tiny values of r remain well below the threshold
for detection by CMB-S4 or Simons Observatory B-mode searches. The model is testable with the running
αs of the spectral index, which is within reach of next-generation cosmic microwave background and large-
scale structure experiments, motivating the running as a primary science goal for future experiments.
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Introduction. Cosmic inflation is the leading description
of the very early Universe. It provides a causal mechanism
for the generation of large-scale structure of the Universe,
observed both by large-scale structure surveys and as
anisotropies in the cosmic microwave background (CMB).
[For reviews, see, e.g., Refs. [1–4].] The discovery of
acoustic peaks in the CMB handed inflation its first
decisive victory over then-rival cosmic strings [5–7].
Subsequent measurements by the Wilkinson Microwave
Anisotropy Probe [8] and Planck [9] collaborations have
further bolstered the case for inflation, for example, with
measurements of the spectral index of the primordial power
spectrum in agreement with predictions from various
inflation models.
Much attention has been paid to the possibility that next-

generation CMB experiments, such as CMB-S4 [10] and
the Simons Observatory [11], could detect gravitational
waves produced by inflation, which have an amplitude
parametrized by the tensor-to-scalar ratio r. Yet predic-
tions for the tensor-to-scalar ratio remain strongly model-
dependent. In this work, we consider a well-motivated
model of inflation that predicts a value of r too small to be
observed by any conceivable future experiment, finding
instead that other CMB observables, such as improved con-
straints on the running of the spectral index, would provide
concrete tests of such models. [See also Refs. [12–17].]
Many models of inflation have been proposed [2,18]. A

particularly well motivated example is that of “natural
inflation” [19], also known as “axion inflation.” This model
builds on the axion model of particle physics, initially

proposed as a solution to the strong CP problem [20–22],
later as a candidate for cold dark matter [23–25], and
yet later discovered to be ubiquitous in both string theory
[26–28] and field theory [29–31]. It is therefore only
“natural” to consider an axion-like particle as an inflaton
candidate.
However, the predictions of natural inflation as origi-

nally formulated in Ref. [19] are strongly disfavored by
data [2,9]. Upon fixing model parameters to yield a
prediction for the scalar spectral index ns within the range
favored by data, the predicted tensor-to-scalar ratio
becomes r ∼ 0.1, well in excess of the current observational
upper bound r < 0.036 [32]. Several works [33–38] have
considered the possibility that multifield inflationary
dynamics can bring natural inflation into agreement with
current observations.1 In what follows, we extend this to
natural inflation consistent with a future nonobservation
of r, by analyzing a regime that predicts an exponentially
small tensor-to-scalar ratio r, namely, r ∼ 10−n with n ≫ 1.

Multifield dynamics in natural inflation. Our starting point
is natural inflation [19] in its full form, namely, the theory
of a spontaneously broken global U(1) symmetry, with
action [34]
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1Modified gravity can also be used as a means to the same
end [39–41]. Modifications to the postinflationary universe, i.e.,
the ΛCDM model, have also been considered [42,43].
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where Φ≡ φeiϑ; both φ and ϑ are real-valued scalar fields.
As required by consistent renormalization in curved space-
time, we include a nonminimal coupling ξjΦj2R [44–52].
In the spirit of effective field theory, we consider the
dimensionless parameter ξ ≃Oð1Þ to be fixed by compar-
isons with observations. The potential energy includes
contributions from two sources: a Higgs-like symmetry-
breaking potential and a conventional axion potential for
the phase ϑ, associated with a nonperturbative breaking of
the continuous axion shift symmetry to a periodic shift
symmetry.
In the vacuum of the theory, with hjΦji ¼ v, this model

simplifies to the usual model of axion inflation with axion
decay constant fa ¼ v, and the gravitational action reduces
to the Einstein-Hilbert action with the identification that
M2

pl ¼ M2 þ ξv2, where Mpl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced

Planck mass. In this limit, this model can realize natural
inflation [19]. The latter is in significant tension with
observations and is essentially ruled out by Planck
2018 CMB data [2,9].
However, the radial (“Higgs”) mode φ need not be in its

vacuum state in the very early Universe. If φ is instead
displaced from its minimum, multifield inflation can ensue,
wherein both φ and ϑ are dynamical and contribute to the
expansion history of the Universe.
The background evolution of the model in Eq. (1) can

most easily be understood by rescaling the spacetime
metric to make the gravitational action take the standard
Einstein-Hilbert form, via the transformation gμν → ½M2

pl=
ðM2 þ ξφ2Þ�gμν [53,54]. This rescales the potential terms in
Eq. (1) as Vðφ; ϑÞ → M4

plVðφ; ϑÞ=ðM2 þ ξφ2Þ2 and gen-
erates a noncanonical field-space metric G with nonvanish-
ing components:

Gφφ ¼ M2
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The equations of motion for the fields ϕI ¼ fφ; ϑg take the
form Dtϕ̇

I þ 3Hϕ̇I þ GIKV;K ¼ 0, where the covariant
directional derivative Dt acting on a field-space vector
AI is defined via DtAI ≡ ȦI þ ϕ̇JΓI

JKA
K and the field-

space Christoffel symbols are evaluated in terms of GIJ and
its derivatives. The Friedmann equation may be written as
H2 ¼ ½1

2
σ̇2 þ V�=ð3M2

plÞ, where σ̇ ≡ ½GIJϕ̇
Iϕ̇J�1=2 [55].

From this one can appreciate the hallmark features of
multifield natural inflation [34]: (1) The model can realize
inflation along the radial (φ) direction. At large values offfiffiffi
ξ

p
φ=M (not necessarily large

ffiffiffi
ξ

p
or φ), the φ sector of the

theory reduces to Higgs inflation [56–59], wherein the
potential energy is exponentially stretched, allowing for an
extended period of inflation along the radial direction.
(2) The axion decay constant is dynamical. Defined by the

axion kinetic term, the decay constant is given by

fa ¼
φ

M2 þ ξφ2
Mpl: ð3Þ

(3) The axion potential energy and hence its mass is
suppressed at large values of the radial field as

Vaxion ¼
M4

plΛ4

ðM2 þ ξφ2Þ2 ð1 − cos ϑÞ: ð4Þ

This naturally makes ϑ a subdominant component in an
early phase of φ-inflation. These features combine to allow
a multiphase inflation model, wherein the axion is initially
relegated to a spectator field and only becomes important to
the dynamics at later stages of inflation [34].
The phases of inflation can be understood by defining a

pseudoscalar turn rate ω. The unit vector σ̂I ≡ ϕ̇I=σ̇
indicates the (instantaneous) direction in field space along
which the system evolves [55], in terms of which one may
define the turn-rate vector ωI ≡Dtσ̂

I and the pseudoscalar
turn rate ω≡ ϵIJσ̂

IωJ [34]. (Here ϵIJ ≡ ½detGIJ�1=2ϵ̄IJ,
where ϵ̄IJ is the usual Levi-Civita symbol.) In a flat field
space, with radial and angular fields r and θ, the scalar turn
rate is simply θ̇ [60].

Cosmological perturbations. Perturbations in this model
can be decomposed into an adiabatic (curvature) perturba-
tion and an isocurvature (entropy) perturbation, corre-
sponding to gauge-invariant fluctuations parallel with
and orthogonal to the background fields’ field-space
trajectory, respectively [55,60–66]. To linear order in
fluctuations, the equation of motion for a Fourier mode
of the comoving curvature perturbation is given by [34]

d
dt

ðṘk − 2ωSkÞ þ ð3þ δÞHðṘk − 2ωSkÞ þ
k2

a2
Rk ¼ 0;

ð5Þ

where S is the comoving isocurvature perturbation, and
δ≡ ϵ̇=ðHϵÞ ¼ 4ϵ − 2η, where (as usual) ϵ≡ −Ḣ=H2 and
η≡ 2ϵ − ϵ̇=ð2HϵÞ. The comoving isocurvature perturba-
tion satisfies

S̈k þ ð3þ δÞHṠk þ
�
k2

a2
þ μ2s − 4ω2

�
Sk ¼ −2ωṘk; ð6Þ

where

μ2s ¼ Mss þ 3ω2 þH2ð2ϵ − ηÞð3þ 5ϵ − ηÞ þH2ηκ; ð7Þ

with κ ≡ η̇=ðηHÞ. Here Mss≡ðGIJ− σ̂Iσ̂JÞMIJ is the pro-
jection of the mass-squared matrix MI

