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Carroll black holes with an associated Carroll temperature were introduced recently. So far, it is unclear
if they exhibit a Hawking-like effect. To solve this, we study scalar fields on Carroll black hole
backgrounds. Inspired by anomaly methods, we derive a Hawking-like energy-momentum tensor
compatible with the Carroll temperature and the Stefan-Boltzmann law. Key steps in our derivation
are the finiteness of energy at the Carroll extremal surface and compatibility with the Carroll-Ward
identities, thereby eliminating, respectively, the Carroll analogs of the Boulware and Unruh vacua.
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Introduction. Carroll symmetries [1,2] were long over-
looked by physicists until their omnipresence was recog-
nized. Their ubiquity is partly due to the fact that
Minkowski space, crucial for quantum field theories,
exhibits a Carroll structure at null infinity. Remarkably,
the asymptotic symmetries of asymptotically flat space-
times known as Bondi et al. and Sachs symmetries [3,4]
precisely align with conformal Carroll symmetries [5–7].
Further insights into the Carroll structure at null infinity can
be found in Refs. [8–12].
Additionally, it was realized that generic null hyper-

surfaces, prevalent in general relativity, possess a Carroll
structure [13–21]. Hence, Carrollian symmetries emerge in
both pillars of theoretical physics: quantum field theories
and general relativity. A prominent application in both
contexts is the Carrollian approach to flat space holography,
notably in three [22–36] and four dimensions [8–12,37–48].
Carrollian spacetimes are characterized by a Carroll

metric hμν with a degenerate signature ð0;þ; � � � ;þÞ.
An illustrative example is the limit of the Minkowski
metric where the speed of light vanishes, given by ds2 ¼
limc→0ð−c2dt2 þ δijdxidxjÞ ¼ δijdxidxj. Such spacetimes
necessitate a Carroll vector vμ lying in the kernel of
the Carroll metric, i.e., vμhμν ¼ 0. In the example, the

vector field is v ¼ vμ∂μ ¼ ∂t and the Carroll metric

is hμν ¼ δijδ
i
μδ

j
ν.

Whenever we had some global spacetime symmetries in
physics, it turned out to be fruitful to make them local. For
Poincaré symmetries, this leads to Einstein-Cartan theories,
including general relativity [49]. Conversely, Galilean
symmetries yield Newton-Cartan theories [50–57]. It is
therefore natural to gauge the Carroll algebra [58] and
formulate Carroll gravity theories [59–71].
To advance, detailed examination of Carroll gravity

theory is crucial [72]. This is particularly manageable in
two dimensions (2d), where Carroll gravity allows for
powerful mathematical tools [74,75]. These 2d models can
be seen as toy models or as dimensional reductions of
higher-dimensional Carroll gravity theories. For example,
the Carroll limit of the Schwarzschild black hole aligns
with a specific 2d Carroll gravity model [76].
Recently, it was found that these models can feature

Carroll black hole solutions with an associated Carroll
temperature [76]. The presence of such a temperature raises
the question of whether a physical quantum process, akin to
the Hawking effect [77], underlies the temperature of
Carroll black holes.
Our paper demonstrates that indeed there exists a

Carroll-Hawking effect.
To show this, we introduce a matter scalar field in

addition to the 2d geometric variables and consider the
consequences of the Ward identities associated with diffeo-
morphisms, Carroll boosts, and Weyl rescalings. The latter
turn out to be anomalous, which we show both from a
limiting perspective and in an intrinsically Carrollian way.
Our main result is an anomaly-induced expectation value
for the energy density (30) that is precisely compatible with
the Stefan-Boltzmann law,
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hEi ¼ Γðd=2Þζðd=2Þ
πd=2

Td ð1Þ

restricted to d ¼ 2; see, e.g., [78]. The temperature therein
is identified with the Carroll temperature derived classically
in [76].

Matter on Carroll backgrounds. In the present work, we
focus on a massless Carrollian scalar field ϕwith conformal
coupling [79,80]. We briefly summarize the 2d case to fix
the notation for the curved space analogs of electric and
magnetic scalar fields introduced in [81]. The Carroll
gravity backgrounds we have in mind are Carroll black
hole solutions of magnetic Carroll dilaton gravity [76], but
all results in this section are background independent.
Starting from the Lorentzian action on a manifold M

