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We establish a cosmological-model-independent method to extract the apparent magnitude and its
derivative at different redshifts from the Pantheonþ type Ia supernova sample and find that the obtained
values deviate clearly from the prediction of the ΛCDM model at the lowest redshift. This deviation can be
explained as a result of a transition of the absolute magnitude M in the low-redshift region. The
observations seem to favor this transition, since the minimum values of χ2 for two Ansätze of a varying M
are less than that of a constantM. The Hubble-constant tension is alleviated from larger than 5σ to be about
1σ–2σ for a varying M, and the growth tension can be resolved after attributing the variation of M to a
modification of the effective Newton’s constant.
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Introduction. The cosmological constant Λ plus cold dark
matter (ΛCDM) is the simplest and most popular cosmo-
logical model. It is well consistent with many observations,
on one hand, but, on the other hand, it still suffers the
serious Hubble-constant (H0) tension [1–3], which refers to
a more than 5σ disagreement between the measurements
of H0 given, respectively, by the SH0ES Collaboration [4]
and the Planck satellite [5]. Within the framework of the
ΛCDM model, the cosmic microwave background (CMB)
radiation data from the Planck satellite infer H0 ¼ 67.4�
0.5 km s−1 Mpc−1 [5], which deviates significantly from
H0 ¼ 73.04� 1.04 km s−1Mpc−1 constrained cosmologi-
cal-model-independently by the data from the nearby type
Ia supernovae (SNe Ia) [4]. These SNe Ia are calibrated
by using the Cepheids according to the idea of a distance
ladder, and the absolute magnitude M of SNe Ia is
determined to be M ¼ −19.253� 0.027 mag. To figure
out whether the H0 tension originates from the calibration
of SNe Ia, the Mira variables have been used to calibrate
the SNe Ia, resulting in M ¼ −19.27� 0.13 mag, which
yields H0 ¼ 72.7� 4.6 km s−1Mpc−1 [6]. This result is
consistent with that from the Cepheid-calibrated SNe Ia,
while it is larger than H0 ¼ 69.8� 1.7 and 70.50�
4.13 km s−1Mpc−1 obtained, respectively, from the SNe
Ia calibrated with the tip of the red giant branch [7] and the
surface brightness fluctuations [8]. However, if the idea of
an inverse distance ladder and the high-redshift data, such

as the baryon acoustic oscillation, are utilized to calibrate
the SNe Ia, a value of M smaller than that from the
Cepheids and a value of H0 consistent with that from the
Planck CMB data are achieved [9,10]. Apparently, a
smaller M seems to give a smaller H0. Thus, the H0

tension can also be regarded as the M tension [11].
The H0 tension may be caused by either systematic

errors or local bias. Unfortunately, no systematics, which
could explain this tension, have been found so far [12–22],
and a local void cannot save the tension either [23–26].
Therefore, the H0 tension may be the smoking gun of new
physics beyond the ΛCDM model in either the early or late
Universe [27]. A simple extension of the ΛCDM model in
the late Universe is to replace the cosmological constant
with a dynamical dark energy, such as that described by the
Chevalier–Polarski–Linder (CPL) parameterization. How-
ever, these extensions cannot fully solve the tension [28–31],
since they only enlarge the uncertainties of the constraints
on the cosmological parameters. Noteworthily, reducing the
cosmic sound horizon, which can be realized by modifying
the recombination history or introducing an early dark
energy [32–35], seems to be capable of resolving the H0

tension, but it may regrettably worsen the so-called growth
tension at the same time [36,37]. This tension refers to the
about 3σ disagreement between the values of the matter
density parameter Ωm0 and the parameter σ8 constrained,
respectively, from the Planck 2018 CMB data [5] in the
ΛCDM background geometry and the dynamical probes
of the cosmological perturbations including cluster counts
[38–41], weak lensing [42–49], and redshift-space distor-
tions [50–54]. Here, σ8 is defined as the matter density rms
fluctuations in spheres of radius 8h−1 Mpc at z ¼ 0 with
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h≡ H0

