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We provide the analytic waveform in time domain for the scattering of two Kerr black holes at leading
order in the post-Minkowskian (weak field, but generic velocity) expansion and up to fourth order in both
spins. The result is obtained by the generalization of the Kosower-Maybee-O’Connell formalism to
radiative observables, combined with the analytic continuation of the five-point scattering amplitude to
complex kinematics. We use analyticity arguments to express the waveform directly in terms of the three-
point coupling of the graviton to the spinning particles and the gravitational Compton amplitudes,
completely bypassing the need to compute and integrate the five-point amplitude. In particular, this allows
us to easily include higher-order spin contributions for any spinning compact body. Finally, in the spinless
case, we find a new compact and gauge-invariant representation of the Kovacs-Thorne waveform.
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Introduction. We are now living in the exciting era of
gravitational-wave (GW) astronomy, with over 90 compact
binary merger events detected to date by the LIGO-Virgo-
KAGRA Collaboration [1]. Thanks to the improved sensi-
tivity of the current and future GW detectors, many more
events will be discovered in upcoming years. In particular,
even hyperbolic encounters with aperiodic and low-
intensity signals might represent interesting targets for
future searches [1], as shown by the recent analysis of
GW190521 [2]. These ongoing searches for signals rely on
analytical or numerical template banks both for detection
and for parameter estimation, calling for a better theoretical
understanding of gravitational waveforms.
Focusing on the inspiral phase, we can treat compact

objects at large distances as point particles using an
effective field theory approach to general relativity [3].
Quantum field theory and amplitude-inspired techniques
offer an analytic and efficient toolkit to perform classical
calculations in the post-Minkowskian (PM) expansion [4],

which is formally a weak field expansion in powers of the
Newton’s constant G valid for generic velocities. The
leading PM contribution corresponds to tree-level dia-
grams, while loop diagrams become relevant at higher
orders in the PM expansion. For example, see the remark-
able progress for the calculation of the Hamiltonian and
related scattering observables at 3PM and 4PM [5].
Motivated by this and the previous discussion, a framework
to compute waveforms has been developed within the
Kosower-Maybee-O’Connell (KMOC) formalism [6,7] and
the worldline approach [8], albeit restricted so far to
scattering configurations. Tree-level waveforms for spin-
less particles have been computed in Ref. [9] using the five-
point amplitude [10], making contact with the Kovacs and
Thorne result obtained with traditional methods [11,12]
(see also the earlier result by Peters [13]). Recently, these
calculations have been extended to one-loop order by
combining KMOC with the heavy particle effective
theory [14–17], whose results have been recently compared
with post-Newtonian waveforms [18] finding disagreement
at higher order. The latter may be related to a classical part
of the KMOC subtraction term, as stressed in Ref. [19].
Since astrophysical black holes are always spinning, the

inclusion of spin effects is an important milestone in this
program. A first step in this direction has been taken in
Ref. [20], where effects quadratic in spin have been
included in the tree-level PM waveform. To include
higher-order spin effects, we need a full description of
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Kerr black holes in terms of spinning point particles.
Such remarkable correspondence has been established first
at the level of the three-point amplitude for the Kerr multi-
poles [21]. It is still under development for the four-point
Compton amplitude [22], which should match the
conservative piece of the solution of the Teukolsky equation
[23]. With such identification, many conservative and radi-
ative spinning amplitudes have been recently computed [24].
In this Letter, we develop a new method to perform the

phase-space integration for KMOC observables by making
use of the analytic properties of amplitudes in the complex
plane. Focusing on the tree level, we compute for the first time
the time-domain waveform for Kerr black holes up to fourth
order in both spins, using only the factorization channels of the
five-point amplitude. The method presented here applies to
generic field theories and beyond the classical limit.
We work in the signature ðþ − −−Þ, using relativistic

units c ¼ 1 and with κ ≔
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
. For convenience,

we adopt the notation δ̂nð·Þ≡ ð2πÞnδnð·Þ, δ̂þðk2Þ ¼
Θðk0Þδ̂ðk2Þ, and d̂nq≡ dnq=ð2πÞn. We use the notation

Mð0Þ
n;cl to denote the classical tree-level n-point amplitude

with external (outgoing) gravitons and one or two pairs of
massive particles, depending on the context.

