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We significantly extend recent work on the kinematic Hopf algebra, a structure that was shown to
underlie the color-kinematics duality in Yang-Mills (YM) theory coupled to two heavy scalars, known as
the heavy-mass effective theory (HEFT) limit. First, staying in the HEFT limit, we show the same
kinematic Hopf algebra can be used to obtain Bern-Carrasco-Johansson (BCJ) numerators in DF2 þ YM
theory, a theory containing an infinite number of higher derivative corrections to YM, used to obtain string
amplitudes via the double copy. Second, we exploit the intricate structure induced by the massive poles to
obtain an efficient and direct expression for local BCJ numerators in pure YM based on the same kinematic
Hopf algebra. This demonstrates that the kinematic Hopf algebra works even beyond the HEFT limit,
strongly suggesting this structure universally underlies the color-kinematics duality.
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Introduction. The discovery of color-kinematics duality and
the double-copy [1,2] has revolutionized the computation of
amplitudes, particularly in gravity. The duality relies on
finding kinematic numerators that satisfy the same algebraic
relations as the corresponding color factors, such as the
Jacobi identity. Then the double-copy procedure allows the
computation of various amplitudes by mixing and matching
different types of such numerators. However, the origin of
this duality remains deeplymysterious, in particular because
the nature of the kinematic algebra [3–24] at the heart of the
duality is not yet understood.
Important progress could be accomplished by finding a

more systematic, universal, and efficient approach to con-
structing Bern-Carrasco-Johansson (BCJ) numerators, and
recent work suggests this may involve utilizing a combi-
natorial algebra perspective. A novel kinematic algebra,
known as the quasishuffle Hopf algebra [25–29], has been
discovered within the framework of heavy-mass effective
field theory (HEFT) [30,31]. Besides providing compact
formulas for BCJ numerators, this approach phrases the
kinematic algebra in terms of the rich structure of Hopf

algebras, opening a completely new avenue to understand
this duality. For instance, a Hopf algebra is a structure that is
both an algebra and a coalgebra, and in our case the
coalgebra is responsible for the factorization property of
numerators, a property that is normally expected only for full
amplitudes. Other properties of this kinematic Hopf algebra
are discussed in detail in [32].
This structure has been subsequently extended to ampli-

tudes and form factors incorporating finite massive scalar
and fermionic contributions [33–36], and also uncovered in
a geometrical context [37]. Recently, the same algebraic
structure has been identified in the α0F3 þ α02F3 theory
[38,39], which can be viewed as lower-order terms in the α0

expansion of DF2 þ YM theory, where the α0 dependence
enters via massive propagators [41]. This theory was used
to construct various conformal (super)gravity theories via
the double-copy procedure, as well as amplitudes for
bosonic and heterotic string theory [40,42–51]).
In this Letter, to further explore the applicability and

universality of this approach, we reveal the presence of the
same kinematic Hopf algebra in two contexts: the HEFT
limit of DF2 þ YM theory, and in pure Yang-Mills (YM),
this time directly away from the HEFT limit. The crux of
constructing the BCJ numerator from the kinematic Hopf
algebra lies in identifying an evaluation map [31,33]. This
map connects the abstract combinatorial algebra generators
to physically meaningful, gauge-invariant functions that
exhibit only physical poles. We find the evaluation map is
fully determined by imposing the relabeling symmetry and
consistent factorization conditions on the massive and
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massless gluon poles. Consequently, we first determine the
BCJ numerator, applicable for an arbitrary number of
external gluons (with two heavy particles, which can be
removed through a factorization limit). By expanding in
terms of α0, we obtain local BCJ numerators for massless
gluon amplitudes.
Finally, by exploiting the specific form of the mapping

rule, we also derive a novel formula directly for BCJ
numerators in pureYMtheory,which is compact,manifestly
local, and relabeling symmetric. This is a significant
improvement from the original results in [30,31], as con-
sideringHEFT numerators and taking a factorization limit is
no longer a required intermediate step, thus also avoiding the
appearance of any spurious poles. Interestingly, this formula
shares several similarities with the expression obtained
through completely different methods in [52], such as in
the numbers of terms (i.e., twice the Fubini numbers) and the
distribution of gluon labels.

