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We present a triple point of a new kind for general relativity, at which two gravitational solitons can
coexist with a planar black hole in anti–de Sitter space. Working in the context of nonlinear electro-
dynamics, we obtain simple, sensible spacetimes for which the thermodynamics can be studied in an
analytic manner. The spacetimes are charged under the nonlinear electrodynamics leading to an electric
charge for black holes and a magnetic flux for solitons. In the grand-canonical ensemble, we show that the
phase space of the theory is very rich, containing reentrant phase transitions, as well as triple points, for
small values of the coupling controlling the nonlinearity of the electrodynamics Lagrangian.
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Introduction. Black holes in anti–de Sitter (AdS) spacetime
have thermal properties that may be structurally different
than those of their asymptotically flat counterparts. Even
in vacuum, the former may have positive specific heat,
leading to locally stable thermal objects, suitable for
exploring phase transitions. The Hawking-Page (HP) tran-
sition emerges in this manner, since the difference in free
energy between large black holes and thermal AdS changes
its sign at a given critical temperature Tc, above which the
black hole dominates, while for T < Tc thermal AdS is the
preferred phase [1]. This phase transition is particularly
relevant in holography [2], since it leads to a confinement/
deconfinement transition in the dual field theory [3]. When
gauge fields are introduced, it is natural to consider charged
solutions. In this context, in [4] the authors explored the
structure of the phase space in both the canonical and
grand-canonical ensembles that accommodate charged,
spherically symmetric black holes, and showed that the
effect of the electric potential on the phase space structure is
crucial. For large electric potential, there is a single black
hole that always dominates the canonical ensemble. If
thermodynamic pressure is taken into account, then black
holes of fixed charge can undergo Van der Waals phase
transitions [5].
Furthermore, general relativity with a negative cosmo-

logical constant naturally contains black holes with non-
spherical horizons [6] that can be planar or hyperbolic,

leading to nontrivial topologies that propagate up to the
conformal boundary. Consequently these black holes are
asymptotically locally AdS. In holography, planar black
holes are of special relevance since they are dual to
conformal field theories (CFTs) at finite temperature
formulated in the flat conformal boundary Rt × Rd−1.
In [7], the ground state of the space of planar black holes
was identified as a gravitational soliton, dubbed the AdS
soliton. The latter can be obtained from a double analytic
continuation of the planar black hole, and it therefore
defines a new configuration that competes as a possible
dominant thermal phase. Phase transitions between a planar
black hole and the AdS soliton at finite temperature were
originally explored in [8], a study that was extended for
charged black holes in [9], still within the context of the
neutral soliton, which is consistent in the grand-canonical
ensemble.
Recently a new charged AdS-soliton configuration was

discovered [10]. This solution of the Einstein-Maxwell
system with a negative cosmological constant can be
obtained from a double analytic continuation of the planar,
electrically charged AdS black hole, which also requires an
analytic continuation of the electric charge, leading indeed
to a smooth, charged soliton. Even more, when this model
is embedded in gauge supergravity, both in dimensions four
and five, the soliton turns out to be supersymmetric1 for a
particular value of the charge [13]. The magnetic charge of
the soliton leads to a magnetic flux, which enters as a
control variable in a new ensemble, extending the results of
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1These studies were extended to N ¼ 4, SUð2Þ × SUð2Þ
supergravity [11], in [12].
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out that comparing the corresponding free energy of
different configurations at equal temperature, electric
potential, magnetic flux and period of a spatial cycle, leads
to an interesting structure of the phase space, since for large
electric potential the black hole phase dominates [14].
It is well-known that for large electric fields, Maxwell’s

equations receive nonlinear corrections coming from quan-
tum effects induced by fermion loops, as well as from the
low-energy limit of string theory. Furthermore, nonlinear
electrodynamics (NLED) naturally emerges inside materi-
als with nonlinear constitutive relations. NLED was also
employed to construct the first regular black holes of
Einstein’s theory coupled to a field theory [15]. With this
motivation, here we commence an exploration of the effects
of NLED on the thermal stability of charged solitons.
There are different modifications of Maxwell theory,

which are well-motivated, depending on the particular
setup one is considering [16]. We consider the most general
form of NLED introduced by Gao [17] that leads to a
simple correction of the gravitational and gauge potentials,
allowing analytic control in most of the study. Recently, the
phase space of a family of NLED [17], was shown to posses
multiple points at which four and even five different black
hole branches with the same free energy [18] can coexist.
Remarkably, we find that in this simple setup a new sort of
triple point can emerge, at which two solitons and one black
hole branch can coexist.