Waveforms from the analytic properties of the S-matrix. In
quantummechanics, the change in some observableO from
the far past to the far future is given by

ΔhOi ¼ outhψ jOjψiout − inhψ jOjψiin; ð1Þ
where jψiin is the initial state of the system.We take jψiin to
be a wave packet describing two sharply localized particles
with classical momenta pi ¼ mivi well separated from
each other [6]. The operator under consideration is the
linearized metric hμν at future null infinity [7],

O ¼ εμνλ hμν ¼
Z

d̂4kδ̂þðk2Þ½e−ik·xa−λðkÞ þ c:c:�; ð2Þ

where εμνλ is the polarization tensor corresponding to a
helicity-λ state and a−λðkÞ is the annihilation operator for
the gravitons. The out state jψiout is related to the in state by
the S-matrix

jψiout ¼ Sjψiin: ð3Þ
After taking the classical limit and considering the leading
term in the large-distance expansion (see Refs. [7,15] for
more details), the strain can be written as

hðxÞ ¼ κ

4πjx⃗j
Z

∞

0

d̂ω½Wðb; k−Þe−iωu þ ½Wðb; kþÞ��eiωu�;

ð4Þ
where kμ ¼ ωnμ ¼ ωð1; x̂Þ with x̂ ¼ x⃗=jx⃗j, u ¼ x0 − jx⃗j is
the retarded time, Wðb; k�Þ is the helicity-dependent
spectral waveform of the emitted gravitational wave, and
b is the impact parameter. For the classical scattering of two

massive particles, the spectral waveform can be computed
from the S-matrix,

iWðb; kλÞ ¼
��Z

dμeiðq1·b1þq2·b2ÞIaλ

��
; ð5Þ

where the double-angle brackets are understood as the
classical limit of the expression inside,

δ̂4ðq1 þ q2 − kÞIaλ ¼ hp0
1p

0
2jS†aλðk⃗ÞSjp1p2i; ð6Þ

and the measure is defined by

dμ ¼
�Y
i¼1;2

d̂4qiδ̂ð−2pi · qi þ q2i Þ
�
δ̂4ðq1 þ q2 − kÞ; ð7Þ

with momentum mismatches qμi ¼ pμ
i − p0μ

i . At leading
order in perturbation theory, this simplifies to

Wð0Þðb; kλÞ ¼
Z

dμeiðq1·b1þq2·b2ÞMð0Þ
5;clðq1; q2; kλÞ; ð8Þ

where Mð0Þ
5;clðq1; q2; kλÞ denotes the two-to-three classical

amplitude with two incoming and outgoing massive par-
ticles emitting a graviton during the scattering. The Fourier
transform to impact-parameter space (IPS) reads

Wð0Þðb;kλÞ¼
Z

dzvdzbe−izb
ffiffiffiffiffiffi
−b2

p M̂ð0Þ
5;cl

ð4πÞ2m1m2

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p ; ð9Þ

where γ ¼ v1 · v2, M̂
ð0Þ
5;cl is the five-point classical ampli-

tude evaluated on the support of the delta distributions in
the measure (7) and zb and zv are the components of the
momentum mismatch qμ1 (see Sec. I of the Supplemental
Material [25]).
The evaluation of these Fourier integrals has shown to be

challenging [9] already at tree level as the waveform in the
frequency domain involves iterated integrals of Bessel
functions. The result is greatly simplified in the time
domain [20], where only square roots appear. Here, we
argue that these computations are further simplified by
combining the analytic structures of scattering amplitudes
with basic properties of Fourier transforms.
We are going to evaluate the zv integral in (9) first, by

deforming the integration contour from the real axis to
infinity through the upper half-plane (UHP) (or equiva-
lently the LHP) as in Fig. 1. The resulting integral