Universal kinematic Hopf algebra. It has been shown that
BCJ numerators in a manifest gauge-invariant form origi-
nate from the quasishuffle Hopf algebra in YM theory
coupled with two heavy particles [31–33] as well as
theories with higher-derivative corrections [38]. The BCJ
numerators

N ð½12…n − 2�; vÞ ð1Þ

can be naturally written in the form of a quasishuffle
product of algebraic generator TðiÞ,

hTð1Þ⋆Tð2Þ⋆ � � �⋆Tðn−2Þi; ð2Þ

where i ¼ 1; 2;…; n − 2 represents the external gluons, v
is the velocity of the heavy particles, and h•i is the
evaluation map from the algebra generators to a manifestly
gauge invariant function. More details are presented in
the Supplemental Material [53]. Already from the study
of lower orders in α0 expansion [38] we find the BCJ
numerators are constrained by the heavy-mass factorization
behavior and relabeling symmetry. These properties impose
stringent constraints on the evaluation map, which then lead
to a recursive form for the BCJ numerator [38],

N ð½1α�; vÞ ¼ ð−1Þn−3G1αðvÞ
v · p1

þ
X
τL⊂α

ð−1ÞjτRj N ð½1τL�; vÞGτR

�
pΘðτRÞ

�
v · p1τL

; ð3Þ

where f1τLg ∪ fτRg ¼ f1αg≡ f12…n − 2g, jτRj denotes
the number of gluons in τR, and ½•� denotes the left
nested commutator, e.g., ½123�≡ 123–213 − 312þ 321;
and ΘðτiÞ ¼ ð1τLÞ ∩ f1;…; τi½1�g that consists of all indi-
ces to the left of τi and smaller than the first index in τi,

denoted as τi½1�. Finally, the G function takes the following
form [38]:

GτðxÞ¼ x ·Fτ ·vþ
X

σ1iσ2jσ3¼τ

x ·Fσ1 ·piWðiσ2jÞpj ·Fσ3 ·v;

ð4Þ
with

WðσÞ ¼
Xbjσj=2c
r¼1

X
i1ρ1j1σ2i2ρ2j2…irσrjrρr¼σ

×

 Yr
k¼1

W0ðikρkjkÞ
! Yr

k¼2

pjk−1 · Fσk · pik

!
; ð5Þ

where we have further introduced the W0 function, which
we assume contains all the α0 dependence in form of
massive propagator factors inherited directly from the DF2

theory. We will fix the exact form of these functions in the
next sections. Importantly, we will also later show this
function can be directly used to obtain BCJ numerators in
pure YM, circumventing the need to start from HEFT
amplitudes.
Below are a few examples of the G functions:

G12ðxÞ¼ x ·F12 ·vþx ·p1W0ð12Þp2 ·v;

G123ðxÞ¼ x ·F123 ·vþx ·F1 ·p2W0ð23Þp3 ·v

þx ·p1W0ð12Þp2 ·F3 ·vþx ·p1W0ð123Þp3 ·v:

ð6Þ
The amplitudes obtained via color-kinematics duality then
can be expressed as [30–32]

Að1α; vÞ ¼
X

β∈ Sn−3

mð1α; 1βÞN ð½1β�; vÞ; ð7Þ

where mð1α; 1βÞ is the Kawai-Lewellen-Tye propagator
matrix [54].
As required by the relabeling symmetry of this

BCJ numerator, the W0 function satisfies the following
relations [38]:

W0ðρ1i1ρ2in−2ρ3Þ ¼ ð−1Þjρ3jþδ0;jρ1 jW0ði1½ρ1�ρ2½ρrev3 �in−2Þ;
W0ðρ1in−2ρ2i1ρ3Þ ¼ ð−1Þn−2W0ðρrev3 i1ρrev2 in−2ρrev1 Þ; ð8Þ

where jρj is the size of ρ and ρrev denotes the its reverse. For
example, at n ¼ 8, we have

W0ð231645Þ ¼ −W0ð1½23�½45�6Þ;
W0ð126345Þ ¼ −W0ð12½543�6Þ; ð9Þ

and an independent basis is given by W0ð1i2i3i4i56Þ. The
next section is devoted to deriving properties of W0
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functions that follow from factorization, which will aid in
finding the explicit form of these functions. In the process,
we will also find an alternative and more efficient route to
obtaining BCJ numerators away from the HEFT limit.

