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As shown in the classic work of Belinski, Khalatnikov and Lifshitz, the approach to a generic spacelike
singularity in general relativity consists of a sequence of epochs and eras in which the metric is locally
Kasner, connected by brief transitions. When quantum gravity effects are included, we argue that a new
type of transition arises, giving rise to Kasner eons: periods which are dominated by emergent physics at
each energy scale. We comment on the different ways in which the Einsteinian eon may come to an end and
show explicitly how additional Kasner eons arise in the interior of a black hole solution due to higher-
derivative corrections.
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Introduction. Perhaps the most fundamental problem in
theoretical physics is that of singularities. The classical
description of gravity provided by general relativity breaks
down at singularities necessitating a more complete
physical theory to describe the Universe in their vicinity.
At the same time, singularities are ubiquitous. The Penrose-
Hawking singularity theorems establish they generically
arise in gravitational collapse and at the beginning of
the Universe, provided that certain global properties and
energy conditions hold [1,2].
It is a widely held belief that singularities will be

resolved by quantum effects. However, despite progress
in certain restricted circumstances (see, e.g., [3,4]), there is
no known mechanism that justifies this belief on general
grounds. In fact, very little is known about quantum effects
in the vicinity of generic singularities, besides the obvious
point that they will be important.
A potential avenue for progress consists in understand-

ing the implications of quantum effects on universal aspects
of gravity near singularities. That anything universal can be
said about the behavior of generic singularities is not at all
obvious. Nonetheless, more than 50 years ago, Belinski,
Khalatnikov, and Lifshitz (BKL) gave a complete, local
description of gravitational dynamics near a spacelike
singularity [5]. Their analysis revealed two remarkable
and universal features: ultralocal and oscillatory, chaotic
dynamics. These originally quite speculative ideas now
have considerable support coming largely from numerical
work [6–11] but also more rigorous results in certain
limiting cases [12–15].

The dynamics becomes ultralocal in the sense that each
spatial point evolves independently of the others, which
can be heuristically thought of as the veritable shredding
of spacetime. This is often phrased as time derivatives
dominating spatial derivatives in the equations of motion
or, equivalently, as an emergent Carrollian regime.
Key to understanding the evolution of the oscillatory

metric is the (generalized) Kasner geometry [16]. The
Kasner solution describes a homogeneous but anisotropic
cosmology that expands in one spatial direction while
contracting in all other spatial directions. In the case of the
generalized Kasner geometry, the exponents governing the
expansion and contraction are allowed to depend on space.
The metric takes the form

ds2 ¼ −dτ2 þ
XD−1

i¼1

aiðτÞ2ðeiÞ2; ð1Þ

where ei are frame vectors, and because of ultralocality,
each of the scale factors aiðτÞ can evolve independently
at each spatial point. Whenever the spatial curvature is
negligible, the metric becomes Kasner, with aiðτÞ ¼ τpiðxÞ
and where the Kasner exponents satisfy

XD−1

i¼1

pi ¼
XD−1

i¼1

p2
i ¼ 1: ð2Þ

The full evolution consists of an infinite sequence of
Kasner epochs and eras connected by brief transitions
in which the Kasner exponents change—but always
satisfy (2) [17]. An epoch is a period of time during which
the spacetime metric is approximately given by a Kasner
geometry. Epochs generically come to an end when
growing perturbations due to spatial curvature become
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important, driving the Universe from one Kasner epoch to
another. During the transition between epochs, the Kasner
exponents shift in a known way, with the direction of
expansion switching with one of the directions of con-
traction. Kasner eras emerge over a longer timescale. An
era contains potentially a large number of epochs. The
defining characteristic is that during an era, all epochs swap
expansion and contraction between the same two direc-
tions, repeatedly. In the four-dimensional case, the equa-
tions governing the dynamics are equivalent to those for the
Bianchi-IX—or Mixmaster—universe [18].
Of the two features revealed by the BKL analysis,

ultralocality is more fundamental. The chaotic nature of
the singularity can be influenced by certain matter content
and spacetime dimension [19]. However, the quantum fate
of both properties is a natural—and important—question.
One ubiquitous manifestation of quantum effects is

higher-derivative corrections to the classical equations of
motion [20–26]. These corrections will lead to modifica-
tions of the BKL analysis as it applies to general relativity.
To see this is necessarily the case, consider corrections to
the action in a derivative expansion, as in effective field
theory. On a Kasner background, terms with n derivatives
will contribute to the equations of motion as τ−n, where τ is
the proper time in the Kasner metric. Since the powers of τ
are unequal for different values of n, the higher-derivative
terms will become important, ultimately overwhelming the
two-derivative sector. This leads to the end of the Einstein
gravity eon—the period of time where evolution is driven
by Einstein equations.
If higher derivatives lead to a breakdown of the BKL

picture, then exactly how does that occur?What replaces it?
Laying out possible answers to these questions and
providing explicit examples is the purpose of this essay.

