
Leading order track functions in a hot and dense QGP

João Barata * and Robert Szafron †

Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 17 January 2024; accepted 2 July 2024; published 6 August 2024)

We study themodifications to the fragmentation pattern of partons into chargedparticles in the presence of a
hot anddense quark gluon plasma. To this end,we analyze the perturbative renormalization group equations of
the track functions, which describe the energy fraction carried by charged hadrons. Focusing on pure Yang-
Mills theory, we compute the lowest-ordermoments of themedium-modified track functions,which are found
to be sensitive to the reduced phase space for emissions in themedium and to energy loss.We use the extracted
moments to calculate the energy energy correlator (EEC) on tracks in the collinear limit. TheEEConmedium-
evolved tracks does not differ qualitatively from the EEConvacuum tracks despite being sensitive to the color
decoherence transition and suppressing the distribution due to quenching, as seen in other jet observables.
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Introduction. Jets are an ideal tool for studying the time
evolution and spatial structure of the quark gluon plasma
(QGP) produced in heavy ion collisions. When using jets in
this manner, two problems need to be addressed; how the
QCD matter modifies the jets’ structure [1,2] and which
observables best reveal the medium imprints in the mea-
sured distributions [3,4].
Regarding the latter point, we address an open question

about energy energy correlator (EEC) measurements inside
jets, i.e., in the collinear limit, traveling through the QGP
[5–10]. The EEC is the simplest correlation function
constructed from light-ray operators measuring the asymp-
totic energy flow passing through idealized calorimeters,
see e.g., [11–13]. It can be written in terms of the inclusive
two-particle cross section as [14]
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δðn⃗i · n⃗j − cos χÞ; ð1Þ

where n⃗i denotes the spatial direction of the measured
energy flow, Ei is the energy of particle i, pt is the total
energy of the system, and the sum is taken over all particles
in the final state. The integer n ≥ 1 is introduced as an
effective way to further suppress contributions to the EEC
from soft emissions.
Values of n > 1 are especially relevant in the heavy ion

context where uncorrelated soft sources contaminate jets. In

such cases, the EEC is infrared-and-collinear (IRC) unsafe,
and Eq. (1) cannot be evaluated perturbatively. Nonetheless,
one can separate the perturbative and nonperturbative con-
tributions to the EEC [12,15]. The matching coefficients
between the parton level EEC and the full distribution are
given by the moments of the track functions (TFs) [16].1,2

They satisfy a nonlinear renormalization group (RG) evo-
lution governed by anomalous dimensions, which can be
computed in perturbation theory, due to their UV nature.
Several theoretical and phenomenological aspects of the

track functions have been explored for pure vacuum
evolution, see e.g., [12,15–18]. They have not been studied
in the heavy ion context, and the in-medium EEC calcu-
lations have neglected the matching to the hadronic level
observable [5,9]. This work aims to be the first to analyze
medium effects on track functions phenomenologically and
explore their impact on jet EEC. To that end, we compute
the medium-induced corrections to the TFs’ RG structure
and the respective anomalous dimensions, which fully
relate the moments of the tracks at different momentum
scales.

Leading-order vacuum track functions. TFs were first
introduced a decade ago [16,17], allowing to compute
jet observables based on hadrons with specific quantum
numbers in a theoretically well-defined way; in particular,
TFs allow to compare theory calculations to experimental
measurements on charged tracks. A track function TfðxÞ
describes the fragmentation of a parton of flavor f into a
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1This issue can also be avoided by defining the EEC on objects
which are naturally IRC safe [9].

2Other jet observables may require knowing more than the
moments of the TFs. We shall not consider these cases, restricting
the discussion to the EEC.
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subset of hadrons3 carrying an energy fraction x. Similarly
to collinear fragmentation functions (FFs) [19], TFs are
intrinsically nonperturbative. However, unlike FFs, they
obey a highly nonlinear RG evolution [15,20,21], more
closely related to multihadron fragmentation [22].4 At
leading order (LO) in αs, TiðxÞ satisfies [16,20],

μ
dTiðx;μÞ

dμ
¼
X
j;k

Z
1

0

dz
αs
2π

Pi→jkðzÞ

×
Z
x1;x2

Tjðx1;μÞTkðx2;μÞδðx−zx1−ð1−zÞx2Þ;

ð2Þ

where Pi→jk are the LO regularized QCD splitting func-
tions [23], and the evolution is expressed in terms of the
renormalization scale μ, see Fig. 1. The Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution [23–25] can be
recovered by restricting Eq. (2) to a one-body evolution,
i.e., when it is fully inclusive by replacing TkðxÞ → δðxÞ
[26], for a subset of particles.5