General properties of the W0 function from factorization.
We will first consider DF2 þ YM theory [41], which
contains a massless gluon, as well as a tachyon and a
massive gluon (both with m2 ¼ −1=α0).
In order to determine the corresponding W0 function for

BCJ numerators in DF2 þ YM theory we will next study its
properties following from consistent factorization. As
mentioned above, we assume W0 functions contain the
massive propagators of DF2 þ YM theory. Importantly,
each functionW0ði1…irÞ should have an overall propagator
factor

α0

1 − α0p2
i1…ir

; ð10Þ

besides containing other similar propagators corresponding
strictly to subsets of ði1…irÞ.
We begin by considering the HEFT BCJ numerator

N ð½1…ðn − 3Þq�; vÞ with a cut on a massive propagator,

ð11Þ

where the “solid box” represents the heavy particles and g0
is the massive gluon. The label (n − 2) on an internal line
will be promoted to an external massless gluon after a series
of cuts. Using the expression for the HEFT BCJ numerator
in (3) and assuming the form in (10), the residue on this cut
is given by

ð1 − α0p2
1…ðn−3ÞqÞð−1Þn−3W0ð1…n − 3; qÞpq · v: ð12Þ

By replacing v with the polarization vector ε⊥n−1, which is
the transverse mode of the massive gluon, we obtain the
numerator for (n − 2) massless gluons and one massive
gluon, N ð1…n − 3; q; ðn − 1Þg0 Þ (see more details in the
Supplemental Material [53]).
The BCJ numerator N ð1…ðn − 3Þ; q; ðn − 1Þg0 Þ also

factorizes on the massless cut on the pole 1=p2
12…n−3.

Consider the amplitude with (n − 2) massless gluons and
one massive gluon. On this massless cut we have

X
states I

Að12…n − 3; I�ÞAðI; q; ðn − 1Þg0 Þ; ð13Þ

where “I” denotes the internal state. The three-point
amplitude of two massless gluons and one massive gluon

is given by AðI; q; ðn − 1Þg0 Þ ¼ trðFI · FqÞpq · ε⊥n−1. We
now choose the polarization vector εq to be orthogonal
to the cut momentum pI , so the trace factor becomes

2α0εI · εqpI · pq ¼ εI · εq; ð14Þ

where we used the massive on-shell condition of the
external massive gluon. So on the cut and with the extra
constraint on the polarization vector εq, the summation over
the intermediate state gives a massless gluon amplitude,

X
states I

Að1…n − 3; ε�I ÞεI · εqpq · ε⊥n−1

¼ Að1…n − 3; εqÞpq · ε⊥n−1: ð15Þ

Comparing (15) with (12) and taking εn−2 ¼ εq, we obtain
an important relation between the function W0ð1…ðn −
3ÞqÞ and the BCJ numerator of massless gluons,

N ð12…n−2Þ¼ð−1Þn−3

×

�
ð1−α0p2

1…ðn−3ÞqÞW0ð1…ðn−3ÞqÞ
�����

cuts
;

ð16Þ

where the label “cuts” denotes all the above constraints,

p2
1…ðn−3Þq−1=α0 ¼ 0; p2

1…n−3¼p1…n−3 · εq ¼ 0: ð17Þ

Note that in (16) the BCJ numerator on the lhs is
independent of pq, which manifestly appears on the rhs,
and therefore leads to spurious poles. With an appropriate
choice for pq, which we can treat as a reference momenta,
we will be able to eliminate all spurious poles and obtain
local numerators.
With the BCJ numerator, the amplitude is then given by

Að1…n−2Þ¼
X

β∈Sn−4

mð1…n−3;1βÞN ð1βn−2Þ: ð18Þ

Importantly, the amplitude Að1…n − 3; n − 2Þ can also be
obtained by decoupling the heavy particles via a factori-
zation limit [31],

Að1…n − 2Þ ¼ Að1…n − 3; vÞjp2
1…n−3¼0

v→εn−2 ; ð19Þ

where Að1…n − 3; vÞ depends on W0 functions with n − 3
or less gluons. In this way, we derive recursive relations of
W0 functions.

