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Within the framework of the Faddeev formalism in configuration space, we investigate bound states in
the ϕNN system with total isospin T ¼ 0 and T ¼ 1. The recently proposed lattice HAL QCD ϕN potential
in the 4S3=2 channel does not support either ϕN or ϕNN bound states. The HAL QCD ϕN potential in the
2S1=2 channel suggests the bound states for ϕN and ϕNNðS ¼ 0Þ systems. However, the binding energies
are highly sensitive to variations of the enhancement factor β, and the ϕNN system is extremely strongly
bound in the state S ¼ 0. Considering a spin-averaged potential for the state S ¼ 1 yields a bound state for
the 3

ϕH (S ¼ 1) hypernucleus with the binding energy (BE) 14.9 MeV when β ¼ 6.9. The evaluation of the

BE for the S ¼ 1, T ¼ 1 three-body state results in 5.47 MeV. Additionally, calculations using our
approach confirm the bound states for the ϕNN (S ¼ 2, T ¼ 0 and S ¼ 1, T ¼ 1) system previously
predicted with the Yukawa-type potential motivated by the QCD van der Waals attractive force, mediated
by multigluon exchanges.

DOI: 10.1103/PhysRevD.110.L031502

Since the beginning of the new millennium, studying the
composite system from two nucleons and Λ-, Ξ-, Ω-
hyperon or ϕ-meson has attracted intense research interest
in many theoretical works [1–19]. Unlike the case of the
NN interactions, a ϕ-meson nucleon interaction is not well
determined due to an insufficient number of scattering data.
It is one of the open and debated questions in the
strangeness sector of nuclear physics concerning the
possible existence of a ϕN bound state.
The recent ALICE Collaboration measurement of the

ϕN correlation function [20] led to the determination of the
ϕN channel scattering length with a large real part
corresponding to an attractive interaction. This represents
the first experimental evidence of the attractive strong
interaction between a proton and a ϕ-meson.
It has been suggested by Brodsky, Schmidt, and

de Teramond [21] that the QCD van der Waals interaction,
mediated by multigluon exchanges, is dominant when the
interacting two color singlet hadrons have no common
quarks. Assuming that the attractive QCD van der Waals
force dominates the ϕN interaction since the ϕ-meson is
almost a pure ss̄ state, following [21], Gao et al. [22]
suggested a Yukawa-type attractive potential. Using the
variational method, they predicted a binding energy (BE)
of 1.8 MeV for the ϕ-N system. In [20], the data are
employed to constrain the parameters of phenomenological
Yukawa-type potentials. The resulting values for the

Yukawa-type potential, VϕNðrÞ ¼ −Ae−αr=r, yields A¼
0.021�0.009ðstatÞ�0.006ðsystÞ and α¼65.9�38.0ðstatÞ�
17.5ðsystÞMeV. Predictions of possible ϕN bound states
employing the same kind of potential with parameters A ¼
1.25 and α ¼ 600 MeV [22] are therefore incompatiblewith
measurement [20].
Recently, Lyu et al. [23] presented the first results on the

interaction between the ϕ-meson and the nucleon based on
the (2þ 1)-flavor lattice QCD simulations with nearly
physical quark masses. The HAL QCD potential is
obtained from first principles (2þ 1)-flavor lattice QCD
simulations in a large spacetime volume, L4 ¼ ð8.1 fmÞ4,
with the isospin-averaged masses of π, K, ϕ, and N as 146,
525, 1048, and 954 MeV, respectively, at a lattice spacing
of a ¼ 0.0846 fm. Let us mention that such simulations
together with the HAL QCD method enable one to extract
the YN and YY interactions with multiple strangeness, e.g.,
ΛΛ, ΞN [24], ΩN [25], ΩΩ [26], and ΞN [13]. Using the
HAL QCD method, based on the spacetime correlation of
the ϕN system in the spin 3=2 channel, the authors
suggested fits of the lattice QCD potential in the 4S3=2
channel. In the following, we employ the spectroscopic
notation 2sþ1SJ to classify the S-wave ϕN interaction,
where s and J stand for total spin and total angular
momentum, respectively. It was found that simple fitting
functions such as the Yukawa form cannot reproduce the
lattice data [23]. The lattice calculations for the ϕN
interaction in the 4S3=2 channel are used in [27] to constrain
the spin 1=2 counterpart (2S1=2) from the fit of the*Contact author: rkezerashvili@citytech.cuny.edu
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experimental ϕN correlation function measured by the
ALICE Collaboration [20].
The mesonic ϕNN system is considered in the frame-