The RG equation simplifies for the track functions’
moments6

T ½N�
i ≡

Z
1

0

dz zNTiðzÞ: ð3Þ

In Yang-Mills (YM) theory, it follows from Eq. (2) that the
moments satisfy,

μ
dT ½N�
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¼ αs
2π

Z
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dzPðzÞ

×
Z
x1;x2

Tðx1;μÞTðx2;μÞðzx1 þ ð1− zÞx2ÞN; ð4Þ

where PðzÞ≡ Pg→ggðzÞ ¼ 2Ncðz=ð1 − zÞþ þ ð1 − zÞ=zþ
zð1 − zÞÞ þ 11Nc=6δð1 − zÞ and TðzÞ ¼ TgðzÞ. Using con-
servation of energy to impose the sum rule T ½0� ¼ 1, and the
symmetry of the splitting function under the integral after
shifting the poles to z ¼ 1, i.e.,

R
z PðzÞð1 − zÞ ¼ R

z PðzÞz,
the leading moments’ evolution reads,

μ
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dμ
¼ −

αs
π
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μ
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¼ −

αs
π
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The RG of the TFs’ moments is fully determined by the
anomalous dimensions,

γðjÞ≡ −
Z

1

0

dz zj−1PðzÞ; ð6Þ

where in the vacuum γvacðjÞ ¼ −11Nc=6 − 2Nc½ð1=ðj2−
jÞ þ 1=ððjþ 1Þðjþ 2ÞÞ − ψðjþ 1Þ − γE�, with ψðjÞ≡
Γ0ðjÞ=ΓðjÞ the digamma function and γE ≈ 0.577 the
Euler-Mascheroni constant. Equation (5) can be simplified
inYM theory, where γð2Þ ¼ 0. This sum rule is derived from
energy conservation. It imposes a nonperturbative constraint
that also applies to in-medium evolution, provided that
energy loss effects are absent. The related RG invariance
under the shift symmetry TðxÞ → Tðxþ bÞ [15,20] con-
strains higher moments’ evolution, but there are no further
nontrivial constraints in YM theory. Below, we compute the
medium modifications to Eq. (5), which can typically be
absorbed into a redefinition of γðjÞ We later discuss how
these modifications affect the EEC on tracks.

Medium modifications to the track functions. We assume
that the partonic cascade occurs in a homogeneous and
isotropic gluonic QCD medium, with a sizeable longitudinal
extension L.7 We take the interactions with the underlying
matter to be dominated bymultiple soft gluon exchanges, see
Fig. 1, which are captured in the Baier-Dokshitzer-Mueller-
Peigne-Schiff-Zakharov/Armesto, Salgado Wiedemann
(BDMPS-Z/ASW) phenomenological model [30–33].
Large momentum exchanges with the medium are neglected;
the discussion can be easily extended to such cases.
We first consider the hardestbranchings in the cascade,

which are primarily vacuumlike [34]. The phase space for
these emissions, at leading logarithmic accuracy, can be
captured by the formation time tf ¼ 2=ðzð1 − zÞθ2ptÞ; the

FIG. 1. Diagrammatic representation of the LO evolution [see
Eq. (2)] and the different medium modifications we take into
account; energy loss (top left), induced radiation (bottom left),
and reduced phase space (right).

3We have in mind the fragmentation into charged hadrons, but
the calculation is valid for other conserved quantum numbers.

4See [15] for a detailed description of the TFs RG.
5R

x denotes the phase space integral in the energy fraction x.
6The dependence in μ is made implicit.

7For recent developments in describing fragmentation in more
realistic matter models see e.g., [27–29].
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radiation pattern is modified depending on the ordering of
tf with respect to the characteristic timescale generated by
the medium, tc. The vacuumlike region corresponds to tf <
tc [34]. The vacuumlike sector is also defined by θ > θc,
where θc is the characteristic medium angular scale. For the
matter model considered, the characteristic angular scale is
θc ≡ 2=

ffiffiffiffiffiffiffiffiffiffiffiffi
q̂effL3

p
[35,36], with q̂eff ¼ q̂ð1 − zþ z2Þ≡

q̂fðzÞ the effective jet quenching transport coefficient in
YM theory, and q̂ is the scalar adjoint transport coefficient;
the corresponding characteristic time scale is tc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zð1 − zÞpt=q̂eff

p
[34,37]. This leading logarithmic para-

metrization of the phase space for the virtuality cascade
naively extends the double logarithmic construction intro-
duced in [34]. Thus, it should only be understood as a
physically motivated model for describing the vacuum
cascade in the medium; other models can be found in
the literature [38–40].
We consider two different phase spaces for vacuum

emission, differing mainly in the inclusion of out-of-the-
medium fragmentation. Since the cascade still obeys
vacuum evolution, the functional form of Eq. (4) is not
affected, and the phase space modification can be formally
absorbed into the anomalous dimension [9,34],8