100 km s−1 Mpc−1. Therefore, the Hubble-constant tension

remains an open issue in modern cosmology.
A possible way to find out the origin of the H0 tension is

to probe directly the cosmic background dynamics from the
observational data. In this paper, we propose a model-
independent method to extract the apparent magnitude m
and its derivative m0 ¼ dm

dz at different redshift points from
the latest Pantheonþ SNe Ia sample [55]. We find that,
except for the results at the lowest redshift point, the
obtained values of m and m0 are very well compatible with
the prediction from the ΛCDM model. Thus, it is reason-
able to assume that the ΛCDM model can describe
correctly the cosmic evolution, and the deviation of m
and m0 from the prediction of the ΛCDM model at the low-
redshift region originates from a transition of the absolute
magnitude M of SNe Ia. We demonstrate that such a
transition of M will alleviate the H0 tension. If the transi-
tion of M is further assumed to arise from the variation of
the effective Newton’s constantGeff , the growth tension can
be resolved, too.

Values of apparent magnitude and its derivative. One
observable of SNe Ia is the apparent magnitude mðzÞ.
Its theoretical value relates to the cosmological model
through

mthðzÞ ¼ 25þ 5log10

�
DLðzÞ
Mpc

�
þ 5log10

�
c
H0

�
þM: ð1Þ

Here, c is the speed of light, and DLðzÞ is the dimension-
less luminosity distance, which is defined as DLðzÞ≡
ð1þ zÞ R z

0
dz0
Eðz0Þ in a spatially flat universe, where EðzÞ

is the dimensionless Hubble parameter and EðzÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ ð1 −Ωm0Þ

p
for the ΛCDM model.

Comparing the observed mðzÞ with its corresponding
theoretical value can give constraints on the cosmological
models with the SNe Ia data, e.g., Ωm0 ¼ 0.333� 0.018 in
the ΛCDM model with the Pantheonþ SNe Ia sample,
which comprises 1701 light curves with 1550 distinct SNe
Ia and spans to redshift z ≃ 2.26 [55]. If a prior on M is
further given, a constraint on H0 will be achieved by
using SNe Ia. With M ¼ −19.253� 0.027 mag from the
Cepheids, the Pantheonþ SNe Ia sample gives H0 ¼
73.22� 0.95 km s−1 Mpc−1 in the ΛCDM model.
To model-independently probe the local background

dynamics of our Universe with the Pantheonþ sample,
we now establish a local expansion method, which is to
expand the apparent magnitudemðzÞ at a given redshift. We
do the Taylor expansion ofmðzÞ in the ln z space instead of
the z space, to the first order:

mðzÞ ¼ mi þ zim0
iðln z − ln ziÞ; if zmin;i < z ≤ zmax;i;

ð2Þ

wheremi ≡mðziÞ,m0
i ≡ dm

dz jz¼zi , and zi is the redshift point
where the expansion is performed, which is determined by
using ln zi ¼ ðln zmin;i þ ln zmax;iÞ=2 in our analysis.
We consider the Pantheonþ SNe Ia sample and use

the Hubble diagram redshift zHD, which is derived from
the CMB frame redshift (zCMB) with corrections from the
peculiar velocity, as the redshift z of the Pantheonþ sample.
We exclude those data points whose redshifts are less than
0.01, since the nearby sample may be impacted by their
peculiar velocities [56]. Furthermore, we also ignore the
data with the redshift z > 0.8, since only 30 data points lie
in the redshift region z∈ ð0.8; 2.26�. Thus, the remaining
1560 data points are used in our analysis. We divide these
data into five bins with the same number of data points in
each bin. As there are two free parameters (mi and m0

i) in
each bin, we have totally ten free parameters. These
parameters are constrained by minimizing the following χ2:

χ2 ¼ �
m̂obs −mðzÞ�†C−1

SN

�
m̂obs −mðzÞ� ð3Þ

from the Pantheonþ SNe Ia data. Here, CSN is the
covariance matrix of 1560 × 1560, which is a submatrix
of the full SNe Ia sample, and m̂obs is the 1D array
consisting of the SNe Ia apparent magnitudes. Ten free
parameters, i.e., mi and m0

i with i varying from 1 to 5,
are simultaneously fitted by using the Markov chain
Monte Carlo (MCMC) method. Before using the real data
to constrain these free parameters, we need to check the
reliability of our method. To do so, we first mock 1560 SNe
Ia data points in the redshift region of 0.01 ≤ z ≤ 0.8
with the value of hmthi from the fiducial model: the
ΛCDM model (Ωm0 ¼ 0.333, H0 ¼ 73.22 km s−1 Mpc−1,
andM ¼ −19.253 mag), and the same redshift distribution
as that of the Pantheonþ sample. The mock data are
divided into four, five, and six bins with the same number
of points in each bin, respectively. Then, the best-fitting
values of mi and m0

i in each bin from the mock data can be
estimated by using the minimum χ2 method. We repeat our
analysis 1000 times and find that the mean values ofmi and
m0

i are well consistent with those derived from the fiducial
model for the cases of five and six bins. Thus, the
simulation analysis shows that the results from real data
will be reliable if the bin number is larger than four. The
detailed discussions can be found in the Supplemental
Material Ref. [57].
Table I lists the constraints on mi and m0

i in each bin
and on Δmi ≡mi −mi;th and Δm0

i ≡m0
i −m0

i;th, which
represent the differences between the values from the
Pantheonþ sample and the prediction of the fiducial model.
It is easy to see that, in the last four bins, the constraints on
mi andm0

i are very well consistent with those of the fiducial
model. However, in the first bin (z1 ¼ 0.017), the value of
Δm1 is compatible with zero at 2σ confidence level (CL),
whereas Δm0

1 deviates from zero at about 2.7σ.
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For a more comprehensive comparison between the
observed and simulated datasets, we extended our analysis
to include cases with four and six bins. The results obtained
from the Pantheonþ SNe Ia data are presented in Tables I
and II in the Supplemental Material Ref. [57], respectively.
In both cases, the values of Δm0

1 from the observed data
are inconsistent with zero at more than 2σ CL. This result is
different from what is obtained from the mock data, but
it is similar to the five-bin result. And all other results
are compatible with the prediction of the fiducial model
at 2σ CL.
We also study the possible volume effect in the redshift

region 0.01 < z ≤ 0.027 and find that it cannot fully
account for the deviation of Δm1 and Δm0

1. The volume
effect here refers to the bias on the low-redshift Hubble
diagram of SNe Ia caused by the peculiar velocities of high-
redshift SNe Ia host galaxies. This bias arises because the
number density of galaxies per unit distance generally
increases as the square of distance. Consequently, the
number density of SNe Ia per unit distance at higher
redshifts is larger than that at lower redshifts. Therefore,
more SNe Ia located at higher redshifts and within a greater
volume will be scattered down to lower redshifts under
the influence of their host galaxies’ peculiar velocities,
compared to the reverse scenario [56,58,59]. To clearly
demonstrate the impact of peculiar velocities on our
analysis, we consider the Pantheonþ type Ia supernovae
(SNe Ia) sample, using the CMB frame redshift (zCMB)
instead of the Hubble diagram redshift (zHD). This sample
comprises 1558 data points within the redshift range of

0.01 < z < 0.8. The findings are detailed in the lower part
in Table I. When comparing results derived using zCMB
with those using zHD, we observe that the constraints on
parameters mi and m0

i for i ≥ 3 remain largely unaffected
by the choice of redshift, consistently aligning with the
predictions of the fiducial model. However, the parameters
Δm2 and Δm0

2, which align with zero within 1σ CL when
using zHD, deviate from zero beyond 1σ CL with zCMB,
with the deviation of Δm0

2 reaching 2.24σ. Additionally,
while the deviation of Δm1 from zero becomes more
significant, increasing from just over 1σ to more than
2σ, the value of Δm0

1 remains similar to that obtained using
zHD. This analysis highlights that the deviations ofΔm1 and
Δm0

1 from zero are robust to the choice of redshift.
Therefore, our results show that in the low-redshift region
the Pantheonþ SNe Ia data support the deviation of cosmic
evolution from the prediction of the ΛCDM model.

