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Inspired by Leonard Parker’s pioneering 1968 work demonstrating matter quanta production in a
dynamical spacetime background, we consider production of scalar quanta in a gravitational wave
background. Choosing the spacetime to be a flat spacetime perturbed linearly by a linear gravitational
wave, we show that scalar particles may indeed be produced in a perturbative manner. Our formulation is
valid for any linear gravitational wave background profile, and is by no means restricted to monochromatic
plane waves, in contrast to much of the earlier work on this topic. Thus, our work is directly applicable to
gravitational wave signals from compact binary coalescence detected at LIGO-VIRGO-KAGRA, where
they are of a pulsed character rather than monochromatic plane waves. We also briefly outline generalizing
our approach for photon creation in a gravitational wave background. In this aspect, irrespective of the
astrophysical nature of the binary merger sourcing the gravitational wave signal, one expects the dynamical
nature of the spacetime to produce all species of light particles. Thus, any binary coalescence is in effect a
source of multimessenger astrophysics.
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Introduction. The vacuum state j0i in quantum field theory
in a flat spacetime background is characterized by the
generators of the Poincare algebra, annihilating it, as
follows:

Pμj0i ¼ 0;

Mμνj0i ¼ 0;

where Pμ are generators of spacetime translations andMμν

are the generators of Lorentz boosts and rotations. The
commutation relations that form the algebra hold true only
when the spacetime is flat, rendering the vacuum a unique
state in the multiparticle Hilbert space. This of course is no
longer true in a general curved spacetime. However,
because of the local Lorentz invariance of general relativity,
at every point (event) there is a frame in which such a
vacuum may exist. This implies that the vacuum state
changes from point to point in a curved background, and so
the global uniqueness of the vacuum state is lost.
If we consider a curved spacetime that is asymptotically

flat at early times ðt → −∞Þ and at late times ðt → þ∞Þ,
then we can define the vacuum state at early times j0i− and
the vacuum state at late times j0iþ with no ambiguity
whatsoever. This definition of vacuum state only holds
asymptotically, because the spacetime in between might be
curved in general. Hence in general, j0i− ≠ j0iþ. Any

quantum field can be quantized using the usual canonical
commutation rules, at the asymptotic regions where the
spacetime is flat. The particle states are then defined as
excitations around j0i�. As the vacuum state has no
particles in it, the number operator corresponding to that
vacuum state when acted upon the state should vanish. So
in the context of our early time and late time vacuum states,
we must have, N�j0i� ¼ 0 where N� are the late and early
time number operators, respectively. However, it is clear
that N∓j0i� ≠ 0 necessarily. This fact was first noticed by
Leonard Parker [1] in a cosmological context, where the
dynamical nature of the background curved spacetime led
to production of quanta in any standard field theory. For the
case of massive stars collapsing to a black hole, Hawking
[2] showed that Nþj0i− ≠ 0 for a massless scalar field
propagating in the dynamical background of the collapsing
star. Or in other words, −h0jNþj0i− ≠ 0. Later, Parker [3]
also showed this process of particle creation in case of an
expanding universe, taking the FLRW spacetime. This
means that there is a flux of created particles with respect
to the early time vacuum, resulting from the changing
curvature of the intermediate spacetime that connects
the two asymptotic regions. More recently, Parker and
Toms [4] also showed that this phenomenon of particle
creation is possible in case of any dynamical spacetime,
which is a spacetime having no timelike isometries.
Historically, Deser [5] and Gibbons [6] had established

the impossibility of creation of massive scalar quanta and
photons in plane monochromatic gravitational waves. Later
assays have tried to evade this “no-go” result by a variety of
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alternatives, like considering specific boundary conditions
on the quantum scalar fields [7], considering massless
instead of massive quantum matter fields [8] and so on, but
invariably in plane gravitational wave backgrounds. Thus,
while massless scalar quanta and photon creation have been
in principle demonstrated in the papers [7–13], the restric-
tion to plane gravitational waves in these papers implies
that the more realistic situation of gravitational waves as
pulsed signals in time domain, corresponding to the signals
detected at the laser interferometer observatories since
2015, have not been considered in previous works. Our
long-term aim is to be able to characterize every compact
binary coalescence producing gravitational wave signals as
an event in multimessenger astronomy through matter
quanta production. In this pursuit, there is not much overlap
of our work with earlier literature, with the value addition
of greater relevance to recent observational data.
In this paper, we extend Parker’s pioneering perspective

