
Carrollian supersymmetry and SYK-like models

Oguzhan Kasikci,1,* Mehmet Ozkan,1,† Yi Pang ,2,3,‡ and Utku Zorba 1,§

1Department of Physics, Istanbul Technical University, Maslak 34469 Istanbul, Türkiye
2Center for Joint Quantum Studies and Department of Physics, School of Science,

Tianjin University, Tianjin 300350, China
3Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China

(Received 15 January 2024; accepted 19 June 2024; published 22 July 2024)

This work challenges the conventional notion that in a spacetime dimension higher than one, a
supersymmetric Lagrangian invariably consists of purely bosonic terms, purely fermionic terms, as well as
boson-fermion mixing terms. By recasting a relativistic Lagrangian in terms of its nonrelativistic and
ultrarelativistic sectors, we reveal that an ultrarelativistic (Carrollian) supersymmetric Lagrangian exhibits
an exotic feature; that is, it can exist without a purely bosonic contribution. Based on this result, we
demonstrate a link between higher-dimensional Carrollian and (0þ 1)-dimensional quantum mechanical
models, yielding higher-order extensions of supersymmetric Sachdev-Ye-Kitaev (SYK) models in which
purely bosonic higher-order terms are absent. Given that supersymmetry plays an essential role in
improving the quantum behavior and solubility, our findings may lead to interesting applications in
non-AdS holography.
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Supersymmetry, as a symmetry under the exchange of
bosons and fermions, implies that typically a supersym-
metric theory decomposes into three parts: a purely bosonic
part, a purely fermionic part, and a set of mixing terms that
couples the fermionic and the bosonic sectors to each other.
In many known examples, this statement appears to hold
generically in diverse dimensions higher than one with any
number of supercharges and any number of derivatives. In
this work, we question this statement by decomposing a
relativistic Lagrangian into its Galilean (nonrelativistic) and
Carrollian (ultrarelativistic) sectors. Our analysis under-
scores the pivotal role played by the nonrelativistic sector
organized according to the powers of the speed of light.
Most notably, we show that it is possible for a super-
symmetric ultrarelativistic Lagrangian to exist without a
strict requirement for a purely bosonic part.
The ultrarelativistic corner of the Bronstein hypercube

has been under intense investigation in recent years,
expanding our knowledge beyond the standard framework
of relativistic physics. This endeavor has revitalized
Carrollian physics [1–3] in many areas, including dynamics

of null hypersurfaces [4–11], celestial holography and
conformal Carroll holography [12–18], condensed matter
systems [19–24], hydrodynamics [25–31], Carrollian
gravity [32–34], black holes [35], supergravity [36–38],
and string theory [39–41]. Based on the successful expe-
rience of relativistic supersymmetry, Carroll supersym-
metry is expected to be a vital component of various
studies for a number of reasons. It improves the quantum
behavior of nonsupersymmetric models and offers more
tools for solving a model. Nevertheless, it is poorly
understood at this stage as most studies focus on two-
derivative scalar field theories and their quantization
[23,28,42–44].
Another perspective to better understand the Carroll

supersymmetry comes from the fact that a higher-
dimensional Carrollian model without spatial derivatives
can be viewed as a collection of infinitely many quantum
mechanical models, each labeled by its spatial coordinates.
Consequently, it appears that Carroll symmetry can also
emerge in quantum mechanical systems. From this view-
point, the (0þ 1)-dimensional Sachdev-Ye-Kitaev (SYK)
[45,46] or SYK-like models [47–50] are naturally related to
Carrollian models [51]. As we will show, the lack of a
purely bosonic part simultaneously leads to the absence of
spatial derivatives in supersymmetric Carrollian models.
Thus, our result unveils another connection between
Carrollian models and quantum mechanical models. In
particular, this means that one can obtain extensions of
the recently studied supersymmetric SYK-like models as a
by-product of higher-dimensional models.
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We start our discussion by fixing our relativistic notation
as xμ ¼ ðct; xiÞ along with η ¼ diagð−;þ; � � � ;þÞ where η
is the Minkowski metric. Assuming that in a relativistic
Lagrangian the speed of light c only appears via time
derivatives (there are no other c-dependent parameters),
and consequently when writing out the c dependence
explicitly, the Lagrangian is of the form L ¼ P

N
n¼0 c

−nKn,
whereKn represents the Lagrangian that is nth order in time
derivatives and N denotes the highest number of time
derivatives. Thus, a purely spatial derivative part of a
Lagrangian comes with no speed of light factor, hence
surviving in the c → ∞ limit, which is the so-called
Galilean limit of a relativistic theory.
Recall that the structure of the supersymmetry generator

is of the following form:

Qα ¼
∂

∂θ̄α
þ 1

4c
ðγ0θÞα∂t −

1

4
ðγiθÞα∂i; ð1Þ

which can be recollected according to powers of 1=c as
δQ ¼ δGQ þ δ0Q=c where the superscript G refers to the
Galilean part that survives in the c → ∞ limit. The
invariance under relativistic supersymmetry (up to the total
derivative) then implies

0 ¼ δQL ¼ δ0QKN

cNþ1
þ
XN−1

n¼0

δ0QKn þ δGQKnþ1

cnþ1
þ δGQK0: ð2Þ

This structure indicates that KN is invariant under δ0Q while
K0 is invariant under δGQ, and transformations of other Kn’s
ought to cancel with each other. As a concrete example,
consider the relativistic Lagrangian for a three-dimensional
(3D)N ¼ 1 scalar multiplet with the field content ðϕ;ψ ; fÞ

LS¼
1

2c2
ϕ̇2þ 1

8c
ψ̄γ0ψ̇−

1

2
∂iϕ∂

iϕ−
1

8
ψ̄γi∂iψþ1

8
f2; ð3Þ

which is invariant under the supersymmetry transformation
rules

δf ¼ 1

2c
ϵ̄γ0ψ̇ −

1

2
ϵ̄γi∂iψ ; δϕ ¼ 1

4
ϵ̄ψ ;

δψ ¼ −
1

c
γ0ϕ̇ϵþ γi∂iϕϵ −

1

2
fϵ: ð4Þ

Here, ϕ and f are real scalar fields while ψ is a two-
component Majorana spinor. Obviously, the Oðc−2Þ
Lagrangian is invariant under δ0Q transformation rules since
δ0Qϕ ¼ 0. Similarly, the Oðc0Þ Lagrangian, which is the
Galilean supersymmetric model, is invariant under δGQ trans-
formations. Finally, note that in the c → ∞ limit, the time
derivatives drop out from the transformation rules which is
expected since the supersymmetry algebra is of the form

fQ;Qg ∼ −
1

c
γ0H þ γiPi; ð5Þ

indicating that in the Galilean limit, supercharges square to
the spatial translations. Before finishing our discussion on
Galilean models, we point out another important property of
the expansion (2). Writing out the Oðc−1Þ term in the
expansion of the Lagrangian, we obtain

δQL ¼ δ0QKN

cNþ1
þ
XN−1

n¼1

δ0QKn þ δGQKnþ1

cnþ1

þ 1

c
ðδ0QK0 þ δGQK1Þ þ δGQK0: ð6Þ

This form of the expansion indicates that under supersym-
metry transformation, the invariance of the action is satisfied
in each order in 1=c expansion, independently. Consequently,
if K0 vanishes identically, then K1 becomes Galilean invari-
ant. If that happens, we multiply the entire Lagrangian with a
factor of c before taking the c → ∞ limit to obtain the
Galilean invariant model described by K1. As suggested by
the example (3), the actionK1 contains only fermions but no
bosonic partners. Thus, the vanishing of K0 appears to
indicate that the Galilean supersymmetric model can exist
without referring to any purely bosonic terms. Nevertheless,
asK0 contains only spatial derivatives but no time derivatives,
it seems unlikely to obtain an identically vanishing K0. The
reason is that a Lorentz invariant Lagrangian, if being
nonzero, always has a nonrelativistic limit with purely spatial
derivatives; hence, the vanishing ofK0 implies the vanishing
of the original relativistic model itself [52].
To be concrete, consider the following example [53]:

L ∼ ϕð□ϕ□ϕ − ∂μ∂νϕ∂
μ
∂
νϕÞ: ð7Þ

The K0 part of the action is nonvanishing as the c → ∞
limit only replaces the Lorentz indices with spatial indices,
i.e., K0 ∼ ϕð∂i∂iϕ∂j∂jϕ − ∂i∂jϕ∂

i
∂
jϕÞ. Note, however, that

model has an identically vanishing K4 as terms with the
highest time derivatives cancel with each other. Thus, we
conclude that while Kn for n > 0 might be identically
vanishing, the Galilei model given by K0 is usually
nonvanishing.
The vanishing of the K4 in our example is an encour-

aging signal to work out the structure of the opposite end,
which is the Carrollian supersymmetry arising in the c → 0
limit of relativistic supersymmetry. The algebra (5) sug-
gests that we need to rescale the supersymmetry generators
by a factor of 1=