work of Faddeev equations in the differential form [3],
using the variational folding method [4] and a two-variable
integro-differential equation describing bound systems of
unequal mass particles [5]. Calculations were employed
with the ϕN potential from [22]. The binding energy of
the ϕd hypernucleus was calculated by employing the
HAL QCD potential [23] using the Schrödinger equation
for Faddeev components expanded in terms of hyper-
spherical functions [18]. The binding energies reported
in Refs. [3,4,18] are in the range of ∼6–39 MeV.
Motivated by the above discussion and the availability of

newly suggested HAL QCD potentials in the 2S1=2 and
4S3=2 channels with a minimal and maximal spin, respec-
tively, we present calculations for the binding energy for the
ϕN and ϕNN systems in the framework of the Faddeev
equations in configuration space. We compare our results
with other calculations as well.
The ϕNN system represents a three-particle system. The

three-body problem can be solved in the framework of
the Schrödinger equation or using the Faddeev approach in
the momentum [28,29] or configuration [30–34] spaces.
With regard to the Faddeev equations in the configuration
space, Jacobi coordinates are introduced to describe the
ϕNN system. The mass-scaled Jacobi coordinates xi and yi
are expressed via the particle coordinates ri and masses mi
in the following form:

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkml

mk þml

s
ðrk − rlÞ;

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2miðmk þmlÞ
mi þmk þml

s �
ri −

mkrk þmlrlÞ
mk þml

�
: ð1Þ

The orthogonal transformation between three different sets
of the Jacobi coordinates has the form:

�
xi

yi

�
¼

�
Cik Sik
−Sik Cik

��
xk

yk

�
; C2

ik þ S2ik ¼ 1;

k ≠ i; Cii ¼ 1; ð2Þ

where

Cik ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mimk

ðM −miÞðM −mkÞ
r

;

Sik ¼ ð−1Þk−isignðk − iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

ik

q
:

Here, M is the total mass of the system. Let us definite the
transformation hikðx; yÞ based on Eq. (2) as

hikðx; yÞ ¼ ðCikxþ Siky;−Sikxþ CikyÞ: ð3Þ

In the Faddeev method in configuration space, alternatively
to finding the wave function of the three-body system
using the Schrödinger equation, the total wave function
is decomposed into three components [30,32,34]:
Ψðx1; y1Þ ¼ Φ1ðx1; y1Þ þΦ2ðx2; y2Þ þΦ3ðx3; y3Þ. Each
component depends on the corresponding coordinate set,
which is expressed in terms of the chosen set of mass-
scaled Jacobi coordinates. The transformation equation,
Eq. (3), allows us to write the Faddeev equations as a
system of differential equations for each Φiðxi; yiÞ com-
ponent in compact form. The components Φiðxi; yiÞ satisfy
the Faddeev equations [32] that can be written in the
coordinate representation as

ðH0þViðCikxÞ−EÞΦiðx;yÞ¼−ViðCikxÞ
X
l≠i

Φlðhilðx;yÞÞ:

ð4Þ

Here H0 ¼ −ðΔx þ ΔyÞ is the kinetic energy operator with
ℏ2 ¼ 1 and ViðxÞ is the interaction potential between the
pair of particles ðklÞ, where k; l ≠ i.
The system of equations, Eq. (4), written for three

nonidentical particles can be reduced to a simpler form
for a case of two identical particles. The Faddeev equations
in configuration space for a three-particle system with two
identical particles are given in our previous studies [35–37].
In the case of the ϕNN system, the total wave function of
the system is decomposed into the sum of the Faddeev
components Φ1 and Φ2 corresponding to the ðNNÞϕ and
ðϕNÞN types of rearrangements: Ψ ¼ Φ1 þΦ2 − PΦ2,
where P is the permutation operator for two identical
particles. Therefore, the set of the Faddeev equations,
Eq. (4), is rewritten as follows [34]:

ðH0 þ VNN − EÞΦ1 ¼ −VNNðΦ2 − PΦ2Þ;
ðH0 þ VϕN − EÞΦ2 ¼ −VϕNðΦ1 − PΦ2Þ: ð5Þ

In Eqs. (5), VNN and VϕN are the interaction potentials
between two nucleons and the ϕ meson and nucleon,
respectively. The spin-isospin variables of the system can
be represented by the correspondingbasis elements.After the
separation of the variables, one can define the coordinate part
ΨR of the wave function Ψ ¼ ξisospin ⊗ ηisospin ⊗ ΨR. The
details of our method for the solution of the system of
differential equations, Eqs. (5), are given in [35,38,39].
In Ref. [23], the interaction between the ϕmeson and the

nucleon is studied based on the (2þ 1)-flavor lattice QCD
simulations with nearly physical quark masses. The authors
found that the ϕN correlation function is mostly dominated
by the elastic scattering states in the 4S3=2 channel without
significant effects from the two-body ΛKð2D3=2Þ and
ΣKð2D3=2Þ and the three-body open channels including
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ϕN → Σ�K;Λð1405ÞK → ΛπK;ΣπK. The fit of the lattice
QCD potential by the sum of two Gaussian functions for an
attractive short-range part and a two-pion exchange tail at
long distances with an overall strength proportional to
m4n

π [40] has the following functional form in the 4S3=2
channel with the maximum spin 3=2 [23]:

V3=2
ϕN ðrÞ¼

X2
j¼1

aj exp

�
−
�
r
bj

�
2
�
þa3m4

πFðr;b3Þ
�
e−mπr

r

�
2

;

ð6Þ

with the Argonne-type form factor [41]

Fðr; b3Þ ¼ ð1 − e−r
2=b2

3Þ2: ð7Þ

For comparison, the lattice QCD ϕN potential is also
parametrized using three Gaussian functions [23]:

V3=2
GϕNðrÞ ¼

X3
j¼1

aj exp

�
−
�
r
bj

�
2
�
: ð8Þ

The HAL QCD potential in the 2S1=2 channel with a
minimum spin of 1=2 [27] has a much stronger attractive
β-enhanced short-range part and the same two-pion
exchange long-range tail as in the 4S3=2 channel. The real
part of the potential in the 2S1=2 channel reads [27] as
follows:

V1=2
ϕN ðrÞ ¼ β

�
a1e−r

2=b2
1 þ a2e−r

2=b2
2

�

þ a3m4
πFðr; b3Þ

�
e−mπr

r

�
2

; ð9Þ

where the factor β ¼ 6.9þ0.9
−0.5ðstatÞþ0.2

−0.1ðsystÞ. The other
values of the parameters are common in both 4S3=2 and

2S1=2 channels [27]. The imaginary part of the ϕN potential
is related to the second-order kaon exchange and corre-
sponds to absorption processes. A proportionality coeffi-
cient for this part is γ ¼ 0.0þ0.0

−3.6ðstatÞþ0.0
−0.18ðsystÞ [27].

We present the results of calculations for the feasibility
of expected bound states for ϕN and ϕNN systems. For
calculations of the BEs of these systems, we use the HAL
QCD ϕN potential in the 4S3=2 and 2S1=2 channels with the
maximum and minimum spins, respectively. We employ
the same NN MT-I-III potential [42,43] as in [3–5,18] for
the comparison of the results. The input parameters for
potentials are listed in Table I. For comparison, we also
perform BE calculations for ϕN and ϕNN systems with a
previously suggested Yukawa-type ϕN potential with
parameters from [20,22].
The spin configurations of the ϕNN system are illus-

trated in Fig. 1(a). Here, we present two configurations for
the isospin state T ¼ 0 which means that the considered
system includes the deuteron, d, which corresponds to the
NNðs ¼ 1Þ state. There are two different components of
the ϕN potential. For calculations for the S ¼ 1 state, we
used an averaged over spin variables potential. To acquire
the overall ϕN potential, the spin-averaged interaction for
the 4S3=2 and 2S1=2 channel potentials is defined as [27]

V̄ϕN ¼ 1

3
V1=2
ϕN þ 2

3
V3=2
ϕN : ð10Þ

According to Eq. (10), the configuration S ¼ 1 becomes
S ¼ 2 when components of the ϕN potential are equal. For
example, it can be the 3=2 ϕN component. The configu-
rations for the S ¼ 0 and S ¼ 1, T ¼ 1 states are presented
in Fig. 1(b).
First, let us consider the ϕN system. Results of calcu-

lations for the two-body binding energy, B2, scattering
length, aϕN , and effective radius, rϕN , for ϕN are presented
in Table II for the 4S3=2 and 2S1=2 channels. Although the