I ¼ −
1

2

Z
M

d2x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕÞð∂νϕÞ ð2Þ

we introduce pre-ultralocal variables [66] by VμTμ ¼ −1,
TμEμ ¼ 0, VμEμ ¼ 0 as well as EμEν ¼ δμν þ VμTν such
that the metric is given by gμν ¼ −c2TμTν þ EμEν and the
Lorentzian volume form is cT ∧ E. For the Carrollian limit
the frame fields are expanded in powers of c2 as
Vμ ¼ vμ þOðc2Þ, Tμ ¼ τμ þOðc2Þ, Eμ ¼ eμ þOðc2Þ,
and Eμ ¼ eμ þOðc2Þ. Local Carroll boosts parametrized
by λðxÞ act as

δλe¼ 0; δλτ¼−λe; δλvμ ¼ 0; δλeμ ¼−λvμ: ð3Þ

Local Weyl rescalings [79] parametrized by ρðxÞ act on the
fields as

δρe¼ ρe; δρτ¼ ρτ; δρvμ ¼−ρvμ;

δρeμ ¼−ρeμ; δρϕ¼ 0: ð4Þ

Switching to a Hamiltonian formulation by defining the
pre-ultralocal momentum Π ¼ cffiffiffiffi−gp δL

δðVμ
∂μϕÞ ¼ π þOðc2Þ

and inserting the pre-ultralocal variables into the action
(2) yields

I ¼
Z
M

T ∧ E

�
ΠVμ

∂μϕ −
1

2
Π2 −

c2

2
ðEμ

∂μϕÞ2
�
: ð5Þ

This is the starting point for obtaining two possible actions
for a Carroll invariant scalar field [81], which we dis-
cuss now.

Timelike (electric) scalar field: The electric contraction is
obtained by directly sending c → 0 in (5), replacing all
fields by their leading-order expressions, and integrating
out the leading-order momentum π,

Iel½ϕ� ≔
1

2

Z
M

τ ∧ eðvμ∂μϕÞ2: ð6Þ

The spatial dependence of the field ϕ is unconstrained,
representing the ultralocal character of Carrollian theories.
It is straightforward to check that this action is invariant
under local Carroll boosts as well as diffeomorphisms, as
required. Additionally, the action (6) is invariant under
Weyl rescalings (4) of the background.

Spacelike (magnetic) scalar field: There is a second
possibility to contract the Hamiltonian action where the
fields are rescaled as Π → cΠ, ϕ → 1

cϕ. Crucially, this
rescaling preserves the symplectic form δΠ ∧ δϕ on field
space. The leading-order action

Imag½ϕ; π� ≔
Z
M

τ ∧ e

�
πvμ∂μϕ −

1

2
ðeμ∂μϕÞ2

�
ð7Þ

does not permit integrating out the momentum π since its
quadratic term cancels in the contraction. Instead, π acts as
a Lagrange multiplier enforcing time independence of the
scalar field. Under local Carroll boosts, the momentum
transforms as δλπ ¼ −λeμ∂μϕ such that the total action is
invariant. This transformation is compatible with Weyl
rescalings (4) if they act on π as δρπ ¼ −ρπ, rendering the
magnetic action (7) Weyl invariant as well.

Carroll-Ward identities: Both examples of classical matter
actions are invariant under local Carroll boosts and local
Weyl rescalings, which leads to Ward identities for the
associated Carroll energy-momentum tensor (CET). Taking
the electric scalar as an example, we define the one-forms
TðvÞ and TðeÞ by

δIel ¼ −
Z
M

τ ∧ eðTðvÞ
μ δvμ þ TðeÞ

μ δeμÞ ð8Þ

which implies that their components transform under
Carroll boosts as

δλT
ðvÞ
μ ¼ λTðeÞ

μ ; δλT
ðeÞ
μ ¼ 0: ð9Þ

The CET

Tμ
ν ¼ vμTðvÞ

ν þ eμTðeÞ
ν ð10Þ

is gauge invariant [79,82,83]. Contracting the arbitrary
variation (8) with a Carroll boost (3) yields the Carroll
boost Ward identity

TðeÞ
μ vμ ¼ eμTμ

νvν ¼ 0 ð11Þ

while contracting with an infinitesimal diffeomorphism
yields
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1

e
∂μðeTðvÞ

ν vμ þ eTðeÞ
ν eμÞ ¼ −TðvÞ

μ ∂νvμ − TðeÞ
μ ∂νeμ ð12Þ

where e ≔ detðτμ; eμÞ. Weyl invariance additionally
requires the trace of the CET to vanish,

Tμ
μ ¼ vμTðvÞ

μ þ eμTðeÞ
μ ¼ 0: ð13Þ

As we shall prove in our paper, this last Ward identity
becomes anomalous in the quantum theory.