γðj; μÞ ¼ −
Z

1

0

dzPðzÞΘPSðμ; zÞzj−1; ð7Þ

where ΘPS denotes the allowed phase space for fragmenta-
tion. The first model only allows for branchings to occur if
they are sufficiently short-lived and wide-angled to be

resolved [37]; Θð1Þ
PS ¼ Θðμ − ptθcÞΘðtc − tfÞ, where the

scale μ ¼ ptθ. The second phase space we study allows

fragmentation in the region tf > L [34]: Θð2Þ
PS ¼ 1 − Θðtf−

tcÞΘðL − tfÞ. Both phase spaces are formally only well-
described in the z ≪ 1 limit, but we naively extend them to
full kinematics. A study of the phase space structure at finite
energy fractions is still missing from the literature.
We first compute the anomalous dimensions in the soft

limit to understand the medium modifications better. Using
the soft Balitsky-Fadin-Kuraev-Lipatov (BFKL) form of the
vacuum anomalous dimension, γBFKLvac ðjÞ ¼ 2Nc

1−j, we find that,

γðiÞðj; μÞ ¼ γBFKLvac ðjÞðλj−1iþ − λj−1i− þ δi;2Þ; ð8Þ

where i ¼ 1, 2 denotes the phase space model,
λ1− ¼ λ2þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q̂pt=μ4

3
p

, λ1þ ¼ 1, λ2− ¼ 2pt=ðμ2LÞ, and
the phase space constraints depending only on μ are left
implicit. The BFKL pole vanishes inside the medium since
soft gluons cannot go on shell. Equation (8) ensures the
strongest medium modifications occur at smaller integer

values j > 1. In what follows, all numerical results are
obtained without using the soft limit.
In Fig. 2, we show the anomalous dimensions for both

models at finite z while imposing the sum rule γð2Þ ¼ 0,
taking the ratio to the vacuum result. Values in the y-axis
smaller than unity indicate a deceleration in the RG evolu-
tion; the γ → 0 limit freezes the evolution. At the EEC level,
the larger the difference to the vacuum, the more suppressed
the observable is, as illustrated below. On top, we show the
evolutionwith the scale μ. As expected, if μ ≈ pt (i.e., θ ≈ 1),
we recover the vacuum result as there is no loss of phase
space, i.e., energetic jets are not sensitive to the medium.
Taking the evolution scale down, the medium reduces the
phase space available to radiate, and the anomalous dimen-
sion decreases. The significant difference between the two
models resides in the μ → 0 region (at fixed pt); while
γð1Þ → 0, γð2Þ → γvac since at small angles out-of-the-
medium emissions are included, see Fig. 3 in [9]. At fixed
μ, the denser the medium, the larger the modification, as
expected. These are more prominent for γð1Þ, where no out-
of-the-medium evolution is incorporated, and for larger j.

FIG. 2. Anomalous dimensions’ evolution as a function of μ
and the jet quenching parameter q̂. Ratios smaller than unity will
result in a suppression of the EEC.

8This modification is tied to the particular medium model
employed.
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The latter originate from intermediate values of z, explaining
the difference to the soft limit.
As illustrated in Fig. 1, in-medium evolution also

produces bremsstrahlung radiation parallel to the virtuality
cascade. This mechanism has two significant phenomeno-
logical consequences; the enhancement of the splitting
function at large angles and radiative energy loss to the
matter. We describe how these effects can be incorporated
into the evolution of the TFs.
The multiple soft momentum gluons exchanged with the

medium result in a characteristic interference pattern,
leading to the enhanced Landau—Pomeranchuk—Migdal
branching rate [41–43]. This regime, captured in the
BDMPS-ASW approximation, is valid for intermediate
energies of the radiated partons, ωBH < zð1 − zÞpt < ωc,
where ωBH denotes the Bethe-Heitler frequency, below
which the radiative spectrum is dominated by incoherent
contributions [44], and ωc ¼ 1

2
q̂L2 denotes the character-

istic frequency above which the gluon resolves the medium
coherently. A closed form for the radiation rate is not
known in QCD in this region of phase space; we consider
an asymptotic limit of exactly collinear branchings fol-
lowed by in-medium diffusion,9

dI
dzdμ z2ð1 − zÞ2μ ¼

Z
L

0

dt
Pðμzð1 − zÞ; L − tÞ

2π

dI
dzdt

; ð9Þ

where dI=dzdt denotes the induced radiation rate and P is
the momentum broadening distribution. Transverse
momentum is only acquired due to the evolution between
the time the outgoing states go on shell and the end of the
medium; the in-medium rate determines the energy dis-
tribution. In the BDMPS-Z/ASWapproximation the broad-
ening distribution is purely diffusive [46,47], Pðk; tÞ ¼
4π=ðq̂efftÞ expð−k2=ðq̂efftÞÞ; the radiative rate reads
[46,48],

dI
dzdt

¼ αsNc

2π

f
5
2ðzÞ

ðzð1 − zÞÞ32

ffiffiffiffiffi
q̂
pt

s
: ð10Þ

Equation (10) can be regularized by a plus distribution
while shifting the singularities to z ¼ 1, and using the
integral identity [46],