to consider possible creation of matter quanta in a gravi-
tational wave background, which of course is dynamical in
the sense alluded to above. Recent direct observation of
gravitational waves by LIGO, VIRGO, and KAGRA
(LVK), attributed to compact binary coalescences, has
led to classification of such coalescences as to whether
they entail gravitational wave emission along with emission
of electromagnetic waves or not. Thus, GW150914 is likely
a result of binary black hole merger and hence classically
involves only gravitational wave emission, while
GW170817, which is a binary neutron star merger, involves
short gamma ray emissions in addition to gravitational
waves [14]. The latter is taken to signify the beginning of
“multimessenger astrophysics.” On the other hand, if we
include in this perspective production of matter field quanta
of diverse species, in compact binary coalescence, then
even a black hole merger may be interpreted as a multi-
messenger astrophysical event, once fluxes of emitted
quanta are detected. Actual detection of such quanta
may require highly sensitive instrumentation beyond the
reach of current terrestrial capabilities. However, close to
the merger event in space and time, a detectably large blast
of emitted quanta cannot be ruled out. Here, we present a
basic framework for emission of scalar quanta in interaction
with an ambient linear gravitational wave, treated as a
classical background. We cast the formulation in terms of
the Fourier transform of the gravitational wave signal, so
that the frequency spectrum of gravitational wave signals
detected at LVK may serve as an input to our final result for
massless scalar quanta production. Accordingly, our
approach is by no means restricted to plane gravitational
waves, but accommodates all gravitational wave signals
which admit a Fourier spectrum. We also note that the
produced quanta may have an anisotropic spatial distribu-
tion, which may also lead to detection strategies for these
quanta. It is shown that the entire approach may be
straightforwardly generalized to the case of photon creation

in such a linear gravitational wave background with any
well-defined nontrivial Fourier spectrum, and the corre-
sponding Bogoliubov coefficients are derived.
In this respect we add the disclaimer that the case of

massless scalar quanta production in a gravitational wave
background is not realistic, since there are no observable
massless scalars. The only massless quanta observed in
Nature are photons. The scalar case is thus presented
simply as a “proof of concept.”
It has been pointed out to us that a complementary

approach to photon production in aweakly curved spacetime
like a gravitational wave background has been considered
many decades agowithin perturbative quantum field theory,
namely, graviton photon interactions at the tree level, by
Skobelev [15]. The angular dependence of the differential
cross section explicitly demonstrates the anisotropy in
photon production amplitude, a feature we also discern in
our semiclassical treatment. Since gravitons as quanta are
still unobserved, our semiclassical treatment may have a
slightly greater relevance to multimessenger astronomy.
The paper is organized as follows: the next section

includes a description, in the weak-field approximation to
general relativity, of the transverse-traceless gravitational
wave in terms of projection operators replacing the stan-
dard gauge-fixing. We also mention that the amplitudes of
these waves decay with spatial distance traversed, thereby
satisfying asymptotic flatness of the full spacetime. In the
third section, we consider the perturbative solution to the
scalar field equations in this gravitational wave back-
ground. In the fourth section, we invoke the semiclassical
approximation, introduce the Bogoliubov transformations
relating the mode functions at early and late times, and set
up the formalism for computing the expectation value of the
late time number operator in the early time vacuum,
following Ref. [4]. This is used to present our main result
for the spectrum of quanta produced, as a functional of the
Fourier transform of the gravitational wave background.
Next we briefly outline generalizing our approach for
photon creation in a gravitational wave background. We
end in the last section with a few concluding remarks.