Carroll-Schwarzschild black hole: Our prototypical exam-
ple for a Carroll black hole background is the spherically
reduced Carroll-Schwarzschild spacetime [65,66,76]

τ¼
ffiffiffi
ξ

p
dt̃; e¼ drffiffiffi

ξ
p ; v¼−

1ffiffiffi
ξ

p ;∂t̃ ξ¼ 1−
rs
r

ð14Þ

where we used temporal and radial coordinates
ðt̃; rÞ∈R × ðrs;∞Þ. We decorated the time coordinate with
a tilde since later we shall use t for the Wick-rotated time.
While the full solution of 2d Carroll dilaton gravity also
contains the dilaton, we do not display it here since the
matter theories we consider do not couple to it. The locus
r ¼ rs represents the Carroll extremal surface of this
geometry [76].

Carroll-Hawking effect as a limit. In this section, we extend
to the Carrollian case the method of Christensen and
Fulling [84] that allows to recover the expectation values
of the full Lorentzian energy-momentum tensor through the
conformal anomaly. We do so by carefully implementing
the Carrollian limit together with the definition of the
semiclassical theory.
Our starting point is the classically Weyl invariant

“electromagnetic” scalar action [85]

Iem ¼
Z
M

τ∧ effiffiffiffiffiffiffiffiffi
g1g2

p
�
g1ðvμ∂μϕÞ2þg2eμeνð∂μϕÞð∂νϕÞ

� ð15Þ

which has the terms from both electric and magnetic
actions (6) and (7) with coupling constants g1 and g2.
This action is not manifestly invariant under local Carroll
boosts, but we remedy this by taking appropriate limits
of g1 and g2 [86]. We rewrite the action (15) more
suggestively as

Iem ¼
Z
M

d2x
ffiffiffiffi
G

p
ðGμν

∂μϕ∂νϕÞ ð16Þ

where we introduced a fiducial metric

Gμνðg1; g2Þ ¼
1

g1
τμτν þ

1

g2
eμeν: ð17Þ

The limit g1 → ∞, g2 ¼ 1 renders Gμν Carrollian.
Comparingwith (7), one can show that this limit corresponds

to a magnetic limit on the level of the scalar action [88].
The inverse of the fiducial metric (17) is Gμνðg1; g2Þ ¼
g1vμvν þ g2eμeν.
From this point we formally treat the electromagnetic

scalar theory as a Euclidean theory, which makes it natural
to define the path integral measure by

1 ¼
Z

Dϕ exp

�
−
Z
M

d2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðg1; g2Þ

p
ϕ2

�
: ð18Þ

This definition is invariant under diffeomorphisms as well
as local Carroll boosts for arbitrary g1, g2. Since the
expression in the exponent (18) is not invariant under
Weyl transformations (4) the measure breaks Weyl sym-
metry. Noninvariance of the path integral measure under a
classical symmetry of the action is the hallmark of
anomalies [89], so we expect a Weyl anomaly. We confirm
this expectation below by analyzing Weyl transformations
of the effective action.
The partition function with the measure (18),

Z ¼
Z

Dϕ exp

�
−
Z
M

d2x
ffiffiffiffi
G

p
ϕAϕ

�
¼ ðdetAÞ−1

2 ð19Þ

is given in terms of the determinant of the Laplace-type
operator A ¼ −Gμν∇μ∇ν, where ∇ is the Levi-Civita
connection associated with Gμν. The broken Weyl sym-
metry implies that the effective action W ¼ − lnZ is not
invariant under rescalings. The associated trace anomaly is
the standard result [84,90],

hT μ
μi ¼

1

24π
RðGÞ ð20Þ

where we used δρGμν ¼ 2ρGμν and RðGÞ is the Ricci
scalar associated with ∇. The expectation value of the
fiducial energy-momentum tensor is defined by δW ¼
1
2

R
M d2x

ffiffiffiffiffiffiffi
−G

p hT μνiδGμν.
Let us consider now the Carroll-Schwarzschild back-

ground (14). In the Ricci scalar RðGÞ ¼ 2g2rs
r3 the parameter

g1 drops out because it can be absorbed into a redefinition
of time t̃. At this stage, the components hT μ