TerminatingBKL:Three scenarios.The classicalEinsteinian
description of spacetime in the proximity of a singularity is
expected to receive modifications of various kinds. On the
one hand, quantum fluctuations of the metric should become
relevant at the Planck scale, eventually leading to a complete
breakdown of the classical spacetime description and,
hypothetically, to a full resolution of the singularity.
Notwithstanding this, it is plausible that there exists an
intermediate regime in which the correct description is
provided by a classical metric which evolves following a
set of modified Einstein equations. Such corrections would
be associated to intermediate energy scales and would
take the form of higher-curvature terms in the gravitational
action—prototypically, this is what happens with α0 correc-
tions in string theory.
A logical possibility is that the fully quantum or stringy

regime is reached without going through any such addi-
tional phases. Here we would like to explore the alter-
native situation, namely, the effects that an intermediate

higher-curvature-dominated phase may have on the fate of
spacetime near a singularity.
From this perspective, we will outline three ways by

which the Einsteinian BKL eon may come to an end. The list
is not exhaustive, but it is motivated by the fact that these
possibilities arise already in the simplest possible circum-
stances but are not consequences of those circumstances.

Kasner eons: When the comoving volume of spatial slices
becomes smaller than a certain threshold, the effects of
higher-derivative terms kick in, which follows from the fact
that such terms scale as inverse powers of the volume. This
typically takes place at a proper time τ ∼ l away from the
singularity, where l is the length scale of new physics.
Assuming one can still make sense of a classical evolution
beyond this time, one would find that the relations for
the Kasner exponents (2) will suffer a sharp transition to a
new set of constraints. This marks the transition from the
Einstein gravity eon to a higher-derivative eon, where the
dynamical evolution is drastically altered. In this new eon
we also expect to have an analogous BKL picture: an
ultralocal singularity possibly with Kasner eras and epochs
governing the approach, but with modified Kasner tran-
sition rules.
Now, let us imagine that there are subsequent corrections

that appear at even shorter length scales l1, l2, …, so that
we have a hierarchy of scales l ≫ l1 ≫ l2…. Then,
we will have a cascade of transitions between different
Kasner eons—each possibly with their particular sets of
exponents, eras and epochs—which will happen roughly at
τi ∼ li before the singularity. On the other hand, it may
happen—and it is probably the most natural possibility—
that all these corrections become relevant at the same
scale l. In that case one can interpret the time evolution
as a continuous transition between all these Kasner eons,
leading to an effective time dependence of the Kasner
exponents.
In general, we expect that the existence of this sequence

of Kasner eons pushes the singularity forward in the future.
In particular cases, with an infinite sequence of eons, one
could even hope that the singularity is pushed infinitely far
away—and, hence, resolved. This would be analogous to
time reversal of [27].

Finite-volume singularity: The previous scenario assumes
that the Universe keeps contracting down to arbitrarily
small size and it reaches a singularity when the volume of
spatial slices vanishes. However, one may conceive of a
scenario in which the singularity appears at a finite volume.
This will happen if the metric remains finite but the
curvature diverges, hence leading to diverging tidal forces.
Singularities of this type were first identified in higher-

curvature theories of gravity in [28,29], where they were
shown to occur within the Bianchi-I family of metrics.
Therefore it is quite plausible that such singularities could
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play a role in terminating the BKL scenario, though there
currently exists no construction of generic singularities of
this form.

Inner horizons: A third possibility is that the introduction of
higher-curvature terms qualitatively changes the character
of the near-singularity geometry, replacing the spacelike
singularity with a Cauchy horizon and possibly subsequent
timelike singularity. The Cauchy horizon would be prone to
the same type of mass inflation instability that occurs in
general relativity [30], likely resulting in a null singularity.
Behavior of this type is certainly plausible in a higher-
curvature theory, as it can happen already in Einstein
gravity [31] and plays an important role understanding
the interior of the Kerr black hole [32].
Null singularities are also generic in Einstein gravity

[33,34]. It is therefore conceivable that the Einsteinian eon,
after transitioning to a higher-derivative eon, ultimately
ends at a null curvature singularity. Nonetheless, the
complete story is less clear in this case. For example,
there exist explicit constructions wherein a would-be null
singularity is replaced by a spacelike singularity due to
classical [35] or quantum effects [36]. In any case, it would
be worthwhile to better understand the local gravitational
dynamics in the vicinity of null curvature singularities, both
in general relativity and beyond—see [37].