ffiffiffi
c

p
, i.e., Q → 1=

ffiffiffi
c

p
Q [54]. Furthermore,

we need to rescale the fields with certain powers of c such
that neither the transformation rules nor the Lagrangian
diverges at the c → 0 limit. For instance, for the 3DN ¼ 1
scalar multiplet model (3), the c-scaling can be assigned as
follows:
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ϕ → cϕ; ψ →
ffiffiffi
c

p
ψ ; f → f; ϵ →

ffiffiffi
c

p
ϵ; ð8Þ

so that the supersymmetry generator squares to the time
translation in the c → 0 limit. The resulting Lagrangian
contains only time derivatives that are invariant under the
Carrollian boosts, i.e., xi → xi; t → tþ bixi. More generi-
cally, after rescaling various fields and transformation rules,
we have

L ¼
XN
n¼0

cnLn; δQ ¼ δCQ þ cδ0Q: ð9Þ

Note that the terms with the Nth order time derivative have
been rescaled properly so that the leading term in L comes
out as L0, and the c → 0 limit yields a finite result. The L0

consists of terms that, in the original Lagrangian were
Oðc−NÞ and possible Oðc−nÞ (n < N) terms that acquire
the same powers of c after rescaling the fields. Therefore,
L0 would contain the time derivatives of the bosonic fields
as well as derivatives of fermions and terms involving
auxiliary fields, while its purely spatial derivative part
appears at OðcNÞ. To see the structure of the super-
symmetry generator in the Carroll limit, we first rescale
θ →

ffiffiffi
c

p
θ in (1). Combining with the rescaling of parameter

ϵ as given in (8), one finds that the supersymmetry
transformation acting on a superfield Φ has precisely the
structure in (9),

δQΦ ¼ ½ϵ̄Q;Φ� ¼ ½ϵ̄QC;Φ� þ c½ϵ̄Q0;Φ�: ð10Þ

Here, we assume that the structure of a superfield is not
deformed due to rescaling the fields, and the entire super-
field scales with some power of c. In the case of the scalar
multiplet, the rescaling of the superfield Φ ¼ ϕþ iθ̄ψ þ
θ̄θ
2i f is given by Φ → cΦ according to (8) and θ →

ffiffiffi
c

p
θ.

The invariance of the Lagrangian now implies that
δL ¼ 0, i.e.,

0 ¼ δCQL0 þ
XN
n¼1

cnðδCQLn þ δ0QLn−1Þ þ cNþ1δ0QLN: ð11Þ

As in the case of (7), the contribution to L0 from Oðc−NÞ
may be identically vanishing. In this case, the resulting
Carroll invariant model does not necessarily contain a
purely bosonic term. Instead, it could consist of terms that
are either purely fermionic or fermions coupled to deriv-
atives of bosons.
As an illustrative example with a supersymmetric

Carrollian action that does not contain a purely bosonic
part, we consider the recently proposed spacetime sub-
system symmetric model [53], which has recently been
rediscovered as Carroll swiftons that allow propagation at a
nonvanishing velocity [55]

Lsub ¼
1

2
ϕ̇2
1 þ

1

2
ϕ̇2
2 þ

α

2
ðϕ̇1∂iϕ2 − ϕ̇2∂iϕ1Þ2; ð12Þ

whose relativistic origin is given by [56]

L ¼ −
1

2
∂μϕ1∂

μϕ1 −
1

2
∂μϕ2∂

μϕ2 −
α

4
FμνFμν; ð13Þ

where Fμν ¼ ∂μϕ1∂νϕ2 − ∂νϕ1∂μϕ2. The two-derivative
part has a well-defined limit that can be read off from
(3) after rescaling according to (8) followed by the c → 0
limit. The four-derivative terms can be supersymmetrized
by considering the vector multiplet action

LV ¼ −
1

4
FμνFμν − 2φ̄=∂φ; ð14Þ

which is invariant under the transformation rules
δAμ ¼ −ϵ̄γμφ and δφ ¼ 1

8
γμνFμνϵ, where Fμν ¼ 2∂½μAν�.