Combinatorial solution of theW0 function.Wewill now use
the recursive relations discussed above and relabeling
symmetry (8) to determine the W0 functions. We further
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impose manifest gauge invariance as well as factorization
properties on massive particle cuts.
We first write down the general solution to the relabeling

symmetry (8). A particular solution of W0ði1…ir−1irÞ that
obeys (8) was already constructed in [38],

W0ði1…irÞ≡ trðF½i1…ir−1�FirÞ; ð20Þ

which is precisely the leading-α0 correction term. Two key
properties of this particular solution are the left nested
commutator of the indices except the last one and cyclic
permutation invariance of the trace function. This obser-
vation leads to the general formal solution of (8):

Ocycð½i1…ir−1�irÞ∘fði1; i2;…irÞ
≡ X

σ ∈ ½i1…ir−1�ir

X
ρ1ρ2…ρr¼cycðσÞ

fðρ1; ρ2;…; ρrÞ: ð21Þ

For example,

Ocycð½12�3Þ∘fð123Þ

¼
 X

ρ1ρ2ρ3¼cycð123Þ
−

X
ρ1ρ2ρ3¼cycð213Þ

!
fðρ1ρ2ρ3Þ

¼ fð123Þ þ fð231Þ þ fð312Þ − fð213Þ − fð132Þ
− fð321Þ: ð22Þ

We then impose (16). We proceed by defining partitions of
ordered gluon indices fi1; i2;…; ir−1; irg in fði1;…; irÞ:

Pi1…irðx1;x2;…;xsÞ; with
Xs
i¼1

xi ¼ r: ð23Þ

For example,

P1234ð2; 1; 1Þ≡ ð12Þjð3Þjð4Þ; ð24Þ

P123456ð2; 1; 2; 1Þ≡ ð12Þjð3Þjð45Þjð6Þ: ð25Þ

To maintain manifest gauge invariance, each single-index
subset, such as “(3)” and “(4)” in (24), is mapped to its
corresponding strength tensor; in order to preserve the
factorization behavior on the massive cuts, each multi-
index subset, such as “(12)” in (24) and “(45)” in (25), is
mapped to a lower-point W0 function. Power counting
considerations then dictate that all single-index subsets
between two multi-index subsets, for example,
ðiL;…; jLÞjðjÞ;…; ðkÞjðiR;…; jRÞ, must be mapped to
pX · Fj · � � � · Fk · pY , or mapped to pX · pY if there are
no single-index subsets. To ensure the ordering of gluon
indices, the sequence of dot products and traces involving
field strengths must mirror the ordering of gluons. So, the
labels X and Y can only correspond to adjacent indices in

the lower-point W0 functions, i.e., X ¼ jL; Y ¼ iR. These
rules establish a one-to-one map from each partition to a
gauge-invariant function, e.g., for the partition given in (25),
we have

ð12Þjð3Þjð45Þjð6Þ¼W0ð12Þp2 ·F3 ·p4W0ð45Þp5 ·F6 ·p1:

ð26Þ

The single set partition and the maximal set partition are
special, and are directly fixed by power counting

ði1i2…irÞ ¼ trðFi1i2…irÞ;
ði1Þjði2Þj…jðirÞ ¼ 0: ð27Þ

We are thus led to a simple and well-structured solution for
the massless factorization behavior outlined in Eq. (16). To
incorporate the relabeling symmetry (8), we sum over all
partitions using the operator O defined in (21). In con-
clusion, we have

W0ði1…ir−1irÞ ¼
α0

1 − α0p2
i1…ir

�
W0ði1…ir−1irÞ

þOcycð½i1…ir−1�irÞ∘
�Xr−1

s¼1

Xxi ∈Zþ

x1þ���þxs¼r

×
Pi1…irðx1;…; xsÞ

s

��
; ð28Þ

where each partition is weighted by its corresponding
overcounting number [55], and we have identified
Pi1…irðx1;…; xsÞ with lower-point W0 functions according
to the rules we just discussed,

Pi1…irðx1;…; xsÞ

¼
 Yt−1

k¼1

W0ðiaðkÞ…ibðkÞÞpibðkÞ · FibðkÞþ1…iaðkÞ−1 · piaðkþ1Þ

!

×W0ðiaðtÞ…ibðtÞÞpibðtÞ · FibðtÞþ1…r1���iað1Þ−1 · piað1Þ ; ð29Þ

where t is the number of sets with multigluon indices. We
have checked this general solution up to the eight-point
HEFT amplitude (six gluons). Below are some simple
examples of W0 functions (more examples can be found
in the Supplemental Material [53]),

W0ð12Þ¼ α0

1−α0p2
12

W0ð12Þ;

W0ð123Þ¼ α0

1−α0p2
123

�
W0ð123Þ−2W0ð23Þp2 ·F1 ·p3

−2W0ð12Þp1 ·F3 ·p2þ2W0ð13Þp1 ·F2 ·p3

�
;

ð30Þ

GANG CHEN, LAURENTIU RODINA, and CONGKAO WEN PHYS. REV. D 110, L041902 (2024)

L041902-4



with W0 given in (20). Note that the poles are the physical
massive propagators in the DF2 þ YM theory. The number
of terms, in terms of W0 and strength tensor products, is
given in the table below.