A variation of absolute magnitude. We have found that the
ΛCDM model is inconsistent with the SNe Ia observations
only in the low-redshift region. Thus, it seems to be a
reasonable assumption that the ΛCDM model provides a
correct description of the cosmic evolution. Then, Eq. (1)
indicates that the discrepancy between the values of the
apparent magnitude from observations and the prediction of
the ΛCDM model may originate from a variation of the
absolute magnitude M.
We now first consider a simple Ansatz that M varies

suddenly by an amount of constant A at redshift zt, i.e.,

TABLE I. Expanding redshift point zi, number of SNe Ia, and constraints on mi and m0
i. The mean values with 1σ uncertainty are

shown. Δmi (Δm0
i) denote the differences between the constraints on mi (m0

i) and the fiducial model: ΛCDM model with Ωm0 ¼
0.333� 0.018 and M ¼ 25þ 5log10ð c

H0
Þ þM ¼ 23.808� 0.007.

Pantheonþ sample with zHD

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

zi 0.017 0.049 0.144 0.296 0.544
Redshift range 0.010 < z ≤ 0.027 0.027 < z ≤ 0.087 0.087 < z ≤ 0.237 0.237 < z ≤ 0.370 0.370 < z ≤ 0.799
NSN 312 312 312 312 312

mi 14.955� 0.015 17.338� 0.009 19.800� 0.010 21.563� 0.008 23.088� 0.011
m0

i 125.735� 2.571 45.468� 0.511 16.530� 0.223 8.543� 0.202 4.704� 0.076

Δmi 0.024� 0.016 0.006� 0.011 −0.003� 0.013 0.006� 0.014 −0.017� 0.020
Δm0

i −6.894� 2.571 −0.463� 0.512 0.084� 0.224 0.146� 0.203 −0.072� 0.079

Pantheonþ sample with zCMB

zi 0.016 0.049 0.146 0.296 0.544
Redshift range 0.010 < z ≤ 0.027 0.027 < z ≤ 0.090 0.090 < z ≤ 0.237 0.237 < z ≤ 0.371 0.371 < z ≤ 0.799
NSN 312 312 312 311 311

mi 14.957� 0.015 17.378� 0.009 19.846� 0.010 21.564� 0.008 23.093� 0.011
m0

i 126.639� 2.606 44.275� 0.497 16.228� 0.212 8.484� 0.197 4.686� 0.075

Δmi 0.037� 0.016 0.019� 0.012 0.000� 0.013 0.006� 0.014 −0.013� 0.019
Δm0

i −6.689� 2.606 −1.114� 0.498 0.048� 0.214 0.083� 0.198 −0.091� 0.078

ALLEVIATING THE HUBBLE-CONSTANT TENSION AND THE … PHYS. REV. D 110, L021304 (2024)

L021304-3



MðzÞ ¼
�
M0 if z < zt;

M0 þ A if z ≥ zt;
ð4Þ

where M0 is the absolute magnitude of SNe Ia calibrated
from the distance ladder, i.e., the Cepheids, and, thus, can
be set to be M0 ¼ −19.253� 0.027 mag. Substituting
Eq. (4) into Eq. (3), we find that all mi and m0

i will be
consistent with the prediction of the ΛCDM model.
Next, we study the constraints onH0,Ωm0, A, and zt with

the Pantheonþ SNe Ia data using the MCMC method.
Although parameter zt exists only under the condition of
the piecewise function and does not appear explicitly in
Eq. (4), it is treated as a variable in our analysis, since the
triad fH0;Ωm0; Ag are constrained for different zt choices.
Thus, the values of H0, Ωm0, A, and zt are sampled
simultaneously. The results are shown in Fig. 1 and
Table II. The best-fitting values are Ωm0 ¼ 0.331, H0 ¼
69.08 km s−1 Mpc−1, A ¼ −0.129, and zt ¼ 0.0126, with
χ2min ¼ 1393.3. Their mean values with 1σ uncertainty are
Ωm0 ¼ 0.332� 0.018, H0 ¼ 70.5þ2.0