Weak field approximation and gauge invariant projections.
First we need to construct the metric for a gravitational
wave propagating in a particular direction (say, x). So it is a
vacuum solution of the Einstein field equations:

Gμν ¼ Rμν −
1

2
gμνR ¼ 0: ð1Þ

Since we will be doing linearized gravity, we need to make
the so-called weak field approximation:

gμν ¼ ημν þ hμν;

where jhμνj ≪ 1 ∀ μ; ν ¼ 0, 1, 2, 3. So we retain terms
linear in hμν at every step. We then have
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Γα
μν ≈

1

2
ηασð∂μhνσ þ ∂νhμσ − ∂σhμνÞ: ð2Þ

Under an infinitesimal displacement χ, the Lie derivative

Lχgμν ¼ ∇μχν þ∇νχμ;

or δχhμν ¼ ∂μχν þ ∂νχμ:

It can be checked that, under such a transformation, the
Einstein’s equation (1) remains invariant, that is,

δχGμν ¼ 0;

which implies that all components of hμν are not physical.
The standard approach, explained in all textbooks is to

go through “gauge fixing,” i.e., to “fix” the χ so that only
the gauge-invariant physical hμν remain. We pursue an
alternative approach, due to Anarya Ray [16], where one
can project out the physical hμν degrees of freedom from
the entire set. One starts with the projection operator Pμ

ν in
Fourier space labelled by the four-vector kμ in Minkowski
space classical electrodynamics [17]; this is given by

Pμ
ν ≡ δμν −

kμkν
k2

; Jα ≠ 0; ð3Þ

≡ δμν − kμðþÞkð−Þν − kμð−ÞkðþÞν; vacuum: ð4Þ

This satisfies the properties

Pμ
νPν

ρ ¼ Pμ
ρ; ð5Þ

kμPμν ¼ 0 ¼ kνPμν: ð6Þ

Observe that in vacuum electrodynamics, one has two
linearly independent null vectors kμð�Þ to implement this

projection operator, with kμðþÞkð−Þμ ¼ 1 as a normalization.

The projection operator Pμ
ν projects out the physical,

gauge-invariant part of Aμ, viz., Aμ
P

Aμ
P ≡ Pμ

νAμ;

⇒ ∂μA
μ
P ¼ 0; ð7Þ

⇒ AðωÞμ
P ≡ Pμ

νðAν þ ∂
νωÞ ¼ Aμ

P: ð8Þ

It is important to note that Eq. (7) is not a gauge choice,
despite appearances, it is a result out of a projection derived
directly from the Maxwell equations without any arbitrary
choices. Its existence is easily established from the fact that
the Faraday field tensor Fμν is completely dependent on this
gauge-invariant projection and not on its complement,
which is unphysical, which is why it is gauge invariant.
From the projection operator for electrodynamics,

Ray [16] has constructed the projection operator Πμν
λσ

appropriate to linearized gravity, defined as

Πμν
λσ ≡ PμνPλσ −

1

2
ðPμ

λP
ν
σ þ Pν

λP
μ
σÞ: ð9Þ

This projection operator projects out the gauge invariant,
physical components of the linearizedmetric fluctuationhTμν:

hμνT ≡ Πμν
λσh

λσ; ð10Þ
⇒ ∂μh

μν
T ¼ 0; ð11Þ

and ⇒ δχh
μν
T ¼ 0: ð12Þ

It is straightforward to verify that this physical projection of
themetric fluctuation satisfies the linearizedEinstein equation
with a conserved matter source Tμν

m ,

□hμνT ¼ 8πGTμν
m : ð13Þ

When Tμν
m ¼ 0, the above projection operator projects out the

transverse-traceless components

hμνTT ≡ Πμν
λσh

λσ; ð14Þ

⇒ ∂μh
μν
TT ¼ 0 ¼ hμTTμ; ð15Þ

□hμνTT ¼ 0: ð16Þ

We restrict our focus on the transverse-traceless gravi-
tational waves but not restricting these waves to be plane
waves. Rather, we impose the conditions

lim
r→∞
t→�∞

h̄TTμν → 0 ð17Þ

so that spherical gravitational waves that vanish asymp-
totically are admissible.