IλUHP ¼
Z
CðþÞ

dzvM̂
ð0Þ
5;clðq1; q2; kλÞ ð10Þ

receives two types of contributions from the residue
theorem, which we now discuss.
The first contribution is related to the simple poles of the

tree-level five-point amplitude in the complex zv plane at
q21 ¼ 0 and q22 ¼ 0 (the massive eikonal propagators take
the form vi · k and do not depend on zv). These poles
correspond to factorization channels, and their residues are
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products of lower-point tree-level amplitudes summed over
helicities σ of the internal state,

Iλ
CðþÞ
q1

2πi
¼
X
σ

Mð0Þ
4;clðp2;kλ;−qσ1ÞMð0Þ

3;clðp1;qσ1ÞReszv¼ẑ1

−1
q21

;

Iλ
CðþÞ
q2

2πi
¼
X
σ

Mð0Þ
4;clðp1;kλ;−qσ2ÞMð0Þ

3;clðp2;qσ2ÞReszv¼ẑ2

−1
q22

; ð11Þ

where ẑ1 and ẑ2 are the UHP solutions of the pole
constraints −q2i ¼ ðzv − ẑiÞðzv − ẑ�i Þ ¼ 0. The second type
of contribution is due to the arc at infinity. We show in
Secs. I and II of the Supplemental Material [25] that, if we
choose to split the zv contour into two equal pieces in the
UHP and LHP, such contribution is not classical and
therefore can be ignored.
The waveform computation in the time domain then

becomes straightforward. Indeed, it is convenient to per-
form the ω integration before taking the Fourier transform
to IPS. After rescaling all the dimensionful variables
by appropriate powers of ω, the ω dependence of the
KMOC integrand can be factored out, and the integration
to the time domain evaluates to a delta distribution
δðuþ zb

ffiffiffiffiffiffiffiffi
−b2

p
Þ. Finally, the zb integration is trivialized,

and the strain at leading order can be written as

hð0ÞðxÞ ¼ κ

ð4πÞ3jx⃗j
ffiffiffiffiffiffiffiffi
−b2

p ðIλUHP − IλLHPÞ
4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
����
zb¼−u=

ffiffiffiffiffiffi
−b2

p : ð12Þ

Weexpect thismethod to bring several advantages at a higher
orders in perturbation theory. Indeed, evaluating the Fourier
transform to IPS of the one-loop five-point amplitude in

gravity is notoriously complicated [14,15]. There are two
main obstacles, the set of functions appearing at one loop is
largely more complex, and each appears multiplied by
complicated rational functions with spurious singularities.
Applying ourmethod to higher orders will allow us to bypass
this problem completely, as the contour deformation is by
definition insensitive to such unphysical singularities, select-
ing only those terms which give nonanalyticities—hence,
long-range contributions—in themomentummismatchesq2i .
The main technical obstacle at loop level is the evaluation of
the integral along the discontinuities of theKMOC integrand.
Such discussion is left for future works.

Tree-level waveform for schwarzschild black holes. In this
section, we consider scalar fields minimally coupled to
gravity, mimicking macroscopic objects like black holes or
neutron stars. Their intrinsic scales (spin and finite-size
effects) induce corrections which can be neglected to
leading order at large distances.
To compute the tree-level scattering waveform for

spinless particles using (12), we need the three-point and
four-point amplitudes [26]

Mð0Þ
3;clðp; kÞ ¼ −κm2ðε · vÞ2;

Mð0Þ
4;clðp; k1; k2Þ ¼

κ2m2

q2

�
v · F1 · F2 · v

v · k1

	
2

; ð13Þ

where Fμν
i ¼ kμi ε

ν
i − kνεμi are the (linearized) field strengths

of the gravitons. These amplitudes can be obtained, for
example, using the Feynman rules from Einstein-Hilbert
action with a minimally coupled scalar and then taking the
classical limit (see Ref. [14], for example).
The scalar waveform at leading order is then derived

from (12). We notice that the residues in (11) keep the
physical poles at vi · k ¼ 0 and introduce three additional
singularities (in complex time) given by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

i

p
and

1=S2 factors, where we used the variables introduced in the
seminal papers of Kovacs and Thorne [11,12]:

Ti∶ −
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ðu − bi · nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðb1 − b2Þ2
p

ðvi · nÞ
; ð14Þ

S2∶ − T2
1 − 2γT1T2 þ T2

2

γ2 − 1
− 1: ð15Þ

The timevariablesT1 andT2 are the characteristic timescales
of the acceleration of the particles, while S encodes the
relative spacetime difference of the two bodies in relation to
the light cone of the observer. The former singularities are
already introduced by the 1=q2i poles,while the latter requires
the factor 1=q21q

2
2, and it is a signature of gravitational

nonlinearities. As already noticed in the original paper, there
might be physical points for which S2 ¼ 0, but such
singularity is spurious. Indeed, we have

FIG. 1. The deformation of the contour CðþÞ (in red) in the
complex zv plane allows us to evaluate the integral of the five-
point tree-level amplitude directly in terms of the factorization
channels.
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ð1 − γ2ÞS2 ¼
Y
Σ¼�

h
γ þ T1T2 − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT2

1 þ 1ÞðT2
2 þ 1Þ

q i
;

ð16Þ
but it is worth noticing that we can always factorize the term
ðγ þ T1T2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT2

1 þ 1ÞðT2
2 þ 1Þ

p
Þ in the numerator, so the

spurious singularity vanishes manifestly.
In performing our phase space integration, we implicitly

changed the iϵ prescription of the ω integration [27]

because we are interested in finite energy contributions
to the tree-level waveform in the Bondi-Metzner-Sachs
frame where

lim
u→þ∞

hð0ÞðxÞ ¼ − lim
u→−∞

hð0ÞðxÞ: ð17Þ

With such prescription, we find then a new compact and
manifestly gauge-invariant expression for the strain,

hð0ÞðxÞ ¼G2m1m2

jx⃗j
ffiffiffiffiffiffiffiffi
−b2

p 1

w̄2
1w̄

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þT2

2

p
ðγþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þT2

1Þð1þT2
2Þ

p
þT1T2Þ

�
3w̄1þ 2γð2T1T2w̄1−T2

2w̄2þ w̄2Þ− ð2γ2 − 1Þw̄1

γ2− 1
f21;2

−
4γT2w̄2f1þ 2ð2γ2− 1Þ½T1ð1þT2

2Þw̄2f1þT2ðT1T2w̄1þ w̄2Þf2�ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

p f1;2

þ 4ð1þT2
2Þw̄2f1f2− 4γð1þT2

2Þw̄2ðf21þf22Þþ 2ð2γ2 − 1Þð1þ 2T2
2Þw̄2f1f2

	
þð1↔ 2Þ; ð18Þ

where w̄i ¼ vi · n and we have defined [28]

f1;2 ¼ v1 · εkv2 · n − v1 · nv2 · εk; ð19Þ
fi ¼ b̃ · εkvi · n − b̃ · nvi · εk: ð20Þ

Our result agrees with Kovacs and Thorne [12] (see also
Ref. [9]) when restricted to their chosen frame [29] and the
sum of the two terms in (17) matches the linear memory in
Eq. (27) of Ref. [20].

Tree-level waveform for kerr black holes. In this section,
we discuss the calculation of the scattering waveform for
two Kerr black holes, which are identified with spinning
point particles. The essential ingredients in the computation
are the three-point and the four-point (Compton) ampli-
tudes; although they are typically presented in the literature
as helicity amplitudes [21,30], we propose here a new
equivalent gauge-invariant representation in terms of
polarization vectors.
The gauge-invariant three-point amplitude describing the

coupling of a Kerr black hole to gravity takes an expo-
nential form [21,31]

Mð0Þ
3;cl ¼ −κm2ðε · vÞ2 exp

�
iε · S · k
ε · v

	
; ð21Þ

where S is the unit mass spin tensor of the Kerr black hole,
related to the Pauli–Lubanski pseudovector aμ by