Based on the transformation rules of the scalar multiplet (4)
and the vector multiplet, the fields of the vector
multiplet can be realized as composites built from the
scalar multiplet

φ ¼ 1

8

�
=∂ϕ1ψ2 − =∂ϕ2ψ1 −

1

2
f1ψ2 þ

1

2
f2ψ1

�
;

Fμν ¼ ∂μϕ1∂νϕ2 − ∂νϕ1∂μϕ2 þ
1

8
ψ̄1γμ∂νψ2

−
1

8
ψ̄1γν∂μψ2 −

1

8
ψ̄2γμ∂νψ1 þ

1

8
ψ̄2γν∂μψ1: ð15Þ

These composite expressions indicate that the lowest-order
Lagrangian, which contains only time derivatives given as
Oðc−4Þ, identically vanishes as F00 ¼ 0. Once the fields are
rescaled in accordance with (8), the lowest-order composite
expression for Fμν and φ are given by

φ ¼ c1=2

8

�
γ0ϕ̇1ψ2 − γ0ϕ̇2ψ1 −

1

2
f1ψ2 þ

1

2
f2ψ1

�
;

F0i ¼
1

8
ðψ̄2γiψ̇1 − ψ̄1γiψ̇2Þ; Fij ¼ OðcÞ: ð16Þ

Most importantly, the lowest order F0i does not contain any
purely bosonic parts as they are included in OðcÞ due to
rescaling of the fields. Consequently, the Carroll limit gives
rise to the following supersymmetric model consisting of
four-fields interactions

L4f ¼
1

2
αbibi þ 2αλ̄γ0λ̇; ð17Þ

where
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bi ¼
1

8
ðψ̄2γiψ̇1 − ψ̄1γiψ̇2Þ;

λ ¼ 1

8

�
γ0ϕ̇1ψ2 − γ0ϕ̇2ψ1 −

1

2
f1ψ2 þ

1

2
f2ψ1

�
: ð18Þ

This is an example of a supersymmetric model that contains
only purely fermionic part and mixing terms, but no purely
bosonic part. The supersymmetry of the model can also be
checked explicitly by noticing the transformation rules for
bi and λ are given by δbi ¼ ϵ̄γiλ̇ and δλ ¼ 1

4
biγi0ϵ. Upon

using the transformation rules, the Lagrangian (17) is
invariant up to a total derivative term ∂tðϵ̄γiλbiÞ=2.
As mentioned, the Carrollian supersymmetric model

without a bosonic part (17) does not contain a spatial
derivative, which enables us to calculate a higher-
order correction to the N ¼ 2 SYK model [48,50] by
reducing (17) to (0þ 1) dimensions. This is achieved by
first generalizing our construction to the N-number of
scalar multiplets with a cubic potential term. In this case,
the two-derivative action is given by

LNS ¼ −
1

2
∂μϕ

A
∂
μϕA −

1

8
ψ̄A=∂ψA þ 1

8
fAfA

þ CABC

�
ϕAϕBfC þ 1

2
ϕAψ̄BψC

�
; ð19Þ

where CABC is fully symmetric in its indices and
A;B ¼ 1; 2;…; N counts the number of multiplets. The
higher-derivative part is still given by the vector multiplet
action (14), but with the following composite expressions
for ðFμν;φÞ

φ ¼ 1

8
CAB

�
=∂ϕAψB −

1

2
fAψB

�
;

Fμν ¼ CAB

�
∂μϕ

A
∂νϕ

B þ 1

4
ψ̄Aγ½μ∂ν�ψB

�
; ð20Þ

where CAB is antisymmetric in its indices. Upon rescaling
the fields in accordance with (8) and CABC with a factor of
c−2, and finally taking the c → 0 limit, we obtain the
Carrollian supersymmetric N scalar multiplet model

LCS ¼
1

2
ϕ̇Aϕ̇A þ 1

8
ψ̄Aγ0ψ̇

A þ 1

8
fAfA þ CABCϕ

AϕBfC

þ 1

2
CABCϕ

Aψ̄BψC þ 1

2
αbibi þ 2αλ̄γ0λ̇: ð21Þ

Here, the composite expressions for bi and λ are given by

bi ¼
1

8
CABψ̄

Aγiψ̇
B;

λi ¼
1

8
CABϕ̇

Aγ0ψ
B
i −

1

2
CABfAψB

i : ð22Þ

This model is invariant under the following set of trans-
formation rules:

δfA ¼ 1

2
ϵ̄γ0ψ̇

A; δϕA ¼ 1

4
ϵ̄ψA;

δψA ¼ −γ0ϕ̇Aϵ −
1

2
fAϵ: ð23Þ

Here, since the Lagrangian (21) does not contain any spatial
derivative, it can be viewed as a collection of infinitely
many identical (0þ 1)-dimensional models labeled by
ðx; yÞ. Choosing gamma matrices as γ0 ¼ iσ2; γ1 ¼ σ1;
γ2 ¼ σ3, the (0þ 1)-dimensional model is given by