J ≡GIKDJDKV −
RI

LMJϕ̇
Lϕ̇M onto the isocurvature direction [55].
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This system dramatically simplifies on super-Hubble
scales: the curvature perturbation is sourced by isocurvature
modes,

Ṙk ¼ 2ωSk; ð8Þ

while the isocurvature modes evolve with time-dependent
mass,

S̈k þ ð3þ δÞHṠk þ μ2sSk ¼ 0; ð9Þ

where we have used k2=a2 → 0 and Ṙ ¼ 2ωS. As indi-
cated by Eq. (8), even in the long-wavelength limit,
isocurvature modes Sk can transfer power to adiabatic
curvature modes Rk whenever the background field’s
trajectory undergoes turning, with ω ≠ 0 [55,60–66].
The multifield natural inflation model of Eq. (1) is

characterized by tachyonic isocurvature perturbations,
namely, μ2s < 0. This arises because, at early times, when
the background is dominated by φ and ϵ; η; jωj=H ≪ 1, the
isocurvature direction is approximately ϑ and the isocurva-
ture mass is approximately Mss ≃Gϑϑ

∂
2
ϑVaxion with Vaxion

given by Eq. (4). Asφ decreases over the course of inflation,
the axion becomes increasingly tachyonic, leading to an
efficient growth of modes Sk on super-Hubble scales.
Meanwhile, the decrease in φ also triggers a turn in field
space, thereby converting the enhanced isocurvature per-
turbation into a sourced adiabatic curvature perturbation.
The resulting curvature perturbation can be many orders of
magnitude larger than the naive single-field estimate [34].

Example. To illustrate these dynamics, we consider a
fiducial example. We numerically solved for the evolution
of the background quantities φðtÞ; ϑðtÞ; HðtÞ as well as the
evolution of perturbations RkðtÞ, SkðtÞ, imposing Bunch-
Davies initial conditions for the field fluctuations. We also
performed an independent check of the numerical results
using the software package PyTransport [67]. For our
fiducial example, parameters are given by

λ ¼ 1.916 × 10−21; Λ ¼ 2.252 × 10−6Mpl;

v ¼ 0.443Mpl; M ¼ 0.141Mpl; ξ ¼ 5; ð10Þ

and initial conditions

φi ¼ 4Mpl; ϑi ¼ πð1 − 10−8Þ; φ̇i ¼ ϑ̇i ¼ 0: ð11Þ

Note the significant fine-tuning of the initial condition for
ϑ, along the lines of the “extreme axion” scenario [see, e.g.,
Ref. [68] ]. In the present case, this is a reflection that the
desired dynamics, while possible and therefore serving as a
proof of principle, are not generic.
Figure 1 shows the evolution of the background quan-

tities. Note that, for the selected parameters, the model
yields low-scale inflation, with H ∼ 10−12Mpl. There are

three distinct phases of the evolution.At early times (phase I),
when the dynamics are dominated by the radial field φ, the
turn rate and isocurvaturemass are negligible. In phase II, the
isocurvature mass-squared becomes negative while the turn
rate remains small. Phase III is then characterized by
negligible turning and heavy isocurvature modes, while at
the interface between phases II and III, the turn rate briefly
becomes large, ω=H ∼Oð1Þ, and the isocurvature mass-
squared transitions from large and negative to large and
positive. The fact that μs=H > 1 during phase III suppresses
the final amplitude of the long-wavelength modes Sk.

FIG. 1. Evolution of the background quantities as functions
of the number of efolds N before the end of inflation. The
vertical dashed lines delimit the three major inflationary phases,
denoted I—III. Top panel: evolution of the fields φ [in units of
Mpl] and ϑ. During phase I, inflation is driven solely by the radial
field φ, while in the latter two phases both fields contribute to the
dynamics. The inset shows that ϑ starts decaying at the boundary
between phases II and III, causing a turn in the field-space
trajectory. Middle panel: evolution of the Hubble parameter HðtÞ
and the fraction of energy density contributed by the axion
field, ρϑ. Bottom panel: evolution of the turn rate ω and the
isocurvature effective mass μs.
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The left panel of Fig. 2 displays the evolution of the
dimensionless power spectra PX ðk; NÞ ¼ k3jXkðNÞj2=
ð2π2Þ for the curvature and isocurvature perturbations
for fixed comoving wave number k� ¼ 0.05 Mpc−1, cor-
responding to the CMB pivot scale. As noted below,
perturbations with this wave number first cross outside
the Hubble radius during phase I. Given the low scale of
inflation in this scenario, with H ∼ 10−12Mpl, the power
spectra PX are exponentially lower during phase I than the
COBE normalization, As ¼ 2.1 × 10−9. The amplitude of
the isocurvature mode Sk then grows exponentially during
phase II, driven by its tachyonic mass μ2s < 0. As the turn
rate ω rises rapidly around the interface between phases II
and III, power is transferred from Sk to Rk, after which
Ṙk ≃ 0 while the amplitude of Sk falls rapidly, since
μs=H > 1 during phase III. Hence, by the end of inflation,
we find PRðk�; NendÞ ¼ As.
Repeating this calculation for all k that exit the

