
Nonlinear self-interaction induced black hole bomb

Cheng-Yong Zhang,1,* Qian Chen,2,† Yuxuan Liu,3,‡ Yu Tian,2,4,§ Bin Wang,5,6,∥ and Hongbao Zhang7,8,¶
1College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3School of Physics and Electronics, Central South University, Changsha 418003, China
4Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
5Center for Gravitation and Cosmology, College of Physical Science and Technology,

Yangzhou University, Yangzhou 225009, China
6School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

7Department of Physics, Beijing Normal University, Beijing 100875, China
8Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University,

Beijing 100875, China

(Received 24 January 2024; accepted 17 July 2024; published 15 August 2024)

We present the first alternative mechanisms to trigger black hole bomb phenomena beyond the famous
superradiant instability. By incorporating nonlinear self-interaction into the massive charged scalar field in
general relativity, we discover that the allowed static solutions suggest two such novel dynamic
mechanisms, which are further confirmed by our numerical simulations. The first originates from a
linearly unstable hairy black hole, but the bomb can be avoided by dialing the coefficient of the tiny scalar
pulse. This distinguishes it from superradiant instability, where the bomb is an inevitable destiny. The
second is an intrinsically nonlinear process, which can even drive a linearly stable Reissner-Nordström
black hole to become a black hole bomb by releasing substantial energy to develop scalar hair. This is also
in sharp contrast with superradiant instability, which can only drive an unstable black hole. These findings
not only open up new avenues for black hole energy bursts, but also have potential implications for new
phenomena occurring around astrophysical black holes.
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Introduction. Energy extraction fromblack holes has always
been a topic of great interest. Soon after Penrose’s proposal
that scattering a massive object off of a rotating black hole
could extract energy [1,2], it was shown that a similar
process for energy extraction could also be implemented by
scattering a charged object off of a spherical charged black
hole [3]. A wave analogue of the Penrose process is super-
radiance [4–7], where the amplified scattering wave carries
energy away, causing the black hole to stabilizewith slightly
less energy [8–10].
An intriguing application of superradiance is to make a

black hole bomb [6]. With the introduction of a reflecting
boundary, the amplified wave can be reflected back towards
the black hole. The amplification repeats, generating a
superradiantly unstable black hole that continuously
releases energy to the wave, resulting in a sharp growth
of the wave. Reflection can be achieved by placing the

black hole in an artificial reflecting cavity or an anti–de
Sitter spacetime [11]. A more natural approach involves the
mass term in the wave equation for a massive bosonic field,
which inherently provides an effective reflecting potential
barrier [12].
With the backreaction of amplified waves on spacetime,

the black hole bomb induced by superradiant instability
will inevitably terminate at some point and the unstable
seed black hole must transition to a stable state. However,
exploring the whole progression of this process is chal-
lenging due to the significant disparity in time scales
between the field oscillations and the growth rates of
instability [13–16]. Only a few numerical simulations have
successfully simulated the full evolution of the superradiant
instability in asymptotically flat spacetimes [17–20] or
anti–de Sitter spacetimes [21–23]. The simulations in
asymptotically flat spacetimes show that energy can indeed
be substantially extracted from the superradiantly unstable
black holes, leading to the gradual transition to hairy black
holes [16,24] with smaller energy within the horizon.
For a long time, the creation of black hole bombs was