Z
1−ε

ε
dz

dI
dzdt

¼
Z

1−ε

0

dz 2z
dI
dzdt

: ð11Þ

Combining all elements, Eq. (9) becomes

dI
dzdμ

¼αsNc

π

ffiffiffiffiffiffiffi
1

q̂pt

s
μ
ð2zÞz2ð1−zÞ2f3

2ðzÞ
ðzð1−zÞÞ32 Γ0

�
z2ð1−zÞ2μ2
fðzÞq̂L

�
;

ð12Þ

where Γ0 denotes the incomplete gamma function.
We include the medium-induced kernel in the splitting

functions entering the RG evolution in Eq. (4). Such a
choice has been applied in different jet quenching phe-
nomenological studies, see [38,40,49–51]. Note that the in-
medium effects impact both the operators’ anomalous
dimensions and matrix elements, i.e., the boundary con-
ditions for the evolution. We start the evolution from the
hard scale, where the in-medium effects can be treated
perturbatively. Thus, in an effective field theory spirit, the
hard scale is assumed to be parametrically much larger than
medium-induced scales, and the dominant effect comes
from the evolution, i.e., from in-medium modification of
the anomalous dimensions. A complete effective field
theory formulation of in-medium effects is missing;
although such an effort would be worthwhile, it goes past
the current scope, and we leave it for future work. The
anomalous dimensions in Eq. (6) become

γðj;μÞ¼−
Z

1

0

�
PðzÞþNcμ

2

ffiffiffiffiffiffiffi
1

q̂pt

s

×2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1−zÞ

p
f

3
2ðzÞΓ0

�
z2ð1−zÞ2μ2
fðzÞq̂L

��
zj−1; ð13Þ

up to a δðz − 1Þ term, whose coefficient can be obtained by
imposing the sum rule γð2Þ ¼ 0. In Fig. 3 we evaluate
Eq. (13). To ensure that the collinear cascade approxima-
tion is valid, we require pt ≪ q̂L2 [48]; thus, we use small
pt, which should be thought as the energy of the emitter.
Too large energies will break the collinear cascade approxi-
mation, resulting in unphysical values of anomalous
dimensions. Therefore, we take a long medium with L ¼
10 fm and a small jet energy with pt ¼ 15 GeV. The
results show a mild dependence on j, while the evolution in
μ is fast, leading to a substantial enhancement that com-
petes with the phase space constraint effect in Fig. 2. The
magnitude of the increase is related to the asymptotic
approximation used, although other calculations of the in-
medium rate at finite z exist [52–56], it is unclear how to
incorporate them in the RG evolution at present.10 Due to
the high sensitivity to the modeling, we will not discuss
these contributions further; nonetheless, we expect this
modification to yield a small effect due to the absence of a
collinear pole in the medium. Incorporating the modified
splitting function in this manner, the growth of the
anomalous dimensions needs to be tamed by introducing
coherence effects; see [35,58].

9See e.g., [45] for further discussion on this approximation. 10This is possible for dilute matter [57].
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So far, we have considered the contribution of brems-
strahlung radiation, which hadronizes into charged hadrons.
However, a substantial part of the softer induced radiation
feeds down to the medium scale, and it should be viewed as
part of the QGP, quenching the jet energy. We describe these
lost emissions in terms of a distribution function DðεÞ, with
ε ≪ pt representing the amount of quenched energy, see
Fig. 1. This distribution can be computed perturbatively
under certain limits [32,59,60], but it is expected to have a
significant nonperturbative contribution. Therefore, we
remain agnostic to its functional form and only impose
overall energy conservation,

R
∞
0 dεDðεÞ ¼ 1.

To implement the effect of energy loss in the TFs’ RG,
we first consider DGLAP evolution; at Oðα2sÞ the real
contribution to the gluon distribution G reads [23],

Gðx; μÞjOðα2sÞ
real ¼ α2s

ð2πÞ2
Z
z1;z2;x1

P̂ðz1ÞP̂ðz2Þ

×
Z

μ

μ0

d ln μ0
Z

μ0

μ0

d ln μ00Gðx1; μ00Þ

× δðx − x1z1ð1 − z2ÞÞ; ð14Þ

where P̂ðzÞ ¼ P̂ð1 − zÞ is the unregularized splitting func-
tion. We choose z2 to represent the fraction of energy lost to
the matter. The rhs of Eq. (14) can be simplified (dropping
the μ dependence),

α2s
ð2πÞ2

Z
1

x
dz1

Z
1− x

z1

0

dz2
P̂ðz1ÞP̂ðz2Þ
z1ð1−z2Þ

G

�
x

z1ð1−z2Þ
�

≈
αs
2π

Z
1

x

dz1
z1

Z ðz1−xÞpt

0

dεP̂

�
z1þ

ε

pt

�
DðεÞG

�
x
z1

�
; ð15Þ

where we replaced the second splitting function by the
energy loss distribution DðεÞ, modeling energy transferred
to the matter, see Fig. 1. Assuming 1 > x ∼ z1 ≫ ε

pt
, the

upper cutoff of the ε integration should be extended to
infinity. Treating the energy loss as an additional con-
volution within the standard DGLAP cascade and including
the virtual corrections, we find