A toy model.We expect the above scenarios will take place
for generic spacelike singularities, but many open problems
must be addressed before this can be confirmed.1 None-
theless, here we show that these features appear already
under the simplest possible circumstance of a spherically
symmetric black hole interior. The idea is then to study
the effect of higher-curvature corrections on the near-
singularity behavior of the Schwarzschild solution. A
natural setup for doing this is that of Lovelock gravities,
which are the most general diffeomorphism-invariant
theories of gravity which possess second-order equations
for the metric [39,40]. Among these, the simplest nontrivial
scenario occurs in five dimensions, where the Lovelock
action reads

S ¼ 1

16πG

Z
d5x

ffiffiffiffiffi
jgj

p
ðRþ λX 4Þ;

where X4 ≡ R2 − 4RabRab þ RabcdRabcd ð3Þ

is the Gauss-Bonnet (GB) density, λ is a coupling constant
with dimensions of length2 and G is the Newton constant,
which in five dimensions has dimensions of length3.

This theory admits a static and spherically symmetric
generalization of the five-dimensional Schwarzschild black
hole whose interior can be described by the metric

ds2 ¼ dr2

fðrÞ − fðrÞdz2 þ r2dΩ2
S3 ; ð4Þ

where [41,42]

fðrÞ ¼ 1þ r2

4λ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64GMλ

3πr4

r �
: ð5Þ

The structure of the solution is determined by two char-
acteristic values of the radial coordinate, namely,

rh ≡
�
8GM
3π

− 2λ

�
1=2

; r⋆ ≡
�
64GMjλj

3π

�
1=4

: ð6Þ

Depending on the magnitude and sign of λ, and assuming a
positive mass M, one finds the following situations—see
Fig. 1. Whenever jλj > 4GM=ð3πÞ, the solution describes
a naked singularity at r⋆. On the other hand, when
0 ≤ λ < 4GM=ð3πÞ, there is an event horizon at rh which
hides a curvature singularity at r ¼ 0. Finally, when
−4GM=ð3πÞ < λ < 0, the solution has an event horizon
at rh which hides a curvature singularity at r⋆. We restrict
our analysis to the cases in which there is an event horizon.
Performing the change of variables −dτ2 ¼ dr2=fðrÞ in

the black hole interior, it is easy to see that whenever
fðrÞ ∼ r−s, the spacetime is effectively described by a
Kasner metric with exponents p1 ¼ peff , p2 ¼ p3 ¼
p4 ¼ peff þ 1, where we define the “effective” Kasner
exponent—which corresponds to the dz2 component of
the metric—as

FIG. 1. Metric factor fðrÞ for Einstein-Gauss-Bonnet black
holes. Blue and gray curves represent solutions with λ > 0
and λ < 0, respectively. The red curve corresponds to the
Schwarzschild solution. The stars represent curvature singular-
ities. The thin lines correspond to the limiting cases for which
jλj ¼ 4GM=ð3πÞ.

1The task of building explicit models exhibiting both near-
singularity BKL-like behavior and an event horizon in the same
solution has proven to be notably challenging—see [38] for a
recent exception.
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peffðrÞ≡ rf0ðrÞ
2fðrÞ − rf0ðrÞ : ð7Þ

Below we use this quantity to probe the presence of eons
in the solution. These will be manifest in periods of
approximately constant values of peff as we approach
the singularity.
Whenever λ is positive, the singularity remains at the

coordinate point r ¼ 0. However, the proper time it takes
an infalling observer to reach it increases with the magni-
tude of λ. As we approach the singularity, there is a first
phase in which the Einstein gravity contribution dominates,
eventually undergoing an eon in which it behaves as a
Kasner metric with p1 ¼ −1=2, p2 ¼ p3 ¼ p4 ¼ 1=2—
namely, as a pure Kasner solution to Einstein gravity. As we
move even closer, this phase comes to an end roughly at
rend ∼ r⋆. From that point on, Gauss-Bonnet dynamics
takes over, and spacetime undergoes a new eon in which it
behaves as a Kasner metric with exponents p1 ¼ 0,
p2 ¼ p3 ¼ p4 ¼ 1. These are precisely the values of the
exponents of a Kasner solution to five-dimensional GB
gravity (without Einstein-Hilbert term) [43]. In the absence
of the correction, the Einstein eon would last all the way till
the singularity—see Fig. 2. The singularity itself gets
softened with respect to Einstein gravity. For instance,
the Kretschmann invariant diverges as RabcdRabcd ∼
1024ðGMÞ2=ð3π2r4⋆r4Þ as opposed to the Einsteinian
behavior RabcdRabcd ∼ 512ðGMÞ2=ðπ2r8Þ.
Observe that while the GB eon always exists as long as