TABLE I. The parameters for the ϕN potential in the 4S3=2 channel with statistical errors are quoted in parentheses. For the a3m4n
π

column, n ¼ 1 and n ¼ 0 for V3=2
ϕN and V3=2

GϕN , respectively [23]. The attractive β-enhanced short-range part and the two-pion exchange
long-range tail for the ϕN potential (9) in the 2S1=2 channel have the same parameters as in the 4S3=2 channel. The parameters for the
singlet and triplet NN interactions for MT potential [42,43] are shown.

ϕN potential in the 4S3=2 channel [23] and in the 2S1=2 channel [27]

a1 (MeV) a2 (MeV) a3m4n
π (MeV fm2n) b1 (fm) b2 (fm) b3 (fm)

V3=2
ϕN

−371ð27Þ −119ð39Þ −97ð14Þ 0.13(1) 0.30(5) 0.63(4)

V3=2
GϕN −371ð19Þ −50ð35Þ −31ð53Þ 0.15(3) 0.66(61) 1.09(41)

Singlet 1S0 and triplet 3S1 NN potential [42,43]

I, J Vr (MeV) Va (MeV) μ1 (fm−1) μ2 (fm−1)

1,0 −521.959 1438.72 1.55 3.11
0,1 −626.885 1438.72 1.55 3.11
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HAL QCD ϕN potential in the 4S3=2 channel is found to be
attractive for all distances and reproduces a two-pion
exchange tail at long distances, no bound ϕN state is
found with this interaction. The ϕN system is strongly
bound with the HAL QCD potential in the 2S1=2 channel
with a reasonable scattering length when the short-range
attractive part is enchanted with the factor β ¼ 6.9 sug-
gested in [27]. Let us mention that the 2S1=2 state binding
energy is very sensitive to the variation of β within the
statistical and systematic error margins reported in [27].
In Table II, we present the numerical results for the ϕNN

system obtained with the HAL QCD interactions and a
Yukawa-type potential with parametrizations from [20,22].
The calculations of the BEs with the Yukawa-type potential
motivated by the QCD van der Waals attractive force
mediated by multigluon exchanges led to the same results

as previously reported in [3–5]. Our calculations indicate
that neither the HAL QCD interaction in the 4S4=2 channel
nor the Yukawa-type interaction with parameters [20]
supports the existence of the S ¼ 2 bound state. Thus,
the HAL QCD interaction in the 4S3=2 channel with the
maximum spin 3=2 suggests no bound state for the 3

ϕH
hypernucleus, in contrast to the binding energy range
reported in [18], which is 6.7–7.3 MeV. Results obtained
for the BEs of ϕNN of 22.42 and 38.04 MeV (t ¼ 0) in the
framework of our approach utilizing the Yukawa-type ϕN
potential [22] and the singlet and triplet spin NN
interaction [42], respectively, confirm calculations [3,5]
and are in good agreement within �1.5 MeV.
Based on our calculations, the HAL QCD interaction in

the 4S3=2 channel does not provide enough attractiveness to
bind a ϕmeson onto a nucleon or deuteron to form a bound

FIG. 1. Spin-isospin configurations in the ϕNN system: (a) S ¼ 2, T ¼ 0 and S ¼ 1, T ¼ 0; (b) S ¼ 0, T ¼ 0 and S ¼ 1, T ¼ 1.
The channels ðϕNÞN and ϕðNNÞ are shown.

TABLE II. The scattering lengths a3=2ϕN and a1=2ϕN , effective radii r
3=2
ϕN and r1=2ϕN in fm, and binding energies B3=2

2 and B1=2
2 in MeV for ϕN

in the s ¼ 3=2 and s ¼ 1=2 spin states, respectively, and B3 in MeV is the binding energy of ϕd or ϕNN. β is the scaling factor for the
attractive short-range part of V1=2

ϕN potential [see Eq. (9)]. “UNB” indicates that no bound state is found. The bound energy BϕNN
3 of the

ϕNN system (S ¼ 1, T ¼ 1) is shown in parentheses.