understood only through the famous superradiant insta-
bility. In this article, we present two novel dynamical
mechanisms that can also lead to black hole bomb
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phenomena, even within the simple framework of general
relativity minimally coupled with a self-interacting massive
charged scalar field. These mechanisms arise from the
nonlinear self-interaction of the matter, which is often
neglected in studying the superradiant instability at the
linear level [25]. We first disclose an intriguing linear
instability in a branch of hairy black hole solutions.
Depending on the coefficient of the tiny perturbation, this
instability has two possible evolutionary directions. One
leads to scalar hair collapse, while the other leads to scalar
hair explosion and a black hole energy burst. This makes it
a novel mechanism for triggering a black hole bomb,
distinct from the superradiant instability, which can only
result in hair explosion and an energy burst. We further
demonstrate that Reissner-Nordström (RN) black holes are
always linearly stable in this model, meaning the traditional
creation of a black hole bomb from an RN black hole via
superradiant instability is absent. Surprisingly, we can still
create a bomb by injecting a strong scalar pulse into the RN
black hole. The nonlinear effect of the scalar field can
destroy the stability of the RN black hole and drive it into a
hairy black hole by releasing substantial charge and energy
to develop scalar hair. This process is intrinsically nonlinear
and does not need an artificial reflecting cavity. In contrast,
superradiant instability can only transform an unstable
black hole into a hairy one and requires a reflecting cavity
for spherical charged black holes [17,18,21]. To our
knowledge, these two processes represent the first alter-
native mechanisms capable of inducing black hole bomb
phenomena beyond the superradiant instability.

Model. The Lagrangian of the model we consider is (using
units where c ¼ G ¼ 1)

L ¼ R − FμνFμν −DμψðDμψÞ� − VðψÞ; ð1Þ

where R is the Ricci scalar associated with the metric, the
Maxwell field strength Fμν ¼ ∂μAν − ∂νAμ with Aμ being
the gauge potential, and the gauge-covariant derivative
Dμ ¼ ∇μ − iqAμ with q being the gauge coupling constant
of the complex scalar field ψ . We focus on the potential
VðψÞ ¼ μ2jψ j2 − λjψ j4 þ νjψ j6, where μ is the scalar field
mass and λ, ν are the positive parameters governing the
self-interactions. This potential is widely used in studying
Q-balls [26], a type of nontopological soliton that may
naturally arise in the early Universe and is a candidate for
dark matter [27–30]. It was recently found that the above
nonlinear self-interaction enables this model to circumvent
the no-hair theorem [31], allowing static hairy black hole
solutions [32,33].
To investigate the static and dynamical properties of the

black holes, we use the spherical Painlevé-Gullstrand (PG)
coordinates:

ds2 ¼ −ð1 − ζ2Þα2dt2 þ 2αζdtdrþ dr2 þ r2dΩ2; ð2Þ

where α, ζ are the metric functions dependent on t and r.
This coordinate system is regular at the apparent horizon
rh, where ζðt; rhÞ ¼ 1. Taking the gauge potential Aμdxμ ¼
Adt and introducing auxiliary variables Π ¼ nμDμψ and
E ¼ nμFμr, where nμ ¼ ðα−1;−ζ; 0; 0Þ is the unit normal
vector to the constant time slice, we get the constraint
equations

0 ¼ ∂rEþ 2E
r

−
q
2
ImðΠψ�Þ; ð3Þ

0 ¼ ∂rζ þ
ζ

2r
−
rðρψ þ E2Þ

2ζ
−
rReðΠ�

∂rψÞ
2

; ð4Þ

0 ¼ ∂rαþ αrReðΠ�
∂rψÞ

2ζ
; ð5Þ

0 ¼ ∂rA − αE; ð6Þ

and evolution equations

0 ¼ ∂tψ − iqAψ − αðΠþ ζ∂rψÞ; ð7Þ

0 ¼ ∂tΠ −
∂rðαðΠζ þ ∂rψÞr2Þ

r2
− iAΠqþ α

∂V
∂ψ� : ð8Þ

Here ρψ ¼ Tψ
μνnμnν ¼ ðjΠj2 þ j∂rψ j2 þ VÞ=2 is the pro-

jection of the scalar field stress-energy tensor along nμ.
Given the initial distribution of ψ and Π, we obtain E, ζ, α,
and A by solving the constraint equations (3)–(6) succes-
sively. The evolution equations (7) and (8) are then solved
using the Runge-Kutta method to get Π, ψ on the next time
slice. By repeating this procedure, we can obtain the matter
and metric data on all time slices.
At spatial infinity, Minkowski spacetime should be

approached. This implies the following boundary condi-
tions for solving the equations:

ζ→

ffiffiffiffiffiffiffi
2M
r

r

; A→ΦþQ
r
; E→−

Q
r2
; ψ ;Π→ 0; ð9Þ

whereM andQ are the total mass and charge of the system,
respectively. Φ is the gauge potential and we take Φ ¼ 0
hereafter. We also set α ¼ 1 at infinity by fixing the
auxiliary freedom of αdt in PG coordinates.
We trace the dynamical evolution using the scalar field

energy Eψ ¼ 1
4π

R
∞
rh
dVρψ, the black hole charge Qh ¼

1
4π

H
rh
dSFμνnμsν where sν is the outward pointing unit

normal vector to the apparent horizon two-sphere [34], and
the black hole mass, defined by the Christodoulou-Ruffini

formula as MB ¼ Mh þ Q2
h

4Mh
where Mh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sh=16π

p
is the

irreducible mass and Sh ¼ 4πr2h is the apparent horizon
area [8–10,19,20,35]. There should be charge conserva-
tion Qh þQψ ¼ Q during dynamical evolution, where
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Qψ ¼ 1
4π

R
dVnμjμ, with jμ ¼ − q

2
Imðψ�DμψÞ being the

charge current carried by the scalar field. This fact can
be employed to monitor our numerical simulations.

Bombs suggested by static solutions. As alluded to before,
due to the nonlinear self-interaction, the model we are
considering allows not only the RN solution with ψ ¼ 0,
but also hairy black hole solutions. The hairy black hole
solutions have a static geometry and stress-energy tensor,
while the scalar field oscillates as ψðt; rÞ ¼ ϕðrÞeiωtþifðrÞ
in PG coordinates. Here fðrÞ≡ qχðrÞ − ωgðrÞ is a phase. It
can be removed by a combination of the gauge trans-
formation ψ → ψe−iqχ , A → A − ∂rχ and the coordinate
transformation t → tþ gðrÞ. The scalar field exhibits an
asymptotic behavior ϕ → c0e−μ∞r

r at spatial infinity, where c0
is an irrelevant constant and μ∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − ω2
p

is the
effective mass of the complex scalar field. The bound
ω ≤ μ should be satisfied for static hairy solutions; other-
wise, the scalar field would have infinite total energy and
thus be unphysical. Regularity on the horizon requires
that the frequency ω satisfies the resonance condition
ω ¼ qAðrhÞ. Given the gauge coupling q, black hole
horizon radius rh, and total charge Q, the static hairy
solutions can be worked out by solving the static equations
of motion with the Newton-Raphson method. Other quan-
tities such as ω; Qh, and MB can be derived from these
solutions.
Hereafter, we assume a reference RN black hole with a

total mass M0 ¼ 1 and a total charge Q0 ¼ 0.9M0. The
parameter M0 serves to establish the energy scale of the
problem. Then, we select the black hole solutions with a
total charge Q identical to that of the reference black hole,
but the total massM can vary. The reason we fixQ ¼ Q0 is
to facilitate comparison with results from dynamical
simulations later, where the total charge remains
unchanged, while the total mass M increases with pertur-
bation strength. Without loss of generality, we further fix

qM0 ¼ 3 and the potential VðψÞ ¼ jψ j2
M2

0

ð1 − jψ j2
0.12Þ2, which

satisfies the weak and dominant energy conditions. Then,
the results for selected solutions with Q ¼ Q0 are shown in
Fig. 1. Alongside the RN solution, two additional branches
of hairy solutions emerge, coinciding at a certain maximum
value ofM. As displayed later, the dashed branch turns out
to be linearly unstable, while the solid red branch and the
RN branch are linearly stable. By organizing static sol-
utions in such a fresh manner, we can readily argue for the
feasibility of making black hole bombs through two
potentially distinct mechanisms from the familiar super-
radiant instability.
Let us first start from the red point with M ¼ 1.47M0,