The scalar field equations. In a general metric, the Klein-
Gordon equation of motion is

□gΦ ¼ 0;

Or
1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νΦ

� ¼ 0: ð18Þ

Weak gravity approximation dictates gμν ≈ ημν þ hμν,
where jhμνj ≪ 1. In the perturbative scheme adopted here,
we also expand the scalar field perturbatively

ΦðxÞ ¼ Φð0ÞðxÞ þΦð1ÞðxÞ;
jΦð1ÞðxÞj ≪ jΦð0ÞðxÞj: ð19Þ

The scalar field equations now decompose in the first order
into

□ηΦð0Þ ¼ 0; ð20Þ
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□ηΦð1Þ ¼ hμνTT∂μ∂νΦð0Þ: ð21Þ

Particle creation. We solve Eq. (20) as

Φð0ÞðxÞ ¼
Z

d4k
ð2πÞ3 δðk

2Þðfkak þ f�ka
†
kÞθðk0Þ; ð22Þ

where the mode functions fk ¼ e−ik:x. To solve Eq. (21),
we resort to Green’s functions,

Φð1ÞðxÞ ¼
Z

d4x0Gðx − x0Þhμνðx0Þ∂0μ∂0νΦð0Þðx0Þ ð23Þ

and transform to four-dimensional Fourier space with
appropriate convolution integrals. Rearranging the order
of the integrals, performing the integral over x0 and one of
the convolution integrals, we obtain

Φð1ÞðxÞ ¼
Z

d4k
ð2πÞ3

eik:x

k2

Z
d4l
ð2πÞ3 δðl

2Þθðl0Þlμlν
· ½alh̃μνðkþ lÞδððkþ lÞ2Þ

þ a†l h̃
μνðk − lÞδððk − lÞ2Þ�: ð24Þ

Now we perform a shifting of the four-momentum k →
ðk − lÞ in the first term and k → ðkþ lÞ in the second term:

Φð1ÞðxÞ ¼
Z

d4k
ð2πÞ3 δðk

2Þ
Z

d4l
ð2πÞ3 δðl

2Þθðl0Þlμlνh̃μνðkÞ

·

�
eiðk−lÞ·x

ðk − lÞ2 al þ
eiðkþlÞ·x

ðkþ lÞ2 a
†
l

�
: ð25Þ

Making use of the fact that k2 ¼ l2 ¼ 0 from the delta
functions and exchanging the dummy indices we have

Φð1ÞðxÞ ¼ − 1

2

Z
d4k
ð2πÞ3 δðk

2Þθðk0Þ

×
Z

d4l
ð2πÞ3 δðl

2Þkμkνh̃μνðlÞðk:lÞ−1

·
�
e−iðk−lÞ:xak − eiðkþlÞ:xa†k

�
: ð26Þ

In the second integral, we let l → −l and get

Φð1ÞðxÞ¼−1

2

Z
d4k
ð2πÞ3 δðk

2Þθðk0Þ
Z

d4l
ð2πÞ3 δðl

2Þkμkνðk:lÞ−1

·
�
h̃μνðlÞe−iðk−lÞ:xakþ h̃μνð−lÞeiðk−lÞ:xa†k

�
: ð27Þ

Thus we add Φð0ÞðxÞ and Φð1ÞðxÞ and obtain the
complete perturbative solution in first order to the field
equation:

ΦðxÞ ¼
Z

d4k
ð2πÞ3 δðk

2Þθðk0Þ
	�

e−ik:x − 1

2

Z
d4l
ð2πÞ3 δðl

2Þkμkνh̃μνðlÞðk:lÞ−1e−iðk−lÞ:x
�
ak þ H:c:



; ð28Þ

where we have used the fact that h̃μνð−lÞ ¼ h̃μνðlÞ�.
The mode function fkðxÞ thus has the behavior at late

times as

qkðxÞ ¼ e−ik:x − 1

2

Z
d4l
ð2πÞ3 δðl

2Þkμkνh̃μνðlÞðk:lÞ−1e−iðk−lÞ:x:

ð29Þ

The field expansion of the quantised scalar field ΦðxÞ at
early times [which we denote as Φð−ÞðxÞ] is exactly the
same as that of Φð0ÞðxÞ since the background is flat. At late
times, the background dynamics of the GW, which has just
passed through the observatory, changes the early time

mode function fkðxÞ to fðþÞ
k ðxÞ, which has the functional

form given above. Since fk and f�k form a complete
orthogonal basis, we can write

qkðxÞ ¼
Z

d3 k0
!ðαkk0e−ik0:x þ βkk0eik

0:xÞ; ð30Þ

where αkk0 and βkk0 are the Bogoliubov coefficients.
Equation (30) can also be written as

qkðxÞ¼
Z

d3 k0
!
e−ik

0:xδð3Þðk⃗− k0
!Þ

−
Z

d3 k0
!