ϕN potential β a3=2ϕN a1=2ϕN r3=2ϕN r1=2ϕN B3=2
2 B1=2

2 BϕNN
3 ðS ¼ 2Þ BϕNN

3 ðS ¼ 1Þ BϕNN
3 ðS ¼ 0Þ

−A e−αr
r [20] � � � −1.13 � � � 36.4 � � � UNB � � � UNB � � � � � �

−A e−αr
r [22] � � � 2.38 � � � 0.17 � � � 9.40 � � � 38.04 � � � ð22.42Þ � � �

V3=2
ϕN ð4S3=2Þ [23] � � � −1.37 � � � 2.42 � � � UNB � � � UNB � � � � � �

V3=2
GϕN ð4S3=2Þ [23] � � � −1.36 � � � 2.04 � � � UNB � � � UNB � � � � � �

ð1
3
V1=2
ϕN þ 2

3
V3=2
ϕN Þ [27] 6.9 [27] −1.37 1.5 2.24 ∼0 UNB 27.7 � � � 14.90 (5.47) � � �

V1=2
ϕN [27] 6.9 [27] � � � 1.5 � � � ∼0 � � � 27.7 � � � � � � 64.13

ð1
3
V1=2
ϕN þ 2

3
V3=2
ϕN Þ 5.0 −1.37 8 2.24 0.7 UNB 0.7 � � � 11.37 � � �

V1=2
ϕN

5.0 � � � 8 � � � 0.7 � � � 0.7 � � � � � � 18.56

ð1
3
V1=2
ϕN þ 2

3
V3=2
ϕN Þ 6.0 −1.37 2.5 2.24 0.3 UNB 8.81 � � � 13.09 � � �

V1=2
ϕN

6.0 � � � 2.5 � � � 0.3 � � � 8.81 � � � � � � 37.11

ð1
3
V1=2
ϕN þ 2

3
V3=2
ϕN Þ 6.9 −1.37 1.5 2.24 ∼0 UNB 27.7 � � � 14.90 � � �

V1=2
ϕN

6.9 � � � 1.5 � � � ∼0 � � � 27.7 � � � � � � 64.13

ð1
3
V1=2
ϕN þ 2

3
V3=2
ϕN Þ 8.0 −1.37 1 2.24 ∼0 UNB 69.85 � � � 17.52 � � �

V1=2
ϕN

8.0 � � � 1 � � � ∼0 � � � 69.85 � � � � � � 113.7
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state. Conversely, employing the HALQCD ϕN interaction
in the 2S1=2 channel with minimal spin 1=2 results in bound
ϕNN, although the BE is highly sensitive to the variation of
the factor β and the ϕNN system is extremely strongly
bound in the state S ¼ 0. Employing the spin-averaged
potential Eq. (10), we consider both the HAL QCD
potentials in the 2S1=2 and 4S3=2 channels when the factor
β ¼ 6.9. This leads to the numerical value of the binding
energy 14.9 MeV for the 3

ϕH hypernucleus in the spin state
S ¼ 1. Changing the β factor to β ¼ 6.0, we obtained for the
ϕNN BE 13.09 MeV, albeit with a larger scattering length.
It is important to note that varying the β factor within the
margin of the error leads to larger and less realistic BEs,
especially for the S ¼ 0 state as shown in Table II.
In conclusion, we employ the HAL QCD ϕN potential in

the 2S1=2 and 4S3=2 channels with the maximum and mini-
mum spin, respectively, in the framework of Faddeev
equations in configuration space to evaluate the binding
energy of the ϕNN system. The HAL QCD ϕN potential
in the 4S3=2 channel does not support bound states for either
ϕN or ϕNN, although it exhibits attraction. Conversely,

employing the HAL QCD ϕN potential in the 2S1=2 channel
yields bound states for both ϕN and ϕNN. The binding
energies of these systems are notably sensitive to variations
in the enhancement of the short-range attractive part, para-
metrized by the factor β. Considering both potentials, we
find binding energies of 5.47 and 14.9 MeV for the states
S ¼ 1, T ¼ 0 and S ¼ 1, T ¼ 1 (with singlet and triplet
components of the NN MT I-III potential), respectively,
when β ¼ 6.9. Our calculations confirm the existence of
S ¼ 2 bound states for theϕNN systempreviously predicted
within the Faddeev equations in the differential form [3] and
theoretical formalism [5] where the ϕN potential was
utilized [22]. The presented analysis demonstrates the
possible existence of the 3

ϕH hypernucleus.
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