Sμν ¼ ϵμνρσvρaσ; aμ ¼ 1

2
ϵμνρσvνSρσ: ð22Þ

The exponential features a spurious pole in the polarization
vector ε starting at OðS3Þ, which makes this expression
unsuitable for computing higher-point amplitudes from

unitarity [21]. Interestingly, the spurious pole can be
removed by exploiting the four-dimensional identity�

ε · S · k
ε · v

	
2

¼ k · S · S · k ¼ −ðk · aÞ2: ð23Þ

Expanding the exponential in (21) and applying this
identity, we find a new alternating structure (which resums
to sine and cosine [24,32]) free from the spurious pole in ε
at any order in the spin expansion [30]:

Mð0Þ
3;cl ¼ −κm2

h
ðε · vÞ2 þ iðε · vÞðε · S · kÞ

−
1

2
ðε · vÞ2ðk · S · S · kÞ

−
i
3!
ðε · vÞðε · S · kÞðk · S · S · kÞ

þ 1

4!
ðε · vÞ2ðk · S · S · kÞ2 þ…

i
: ð24Þ

We find that the Compton amplitude can be written in a
compact gauge-invariant representation (in agreement with
the fixed-helicity representation [23,30])

Mð0Þ
4;cl ¼

κ2m2ω2
0

8ðk1 · k2Þðk1 ·vÞ2
�
1þω1

ω0

þω2

ω0

	
þOðS3Þ; ð25Þ

with suitably contracted spin multipole coefficients ωi,

ω0¼−2v ·F1 ·F2 ·v;

iω1¼k1 ·F2 ·vS ·F1−
ðk1−k2Þ ·v

2
S ·F1 ·F2þð1↔2Þ;

ω2¼ðk1 ·k2Þ
�
S ·S

�
F1 ·F2

2
−v ·F1 ·F2 ·v

	
−2S ·S ·F1 ·F2

�
;

−
ω0

2
ðk1þk2Þ ·S ·S ·ðk1þk2Þ; ð26Þ
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where we define A · B ¼ ημνηαβAαμBνβ and A · B · C ·D ¼
ημ1ν1ημ2ν2ημ3ν3ηαβA

αμ1Bν1μ2Cν2μ3Dν3β for any tensors A, B,
C, D. The gauge-invariant amplitude in (25) can be
equivalently written as an exponential for any graviton
polarization (see also Ref. [22])

Mð0Þ
4;cl ¼

κ2m2ω2
0

8ðk1 · k2Þðk1 · vÞ2
exp

�
ω1

ω0

	
þOðS5Þ; ð27Þ

and in four dimensions, one has

ω2

ω0

¼ 1

2

�
ω1

ω0

	
2

: ð28Þ

Similarly to the three-point case, the exponential (27)
features a spurious pole in ω0 starting at OðS3Þ, which we
remove by means of the identity (28), thus arriving at a
manifestly gauge-invariant expression for the Compton
amplitude valid up to OðS4Þ and free of spurious poles:

Mð0Þ
4;cl ¼ κ2m2

ω2
0 þ ω0ω1 þ ω0ω2 þ ω1ω2

3
þ ω2

2

6

8ðk1 · k2Þðk1 · vÞ2
þOðS5Þ:

ð29Þ
This new form of the Compton amplitude matches the
solution of the Teukolsky equation [23] and has the correct
factorization channels, reproducing (21).
Equipped with the amplitudes (21) and (29), we repeat

the same steps as in the scalar scattering case to compute
the waveform up to the fourth order in spin for both black
holes, i.e., OðS41; S42Þ. The recipe to compute the tree-level
spin-multipole expansion of the waveform

hð0ÞðxÞ ¼
X∞

s1;s2¼0

hðs1;s2ÞðxÞ; ð30Þ

where si indicates the degree of homogeneity with respect to
the spin tensor, needs to be modified because the zb integral
gives contributions of the type δðs1þs2Þð