Black holes and solitons in NLED. We consider the
framework defined by the theory [17]

S ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2Λ − LEMÞ; ð1Þ

where the electromagnetic Lagrangian is given by [17]

LEM ¼
X∞
i¼1

αiðF2Þi; ð2Þ

with F2 ¼ FμνFμν and Fμν ¼ ∂μAν − ∂νAμ. The αi are
dimensionful coupling constants (½αi� ¼ Length2ði−1Þ),
and Aμ is the Uð1Þ Maxwell field.
By varying the action with respect to the metric and the

gauge fields, the following equations are obtained

Rμν −
1

2
gμνRþ Λgμν ¼ Tμν; ð3Þ

∇μ

�
∂LEM

∂F2
Fμν

�
¼ 0; ð4Þ

with

Tμν ¼ −
1

2
gμνLEM þ 2

∂LEM

∂F2
FμαFν

α: ð5Þ

Charged, static black hole spacetimes with planar hori-
zons belong to the following family of metrics and gauge
potentials

ds2b ¼ −UðrÞdt2b þ
dr2

UðrÞ þ
r2

l2
ðdφ2

b þ dz2Þ; ð6Þ

Ab ¼ AtðrÞdtb þ Aφdφb; ð7Þ

where we have chosen to identify φb via 0 ≤ φb ≤ ηb,
while 0 < z < L and Aφ is an arbitrary constant.
Using this ansatz, the field equations (3) and (4) yield the

relations,

rU00 þ 2U0 −
6r
l2

þ r
X∞
i¼1

αið−2ÞiðA0
tÞ2i ¼ 0; ð8Þ

r2

2

X∞
i¼1

iαið−2ÞiðA0
tÞ2i−1 −Q ¼ 0; ð9Þ

where the prime denotes derivative with respect to the
radial coordinate r and Q is an integration constant corres-
ponding to the electric charge of the black hole.
To solve this system of equations we employ the

expansions

AtðrÞ ¼
X∞
i¼1

bir−i and UðrÞ ¼ r2

l2
þ
X∞
i¼1

cir−i; ð10Þ

where bi and ci are constants. Inserting these expressions
in (8) and (9), and setting α1 ¼ 1 (thereby recovering
Maxwell theory when αi≥2 ¼ 0) yields,

b1 ¼ Q; ð11Þ

b5 ¼
4

5
Q3α2; ð12Þ

b9 ¼
4

3
Q5ð4α22 − α3Þ; ð13Þ

b13 ¼
32

13
Q7ð24α32 − 12α3α2 þ α4Þ; ð14Þ

… ¼ …; ð15Þ

and

c1 ¼ −2M ci ¼
4Q
iþ 2

bi−1; for i > 1; ð16Þ
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whereM corresponds to the mass of the black hole. All the
nonlisted bi vanish.
The key point identified in [17] is that there are infinitely

many choices of couplings αi that yield a finite number of
nonvanishing bi, and consequently ci, and vice versa. In
such cases the simple structure of the gauge potential and
metric functions allows exploration of the phase space in an
analytic manner.
From (1), it is possible to obtain black hole solutions

with 2, 3 or more event horizons, setting the bi constants
to zero for sufficiently large i, consequently leading to
relations between the αi. In the case of the 2-horizon black
hole, the values of bi are set to zero for i ≥ 5, implying
αi ¼ 0 for i ≥ 2; thus we recover Einstein-Maxwell theory
with cosmological constant, and the black hole solution
reduces to the Reissner-Nordstrom-AdS geometry.
The general form for a black hole solution is

At ¼
X∞
i¼1

�
Qb̃i
ri

−
Qb̃i
riþ

�
U ¼ r2

l2
−
2M
r

þ
X∞
i¼2

4Q2b̃i−1
ðiþ 2Þri

ð17Þ
assuming UðrÞ has a root r ¼ rþ, where bi ¼ Qb̃i. The
Euclidean on shell action yields a particularly simple
expression for the free energy (see Sec. V), in spite of
the presence of an infinite series, yielding

