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Computing leading higher curvature contributions to thermodynamic quantities of AdS black hole is
drastically simplified once the higher curvature terms are expressed in terms of powers of Weyl tensor by
applying proper field redefinitions, avoiding the usual complications caused by higher derivative Gibbons-
Hawking-York term or surface counterterms. We establish the method by computing the Euclidean action
of general rotating anti–de Sitter (AdS) black holes in five-dimensional quadratic curvature theories with or
without supersymmetry and verifying the results numerically. Our result is the state of the art for charged
rotating AdS black holes in five-dimensional minimal gauged supergravity including corrections from all
three supersymmetric curvature squared terms. Our approach facilitates precision tests in the AdS/CFT
correspondence and should be applicable in diverse dimensions.
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Introduction. The Weyl squared action has played a
versatile role in our pursuit of a quantum theory of general
relativity. In four dimensions, it admits a convergent
Euclidean functional integral [1] and enjoys renormaliz-
ability and asymptotic freedom [2]. Interestingly, the
quantum fluctuations break the local scale invariance
inducing the Einstein-Hilbert term with a calculable
Newton’s constant [3,4]. In the context of (A)dS/CFT
correspondence, Weyl gravity modified by a purely topo-
logical contribution from a Gauss-Bonnet term turns out to
be equivalent to renormalized Einstein gravity at tree level
[5], with suitable boundary conditions chosen [6,7]. The
equivalence between Weyl gravity and Einstein gravity
underlies the construction of the widely studied critical
gravity [8] and admits generalizations also in higher
dimensions [6,9]. The principal reason that Weyl gravity
has not received general acceptance is because the fourth-
order derivatives lead to ghostlike excitations in the
linearized theory. However, the violation of tree level
unitarity may be cured by invoking the Lee-Wick mecha-
nism [10–12] or adopting the PT symmetric inner product

[13,14]. In the full theory, there is the zero energy theorem
[15] stating that the exact asymptotically flat solutions in
Weyl gravity all have zero energy rendering the ghosts
confined in the nonlinear theory at large distances.
The aim of this article is to unveil another instrumental

role of Weyl gravity in the framework of effective field
theory of quantum gravity. Since the work of Gibbons and
Hawking [16], numerous endeavors have been devoted to
compute the Euclidean action of spacetime, which plays an
important role in the study of black hole thermodynamics,
holography and quantum cosmology. For general higher
derivative gravities, the task becomes much more difficult
since one encounters equations of motion of higher order in
partial derivatives. Built upon previous work [17], we find
that computation of the leading higher curvature contribu-
tions to the Euclidean action of anti–de Sitter (AdS) black
hole is drastically simplified once the higher curvature
terms are expressed in terms of powers of Weyl tensor by
applying proper field redefinitions [18]. The computation
of on-shell Euclidean action boils down to simply evalu-
ating the uncorrected solution in the higher derivative
action, but without having to concern about the compli-
cated higher derivative Gibbons-Hawking-York or surface
counterterms, which would be required in the ordinary
approach. In particular, the new approach is convenient for
studying Kerr-AdS black holes since to obtain the higher
derivative corrections to the Euclidean action, one only
needs to evaluate a bulk integral which has no preference
on the choice of coordinates that may affect the induced
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metric on the conformal boundary [20]. Our new approach
has been verified for static charged AdS black hole in a
related work [21] announced recently. (See Ref. [22] for the
background subtraction approach.) We have also confirmed
the finiteness of Euclidean action for general asymptoti-
cally locally AdS spacetime in Einstein gravity perturbed
by a Weyl squared term. In this Letter, employing our
method, we obtain, for the first time, corrections to
thermodynamics of Kerr-AdS black holes from generic
quadratic curvature terms. This result is also verified
numerically. Equipped with the powerful new method,
we also revisit the leading higher derivative corrections to
charged rotating black holes in five-dimensional minimal
gauged supergravity, using the complete basis of gauged
curvature-squared supergravity [23–27]. We show that all
three supersymmetric curvature-squared terms contribute to
the Euclidean action of the charged rotating AdS black hole
regardless of its supersymmetry.
Before we continue, it is worth mentioning some closely