μ
dGðx; μÞ

dμ
≈
αs
2π

Z
x1;z

Z
∞

0

dεDðεÞP
�
zþ ε

pt

�
×Gðx1Þδðx − x1zÞ; ð16Þ

which agrees with the Sudakov factor in [60]. A similar
procedure for the TFs, with the initial truncation in Eq. (14)
at Oðα3sÞ, with δðx − x1zð1 − z2ÞÞ → δðx − x1z1ð1 − z2Þ−
x2ð1 − z1Þð1 − z3ÞÞ, where z2, z3 are the energy loss
fractions from uncorrelated emissions, leads to

μ
dT
dμ

¼ αs
2π

Z
ε1;ε2

Dðε1ÞDðε2Þ
Z

1

0

dzP

�
zþ ε1

pt
þ ε2
pt

�

×
Z
x1;x2

Tðx1;μÞTðx2;μÞδðx− zx1− ð1− zÞx2Þ: ð17Þ

The upper limit of the ε1;2 integrals is set to infinity. The
evolution for the moments at LO is unchanged with respect
to Eq. (4) if the anomalous dimensions include the double
convolution with the energy loss probabilities.
Without specifying the form for DðεÞ, but assuming the

energy loss distribution has a small dispersion, we simplify
the evolution equation replacing ε by its mean value
hεi ∼ q̂L2. This approximation might be insufficient for
phenomenological applications, see e.g. [61]. With this
caveat, the anomalous dimension reduces to

γðjÞ ¼ −
Z

1

2hεi
pt

dz PðzÞ
�
z −

2hεi
pt

�
j−1

; ð18Þ

up to a δð1 − zÞ term (γ is μ independent in this case due to
the single logarithmic structure of the expansion). We can

FIG. 3. Anomalous dimension’s evolution including medium
induced radiation. Since the ratio is larger than unity, this
modification will result in an enhancement of the EEC.

FIG. 4. Anomalous dimension evolution including average
energy loss effects. We use the same parameters as in Fig. 2.
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no longer fix its coefficient via the sum rule γð2Þ ¼ 0 since
we assumed 1 > x ≫ ε

pt
. Nonetheless, we impose the sum

rule in Fig. 4 to directly compare energy-loss driven
modifications to Figs. 2 and 3; this results in an overall
shift, with minimal modifications to the shape. Compared
to the naive estimation from the BDMPS-Z/ASW approxi-
mation, hεiBDMPS-Z=AZW ∼Oð20Þ GeV, we observe signifi-
cant effects already for hεi one order of magnitude lower
(red markers). This is likely due to the mean value
approximation, which typically overestimates the quench-
ing effects [61]. Consequently, to avoid nonphysical
results, we restrict ourselves to small values for hεi=pt.

Application to EECs. Having considered the modifications
to the TFs’ RG evolution, we study their impact on the
EEC. The LO EEC on tracks is defined as [12,15]

dΣðnÞ
trk

dχ
≡

Z
z;x1;x2

xn1Tðx1Þxn2Tðx2Þznð1 − zÞn dσ
σdzdχ

¼
Z
z
T ½n�ðχptÞT ½n�ðχptÞznð1 − zÞn dσ

σdzdχ
; ð19Þ

where we only include terms for χ > 0. In YM theory, the
lowest order nontrivial track function appears at n ¼ 2; see
Eq. (5), which we consider in what follows. We work at
fixed coupling, such that we are only sensitive to the
evolution of the track functions, and for the initial con-
dition, we take the form Tðx; μ0Þ ¼ 252x2ð1 − xÞ6 at μ0 ¼
pt [17]. Equation (19) is computed using the in-medium
cross section obtained in the limit of energetic final states,
see [52–54] for details. Writing dσ ¼ dσvacð1þ FmedÞ, we
have

Fmed ¼
2

tf

�Z
L

0

dt
Z

L

t

dt0

tf

�
cos

�
t0 − t
tf

�
C3ðt0; tÞC4ðL; t0Þ

�

− sin

�
L − t
tf

�
C3ðL; tÞ

�
: ð20Þ

The correlators C3;4 in the BDMPS-Z/ASW approximation
take the form C3ðt0; tÞ ≈ e−

1
12
q̂χ2ðt0−tÞ3 and C4ðL; t0Þ≈

e−
1
4
q̂χ2ðL−t0Þðt0−tÞ2 , where we neglected the z dependence in

the phases.
The results for Σð2Þ

trk are shown in Figs. 5 and 6, where the
vacuum and medium modified LO EEC (following [6,9])
on the vacuum evolved TFs are shown by the dashed black

FIG. 5. EEC with n ¼ 2, including phase space effects. Top:
pt ¼ 50 GeV; Bottom: pt ¼ 200 GeV.