Hubble radius during inflation, we may calculate the
primordial power spectrum at the end of inflation as a
function of wave number, PRðkÞ ¼ PRðk; NendÞ. This is
shown in the right panel of Fig. 2. Note the exponential
suppression of modes that exit the Hubble radius after the
tachyonic phase for the isocurvature modes has ended, and
which therefore do not experience any super-Hubble
growth.

CMB observables. We now turn to predictions for observ-
ables for this model. To do so, we identify the time of
first Hubble crossing of the comoving wave number of
the CMB pivot scale, k� ¼ 0.05 Mpc−1, via the standard
relation [69,70]

N� ≃ 62þ 1

4
ln
�

ρ2�
3M6

plH
2
end

�
þ 1 − 3wreh

12ð1þ wrehÞ
ln
�
ρRD
ρend

�

≃ 49.0� 2.5; ð12Þ

where the uncertainty �2.5 reflects a duration of reheating
Nreh ≤ 5 and an equation of state during reheating within
the range wreh ∈ f−1=3;þ1g. [Reheating in related multi-
field models with nonminimal couplings has been found to
be efficient, with Nreh ≤ 5 across broad regions of param-
eter space [71–84].] Quantities marked with an asterisk (�)
are evaluated at the time when k� ¼ aðt�ÞHðt�Þ during
inflation; quantities denoted “end” are evaluated at the end
of inflation; and ρRD is the value of the energy density when
the universe first attains a radiation-dominated equation
of state following the end of inflation. The central value
N� ¼ 49 corresponds to instant reheating, or reheating
with wreh ¼ 1=3, whereas N� < 49 (> 49) implies wreh <
1=3 (> 1=3).
The exponential enhancement of curvature perturbations

as shown in Fig. 2 implies an exponential suppression of
the tensor-to-scalar ratio r relative to that at the Hubble
crossing:

r ¼ r�
1þ ðΔR=R�Þ2

; ð13Þ

where ΔR is the amount of super-Hubble growth of the
scalar curvature perturbation. Note that the tensor modes hk
are unaffected by the turn in field space: the equation of
motion remains that of single-field inflation, u00k þ
ðk2 − a00=aÞuk ¼ 0, with uk ≡ ahk and primes denoting

FIG. 2. Evolution of primordial perturbations. Left panel: evolution of the dimensionless power spectra for the curvature and
isocurvature modes with comoving wave number k�, which exit the Hubble radius at N� ¼ 49. During phase II of the inflationary
evolution, the tachyonic instability of μs enhances the Sk mode. Between phases II and III, the field-space turn takes place, and the Sk
mode transfers power to theRk mode, as in Eq. (8). During phase III,Rk is frozen while Sk decays due to its large positive mass. Right
panel: curvature power spectrum PRðkÞ ¼ PRðk; NendÞ. The spectrum is nearly flat at CMB scales (for modes exiting the Hubble radius
around N� ∈ f46.5; 51.5g) and decreases for modes exiting the Hubble radius at later times, which do not experience any tachyonic
instability.
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derivatives with respect to conformal time, dτ ¼ dt=a. This
equation can be solved in the long wavelength limit by
uk ∝ a, implying hk ≃ constant [34]. Thus the relative
enhancement of scalar curvature perturbations amounts
to an overall suppression of the tensor-to-scalar ratio, by the
amount given in Eq. (13). For the numerical example of
Fig. 2, we find r ¼ 6 × 10−16.
The spectral index of perturbations ns is also impacted