related work [28–31]. Both [28] and [29] computed
4-derivative corrections to thermodynamics of charged
rotating black holes in five dimensional minimal gauged
supergravity using only the supersymmetric Weyl-squared
and Ricci scalar-squared action. Surprisingly, it is the bare
AdS radius rather than the effective AdS radius that enters
the Bogomol'nyi-Prasad-Sommerfield (BPS) relation
among conserved charges although the AdS radius and
conserved charges are all affected by the curvature squared
combinations adopted in [28,29,31]. Thus a third indepen-
dent check on the thermodynamic quantities is urgently
needed. In the very recent work [30], the near horizon
geometry of BPS charged rotating black hole was solved
perturbatively when the two angular momentum J1, J2 are
nearly equal, resulting in the BPS black hole entropy
expressed order by order in powers of J1 − J2. Upon
taking the BPS limit, our results not only yield the correct
black hole entropy in the full parameter region, but also
gives rise to a corrected linear relation amongst mass,
electric charge, and two angular momentum. As the higher
derivative corrections to the BPS relation are fully encoded
in the effective AdS radius, our result seems more natural
from the point of view of AdS superalgebra compared to
the previous result [29] which includes only the bare AdS
radius.

Quadratic curvature corrections to Kerr-AdS black holes.
We consider the effective theory of the Einstein gravity
with a negative cosmological constant in five dimensions
extended by the general quadratic curvature terms. In
Euclidean signature, the action takes the form

IQG ¼ −
σ0
16π

Z
d5x

ffiffiffi
g

p ðRþ 12l−2
0 þ L4Þ;

L4 ¼ c1R2 þ c2rμνrμν þ c3CμνρσCμνρσ; ð1Þ

where rμν ¼ Rμν − 1
5
gμνR, Cμνρσ is the Weyl tensor, coef-

ficients ci are of the dimension length squared and we
introduced σ0 ¼ 1=G for later convenience. Without higher
derivative corrections, the general Kerr-AdS solution has
been obtained in [32]. Denote

Ξa;0 ¼ 1 − a2l−2
0 ; Ξb;0 ¼ 1 − b2l−2

0 ; ð2Þ
the mass, entropy, and two angular momenta are given
by [20,32]

M0 ¼
σ0πmð2Ξa;0 þ 2Ξb;0 − Ξa;0Ξb;0Þ

4Ξ2
a;0Ξ2

b;0

;

S0 ¼
σ0π

2ðr20 þ a2Þðr20 þ b2Þ
2r0ΞaΞb

;

Ja;0 ¼
σ0πma
2Ξ2

a;0Ξb;0
; Jb;0 ¼

σ0πmb
2Ξ2

b;0Ξa;0
: ð3Þ

where m, a, b are integration constants and r0 is the radius
of the outer horizon determined by

ðr20 þ a2Þðr20 þ b2Þð1þ r20l
−2
0 Þ − 2mr20 ¼ 0: ð4Þ

Thermodynamic potentials including temperature and two
angular velocities are [20,32]

T0 ¼
1

2π

�
r0ð1þ r20l

−2
0 Þ

r20 þ a2
þ r0ð1þ r20l

−2
0 Þ

r20 þ b2
−

1

r0

�
;

Ωa;0 ¼
að1þ r20l

−2
0 Þ

r20 þ a2
; Ωb;0 ¼

bð1þ r20l
−2
0 Þ

r20 þ b2
; ð5Þ

Using (4), one can verify that (3) and (5) obey the first law
of thermodynamics. The Gibbs free energy is obtained as

G0 ¼ M0 − T0S0 −Ωa;0Ja;0 −Ωb;0Jb;0;