FIG. 6. EEC with n ¼ 2, including mean energy loss. Top:
hεi ¼ 0.4 GeV, Bottom: hεi ¼ 1 GeV.

JOÃO BARATA and ROBERT SZAFRON PHYS. REV. D 110, L031501 (2024)

L031501-6



and red, respectively. The overall normalization is not
essential for the current discussion, and it differs from
particle-based EECs due to the inclusion of the tracks. In-
medium results on medium-evolved TFs are shown by solid
lines for the different models. For the case of reduced phase
space, including the medium-modified track functions
leads to small changes compared to vacuum TFs. The
major differences arise at smaller values of pt, in the region
where the medium leads to an enhancement of the EEC.
Significantly, including the in-medium tracks does not alter
the shape of the distribution, which allows us to qualita-
tively visualize the color decoherence transition. The
distinction between the phase space models is evident
for small χ, where out-of-the-medium fragmentation
becomes crucial. Mean energy loss shifts the distribution
below the vacuum case, as is typical of energy loss effects
in jet observables. The overall shape of the distribution is
only barely modified, even for the largest hεi.

Conclusions. We conducted the first study of the TFs RG
evolution in a dense QGP. Comprehending such effects is
vital in heavy ions, where soft, uncorrelated sources

contaminate the jet EEC. We showed that, at a qualitative
level, it is adequate to use the vacuum TFs as the QGP
medium does not drastically impact the shape of the EEC
distribution through the modified TFs.
Our analysis is phenomenologically driven and faces

several shortcomings, such as the need to describe the
phase space for vacuum-like emissions at leading loga-
rithmic accuracy and the lack of suitable treatment of the in-
medium matrix elements. From a phenomenological point
of view, it would be worthwhile to extract the in-medium
TFs from available data or MC samples. We hope to
address these aspects in the future.

Acknowledgments. J. B. and R. S. are supported by the
United States Department of Energy under Grant Contract
No. DESC0012704. We are grateful to Swagato Mukherjee,
Guilherme Milhano, Yacine Mehtar-Tani, Ian Moult,
Wenqing Fan, Andrey Sadofyev, Xin-Nian Wang, and
Mateusz Ploskon for discussions. We particularly thank
Paul Caucal, Pier Monni, and Alba Soto-Ontoso for their
collaborative efforts on closely related work and helpful
discussions.

[1] Y. Mehtar-Tani, J. G. Milhano, and K. Tywoniuk, Int. J.
Mod. Phys. A 28, 1340013 (2013).

[2] G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E 24,
1530014 (2015).

[3] L. Cunqueiro and A. M. Sickles, Prog. Part. Nucl. Phys.
124, 103940 (2022).

[4] L. Apolinário, Y.-J. Lee, and M. Winn, Prog. Part. Nucl.
Phys. 127, 103990 (2022).

[5] C. Andres, F. Dominguez, J. Holguin, C. Marquet, and I.
Moult, J. High Energy Phys. 09 (2023) 088.

[6] C. Andres, F. Dominguez, R. Kunnawalkam Elayavalli, J.
Holguin, C. Marquet, and I. Moult, Phys. Rev. Lett. 130,
262301 (2023).

[7] J. Barata, J. G. Milhano, and A. V. Sadofyev, Eur. Phys. J. C
84, 174 (2024).

[8] J. Barata and Y. Mehtar-Tani, in 11th International
Conference on Hard and Electromagnetic Probes of High-
EnergyNuclear Collisions: HardProbes 2023 (2023), arXiv:
2307.08943.

[9] J. Barata, P. Caucal, A. Soto-Ontoso, and R. Szafron, arXiv:
2312.12527.

[10] Z. Yang, Y. He, I. Moult, and X.-N. Wang, Phys. Rev. Lett.
132, 011901 (2024).

[11] H. Chen, J. High Energy Phys. 01 (2024) 035.
[12] H. Chen, I. Moult, X. Zhang, and H. X. Zhu, Phys. Rev. D

102, 054012 (2020).
[13] D. M. Hofman and J. Maldacena, J. High Energy Phys. 05

(2008) 012.

[14] C. L. Basham, L. S. Brown, S. D. Ellis, and S. T. Love,
Phys. Rev. D 17, 2298 (1978).

[15] Y. Li, I. Moult, S. S. van Velzen, W. J. Waalewijn, and H. X.
Zhu, Phys. Rev. Lett. 128, 182001 (2022).

[16] H.-M. Chang, M. Procura, J. Thaler, and W. J. Waalewijn,
Phys. Rev. Lett. 111, 102002 (2013).

[17] H.-M. Chang, M. Procura, J. Thaler, and W. J. Waalewijn,
Phys. Rev. D 88, 034030 (2013).

[18] K. Lee and I. Moult, arXiv:2308.00746.
[19] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445 (1982).
[20] M. Jaarsma, Y. Li, I. Moult, W. Waalewijn, and H. X. Zhu, J.