νi are not
Carrollian as they still depend on the gi and thus do not
satisfy the Carroll boost Ward identity. However, in
addition to (20) they satisfy the Euclidean diffeomorphism
Ward identities, ∇μhT μνi ¼ 0, which can be solved up to
two integration constants in the static case. Pretending that
Gμν describes a Wick-rotated Lorentzian geometry, we
undo this Wick rotation, t̃ → it, v → iv, τ → −iτ and
define adapted null coordinates [91]

x� ¼ 1ffiffiffi
2

p � ffiffiffiffiffi
g2

p
t� ffiffiffiffiffi

g1
p

z
�
;

dz
dr

¼ 1

1 − rs
r

ð21Þ
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in terms of which the fiducial metric is

ds2ðGÞ ¼−
2

g1g2
e2ωdxþdx−; ω¼ 1

2
ln

�
1−

rs
r

�
: ð22Þ

We solve the Ward identities by

hT ��i¼
1

24πg1

�
∂
2
zω− ð∂zωÞ2

�þ t�
g1
; t�∈R ð23Þ

where t� are constants of integration. A locally Carroll
boost-invariant CET is only defined as a (1, 1) tensor in a
static coordinate system [79]. Therefore, we invert the
transformation (21) and pull up one index with Gμν,
leading to

hT t
ti ¼ −

g2
24π

�
∂
2
rξ −

1

4ξ
ð∂rξÞ2 þ 12π

tþ þ t−
ξ

�
; ð24aÞ

hT t
ri ¼ −

ffiffiffiffiffiffiffiffiffi
g1g2

p
2

tþ − t−
ξ2

; ð24bÞ

hT r
ti ¼

g2
2

ffiffiffiffiffi
g2
g1

r
ðtþ − t−Þ; ð24cÞ

hT r
ri ¼

g2
24π

�
−
ð∂rξÞ2
4ξ

þ 12π
tþ þ t−

ξ

�
ð24dÞ

with ξ ¼ 1 − rs
r . The flux components can then be

expressed as

hT ��i ¼
ξ

2g2
hT r

ri �
tþ − t−

2
−

ξ

2g2
hT t

ti: ð25Þ

Magnetic limit: One way to obtain a local Carroll boost-
invariant theory is to set g2 ¼ 1 and g1 → ∞ corresponding
to a magnetic contraction. In this limit, hT t

ri → ∞ unless
we assume tþ − t− ¼ t0ffiffiffiffi

g1
p with some fixed constant t0. With

this assumption, we obtain in the magnetic limit

hT t
ti → hTt

ti ¼ −
1

24π

�
∂
2
rξ −

ð∂rξÞ2
4ξ

þ 24πtþ
ξ

�
; ð26aÞ

hT t
ri → hTt

ri ¼ −
1

2

t0
ξ2

; ð26bÞ

hT r
ti → hTr

ti ¼ 0; ð26cÞ

hT r
ri→ hTr

ri ¼
1

24π

�
−
ð∂rξÞ2
4ξ

þ 24πtþ
ξ

�
: ð26dÞ

This result satisfies the Carroll boost and diffeomor-
phism Ward identities (11) and (12) for a CET where

hTðvÞ
ν i ¼ −hTμ

νiτμ; hTðeÞ
ν i ¼ hTμ

νieμ: ð27Þ

The trace Ward identity stays anomalous after the limit.
Taking the limit of the flux components (25) leads to

hT��i ≔ lim
g1→∞

hT ��ijg2¼1 ¼
1

96π

�
2ξ∂2rξ − ð∂rξÞ2

�þ tþ

ð28Þ

which shows that both fluxes have to agree, hTþþi ¼ hT−−i.
This is unlike the situation in a true Lorentzian theory, where
hT ��i would be associated with in- and outgoing matter
fluxes. They would behave independently from each other,
according to the physical situation at hand. The fact that both
fluxes have to agree in the present case is just another
manifestation of no energy flux being possible in a
Carrollian theory [67]. It furthermore implies that not all
vacuum choices of the analogous Lorentzian theory are
possible anymore. In particular, local Carroll boost invari-
ance is inconsistent with the Unruh vacuum. The Boulware
vacuum is ruled out by demanding finite energy density

hEi ¼ −τμhTμ
νivν ¼

1

24π

�
∂
2
rξ −

ð∂rξÞ2
4ξ

�
þ tþ

ξ
ð29Þ

at the Carroll extremal surface. This leads to the unique
choice tþ ¼ 1

96πr2s
and defines the Carroll analog of the

Hartle-Hawking vacuum with asymptotic energy density

lim
r→∞

hEHHi ¼
1

96πr2s
¼ π

6
T2: ð30Þ

In the second equality we used the result for the Carroll
temperature T of the Carroll-Schwarzschild background,
T−1 ¼ 4πrs. This equality is our main result and shows that
the asymptotic energy density (30) is compatiblewith the 2d
Stefan-Boltzmann law.