¼ σ0π

4Ξa;0Ξb;0
½m − l−2

0 ðr20 þ a2Þðr20 þ b2Þ�: ð6Þ

To compute 4-derivative corrections to the thermodynamics
of general Kerr-AdS solution, we first perform the field
redefinitions

gμν → g0μν ¼ gμν þ λ0gμν þ λ1Rμν þ λ2gμνR;

λ0 ¼
40

3
c1l−2

0 ; λ1 ¼ −c2; λ2 ¼
2

3
c1 þ

1

5
c2; ð7Þ

which transform the general quadratic curvature theory (1)
to the Einstein-Weyl theory with equivalent thermody-
namic variables [21]

IEW ¼ −
σ

16π

Z
d5x

ffiffiffi
g

p ½ðRþ 12l−2Þ þ c3CμνρσCμνρσ�

− Isurf ; ð8Þ
where the surface term includes the Gibbons-Hawking-
York term and counterterms for the 2-derivative bulk action
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Isurf ¼
σ

16π

Z
z¼ϵ

d4x
ffiffiffi
h

p �
2K −

�
6

l
þ l

2
R
�
þ log

ϵ2

l2
A4

�
;

A4 ¼
l3

8

�
RijRij −

1

3
R2

�
þ c3

l
2
CijklCijkl; ð9Þ

where K is the extrinsic curvature of the AdS boundary
located at z ¼ ϵ for ϵ → 0, andR,Rij, and Cijkl refer to the
boundary Ricci scalar curvature, Ricci tensor and Weyl
tensor, respectively. The logarithmic terms induced by the
Einstein gravity were well known [33]. However, we also
find that the bulk Weyl tensor squared also induces a new
logarithmic counterterm proportional to c3. As in the case
of 2-derivative pure gravity [34], these surface terms are
sufficient to remove all the IR divergences for general
asymptotically locally AdS solutions. Notice that the new
logarithmic counterterm proportional to c3 is absent when
the bulk spacetime dimension is even (see Ref. [35] for
D ¼ 4 case and [9,36] for D ¼ 6 case). Moreover, all the
logarithmic terms vanish for AdS black holes with S1 ×M3

type boundary topology forM3 being Einstein which is the
case for rotating Kerr-AdS black hole. The coefficients of
the logarithmic counterterms also imply the central charges
in the dual conformal field theory (CFT) [37]

a ¼ πl3

8
σ; c ¼ πl3

8
σð1þ 8c3l−2Þ: ð10Þ

By treating the 4-derivative terms perturbatively, i.e.,
their corrections to the solutions vanish smoothly as the
4-derivative couplings are turned off, one can still impose
the standard Dirichlet boundary condition on the metric
residing on the conformal boundary [34,38,39].
In (8) and (9), various coupling constants in the Einstein-

Weyl theory are related to the original ones in (1) by

σ ¼ σ0 −
40c1σ0
l2
0

; l ¼ l0 −
10c1
3l0

: ð11Þ

For Einstein-Weyl gravity, the quadratic curvature correc-
tion to the Euclidean action of Kerr-AdS black hole is
obtained by simply plugging the uncorrected solution [32]
into Weyl-squared action and performing the integration
[21]. With the Dirichlet boundary condition, the resulting
Euclidean action is defined in the grand ensemble with
fixed temperature and angular velocity. In terms of these
variables, the higher derivative interactions only affect the
form of the functional dependence of the Euclidean action
on T and Ωa;b. Schematically we have

IEW ¼ I0ðT;ΩÞ þ c3I1ðT;ΩÞ þ
3a
4l

: ð12Þ

According to the prescription of [17,21], in terms of the
variables r0; a; b, the form of temperature and angular
momenta remain the same, namely

T ¼ T0; Ωa ¼ Ωa;0; Ωb ¼ Ωb;0; ð13Þ

whereas the conserved charges do receive explicit higher
derivative corrections.
Expressing parameters of Einstein-Weyl theory back to

those of the original theory, we obtain the Euclidean action
of Kerr-AdS black hole with general quadratic curvature
corrections. Using the standard relation between Euclidean
action and Gibbs free energy [16] and omitting the central
charge, we obtain Gibbs free energy of Kerr-AdS black
hole in the grand canonical ensemble