High Energy Phys. 06 (2022) 139.
[21] H. Chen, M. Jaarsma, Y. Li, I. Moult, W. J. Waalewijn, and

H. X. Zhu, arXiv:2210.10061.
[22] U. P. Sukhatme and K. E. Lassila, Phys. Rev. D 22, 1184

(1980).
[23] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[24] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
[25] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438

(1972).
[26] H. Chen, M. Jaarsma, Y. Li, I. Moult, W. J. Waalewijn, and

H. X. Zhu, J. High Energy Phys. 07 (2023) 185.
[27] A. V. Sadofyev, M. D. Sievert, and I. Vitev, Phys. Rev. D

104, 094044 (2021).
[28] M. V. Kuzmin, X. Mayo López, J. Reiten, and A. V.

Sadofyev, Phys. Rev. D 109, 014036 (2024).
[29] J. Barata, X. Mayo López, A. V. Sadofyev, and C. A.

Salgado, Phys. Rev. D 108, 034018 (2023).

LEADING ORDER TRACK FUNCTIONS IN A HOT AND DENSE … PHYS. REV. D 110, L031501 (2024)

L031501-7

https://doi.org/10.1142/S0217751X13400137
https://doi.org/10.1142/S0217751X13400137
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1016/j.ppnp.2022.103940
https://doi.org/10.1016/j.ppnp.2022.103940
https://doi.org/10.1016/j.ppnp.2022.103990
https://doi.org/10.1016/j.ppnp.2022.103990
https://doi.org/10.1007/JHEP09(2023)088
https://doi.org/10.1103/PhysRevLett.130.262301
https://doi.org/10.1103/PhysRevLett.130.262301
https://doi.org/10.1140/epjc/s10052-024-12514-1
https://doi.org/10.1140/epjc/s10052-024-12514-1
https://arXiv.org/abs/2307.08943
https://arXiv.org/abs/2307.08943
https://arXiv.org/abs/2312.12527
https://arXiv.org/abs/2312.12527
https://doi.org/10.1103/PhysRevLett.132.011901
https://doi.org/10.1103/PhysRevLett.132.011901
https://doi.org/10.1007/JHEP01(2024)035
https://doi.org/10.1103/PhysRevD.102.054012
https://doi.org/10.1103/PhysRevD.102.054012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1103/PhysRevD.17.2298
https://doi.org/10.1103/PhysRevLett.128.182001
https://doi.org/10.1103/PhysRevLett.111.102002
https://doi.org/10.1103/PhysRevD.88.034030
https://arXiv.org/abs/2308.00746
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1007/JHEP06(2022)139
https://doi.org/10.1007/JHEP06(2022)139
https://arXiv.org/abs/2210.10061
https://doi.org/10.1103/PhysRevD.22.1184
https://doi.org/10.1103/PhysRevD.22.1184
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/JHEP07(2023)185
https://doi.org/10.1103/PhysRevD.104.094044
https://doi.org/10.1103/PhysRevD.104.094044
https://doi.org/10.1103/PhysRevD.109.014036
https://doi.org/10.1103/PhysRevD.108.034018


[30] B. G. Zakharov, JETP Lett. 63, 952 (1996).
[31] U. A. Wiedemann and M. Gyulassy, Nucl. Phys. B560, 345

(1999).
[32] R. Baier, Y. L. Dokshitzer, S. Peigne, and D. Schiff, Phys.

Lett. B 345, 277 (1995).
[33] C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68,

014008 (2003).
[34] P. Caucal, E. Iancu, A. H. Mueller, and G. Soyez, Phys. Rev.

Lett. 120, 232001 (2018).
[35] J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, and

K. Tywoniuk, Phys. Lett. B 725, 357 (2013).
[36] Y. Mehtar-Tani, C. A. Salgado, and K. Tywoniuk, J. High

Energy Phys. 10 (2012) 197.
[37] Y. Mehtar-Tani and K. Tywoniuk, Phys. Rev. D 98, 051501

(2018).
[38] A. Majumder, Phys. Rev. C 88, 014909 (2013).
[39] K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, and U. A.

Wiedemann, Eur. Phys. J. C 60, 617 (2009).
[40] N. Armesto, L. Cunqueiro, and C. A. Salgado, Eur. Phys. J.

C 63, 679 (2009).
[41] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser.

Fiz. 92, 535 (1953).
[42] A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[43] S. R. Klein et al., AIP Conf. Proc. 302, 172 (1994).
[44] H. Bethe and W. Heitler, Proc. R. Soc. A 146, 83 (1934).
[45] J. Barata, Y. Mehtar-Tani, A. Soto-Ontoso, and K.

Tywoniuk, J. High Energy Phys. 09 (2021) 153.
[46] J.-P. Blaizot, F. Dominguez, E. Iancu, and Y. Mehtar-Tani, J.

High Energy Phys. 06 (2014) 075.