λ > 0, the existence of the Einsteinian one relies on λ being
much smaller than GM. Otherwise, peff will transition

directly to the GB eon without an intermediate Einstein
phase. A qualitatively analogous structure of eons is found
for higher-dimensional Lovelock theories [44]. In particu-
lar, including higher-curvature terms gives rise, for certain
values of the couplings, to additional eons characterized by
effective exponents which coincide with the corresponding
Kasner solutions of each Lovelock density. This leads to a
“stairlike” structure for peff similar to the one displayed in
Fig. 2 but with additional stairs corresponding to each of
the higher-curvature densities. Depending on the relative
magnitudes of the couplings, some of the eons may be
skipped. As more terms are added to the action, the proper
time to the singularity keeps on increasing. In the limit of
infinitely many terms, it would take infinite proper time to
reach the singularity, effectively resolving it.
On the other hand, for negative values of λ the spacetime

terminates at r⋆, which is the point beyond which the
metric function fðrÞ would become complex. This is an
instance of the second scenario presented in Sec. II. The
Einstein gravity eon is now terminated before than naively
expected at a point of finite spatial volume and without
going through any additional eon. At that point there is a
curvature singularity which is softer than the one corre-
sponding to positive values of λ. Indeed, one finds
RabcdRabcd ∼ 64ðGMÞ2=½9π2r5⋆ðr − r⋆Þ3� near r ¼ r⋆. In
this case, the proper time to the singularity gets reduced
with respect to the naive Einstein gravity one.
The last scenario proposed in Sec. II cannot be achieved

within the present model, as the introduction of λ never
gives rise to an additional horizon. In D ≥ 7, the intro-
duction of the cubic Lovelock density in the action gives
rise to a modified solution which does contain an inner
horizon for certain values of the higher-curvature
couplings—see, e.g., [45].

Discussion.We have introduced the notion of a Kasner eon
as the period during which—in the vicinity of a spacelike
singularity—spacetime is described by a classical Kasner-
like geometry like (1) with aiðτÞ ¼ τpiðxÞ and where the
Kasner exponents piðxÞ are determined by the dynamics of
certain higher-curvature correction to Einstein gravity. As
the singularity is approached, the Einsteinian eon—during
which the BKL description holds—will be terminated as a
result of the corrections becoming relevant.
We have explored three possible scenarios for the phase

arising after the termination of the Einsteinian eon: a
(possibly never-ending) tower of higher-curvature Kasner
eons characterized by modified Kasner exponents and
transition rules; the emergence of a finite-volume cur-
vature singularity; and the appearance of inner horizons
which may ultimately result in a null singularity. This list
is not intended to be completely exhaustive. Additional
possibilities—such as bounces—may also occur. However,
here we have chosen to focus on those possibilities that are
manifest already in the simplest cases.

FIG. 2. Effective Kasner exponent as a function of logð1=rÞ for
Einstein-Gauss-Bonnet black hole interiors. In the absence of the
higher-curvature correction, the near-singularity solution tends to
the Einstein gravity Kasner metric with p1 ¼ −1=2. In the
presence of λ, the Einsteinian behavior dominates the dynamics
during an eon which is terminated at rend ≲ r⋆. For λ > 0,
the metric transitions to a new Gauss-Bonnet-dominated eon
which approaches a Kasner solution of the pure Gauss-Bonnet
theory with p1 ¼ 0. On the other hand, for λ < 0, the Einsteinian
eon is terminated by a spacetime finite-volume curvature
singularity at r ¼ r⋆.

BUENO, CANO, and HENNIGAR PHYS. REV. D 110, L041503 (2024)

L041503-4



Using effective field theory constraints it may be
possible to probe which of these is more plausible in
realistic scenarios. In particular, studying the sign of the
leading correction to the Einstein-Hilbert action may be
able to discriminate between them. Indeed, it is natural
to speculate that whenever the effective Kasner exponent
is not monotonically increasing as the singularity is
approached, spacetime terminates at a finite-volume sin-
gularity. If this conjecture holds true, the behavior of the
effective Kasner exponent at the end of the Einsteinian eon
would tip the scales in favor of one of the possibilities.
Alternatively, since it is now known that Lovelock theories
admit a well-posed initial value problem [46], one could
revisit the classic numerical studies of the BKL phenome-
non now supplemented by higher-curvature corrections,
e.g., a Gauss-Bonnet term. This could allow for a direct
exploration of the end of the Einsteinian eon, as well as the
implications of nonlocal phenomena such as spikes.
In the toy model presented here, we have considered the

interior of a static and spherically symmetric black hole.
This is blind both to the ultralocal nature of spacetime as
well as to the chaotic BKL behavior insofar as the effective
Kasner exponents are identical at every spatial point for

fixed τ and there is a single stable Kasner epoch per eon.
Understanding how these features get modified for higher-
curvature Kasner eons would require a detailed study of
less symmetric near-singularity solutions. This would
provide additional hints on the ultimate fate of the
Einsteinian eon.
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