GQG ¼ G0 þ δG1 þ δG2; ð14Þ

in which δG1 and δG2 are corrections caused by the Ricci
scalar squared and Weyl-squared

δG1 ¼ −c1
5πðâ2 þ 1Þðb̂2 þ 1Þr̂20σ0

6Ξ̂2
a;0Ξ̂2

b;0

�
7r̂60â

2b̂2 − 8r̂40ðâ2b̂2 þ â2 þ b̂2Þ þ r̂20ð7â2 þ 7b̂2 þ 9Þ − 6

�
;

δG2 ¼ −c3
πðr̂20 þ 1Þ2σ0½â2b̂2ðâ2b̂2 − 20Þ þ 2ðâ2 þ b̂2Þð1 − 3â2b̂2Þ þ â4 þ b̂4 þ 9�

4ðâ2 þ 1Þðb̂2 þ 1ÞΞ̂a;0Ξ̂b;0

; ð15Þ

where we introduced dimensionless variables r̂0 ¼ r0l−1
0 ,

â ¼ ar−10 , b̂ ¼ br−10 and accordingly Ξ̂a;0 ¼ 1 − â2r̂20,
Ξ̂b;0 ¼ 1 − b̂2r̂20. It is interesting to see that rμνrμν does
not contribute. The other thermodynamic variables are ob-
tained from the Gibbs free energy via standard relations

M ¼ GQG þ TSþ ΩaJa þΩbJb;

S ¼ −
∂GQG

∂T

����
Ωa;b

; JaðbÞ ¼ −
∂GQG

∂ΩaðbÞ

����
T;ΩbðaÞ

: ð16Þ

To test results above, we consider Kerr-AdS black hole with
equal rotation which is cohomogenity-1 allowing us to
solve the 4-derivative field equations numerically. From the
numerical solution, we extract the mass and angular
momenta using the generalized Ashtekar-Magnon-Das
formula for quadratic curvature theories [40–42] and
compare them to the analytical results obtained above.
For a nonextremal Kerr-AdS solution, the comparison is
still not easy as all the thermodynamic quantities depend on
two variables. To simplify the comparison further, we
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restrict to the extremal Kerr-AdS solution in which all the
thermodynamic quantities depend on a single variable. In
particular, we consider mass as a function of the angular
momentum

MexðJexÞ ¼ M0ðJexÞ þ δMðJexÞ; ð17Þ

of which M0ðJexÞ can be derived from the uncorrected
quantities given in (3), the explicit expression of MexðJexÞ
is a bit lengthy and will be postponed to the Supplemental
Material [43]. It is the latter which will be subject to
numerical tests.
In Fig. 1 below, we show that the analytical and numerical

results indeed match in a wide range of variables for thewell
studied Gauss-Bonnet combination corresponding to c1 ¼
3
10
α; c2 ¼ − 8

3
α; c3 ¼ α and Einstein-Weyl (EW) gravity

corresponding to c1 ¼ c2 ¼ 0; c3 ¼ α. In the plot, we have
defined the dimensionless mass M ¼ Mex=ðπσ0l2

0Þ and
angularJ ¼ Jex=ðπσ0l3

0Þ. The plot is independent of choice
of α as δM depends on α linearly.

Quadratic curvature corrections to charged rotating black
holes in 5D minimal gauged supergravity. The complete
basis of curvature squared supergravity in 5D minimal
gauged supergravity was presented in [25,26]. After apply-
ing field redefinitions preserving black hole thermodynam-
ics [21], we obtain the action below:

I5D;N¼1 ¼ −
σ

16π

Z
d5x

ffiffiffi
g

p �
Rþ 12

l2
−

1

4g2
FμνFμν

þ i

12
ffiffiffi
3

p
g3

ϵμνρσδFμνFρσAδ þ c1LWeyl2

�
− Isurf ;