Gluons 2 3 4 5 6 7

Number of terms in W0 1 4 45 921 30485 1539170

TheW0 function can now be plugged in (3) to obtain BCJ
numerators in DF2 þ YM theory in the HEFT limit.
Numerators for the pure theory, away from HEFT, can
be obtained by taking the decoupling limit (19). However,
this leads to spurious poles. In the next section we describe
an alternative approach to obtain manifestly local numer-
ators in the α0 → 0 expansion.

Local BCJ numerator for the massless gluon amplitude. As
shown in (16), the functionW0ð1…ðn − 3ÞqÞ automatically
generates the BCJ numerators for the massless gluons.
However, the numerators given in (16) in general contain
spurious poles, due to the auxiliary momentum pq. We
denote this BCJ numerator as N NLð12…n − 2Þ, where
“NL” stands for “nonlocal.” Expanding in terms of the α0,
we have

N NLð12…n − 2Þ ¼ N YM
NL ð12…n − 2Þ

þ
X∞
i¼1

ðα0ÞiN ðiÞ
NLð12…n − 2Þ: ð31Þ

where the expanded terms are the nonlocal BCJ numerator
for each order of α0.
We will now exploit the fact that result is independent of

the auxiliary momentum pq. To do so, we first impose
the massive on-shell condition and massless cut condition
in (17), which we can solve as

p1 · pq ¼ 1=ð2α0Þ − p2…n−3 · pq; ð32Þ

allowing us to remove p1 · pq, leaving only independent
kinematic variables. The spurious poles in N NL originate
from the massive poles, and have the form

1

ðPpX · pYÞ þ pZ · pq
: ð33Þ

Take, for example, a numerator N ð1234Þ which according
to (16) is given by applying the corresponding cuts to
W0ð123qÞ, i.e., p1 · pq ¼ 1=2α0 − p2 · pq − p3 · pq. The
recursive form of W0ð123qÞ in turn contains W0ð12qÞ,
whose massive propagator becomes a spurious pole of the
form described above. Since pq is auxiliary, the spurious
pole is conveniently removed by setting

pi · pq ¼ z → ∞ for i > 1; ð34Þ

and keeping only the Oðz0Þ pieces. Any other orders in z
must cancel out in the amplitude and can be ignored in the
final BCJ numerator, since the amplitude cannot be a
function of the auxiliary pq. Importantly, this choice
preserves the relabeling symmetry of the BCJ numerator
for f2; 3;…; n − 3g, but spoils its gauge invariance. This
is an unavoidable price to pay for having local YM
numerators [56,57]. Applying this procedure to the α0
expansion (31), we have

N ðiÞð12…n − 2Þ ¼ N ðiÞ
NLð12…n − 2Þjpi·pq¼z

z→∞ ; ð35Þ

where the superscript index i ¼ YM; 1; 2;…. Now, the BCJ
numerator does not contain any denominators and is purely
local. At four points, the local YM BCJ numerator is

N YMð1234Þ¼ 1

2
ε1 · ε4ε2 ·p1p12 · ε3−

1

2
ε1 · ε4p1 ·F2 · ε3

− ε2 ·p1ε1 ·F3 · ε4þ
1

2
ε1 · ε4ε3 ·p1ε2 ·p1

−p12 · ε3ε1 ·F2 · ε4þ ε1 ·F2 ·F3 · ε4: ð36Þ

This surprisingly matches the numerators in [58,59], but at
higher points we obtain expressions that differ by general-
ized gauge transformations. More examples are included in
the Supplemental Material [53] and KIHA5.0 [60].