Conformal anomaly in Carrollian theories. Instead of
taking Carrollian limits, we consider in this section the
magnetic scalar action (7) from the start. Plugging it into
the path integral yields

Z ¼
Z

DπDϕ expð−Imag½ϕ; π�Þ: ð31Þ

Integrating out π produces a functional δ function δðvμ∂μϕÞ
so that we remain with a path integral over a one-
dimensional time-independent scalar field, but with a
Jacobian factor J ¼ ðdetðvμ∂μÞÞ−1. The operator vμ∂μ
contains a derivative along the time direction but no
derivative along the spatial direction. This means that
the operator is not elliptic, so there is no regular method

AGGARWAL, ECKER, GRUMILLER, and VASSILEVICH PHYS. REV. D 110, L041506 (2024)

L041506-4



known to us to define its determinant [92]. Since a direct
method fails, we try a less direct one.
We assume that the path integral (31) exists and write a

conformal variation of the corresponding effective action
[see (4)]

δρW ¼ −
Z
M

τ ∧ eðhTðvÞ
μ ivμ þ hTðeÞ

μ ieμÞρ: ð32Þ

Demanding that the conformal anomaly is local and Carroll
boost invariant, the only choice with the correct mass
dimension,

δρW ¼ −α1
Z
M

d2x detðτ; eÞRρ ð33Þ

contains an undetermined constant α1 that we shall fix
below. Here, R is the Carroll boost-invariant Carrollian
curvature scalar [76] given in terms of the 2d Carroll boost
connection ω by 2dω ¼ Rτ ∧ e. For the Carroll-
Schwarzschild background (14), it reads

R ¼ −∂2rξ − 2∂r
ξ

r
¼ 2r − 2rs

r3
: ð34Þ

The Ward identities for Carroll boosts (11) and diffeo-
morphisms (12) read in this gauge

hTðeÞ
t i ¼ 0; ð35Þ

∂rhTðeÞ
r i þ ∂rξ

ξ
hTðeÞ

r i ¼ −
∂rξ

2ξ2
hTðvÞ

t i: ð36Þ

Together with the anomalous trace given by (32) and (33)
they have a family of exact solutions (a∈R)

hTðeÞi ¼
�
α1
ξ
3
2

�
r2s
4r4

−
rs
3r3

�
þ a

ξ
3
2

�
dr; ð37Þ

hTðvÞi ¼ ½hTðeÞ
r iξ −

ffiffiffi
ξ

p
α1R�dtþ hTðvÞ

r idr: ð38Þ

The component hTðvÞ
r i remains undetermined. This happens

since, on static backgrounds, the Ward identity (12) for
ν ¼ t is satisfied automatically. Thus, in contrast to the
Lorentzian case, we do not have enough conditions to
define all components of the CET.

The energy density hEi ¼ hTðvÞ
μ ivμ is finite at r → rs if

we choose the integration constant a ¼ α1
12r2s

, producing an

asymptotic energy density

lim
r→∞

hEi ¼ α1
12r2s

ð39Þ

which coincides precisely with the Carroll-Hartle-Hawking
energy density (30) for α1 ¼ 1

8π.

Conclusion.We have shown that the semiclassical theory of
a free scalar field on a Carroll black hole background
exhibits a Carroll analog of the Hawking effect. It manifests
through a nonvanishing energy density in the asymptotic
region compatible with the Stefan-Boltzmann law (30).
However, as a consequence of the Ward identities the
energy flux in any Carrollian field theory has to vanish
which prevents the Carroll black hole from evaporating.
This implies that the Unruh vacuum is incompatible with
Carroll symmetries, leaving only the Carroll analog of the
Hartle-Hawking vacuum as a viable semiclassical vacuum
state. For proving this we used anomaly-based arguments
going back to Christensen and Fulling. The Carrollian
quantum theory is thereby defined by first regularizing the
classical action (15) and then quantizing, removing the
regulator only in the end. While this initially breaks local
Carroll boost invariance we justify the procedure by the
absence of a Carroll boost anomaly after removing the
regulator.
Since the Hartle-Hawking vacuum state corresponds to a

black hole in a thermal bath there is, strictly speaking, no
information paradox in Carroll gravity.
We conclude by mentioning a number of further direc-

tions. The derivation of the Carroll-Hawking effect in this
work did not rely on the specific form of the scalar field
action but rather solved for the vacuum expectation values
of the energy-momentum tensor using symmetry-based
arguments. It would be interesting to see if the same
conclusion can be reached by following a microscopic
derivation along the lines of Hawking’s original work [77].
Another possibly interesting problem would be to consider
the backreaction of matter on the Carroll black hole
backgrounds, classically as well as semiclassically.
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