ð18Þ

where the surface term includes additional logarithmic
counterterm proportional to FijFij [48]. We recall that in

the original Lagrangian, there are supersymmetric Ricci
tensor squared and Ricci scalar squared actions. Denoting
their coefficients by c2 and c3, respectively, the coupling
constants in the action (18) are related to the original
ones via (see the Supplemental Material [43] for further
details)

σ ¼ σ0 − 24σ0ðc2 þ c3Þl−2
0 ;

g ¼ g0
�
1þ 4ðc2 þ c3Þl−2

0

	
;

l ¼ l0

�
1 − 4ðc2 þ c3Þl−2

0

	
; ð19Þ

where g0 is the U(1) coupling before the field redefinition.
It is a bookkeeping parameter introduced via Aμ → Aμ=g0
in the standard supergravity action and does not affect
physical quantities. The on-shell Weyl-squared supergrav-
ity action LWeyl2 is given by

LWeyl2 ¼ −
2

g2l2
FμνFμν −

iffiffiffi
3

p
g3l2

ϵμνρσδFμνFρσAδ

þCμνρσCμνρσ −
1

2g2
CμνρσFμνFρσ þ 13

96g4
ðFμνFμνÞ2

−
13

24g4
F4þ

ffiffiffi
3

p
i

6g
ϵμνρσαAμCνρ

βγCσαβγ; ð20Þ

where we define F4 ≔ FμνFνλFλδFδμ. Different from the
ungauged supergravity, in the gauged case, the curvature
squared supergravity actions contain also 2-derivative
terms. It is worth mentioning that in the frame we have
chosen, the parameter l already represents the effective
AdS radius. This is quite different from the setup adopted
in [28,29] where the curvature squared combinations do
renormalize the bare AdS radius [49].
The general charged rotating black hole solution in

2-derivative 5Dminimal gauged supergravity was obtained
in [50]. Regularity of the solution determines the inverse
temperature to be

β ¼ 2πr0ðabqþ ðr20 þ a2Þðr20 þ b2ÞÞ
r40½1þ ða2 þ b2 þ 2r20Þl−2� − ðabþ qÞ2 ; ð21Þ

where r0 is the radius of the outer horizon, a, b, q are
parameters related to angular velocities and electrostatic
potential given by

Ωa ¼
aðr20 þ b2Þð1þ l−2r20Þ þ bq
abqþ ðr20 þ a2Þðr20 þ b2Þ ;

Ωb ¼
bðr20 þ a2Þð1þ l−2r20Þ þ aq
abqþ ðr20 þ a2Þðr20 þ b2Þ ;

Φe ¼
g

ffiffiffi
3

p
qr20

abqþ ðr20 þ a2Þðr20 þ b2Þ : ð22Þ

FIG. 1. For extremal Kerr-AdS black hole with equal rotation,
we exhibit matching between analytical and numerical results for
5D Einstein-Gauss-Bonnet gravity and Einstein-Weyl gravity.
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Analogous to the discussion in the previous section, these
variables characterize the Euclidean action of charged
rotating black holes as the current choice of boundary
condition specifies the grand canonical ensemble.
With supersymmetric curvature squared corrections

switched on, in principle one would have to first solve
for the modified field equations before computing the
corrected on-shell action. However, as established in
[17,21] and here, this step can be circumvented if the
higher curvature terms are expressed in terms of the Weyl
tensor. The fully corrected on-shell action can be obtained
by simply evaluating the modified action on the uncor-
rected solution. Adopting this method, we obtain the
Euclidean action for the general charged rotating AdS
black holes in 5D minimal gauged supergravity extended
by all three curvature squared invariants. The full result is
given in the Supplemental Material [43]. Similar to the
nonsupersymmetric case, the thermodynamic variables
β;Ωa;b;Φe remains the same form as in (22). Thus the
conserved charges can be obtained by differentiating the
Euclidean action with respect to β;Ωa;b;Φe.
We now apply the result to under the entropy of

the supersymmetric charged rotating AdS black hole
[51,52] which admits microscopic description in terms
of index of the dual 4D;N ¼ 1 superconformal field
theory [53–59]. To proceed, we impose supersymmetry
condition

q ¼ −ða − ir0Þðb − ir0Þð1 − ir0l−1Þ: ð23Þ

Note that the BPS limit requires also zero temperature
and can be arrived via r0 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðaþ bÞ þ ab

p
[50].