LESYK ¼ 1

2
ϕ̇Aϕ̇A þ 1

8
fAfA þ i

8
ðψA

1 ψ̇
A
1 þ ψA

2 ψ̇
A
2 Þ

þ CABCðϕAϕBfC þ iϕAψB
1ψ

C
2 Þ

þ 1

2
αðb21 þ b22 þ 4iλ1λ̇1 þ 4iλ2λ̇2Þ; ð24Þ

which is a new higher-derivative extension of the N ¼ 2
SYK-like model. The subscripts 1,2 refer to the compo-
nents of the 3D spinor, i.e., ψ ¼ ðψ1;ψ2Þ, and we define

b1 ¼
i
8
CABðψA

1 ψ̇
B
1 − ψA

2 ψ̇
B
2 Þ;

b2 ¼ −
i
8
CABðψA

1 ψ̇
B
2 þ ψA

2 ψ̇
B
1 Þ;

λ1 ¼
1

8
CABϕ̇

AψB
2 −

1

2
CABfAψB

1 ;

λ2 ¼ −
1

8
CABϕ̇

AψB
1 −

1

2
CABfAψB

2 : ð25Þ

This model is invariant under the following set of off-
shell transformation rules obtained by recasting the 3D
transformation rules (23) in terms of (0þ 1)-dimensional
variables:

δϕA ¼ i
4
ðϵ1ψA

2 − ϵ2ψ
A
1 Þ; δψA

1 ¼ −ϕ̇Aϵ2 −
1

2
fAϵ1;

δfA ¼ i
2
ðϵ1ψ̇A

1 þ ϵ2ψ̇
A
2 Þ; δψA

2 ¼ ϕ̇Aϵ1 −
1

2
fAϵ2: ð26Þ

The higher-derivative part of the Lagrangian (24), which
does not contain any purely bosonic terms, represents an
example of an off-shell extension of the N ¼ 2 SYK-
like model. It is worthwhile to mention that the higher-
derivative Lagrangian (17) resembles the N ¼ 1 SYK
model for two vector multiplets with CABC ¼ 0 studied
in [47], if the composite objects ðbi; λiÞ are viewed as
fundamental fields. Thus, our higher-derivative SYK-like
action is, in fact, the sum of SYK (built out of composite
fields) and SYK-like models.
In this work, we show that the Carrollian supersymmetry

has the curious feature that a supersymmetric Lagrangian
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does not require a purely bosonic part. By taking the
Carrollian limit of relativistic models we are able to provide
a concrete supersymmetric example with such an exotic
feature. A better understanding might be possible by
constructing a Carrollian superspace in which case various
supersymmetric results could easily be obtained and their
mathematical structure can be better studied. As the 3D
example given here does not contain spatial derivatives,
it is straightforward to relate it to a SYK-like model with
N ¼ 2 off-shell supersymmetry extended by higher-order
interactions which lack a purely bosonic contribution.
Recently, a curious low energy behavior of the N ¼ 2
SYK-like model was observed in [50], namely the entropy
S ≈ S0 þ ðconstÞTa with a ≠ 1. By dimensional analysis,
the higher-order terms constructed here are expected to
modify this result by a term αT, which may indicate the
existence of new phases. The higher-order terms, however,
will not generate propagating ghosts in the trivial vacuum
with ϕA ¼ fA ¼ 0 since they are at least quartic in fields.
Whether they imply instability at a fully nonlinear level
requires a proper quantization of the Carroll invariant
models that is still under development.
Another intriguing aspect is that, as we have shown, the

SYK-like model descending from a composite 3D N ¼ 1
supersymmetric vector multiplet action lacks the cubic
interaction term characterized by CABC as λ̄γ · Fλ vanishes
identically in D ¼ 3 due to the symmetry of gamma
matrices. However, such a term does exist in D ≥ 4 [57],
which indicates that along our procedure, their ultrarela-
tivistic sector should lead to a complete SYK model based
on the composite fields, with the cubic interaction term.

It should also be interesting to investigate effects of the
higher-order terms on various physical quantities in the
N ¼ 2 model extending earlier results on this subject
[47,49,50,58]. Different from the top-down approach by
taking the c → 0 limit of relativistic models, one can adopt
another approach by considering the spinor representations
of the homogeneous Carroll group based on the degenerate
Clifford algebra. This bottom-up approach enables the
construction of intrinsic supersymmetric Carrollian models
without an obvious relativistic origin.
Our investigation suggests a potential connection

between Carrollian supersymmetric field theory and
Jackiw-Teitelboim (JT) supergravity, resonating with the
duality between JT gravity and the SYK model.
Furthermore, considering the significance of Carrollian
field theory in celestial holography [14], it hints at a deeper
relationship between JT supergravity (possibly infinite
copies) and celestial holography.
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