ð2πÞ32ω
k0
!kμkνh̃

μνðk0Þðk:k0Þ−1e−iðk−k0Þ:x ð31Þ

where the new integration measure in the second term is as
good as the old one. Comparing Eqs. (30) and (31), we get
the Bogoliubov coefficients as

αkk0 ¼ δð3Þðk⃗ − k0
!Þ ð32Þ

βkk0 ¼ − 1

ð2πÞ3
1

2ω
k0
! kμkνh̃

μνðk0Þðk:k0Þ−1e−ik:x: ð33Þ

Equation (32) is an expected result because of our pertur-
bative treatment, and it is the only thing that remains when
the background is flat, so that, at initial and late times, we
get qk ¼ fk. Now as the mode function evolves from fk,
the vacuum state also changes due to the dynamic nature of
the GW background. The scalar field expansion in the late
time flat spacetime should be of the form
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ΦðþÞðxÞ ¼
Z

d3k
ð2πÞ32ωk⃗

ðqkbk þ q�kb
†
kÞ; ð34Þ

where bkj0iþ ¼ 0, j0iþ being the new vacuum state in the
late time limit. Following Parker and Toms, we now
introduce the covariant scalar product between two modes
f1 and f2:

ðf1; f2Þ ¼ i
Z
Σ
d3vσ

ffiffiffiffiffiffi
−g

p
eσμgμνf1 ∂

↔

νf2;

where eσμ is the unit normal to the spacelike hypersurface Σ.
So we have gμνeσμeσν ¼ 1 and gμνeσμaν ¼ 0 where aμ ∈Σ.
Upon choosing a frame where only the time component of
the unit vector survives, and using the fact that
gμν ¼ ημν þ hμν, we can show that

ðf1; f2Þ ¼ i
Z

d3x⃗f1 ∂
↔

0f2: ð35Þ

We can also show that if f1 and f2 are solutions to the field
equations in the curved background, this scalar product is
independent of time. Using these facts, we get an expres-
sion for bk from Eq. (34) as

bk ¼ ðqk;Φð−ÞðxÞÞ ¼
Z

d3 k0
!ðα�kk0ak0 − β�kk0a

†
k0 Þ: ð36Þ

We can now calculate the spectrum of created particles
as the expectation value of the late time number operator

NðþÞ
k ¼ b†kbk with respect to the early time vacuum

state j0i−:

hNðþÞ
k i−¼−h0jNðþÞ

k j0i−¼
Z

d3 k0
!ð2πÞ32ω

k0
!jβkk0 j2: ð37Þ

Substituting the expression for βkk0 from Eq. (5), we get the
expression for the frequency spectrum of massless scalar
particles produced, in terms of the gravitational wave
amplitudes h̃μν as

hNðþÞ
k i− ¼

Z
d4k0

ð2πÞ3 δðk
02Þθðk00Þkμkνkαkβðk:k0Þ−2

· h̃μνðk0Þh̃�αβðk0Þ: ð38Þ

The actual profile of the GWs detected at GW150914 and
later runs of LVK should give us directly the amplitude of

created massless scalars from the above expression. The
details of our prediction for the spectrumof creation of scalar
quanta will be treated in a subsequent paper. However, we
can at once deduce the fact that the angular spectrum of the
created particles is not spatially isotropic. This is because
fromEq. (38), we see that k:k0 cannot vanish. But since k and
k0 are both nonparallel null vectors, we have that
k:k0 ¼ ωk⃗ωk⃗0 ð1 − cos θÞ, where ωk;ωk0 are the respective
frequencies. It follows that cos θ ≠ 1. This restriction
stymies the possibility of an isotropic angular distribution.