Different from previous work [28,29], the supersymmet-
ric condition now is corrected by the 4-derivative
terms whose effect is fully encoded in the effective AdS
radius l. Subsequently, one can define thermodynamic
potentials

ωa ¼ βsðΩa;s −Ωa;�Þ ¼
2πðb − ir0Þða − lÞ

Ξ
;

ωb ¼ βsðΩb;s −Ωb;�Þ ¼
2πða − ir0Þðb − lÞ

Ξ
;

φ ¼ βsðΦe;s −Φe;�Þ ¼
6πglða − ir0Þðb − ir0Þffiffiffi

3
p

Ξ
; ð24Þ

where Ξ¼ 2r0ðlþ aþ bÞ þ iðlðaþ bÞ þ abÞ− 3ir20 and

they satisfy ωa þ ωb −
ffiffi
3

p
gl φ − 2πi ¼ 0. Here “s” means

that the supersymmetry condition (23) has been applied and
“*” denotes values of these variable in the BPS limit

Ωa;� ¼ l−1; Ωb;� ¼ l−1; Φe;� ¼
ffiffiffi
3

p
g; ð25Þ

Imposing the supersymmetric condition (23), we find that
the Euclidean action drastically simplifies

Iren;s ¼
πσφ3ð1 − 12c1

l2 Þ
12

ffiffiffi
3

p
g3ωaωb

þ c1πσφðω2
a þ ω2

b − 4π2Þffiffiffi
3

p
gωaωb

: ð26Þ

In terms of the a and c central charges of the dual theory
given in (10) with c3 replaced by c1, the supersymmetric
on-shell action indeed takes the form as its counterpart in
the dual field theory [60]. Although our supersymmetric
action takes the same form as previous results in [28,29],
the details are different as our ωa;b;φ defined in (24)
depend on the effective AdS radius, while those in [28,29]
use bare AdS radius instead. Taking the BPS limit, we find
the conserved charges obey the linear relation [61]

M� − l−1Ja;� − l−1Jb;� −
3

2
l−1QR ¼ 0; ð27Þ

where QR ≔ 2glffiffi
3

p Qe;� is the canonically normalized U(1)

R-charge in the dual SCFT. This equality leads to vanishing
Gibbs free energy. In BPS limit, the entropy of the charged
rotating black hole also reproduces the microscopic
result [28,29]. Namely, up to OðciÞ it is given by

S� ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Q2

R − 8aðJa;� þ Jb;�Þ − 16aða − cÞ ðJa;� − Jb;�Þ2
Q2

R − 2aðJa;� þ Jb;�Þ

s
: ð28Þ

Conclusion and outlook. So far we have showed that Weyl
gravity offers an efficient way of computing the leading
higher curvature contributions to thermodynamic quantities
of general rotating AdS black holes in 5D quadratic gravity
theories with or without supersymmetry. In fact, this
approach also applies to more general quadratic gravity
theories with matter couplings in other dimensions simply
due to the fact that Weyl tensor vanishes sufficiently fast
near the AdS boundary. We believe our approach can be
pushed forward to the next to next to leading order higher

curvature corrections as already achieved in the asymp-
totically flat case [62]. Together with the first law of
thermodynamics, our results also imply that in the
basis of Weyl tensor the leading higher derivative correc-
tions to the black entropy can be readily computed via
δS ¼ −IhdjðT;Φe;Ωa;bÞ, which should be useful in the dis-
cussion of the AdS counterpart of weak gravity conjecture.
To further establish the effectiveness of Weyl gravity in
AdS quantum gravity through holography, it should be very
interesting to consider other solutions such AdS black
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strings [63–65] and compute correlation functions as well
as various transport coefficients.
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