[47] J. Barata, Y. Mehtar-Tani, A. Soto-Ontoso, and K.
Tywoniuk, Phys. Rev. D 104, 054047 (2021).

[48] J.-P. Blaizot, E. Iancu, and Y. Mehtar-Tani, Phys. Rev. Lett.
111, 052001 (2013).

[49] W. Ke and I. Vitev, Phys. Lett. B 854, 138751 (2024).
[50] W.-t. Deng and X.-N. Wang, Phys. Rev. C 81, 024902

(2010).
[51] Y.-T. Chien, A. Emerman, Z.-B. Kang, G. Ovanesyan, and I.

Vitev, Phys. Rev. D 93, 074030 (2016).
[52] J. H. Isaksen and K. Tywoniuk, J. High Energy Phys. 11

(2020) 125.
[53] J. H. Isaksen and K. Tywoniuk, J. High Energy Phys. 09

(2023) 049.
[54] F. Domínguez, J. G. Milhano, C. A. Salgado, K. Tywoniuk,

and V. Vila, Eur. Phys. J. C 80, 11 (2020).
[55] L. Apolinário, N. Armesto, J. G. Milhano, and C. A.

Salgado, J. High Energy Phys. 02 (2015) 119.
[56] J.-P. Blaizot, F. Dominguez, E. Iancu, and Y. Mehtar-Tani, J.

High Energy Phys. 01 (2013) 143.
[57] M. D. Sievert and I. Vitev, Phys. Rev. D 98, 094010

(2018).
[58] S. Cao et al. (JETSCAPE Collaboration), Phys. Rev. C 96,

024909 (2017).
[59] Y. Mehtar-Tani and K. Tywoniuk, Nucl. Phys. A979, 165

(2018).
[60] Y. Mehtar-Tani and K. Tywoniuk, J. High Energy Phys. 04

(2017) 125.
[61] R. Baier, Y. L. Dokshitzer, A. H. Mueller, and D. Schiff, J.

High Energy Phys. 09 (2001) 033.

JOÃO BARATA and ROBERT SZAFRON PHYS. REV. D 110, L031501 (2024)

L031501-8

https://doi.org/10.1134/1.567126
https://doi.org/10.1016/S0550-3213(99)00458-7
https://doi.org/10.1016/S0550-3213(99)00458-7
https://doi.org/10.1016/0370-2693(94)01617-L
https://doi.org/10.1016/0370-2693(94)01617-L
https://doi.org/10.1103/PhysRevD.68.014008
https://doi.org/10.1103/PhysRevD.68.014008
https://doi.org/10.1103/PhysRevLett.120.232001
https://doi.org/10.1103/PhysRevLett.120.232001
https://doi.org/10.1016/j.physletb.2013.07.046
https://doi.org/10.1007/JHEP10(2012)197
https://doi.org/10.1007/JHEP10(2012)197
https://doi.org/10.1103/PhysRevD.98.051501
https://doi.org/10.1103/PhysRevD.98.051501
https://doi.org/10.1103/PhysRevC.88.014909
https://doi.org/10.1140/epjc/s10052-009-0941-2
https://doi.org/10.1140/epjc/s10052-009-1133-9
https://doi.org/10.1140/epjc/s10052-009-1133-9
https://doi.org/10.1103/PhysRev.103.1811
https://doi.org/10.1063/1.45475
https://doi.org/10.1098/rspa.1934.0140
https://doi.org/10.1007/JHEP09(2021)153
https://doi.org/10.1007/JHEP06(2014)075
https://doi.org/10.1007/JHEP06(2014)075
https://doi.org/10.1103/PhysRevD.104.054047
https://doi.org/10.1103/PhysRevLett.111.052001
https://doi.org/10.1103/PhysRevLett.111.052001
https://doi.org/10.1016/j.physletb.2024.138751
https://doi.org/10.1103/PhysRevC.81.024902
https://doi.org/10.1103/PhysRevC.81.024902
https://doi.org/10.1103/PhysRevD.93.074030
https://doi.org/10.1007/JHEP11(2020)125
https://doi.org/10.1007/JHEP11(2020)125
https://doi.org/10.1007/JHEP09(2023)049
https://doi.org/10.1007/JHEP09(2023)049
https://doi.org/10.1140/epjc/s10052-019-7563-0
https://doi.org/10.1007/JHEP02(2015)119
https://doi.org/10.1007/JHEP01(2013)143
https://doi.org/10.1007/JHEP01(2013)143
https://doi.org/10.1103/PhysRevD.98.094010
https://doi.org/10.1103/PhysRevD.98.094010
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1103/PhysRevC.96.024909
https://doi.org/10.1016/j.nuclphysa.2018.09.041
https://doi.org/10.1016/j.nuclphysa.2018.09.041
https://doi.org/10.1007/JHEP04(2017)125
https://doi.org/10.1007/JHEP04(2017)125
https://doi.org/10.1088/1126-6708/2001/09/033
https://doi.org/10.1088/1126-6708/2001/09/033