−1.7 km s−1Mpc−1, A ¼
−0.084þ0.061

−0.038 , and zt ¼ 0.0139þ0.0003
−0.0035 , respectively. If

M ¼ M0, we find Ωm0 ¼ 0.333� 0.018 and H0 ¼
73.22� 0.95 with χ2min ¼ 1402.1. Apparently, when M
varies as shown in Eq. (4), the minimum of χ2 decreases by
an amount of about 8.8. The variation, however, has
negligible impacts on the constraint on Ωm0. The mean
value of zt shows that the transition of M occurs in the
redshift region between 0.010 and 0.027, which is

consistent with the result obtained in the previous section.
The SNe Ia data favor a value of M smaller than M0 at the
redshift region z ≥ zt, since A is negative and deviates from
zero at more than 1σ CL, which results in the value of H0

smaller than H0 ¼ 73.04� 1.04 km s−1Mpc−1 from the
SH0ES Collaboration. Although the value of H0 from the
SNe Ia with a sudden variation of M still deviates slightly
from that from the CMB data, this deviation reduces to be
about 2σ CL. Thus, a sudden decrease of M in the low
redshift region will alleviate the H0 tension. We must point
out that a transition of the SNe Ia absolute magnitude from
a large value to a small one at low redshift (z ≃ 0.01) was
first proposed in Ref. [60] to alleviate the H0 tension.
In [60], the M variation is presumed to occur at z ≃ 0.01
and the value ΔM, which corresponds to parameter A, is set
to be −0.2 in order to fully resolve the Hubble tension. In
this paper, we find a sign for this transition from the SNe Ia
data, and the absolute value of A is less than 0.2.
Since a sudden transition of M is a strong assumption,

we now consider another Ansatz thatM varies linearly with
redshift in the redshift region of z0 ≤ z < zt:

MðzÞ ¼

8><
>:

M0 if z < z0;

M0 þ A z−z0
zt−z0

if z0 ≤ z < zt;

M0 þ A if z ≥ zt;

ð5Þ

where z0 and zt are two redshift points representing the
beginning and ending of the variation of M, respectively.
We fix z0 ¼ 0.01, since the SNe Ia data used in our analysis
satisfy z > 0.01. Thus, we have the same free parameters
(A and zt) as in the case of a sudden variation of M.
From the Pantheonþ SNe Ia data, we obtain that the best-
fitting values areΩm0 ¼ 0.331,H0 ¼ 68.19 km s−1 Mpc−1,

FIG. 1. Constraints on cosmological parameters and parameters
describing the variation of M from the Pantheonþ SNe Ia data.
The blue and red dotted lines show the constraints onH0 from the
Planck CMB and SH0ES, respectively.

TABLE II. Marginalized constraints on parameters in different
transition models of M. The mean values with 1σ uncertainty are
shown. ΔAICðBICÞ ¼ AICðBICÞ − AICrefðBICrefÞ, and the
reference model is the constant M model.

Pantheonþ sample

Sudden
transition

Linear
transition Constant

Ωm0 0.332� 0.018 0.330� 0.018 0.333� 0.018
H0 70.5þ2.0

−1.7 69.4þ2.5
−2.0 73.22� 0.95

A −0.084þ0.061
−0.038 −0.121þ0.078

−0.052 � � �
zt 0.0139þ0.0003

−0.0035 0.0161þ0.0016
−0.0047 � � �

ΔAICðBICÞ −4.8ð6Þ −2.5ð8.2Þ 0

fσ8 sample

Ωm0 0.286þ0.028
−0.033 0.285� 0.031 0.284þ0.029

−0.032
σ8 0.801� 0.021 0.808þ0.020

−0.023 0.774� 0.020

ΔAICðBICÞ −0.04ð−0.04Þ −0.04ð−0.04Þ 0
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A ¼ −0.156, and zt ¼ 0.0139, with χ2min ¼ 1395.6. Their
mean values with 1σ uncertainty are Ωm0 ¼ 0.330� 0.018,
H0 ¼ 69.4þ2.5