MB ¼ 1.42M0 on the dashed branch. Since this seed hairy
black hole is linearly unstable, even a slight perturbation
can drive it to one of two possible stable final states at
M ¼ 1.47M0: either the stable hairy black hole on the solid

red branch or the RN black hole on the green line. This
speculation is supported by the fact that both have a larger
horizon area Sh than the seed black hole. If the stable hairy
black hole (indicated by the red triangle) is the final state,
then the unstable seed black hole must release substantial
energy outward to transition to it, since the final state has a
smaller black hole mass MB within the horizon compared
to the seed one. This implies a black hole bomb made from
a linearly unstable hairy black hole.
On the other hand, it is also possible to make a black hole

bomb out of an RN solution, say, the black point with
M ¼ MB ¼ M0 on the green line. Although this seed RN
black hole is linearly stable under a small perturbation, its
stability under a large perturbation is not guaranteed. In
particular, if we engineer the scalar field away from the
realm of the validity of linear perturbation theory, with its
charge density vanishing outside of the horizon, then
according to the Penrose inequality (M ≥ MB) [36–38]
we can inject energy to make the total massM of the system
lie between M0 and 1.155M0, the value determined by the
intersection diamond point of the horizontal gray line and
the solid red curve. If this process can trigger the transition
from the black point to a hairy black hole on the solid
branch with M0 < M < 1.155M0 (represented by the red
square), then the linearly stable seed RN black hole with
MB ¼ M0 must release a substantial amount of energy
outward, since the final hairy black hole has MB < M0

within the horizon. In this way, we can create a black
hole bomb even from a linearly stable seed black hole.

FIG. 1. Black hole area Sh and massMB versus the total mass of
the static black hole solutions with fixed Q ¼ 0.9M0 when
qM0 ¼ 3. The green line denotes the RN solutions, while the
solid and dashed red lines represent the stable and unstable hairy
black holes, respectively. The red and black points indicate the
seed black holes in Figs. 2 and 3, respectively.
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This intrinsically nonlinear process is permitted by the
nondecreasing area law since the red square has a larger
horizon area than the black point.
Below we shall confirm the above two novel dynamical

mechanisms to make black hole bombs using our fully
nonlinear numerical simulations, whereby we also find that
both of them are controllable.

Bombs confirmed by dynamical evolution.We first confirm
that the black hole bomb can be made out of the unstable
hairy black hole. As such, we perturb the red point in Fig. 1
with the ingoing pulse

δψ ¼pe−
M0
r−r1

− M0
r2−r

ðr− r1Þðr2− rÞ
M2

0

; δΠ¼ ∂rδψ ð10Þ

if r1 < r < r2, and zero otherwise. We fix r1 ¼ 4M0,
r2 ¼ 9M0 in the simulations. With a tiny p, the increase
in total mass is negligible. Typical simulations are shown in
Fig. 2. Depending on whether p is positive or negative, the
unstable seed hairy black hole evolves into either an RN
black hole or a linearly stable hairy black hole. When it
evolves into the latter, the seed black hole releases a
substantial amount of charge and energy into the scalar
hair, similar to the black hole bomb triggered by super-
radiant instability. However, superradiant instability always
results in a scalar hair explosion and energy extraction from
the black hole. Unlike this, here when the unstable seed
hairy black hole instead evolves into an RN black hole, the
scalar hair collapses rather than explodes, and its energy is

absorbed by the black hole. This makes this linear
instability a novel mechanism for triggering a black hole
bomb beyond the superradiant instability. It is worth
pointing out that this novel mechanism has the potential
to extract up to 25% of the black hole energy, which occurs
with a linearly unstable hairy extremal black hole with
Q ¼ M ¼ 0.9M0 for smaller q such as qM0 ¼ 1.
To show that the bomb can also be made out of a linearly

stable RN black hole, we inject the black point in Fig. 1
with the following ingoing scalar pulse:

δψ ¼ 0.1pe−
�
r−12M0
2M0

�
2

; δΠ¼ ∂rδψ : ð11Þ

The total mass increases with amplitude p, while the total
charge is unchanged since the initial pulse has vanishing
current δjμ everywhere. We plot the relevant result in
Fig. 3. For the pulse (11), there exists a threshold p1. When
p < p1, the scalar pulse is finally absorbed by the seed RN
black hole, leading to another RN black hole with a larger
black hole mass. This result is in accord with the fact that
the RN black hole under consideration is linearly stable.
Thus, one cannot create a bomb from an RN black hole
through the traditional superradiant instability in this
model. However, for p > p1, the strong nonlinear effect
of the scalar field destroys the linear stability of the RN

FIG. 2. Evolution of scalar field energy Eψ, black hole mass
MB, and chargeQh after the perturbation (10) with p ¼ �10−5 of
the unstable hairy black hole with M ¼ 1.47M0, MB ¼ 1.42M0

(red point in Fig. 1). The corresponding total mass increment after
perturbation is about 10−7M.

FIG. 3. Evolution of scalar field energy Eψ, black hole mass
MB, and charge Qh from an RN black hole with M ¼ MB ¼ M0

(black point in Fig. 1) under the pulse injection (11). The dashed
curves represent the evolution resulting in RN black holes, while
the solid curves represent the evolution resulting in hairy black
holes. The threshold p1 ≈ 0.198609115264384 is determined
with an accuracy up to order 10−15 using the bisection method.
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black hole and drives it to transition into a hairy black hole.
In particular, when p1 < p < 0.33, the final hairy black
hole has a smaller mass MB within the horizon than the
seed black hole. Actually, up to 10% of the black hole
energy and 80% of the black hole charge are extracted in
our numerical simulations. This implies that we can create a
black hole bomb in the nonlinear regime from an RN black
hole, even if it is linearly stable. But when p > 0.33, the
total mass exceeds 1.155M0, so, as illustrated in Fig. 3 for
p ¼ 0.37, the final hairy black hole has a larger mass MB
than the seed black hole, which means there is no black
hole bomb for larger p.
Therefore, we have fulfilled our promise made before. In

particular, we found that the bomb made via either of the
two novel mechanisms is controllable in the sense that it
can be triggered only within the partial region of the
parameter space of the scalar pulse profile. For more results
with other parameters, please see the Supplemental
Material [39].

Conclusion. Due to the nonlinear self-interaction of the
massive charged scalar field, our model allows for not only
RN solutions, but also two branches of hairy black hole
solutions. This together with the nondecreasing area law as
well as the Penrose inequality suggests two novel dynami-
cal mechanisms to create a black hole bomb, which were
further confirmed explicitly by our fully nonlinear numeri-
cal simulations. The first one originates from the linearly
unstable hairy black hole, but to be a bomb requires the
coefficient of the scalar pulse profile to be negative, which
makes it distinct from the superradiant instability, whereby
the bomb is unavoidable. The second one also differs from

the superradiant instability, since it is triggered intrinsically
in the nonlinear regime, where the strong nonlinear self-
interaction of the scalar field can even drive a linearly stable
RN black hole to transition into a hairy black hole by
releasing substantial energy to develop scalar hair. As far as
we know, these two processes are the first alternative
mechanisms to the superradiant instability for creating a
black hole bomb.
These findings highlight the significant impact of the

nonlinear self-interaction of matter fields on black hole
energy bursts. There are indications that analogous phe-
nomena widely exist for black holes with other self-
interacting massive solitary hairs, such as Proca and axion
hair [40], which will be studied elsewhere in the future. On
the other hand, given the mass gap between hairy and bald
rotating black hole solutions [41–43], a tiny perturbation
cannot transform a Kerr black hole to a hairy one. But the
second mechanism, which is intrinsically nonlinear as we
disclosed here, may apply to these black holes. In particu-
lar, with the involved matter field as a candidate for dark
matter in mind, we have reason to expect that the vast
energy burst induced by the novel mechanisms could
produce intriguing observational signatures, which await
further exploration.
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