M ¼ r3þ
2l2

þ
X∞
i¼2

2Q2b̃i−1
ðiþ 2Þri−1þ

; ð18Þ

T ¼ 3rþ
4πl2

−
X∞
i¼2

Q2b̃i−1ði − 1Þ
πðiþ 2Þriþ1

þ
; ð19Þ

ϕb ¼
X∞
i¼1

Qb̃i
riþ

; ð20Þ

for the mass, temperature, and electric potential of the
black hole.
To obtain the general soliton solution, we apply a double

Wick rotation to the planar black hole metric (6) (tb → iφs
and φb → its) and an analytic continuation of the black
hole charge (Q → −iq). This gives

ds2s ¼ −
r2

l2
dt2s þ

dr2

UðrÞ þ UðrÞdφ2
s þ

r2

l2
dz2; ð21Þ

As ¼ Atdts þ AφðrÞdφs; ð22Þ

where 0 < z < L, 0 ≤ φs ≤ ηs, identified, and

Aφ ¼
X∞
i¼1

�
qb̂i
ri

−
qb̂i
ri0

�
U ¼ r2

l2
−
2μ

r
−
X∞
i¼2

4q2b̂i−1
ðiþ 2Þri ;

ð23Þ

where b̂iðqÞ ¼ b̃iðiQÞ, and

μ ¼ r30
2l2

−
X∞
i¼2

2q2b̂i−1
ðiþ 2Þri−10

; ð24Þ

Φb ¼
X∞
i¼1

Qb̂i
ri0

ηs; ð25Þ

are the respective mass and magnetic flux of the soliton.
The period ηs of the φs coordinate of the soliton is fixed in
terms of r0 and q as

ηs ¼
�
3r0
4πl2

þ
X∞
i¼2

q2b̂i−1ði − 1Þ
πðiþ 2Þriþ1

0

�−1
ð26Þ

in order to avoid a potential conical singularity that may
appear at the origin of the soliton, located at r ¼ r0.

Free energy and phase transitions. The on shell Euclidean
action receives three contributions,

IEuc ¼ −Ibulk − IGH þ Ict; ð27Þ

where

Ibulk ¼
1

2κ

Z
M

d4x
ffiffiffi
g

p �
R − 2Λ −

X∞
i¼1

αiðF2Þi
�
; ð28Þ

IGH ¼ 1

κ

Z
∂M

d3x
ffiffiffi
h

p
K; ð29Þ

Ict ¼
1

κ

Z
∂M

d3x
ffiffiffi
h

p �
2

l
−
l
2
RðhÞ

�
: ð30Þ

No further boundary term is required to compare the free
energy at fixed temperature, electric potential, spacelike
period and magnetic flux. From (27) we obtain

Gb ¼ −
Lηb
κl2

M; ð31Þ

Gs ¼ −
Lηs
κl2

μ; ð32Þ

for the free energy of the black hole and the soliton
respectively.
To study phase transitions between the solutions, we

need to match the asymptotic geometries, implying

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gτbτbðρ → ∞Þ

q
βb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gτsτsðρ → ∞Þ

q
βs; ð33Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφsφs

ðρ → ∞Þ
q

ηs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφbφb

ðρ → ∞Þ
q

ηb; ð34Þ
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where ρ is the cutoff in the radial direction. Since for each
configuration, the on-shell, regularized Euclidean actions
provide a finite result, we can directly take the leading term
in the expansion of the cutoff, leading to βb ¼ βs ¼ β and
ηs ¼ ηb ¼ η. We also have to identify the electric potential
of the black hole ϕb with that of the soliton, and the
magnetic flux of the soliton Φs with that of the black hole.
In general phase transitions will occur between the

planar black hole (17) and the soliton (23) for a broad
range of parameters and couplings. To illustrate this, we
consider the 3-horizon black hole, for which bi≥5 ¼ 0

implying

αi ¼
2i−1ð3i − 3Þ!
i!ð2i − 1Þ! αi−12 for i ≥ 3: ð35Þ

In this case the theory is characterized by a single NLED
coupling α2, with the remaining infinite list of couplings
given by (35). For spherical black holes this choice of
couplings also leads to very simple exact solutions [17],
keeping analytic control over most of the thermal properties.