by the growth and transfer of power among the perturba-
tions. While the turn rate ω acts as a window function for
the conversion of isocurvature perturbations into curvature
perturbations, the tachyonic instability μ2s < 0 is more
effective for modes that exit the Hubble radius earlier
(smaller values of k), which leads to an overall reddening of
the spectrum, converting ns from the naive expectation for a
nearly-massless spectator field (nspec − 1 ≃ 2ϵ� ∼ 10−3) to a
value ns − 1 ∼ 10−2 compatible with CMB data, where
nsðk�Þ≡ 1þ ðd lnPR=d ln kÞjk� . The same effect enhan-
ces the running of the spectral index, leading to αsðk�Þ≡
ðdns=d lnkÞjk� ∼−5×10−3, within reach of next-generation
experiments. For the fiducial example, we find ns ¼ 0.969
and αs ¼ −0.003 for N� ¼ 49.
To contextualize these results, in Fig. 3, we compare

predictions from this model with current and forecast
constraints in the ns-r plane and in the ns-αs plane. The
tensor-to-scalar ratio, r ≃ 10−15, is well below the thresh-
old for detection by future experiments. On the other
hand, current and future observations of ns play an
important role in constraining the reheating history of

the model, with the Planck 2018 results effectively
requiring N� > 46.
Additional constraining power will come from improved

measurements of the running of the spectral index αs. Both
end points of the rangeN� ∈ f46.5; 51.5g, which arise from
the residual uncertainty associated with the reheating
phase, yield predictions for the ns-αs plane that are outside
the 2σ bounds of the expected CMB-S4 constraints, while
predictions arising from N� < 48.5 are outside the 2σ
bounds expected from the SPHEREx experiment. Most
importantly, combining CMB-S4 with SPHEREx measure-
ments could exclude this model altogether at the 2σ level.
We note that, despite the important role of isocurvature

perturbations in this model, the exponential decay of
isocurvature perturbations Sk during the late stages of
inflation (see Fig. 2) leads to a negligible primordial
isocurvature fraction βiso ≃ 10−15, well below observational
constraints on isocurvature in components of the ΛCDM
model [9].
Finally, we note that non-Gaussianity in this model is

expected to be at most Oð1Þ. This follows from simple
considerations of the power spectrum: the high-k suppres-
sion of the curvature perturbation power spectrum (Fig. 2,
right panel) implies that the bispectrum should be peaked in
the equilateral configuration, with each ki ∼ k�. The equi-
lateral non-Gaussianity can be estimated from standard
multifield inflation methods [see, e.g., Ref. [55] ]; applied
to the scenario under consideration here, this yields
fequilNL ≲Oð1Þ. Quantitatively, using the Python package
PyTransport [67], we find fequilNL ¼ 0.48 for N� ¼ 49.

FIG. 3. CMB predictions and forecast experimental constraints. Left panel: the ns-r plane, with current and forecast constraints shown
from Planck 2018 [85] and the Simons Observatory [11]. [Image adapted from Ref. [86].] Right panel: the ns-αs plane, with forecast
constraints from CMB-S4 [10] and SPHEREx [87]. [Image adapted from Ref. [15]]. Superimposed are the predictions for the multifield
natural inflation model, which depend on the value of N⋆, the time during inflation when perturbations on CMB scales exit the Hubble
radius.

NATURAL INFLATION WITH EXPONENTIALLY SMALL TENSOR- … PHYS. REV. D 110, L061302 (2024)

L061302-5



Discussion. In this work, we have discussed a general
mechanism by which the model of natural inflation,
ostensibly ruled out by current constraints on the tensor-
to-scalar ratio r, can be brought into agreement with current
data. We have presented a proof-of-principle that the
tensor-to-scalar ratio can be made exponentially small,
r ∼ 10−15, while retaining excellent agreement between
prediction and measurement of the spectral index ns.

2

Whereas such tiny values of r are unlikely to be measurable
by any future CMB experiments, models such as this
one can nonetheless be tested and strongly constrained
by considering other robust observables. In particular,
improved measurements of the running of the spectral
index, which could come via combination of data from

CMB-S4 and SPHEREx, could exclude such models
at > 2σ.
These results, complementary to Refs. [12–17], empha-

size that the ability to test, and even rule out, models of
inflation does not lie solely in the hands of the tensor-to-
scalar ratio. Rather, the running of the spectral index should
serve as a viable test of small-r models.
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