Outline of photon creation in a GW background. Following
our discussion in the second section, we use the projection
operator written out in Eq. (4) and the physical electro-
magnetic vector potential in spacetime, obeying the trans-
versality condition (7) as a result of such projection, not as a
consequence of a choice. This implies that the spacetime
vector potential is given by

AP
μ ðxÞ¼

X2
λ¼1

Z
d4k
ð2πÞ3δðk

2Þθðk0Þ�aðλÞk ϵPðλÞμ ðkÞe−ik:xþH:c:
�
;

ð39Þ

where the physical (transverse) polarization vectors satisfy
the orthogonality relation:

ϵμðλÞP ðkÞϵPðλ0Þμ ðkÞ ¼ −δλλ0 : ð40Þ

In the GW background spacetime, the physical vector
potential satisfies the equation of motion□gAP

μ ¼ 0. Just as
in the case of scalar fields, we perturbatively expand the

vector potential as AP
μ ¼ APð0Þ

μ þ APð1Þ
μ , where APð0Þ

μ follows
the flat spacetime Klein-Gordon (KG) equation and hence
has the exactly identical field expansion as the above
Eq. (39). At first order in perturbation theory we have:

□ηA
ð1Þ
α ¼ 1

2
ð∂νhσα þ ∂αhσν − ∂

σhναÞ∂νAð0Þ
σ ðxÞ

þ hμν∂μ∂νA
ð0Þ
α ðxÞ: ð41Þ

Proceeding as in the case of the scalar field in the earlier
section, we obtain the perturbative solution of the quantum
vector potential for photons as

AαðxÞ ¼
X
r

Z
k
δðk2Þ

	�
e−ik:xϵðrÞα ðkÞ þ

Z
l
δðl2Þ

�
1

4
h̃βαðlÞϵðrÞβ ðkÞ þ 1

4
h̃σνðlÞϵðrÞσ ðkÞkνlαðk:lÞ−1

−
1

4
h̃ναðlÞkνlσϵðrÞσ ðkÞðk:lÞ−1 þ 1

2
h̃μνðlÞkμkνϵðrÞσ ðkÞðk:lÞ−1

�
e−iðk−lÞ:x

�
aðrÞk þ H:c:



; ð42Þ
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where
R
k ≡

R ðd4kÞ=ð2πÞ3 and similarly for l. Thus, the late time expansion of the photon field is

AμðxÞ ¼
X
r

Z
k
δðk2Þ½aðrÞk ϵðrÞμ ðkÞqk þ H:c:�; ð43Þ

where the late time mode functions are given by

qk ¼
Z

d3k⃗0
	
e−ik

0:xδð3Þðk⃗ − k⃗0Þ − 1

ð2πÞ3
1

ω
k0
!

�
1

8
h̃σαðk0ÞPα

σðkÞ þ
1

8
h̃σνðk0Þkνk0αðk:k0Þ−1Pα

σðkÞ

−
1

8
h̃ναðk0Þkνk0σðk:k0Þ−1Pα

σðkÞ −
1

2
h̃μνðk0Þkμkνðk:k0Þ−1

�
e−iðk−k0Þ:x



: ð44Þ

The mode evolution function is of the following form:

qk ¼
Z

d3k⃗0ðαkk0e−ik0:x þ βkk0eik
0:xÞ: ð45Þ

Comparing Eqs. (46) and (45), the Bogoliubov coefficient αkk0 is the same as for the scalar quanta. For photons,

βkk0 ¼ −
1

ð2πÞ3
1

ω
k0
!

	�
1

8
h̃σαðk0ÞPα

σðkÞ þ
1

8
h̃σνðk0Þkνk0αðk:k0Þ−1Pα

σðkÞ

−
1

8
h̃ναðk0Þkνk0σðk:k0Þ−1Pα

σðkÞ −
1

2
h̃μνðk0Þkμkνðk:k0Þ−1

�
e−ik:x



: ð46Þ

Conclusion. We have seen that we indeed get a nonzero
result for the amplitude of created particles. In this paper we
have considered a massless scalar field and quantized it,
and hence the particles produced are massless scalars. In
principle we can take other fields with different spins and
quantize them to get the production of all other kinds of
particles because of the dynamical background. For exam-
ple we can take the massless spin-1 field and the final result
will be the production of electromagnetic radiation as a
result of the creation of photons. This suggests that even in
a binary black hole merger, the dynamical nature of the
spacetime would result in particle creation which could be
detected in principle. Thus we would expect the production
of photons in a Binary Black Hole (BBH) merger even

though there are no electromagnetic fields classically
present. The question is whether such photons can be
detected, if we can calculate their spectrum for the
gravitational wave detected at LIGO. Due to the production
of particles of various species by the gravitational wave
background, even a binary black hole merger exhibits the
phenomenon of multimessenger astronomy.
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