Once the solution is constructed, one could apply the
methods of [19,20] to obtain an NLED that accommodates
such solutions.
Let us first analyze the many soliton branches that may

appear for different values of the magnetic flux. The upper
panel of Fig. 1 reproduces the result of [14] in Maxwell
electrodynamics for α2 ¼ 0; the lower panel shows that for
small values of α2, a new locally stable soliton branch
emerges for a range of magnetic flux. The dotted segments
denote configurations for which the generalized specific
heat is negative (the free energy is not a convex function of
the magnetic flux).
As α2 increases the swallow-tail shrinks and then

disappears. A new structure appears with negative free
energy when α2 ∼ 0.625, as shown in Fig. 2. We clearly see
from the inset that when α2 ¼ 0.624 a phase transition
between solitons occurs, since for a given value of the
magnetic flux, the dominant soliton phase switches from
small to large. Again, dotted segments represent configu-
rations with nonconvex free energy (negative specific heat).

The new triple point and a reentrant phase transition.
Now that we have explored the soliton phase space, it is

(a)

(b)

FIG. 1. Reduced free energy Gl2=ðηLÞ of the soliton branches
as function of the magnetic flux Φ. We set the spacelike period
η ¼ 0.5. The green line is a new stable soliton branch.
(a) α2 ¼ 0.0. (b) α2 ¼ 0.001.

(a)

(b)

FIG. 2. Reduced free energy Gl2=ðηLÞ of the small (blue) and
large (green) soliton branches as function of the magnetic flux Φ
for larger values of α2. We set the spacelike period η ¼ 0.5.
(a) α2 ¼ 0.6. (b) α2 ¼ 0.624.
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instructive to take the black hole phases into account.
Figure 3 shows that for large values of the electric potential
ϕ, there is a first order phase transition between the small
soliton and the black hole, whereas for small values of ϕ
this transition is between the black hole and the large
soliton. Significantly, there is a precise value of ϕ and the
magnetic flux Φ, at which the free energy of the black hole
(purple horizontal line), coincides with that of the two
locally stable solitons (blue and green lines). At such a
point in phase space the three configurations coexist,
leading to a new type of triple point. Notice also that there
is a reentrant phase transition. For example at ϕ ¼ 6.2, the
small soliton (blue curve) dominates for small Φ; as Φ
increases there is a first-order transition to the black hole.
Further increasing Φ, there is another first-order transition
to the large soliton (green curve). Finally, above a second

critical magnetic flux, the same black hole branch returns to
being the dominant phase. The free energy of the black hole
is insensitive to variations of the magnetic flux, while the
free energy of the solitons is not sensitive to the electric
potential. This can be see from plots of the surfaces
Gðϕ;ΦÞ, shown in Fig. 4. A more thorough exploration
of the parameter space for this system will be provided
elsewhere.

Discussion. We have shown the existence of a new type of
triple point in general relativity in AdS, supported by
NLED. This point in phase space allows for the coexistence
of two solitons and a black hole, at a given value of the
temperature, magnetic flux, spacelike period and electric
potential. Even though the NLED Lagrangian contains
arbitrarily high powers of the Lorentz invariant F2, both the
electric and gravitational potential of the planar black hole
are at most linear in the unique dimensionful coupling
defining the NLED, as already observed for spherically
symmetric black holes by Gao [17].
We emphasize that the behavior we have observed is

generic for Einstein gravity coupled to any NLED and not
simply the 3-horizon case considered here. In general
multihorizon black holes can be expected to exhibit multi-
critical soliton black hole phase behavior, contingent on the
number of horizons and the choice of parameters. This is
because an increased number of horizons has an increased
number of NLED couplings, yielding a sufficient number of
thermodynamic variables to support multiple phases [21].
Given the simple structure of the black holes in this

theory, it would be natural to explore the existence of
nonstationary configurations supported by this NLED, as
recently done in [22] for the case of MODMAX theory
[23], for accelerating black holes. We also expect that
multicritical points, similar to those observed for NLED
black holes [18], are also present for NLED solitons, and
that perhaps extensions to more complicated solitons [24]
are possible. We expect to return to these topics in the near
future, as well a to provide a more exhaustive exploration of
the parameter space of the solitons and black holes.
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FIG. 3. Gl2=ðηLÞ for solitons and black hole solutions as
function of the magnetic flux Φ, for different, fixed values of the
electric potential ϕ. Here α2 ¼ 0.624, T ¼ 0.6, and η ¼ 0.5.

FIG. 4. Reduced free energy Gl2=ðηLÞ for solitons (blue,
orange, and green surfaces) and black hole (yellow surface) as
a function of the magnetic flux Φ and the electric potential ϕ. We
set the nonlinear coupling α2 ¼ 0.624, the temperature T ¼ 0.6
and the period of the spacelike cycle η ¼ 0.5.
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