−2.0 km s−1Mpc−1, A ¼ −0.121þ0.078
−0.052 , and zt ¼

0.0161þ0.0016
−0.0047 , respectively. Here, the value of χ

2
min is larger

than that obtained in the case of M changing suddenly,
although it is still smaller than the value in the constant M
case for about 6.6. The constraint on Ωm0 is almost the
same as that in both the cases of a constant and a suddenly
varying M. The mean value of zt becomes larger slightly
than the one from a sudden variation ofM. The mean value
of A is smaller than A ¼ −0.084 obtained in the case of M
varying suddenly, which leads to the value of H0 being
smaller than the one obtained by using Eq. (4) and
consistent with the result from the CMB observations
within 1σ. Thus, the H0 tension is further alleviated when
M varies linearly with redshift. These results can be seen
clearly in Fig. 1 and Table II.
To further compare the standard model (M ¼ const) with

the models with a varying M, we consider the Akaike
information criterion (AIC) [61,62] and the Bayesian
information criterion (BIC) [63], which are defined as
AIC ¼ 2p − 2 ln L and BIC ¼ p ln N − 2 ln L, respec-
tively. Here, p is the number of free parameters, N is the
number of data points, and L ∝ exp ð−χ2=2Þ is the like-
lihood function. The difference in the AIC(BIC) of a given
model relative to the reference model can be calculated by
using ΔAICðBICÞ ¼ AICðBICÞ − AICrefðBICrefÞ. Here,
the model with a constant M will be set as the reference
model. If 0 < jΔAICj < 2, it is difficult to single out a
better model, while 4 < jΔAICj < 7 means mild evidence
against the model with the larger AIC, and jΔAICj > 10
suggests strong evidence against the model with the larger
AIC [64]. For the ΔBIC, a range of 0 < jΔBICj < 2 also
indicates difficulty in preferring the model, and 2 <
jΔBICj < 6 and jΔBICj > 6 are regarded positive and
strong evidence, respectively, against the model with the
larger BIC [65]. We find that ΔAICðBICÞ ¼ −4.8ð6Þ for
the sudden transition M model, and ΔAICðBICÞ ¼
−2.5ð8.2Þ for the linear transition M model. It is apparent
that the AIC mildly prefers the suddenM transition model,
since its value is more than 4 less than that of the constant
M model, while the BIC still favors the standard model.

Growth tension. The absolute magnitude of a star is the
star’s luminosity when it is at a distance of 10 pc. Thus, the
difference between the post-transition SNe Ia absolute
magnitude M and the pretransition M0 can be connected
with the absolute luminosity L via M −M0 ¼ − 5

2
log10

L
L0
.

Since the peak luminosity of SNe Ia is determined by the
mass of nickel synthesized (mNi) [66], we have a simple
relation L ∝ mNi ∝ mc after assuming mNi is directly
proportional to the Chandrasekhar mass mc [67], which
can be estimated according to mc ≃ 3

me
ð ℏc
Geff

Þ3=2, where me

is the mass per electron. Then, for a fixed me, one has

L ∝ G−3=2
eff . Therefore, a change of M found in Sec. II can

be explained as a variation of Geff . Using ΔμG ≡ μG − 1,
where μG is defined as μG ≡ Geff

GN
with GN being the locally

measured Newton’s constant, to denote the change of Geff
and ΔM ¼ M −M0, we obtain that

ΔμG ¼ 10
4
15
ΔM − 1: ð6Þ

Obviously, for the case of a sudden transition ofM, μG ¼ 1
when z < zt and μG ¼ 1þ ΔμG when z ≥ zt. Using the
best-fitting values of A, we have ΔμG − 0.076 and −0.091,
respectively, for the sudden and linear transition Ansätze
of M when z ≥ zt. Apparently, both values of ΔμG are
larger than −0.12, which is derived from ΔM ¼ −0.2
assumed in [60].
A variation of μG has an impact on the growth rate of the

cosmological matter fluctuations δðaÞ ¼ δρ
ρ ðaÞ since the

linear growth satisfies the equation

δ00 þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0 −

3

2

Ωm0μG
a5HðaÞ2=H2

0

δ ¼ 0; ð7Þ

where a ¼ ð1þ zÞ−1 is the scale factor, a prime denotes a
derivative with respect to a, ρ is the matter density, and δρ
represents the fluctuation of matter density. If one uses
parameter σ8 to quantify the linear growth of the perturba-
tions, the values of σ8 and Ωm0 derived from the measure-
ments of the weak lensing and galaxy redshift space
distortions disagree at about 2σ–3σ level with those
inferred from the Planck CMB data [1,68,69]. Now, we
discuss what happens to σ8 andΩm0 when a modification of
μG is introduced. To estimate their values, let us note that a
commonly observed measurement is the quantity fσ8:

fσ8 ¼
σ8

δða ¼ 1Þ aδ
0ða;Ωm0; μGÞ: ð8Þ

To obtain δ and δ0, we choose the initial conditions to be
δðaini ≪ 1Þ ¼ aini and δ0ðaini ≪ 1Þ ¼ 1 with aini ∼ 10−3