Kinematic algebra for local BCJ numerators in Yang-Mills
theory. We will show that, for pure YM theory, the local
BCJ numerators can also be obtained directly from the
kinematic Hopf algebra, with a corresponding evaluation
map,

N YMð12…n − 2Þ ¼ hTð1Þ⋆Tð2Þ � � �⋆Tðn−3ÞiYM: ð37Þ

In this construction, the gluon (n − 2) will enter the
mapping rule differently from the others, and does not
have an associated generator. The evaluation map can be
deduced from the W0 function when it is truncated to
leading orders in the α0 expansion. When expanding in α0,
the on-shell condition (16) for the massive gluon can reduce
the α0 order by one power. Since we are interested in pure
YM, this implies we can focus purely on terms up to order
linear in α0, which are single trace terms of the form

α0W0ð1…ðn−3ÞqÞþ
X

α0pX ·Fτb ·pYW0ði1τairÞ: ð38Þ

On the massive gluon on-shell condition (32), the first term
contributes to leading order as

ε1 · F2…n−3 · εq: ð39Þ
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The second term contributes to the leading order only when
i1τ2ir contains gluon indices 1 and q, since other terms are
independent under the on-shell condition (32). Then,
according to the W0-function relations in Eq. (8), the
second term can be written as

X
α0pX · Fτb · pqYW0ð1τaqÞ: ð40Þ

The propagator in the W0 function is also simplified for the
leading order contribution in the limit pi · pq ¼ z → ∞,

α0

1 − α0p2
1qτa

→
1

2pq · pτb

; ð41Þ

where we used the on-shell condition p2
1qτaτb

¼ 1=α0.
In the limit z → ∞, the parameter z in (40) and (41)

cancels, which ensures that the BCJ numerator retains its
local form. We can now identify the specific terms within
the W0 function that contribute to local BCJ numerators,
finally leading to the evaluation map for pure YM:

ð42Þ

with

hTðjτ1Þ;ðτ2Þ;…;ðτrÞiYM ≔ 0; if j > 1; ð43Þ

and

G1τ1 ¼ ε1 · Fτ1 · εn−2;

Gτij

�
pΘðτijÞ

� ¼ pΘðτijÞ · Fτi · εj: ð44Þ

The set ΘðτiÞ consists of all indices to the left of τi and
smaller than the first index in τi, as in (3). We can check this
reproduces, for example, Eq. (36).
The above map demonstrates that indeed kinematic Hopf

algebras apply directly to pure YM, without relying on
factorization limits of HEFT numerators. We note the
number of terms in the local BCJ numerators are twice
that in the nonlocal BCJ numerator [31] (i.e., Fubini
numbers [61]), the same as what was obtained in [52]
using different methods. This approach can be further
extended to higher α0 corrections of the local BCJ numer-
ators by generalizing the above analysis.

Conclusion and outlook. This Letter starts by investigating
the construction of the BCJ numerators for the HEFT limit
of DF2 þ YM theory, whose α0 expansion generates higher
derivative corrections to YM theory, compatible with the
color-kinematics duality. The approach is based on a
kinematic Hopf algebra, where a fusion product of gen-
erators ensures the color-kinematics duality holds, with the
full α0 dependence contained in the mapping rule from
abstract generators to kinematic functions. Our proposed
mapping rule contains a new object we term the W0
function, which can be used to directly obtain local BCJ
numerators in YM, demonstrating that the HEFT limit is
not required for the Hopf algebra construction to work.
These results are strong evidence that kinematic Hopf
algebras universally underpin the color-kinematics duality.
To further test this fascinating possibility of universality,

one could also explore the appearance of Hopf algebras in
scalar theories by using transmutation operators [62] or
dimensional reduction [63]. It would also be interesting to
connect to approaches such as [64–67], as well as the
recently discovered family of theories containing higher
derivative corrections to YM that obey the color-kinematics
duality, besides DF2 þ YM [48]. Interestingly, such theo-
ries are order Oðm3Þ or higher in the HEFT limit, whereas
DF2 þ YM theory is order OðmÞ.
The BCJ numerators presented in this Letter serve as a

direct means to construct gravitational amplitudes extend-
ing beyond Einstein gravity [68–72]. By incorporating
them into the classical HEFT expansion graphs [73–75] of
binary black hole scattering, our approach facilitates the
calculation of classical observables such as bending angles
or waveforms within the binary black hole system, enabling
the study of potential physical effects beyond pure Einstein
gravity.
More generally, a better understanding of the kinematic

Hopf algebras in such varied contexts could help reveal
new physical implications of this structure, and elucidate
further aspects of the color-kinematics duality.
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