ffiffiffiffiffiffiffiffi
−b2

p
zb þ uÞ, as

explained in Sec. I of the Supplemental Material [25]. Thus,
the spinning tree-level waveform is

hðs1;s2ÞðxÞ ¼ κ

ð4πÞ3jx⃗jð
ffiffiffiffiffiffiffiffi
−b2

p
Þs1þs2þ1

ð−iÞs1þs2

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p

×
∂
s1þs2

∂
s1þs2zb

ðIðs1;s2ÞUHP − Iðs1;s2ÞLHP Þ
����
zb¼−u=

ffiffiffiffiffiffi
−b2

p ; ð31Þ

where the residues are now computed isolating the sth1 and sth2
multipoles in the factorized amplitudes.
The final result can be written as

hð0ÞðxÞ ¼
X4

s1;s2¼0

G2m1m2

jx⃗jð
ffiffiffiffiffiffiffiffi
−b2

p
Þs1þs2þ1

hs1;s2ðxÞ þOðS51; S52Þ;

ð32Þ

where the hs1;s2’s are provided in ancillary files.1 For s1 þ
s2 ≤ 2, our results match the ones presented in Ref. [20].

Conclusion. In this Letter, we combined the KMOC
formalism with the analytic properties of the S-matrix to
develop an efficient framework for the calculation of the
time-domain gravitational waveform for spinless and spin-
ning bodies.
Observables like the waveform involve a phase-space

integration over the classical amplitude, which, as we
showed, can be easily evaluated by complex analysis tools
once its singularity structure is understood. Focusing on the
leading order, we computed the time-domain waveform
directly from the factorization channels of the five-point
amplitude, bypassing the complexity in its direct calculation.
This is particularly convenient in the spinning case, because
we only need the three-point and the four-point (Compton)
amplitudes to determine the waveform solely algebraically.
Using our method, we first provided a new compact

gauge-invariant expression of the leading-order waveform
for spinless particles, discussing in detail its singularity
structure. Our result agrees with the traditional Kovacs-
Thorne result [12] and a more recent worldline
calculation [20]. We then considered the spinning case,
where we use a new gauge-invariant representation of the
Compton amplitude which agrees with the solution of the
Teukolsky equation [23] to compute analytically the lead-
ing-order waveform relevant for scattering of Kerr black
holes. At quadratic order in spin this agrees with Ref. [20].
We provided an analytic expression valid up to fourth order
in spin which can be directly extended to all spin orders
once the full Kerr Compton amplitude is understood.
We leave a number of open questions to future inves-

tigations. The first is to understand to which extent classical
observables depend on the analytic structure of amplitudes
(i.e., poles and branch cuts), which, as shown in this work,
can help to bypass traditional techniques. A second pressing
problem is to understand the analytic continuation for the
waveformdiscussed here, building on thedictionarybetween
scattering and bound observables [20,33]. An additional
future direction ismoving away from the restriction of having
Kerr black holes and considering more general compact
spinning objects (like neutron stars), allowing generic multi-
poles for the three-point coupling [21]. In such case, the four-
point amplitudes can be bootstrapped imposing locality and
unitarity, up to contact interactions which can be taken into
account properly. Finally, it would be interesting to compare
directly post-Minkowskian scattering waveforms both with
analytic post-Newtonian spinning waveforms [20,34] and
effective-one-body waveforms [35,36], with the idea that in
the future we might be able to detect black-hole hyperbolic
encounters [1,37].

1Ancillary files available online at https://bitbucket.org/
spinning-gravitational-observables/tree-level-waveform/.
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Note added. Recently, the preprints [38,39] appeared. In
Ref. [39], the authors apply the integration method pre-
sented in this paper to the study of spinless-spinning
scattering using the resummed-in-spin Compton amplitude
presented in Ref. [22], which matches the result from
black-hole perturbation theory up to OðS4Þ. In Ref. [38],
the authors computed the waveform with the generic
parametrization of the spin multipoles developed in
Refs. [21,22,24]. Both approaches successfully reproduced
our results.
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