[53] and then numerically solve the linear growth equation
[Eq. (7)] by using the function scipy.integrate.odeint in
Python. In our analysis, 62 observational fσ8 data within a
redshift range of 0.02 ≤ z ≤ 1.944 are used, which are
collected in Ref. [54]. The minimum χ2 method is also used
here, which is expressed as

χ2fσ8 ¼
�

ˆfσ8obs −
fσ8th
q

	†
C−1
fσ8

�
ˆfσ8obs −

fσ8th
q

	
: ð9Þ

Here, q is the correction factor, dependent on the referenced
model of observational data [54], andCfσ8 is the covariance
matrix of the fσ8 sample. Since M varies in z < 0.02 and
data are located at z > 0.02, we thus fix the value of μG
to be 1þ ΔμG when the two Ansätze of varying M are
considered.
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We find that, when μG ¼ 1, the mean values with 1σ
uncertainty of the parameters are Ωm0 ¼ 0.284þ0.029

−0.032 and
σ8 ¼ 0.774� 0.020 with χ2min ¼ 29.016. The correspond-
ing contour plots on the σ8 −Ωm0 plane are shown in Fig. 2
and Table II. These values deviate significantly from those
given by the CMB data at more than 2σ CL, and the
marginalized constraint on σ8 also deviates from the CMB
result. When a modified μG is considered, we obtainΩm0 ¼
0.286þ0.028

−0.033 and σ8 ¼ 0.801� 0.021 with χ2min ¼ 28.976
for the sudden transition Ansatz and Ωm0 ¼ 0.285� 0.031
and σ8 ¼ 0.808þ0.020

−0.023 with χ2min ¼ 28.970 for the linear
transition one. The contour plots of the constraints on Ωm0

and σ8 with both Ansätze, presented in Fig. 2, are close to
the CMB result within about 1σ CL, and the marginalized
constraints on σ8 are well consistent with that from
the CMB data. Thus, a modified Geff does help resolve

the growth tension. Setting the model with μG ¼ 1 as the
reference one, we also calculate the values ΔAICðBICÞ for
both Ansätze and find that ΔAIC ¼ ΔBIC ≃ −0.04, since
all three models have the same free parameters. Therefore, a
model favored by the fσ8 observational data cannot be
singled out by using the AIC and BIC.

Conclusions. We propose a cosmological-model-
independent method to obtain the apparent magnitude m
and its derivative m0 at different redshift points from the
SNe Ia data and find that the Pantheonþ sample supports
deviation of m and m0 from the predictions of the ΛCDM
model at the lowest-redshift point. This deviation may be
explained as a result of a transition of the absolute
magnitude M in the low-redshift region. The observations
seem to support this transition, since the minimum value of
χ2 for two Ansätze of a varying M is less than that for a
constantM. Furthermore, the AIC prefers the model with a
sudden transition of M, although the BIC still supports the
constant M model. With a varying M, the H0 tension is
alleviated to be about 1σ–2σ, and the growth tension can be
resolved after attributing the variation of M to a modifi-
cation of the effective Newton’s constant.
The variation ofM orGeff may indicate that the theory of

general relativity needs to be extended [70–81]. If the
strength of gravity or M evolves over time at very low
redshifts, the SNe Ia are no longer standardizable candles,
and, thus, the cosmology implied by the existing SNe Ia
data will be different [70]. Moreover, a varying Geff not
only induces the change in M, but also affects the low-
redshift galaxy survey data [82] and the period-luminosity
relation in the Cepheid [71,83], as well as the expected
fluxes of neutrinos and x rays from neutron stars [84].
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