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Primordial black holes (PBHs), if trapped in neutron stars, emit a characteristic continuous,
quasiperiodic gravitational wave (GW) signal as they orbit inside the host star. We identify a specific
and qualitatively new feature of these signals, namely quasiperiodic beats caused by the precession of
noncircular PBH orbits. We demonstrate numerically and analytically that the beat frequency depends
rather sensitively on the neutron star structure, so that hypothetical future observations with next-generation
GW detectors could provide valuable constraints on the nuclear equation of state.
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Primordial black holes (PBHs), first proposed by [1,2],
may have formed in the earlyUniverse, andmaycontribute to
or evenmake upmost of its dark-matter content (see also [3]).
While observational constraints on PBHs limit their possible
contribution to the dark matter in some mass ranges, they
remain viable candidates in other mass windows, including
between about 10−16M⊙ and 10−10M⊙ as well as around
10−6M⊙ (see, e.g., [4–6] for reviews and details).
If PBHs exist, some of them are likely to interact with

stars and other celestial objects. Such interactions have
been invoked as possible origins of several astrophysical
phenomena, including the 1908 Tunguska event in Siberia
[7] (but see [8]), neutron star (NS) implosions and “quiet
supernovae” [9,10], fast radio bursts [9,11,12], the for-
mation of low-mass stellar black holes [13–16], micro-
quasars [17], and the origin of supermassive black holes
(e.g., [18]), possibly via the formation of PBH clusters
[19,20]. Gravitational-wave (GW) signatures of PBHs have
been surveyed recently in [21], and the prospect of
detecting PBHs using solar-system ephemerides has been
discussed in [22,23] and references therein.
A collision with a star results in the PBH being gravita-

tionally bound if it loses a sufficient amount of energy in the
encounter, which is most likely to happen in collisions with
NSs (see, e.g., [11,24–26]). The PBHmay still emerge from
the star, but can no longer escape to infinity. Losing more
energy in subsequent passages, the PBH at some point
remains completely inside the star, settles down toward its
center, accretes stellar material, and ultimately induces the
dynamical collapse of the host star (see [27–29] for numerical

simulations). While the expected event rates are small (see,
e.g., [24,25,30–32] as well as Sec. I in the Supplemental
Material [33] for estimates) they depend strongly on a
number of assumptions andmay bemore favorable in special
environments, e.g., globular clusters and galactic centers.
Small blackholesmay also form insideneutron stars from the
collapse of other dark-matter particles (e.g., [10,27,34,35]),
or be captured by neutron stars by other processes (e.g.,
[18,26,31,36]).
While the PBH spirals toward the center of the NS it

emits gravitational radiation that—at least in principle—
may be observable by next-generation GW detectors, and
that would reveal information about the stellar structure
[31]. The authors of [32,37], for example, examined this
scenario assuming circular orbits. Since the PBH typically
enters the host star on a noncircular orbit, and since the
retarding forces inside the star may not circularize the orbit
(see, e.g., [38,39]), the PBH’s orbit is likely to remain
eccentric (see also [40] for a numerical demonstration). In
this Letter we discuss a qualitatively new feature of such
noncircular orbits, namely continuous, quasiperiodic GW
beats. These beats are caused by a precession of the PBH’s
orbit inside the star, the GW frequency for which is
superimposed on the higher frequency arising from a single
orbit. The resulting GW envelopes for the two GW polar-
izations are exactly out of phase, so that the GW signal
alternates between being dominated by one or the other
polarization. In the stellar interior, both Newtonian and
relativistic effects contribute to this precession, but we find
that the latter dominate in NSs. As we demonstrate both
numerically and analytically, the rate of the precession, and
hence the beat frequency, depends rather strongly on the
NS structure, so that a future observation of such a GW beat
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could provide strong constraints on the nuclear equation of
state (EOS), let alone confirmation of the capture by a NS
of a smaller and lower-mass intruder.
As a numerical demonstration we show in Fig. 1

characteristic orbits of PBHs inside NSs governed by three
different EOSs varying in stiffness, together with their
associated GW signals. We adopt a simple particle test-
mass approximation to describe the PBH moving on
geodesics in the gravitational field of a relativistic star.
As dynamical friction and accretion drag forces are small
perturbations that operate on secular timescales much
longer than orbital times (e.g., [26,30]), we can probe
the precession by neglecting these forces and examining
a few orbits via geodesics. We assume the stars to be

governed by a polytropic EOS

P ¼ KρΓ0 : ð1Þ
Here P is the pressure, ρ0 the rest-mass density, K a
constant, and the adiabatic exponent Γ ¼ 1þ 1=n may be
expressed in terms of the polytropic index n. We construct
the stellar models by solving the Oppenheimer-Volkoff
(OV) equations, adjusting the central density so that the
stellar compaction is always given by GM�=ðc2R�Þ ¼ 1=6,
where M� is the star’s total gravitational mass and R� is
areal radius (see Sec. II in the Supplemental Material [33]
for details). In Fig. 1 we show examples for a star with
constant total mass-energy density ρ (corresponding to

FIG. 1. Numerical examples of orbits inside NSs governed by different EOSs (left panels) together with the emitted GW signal as a
function of time (right panels). The color shading in the left panels represents the density distribution inside the star. The top row shows,
as the extreme limit, a constant-density star, corresponding to Γ ¼ ∞. The middle and bottom rows show results for Γ ¼ 3 and Γ ¼ 2
polytropes. The GWamplitudes hþ and h× in the right panels are scaled for a star of massM� ¼ 1.4M⊙ and hosting a black hole of mass
m ¼ 10−6M� at a distance of d ¼ 10 kpc. The time t in the right panel denotes time as measured by a distant observer, and is provided
both in units of the stellar mass M� (bottom axis) and in terms of ms (upper axis). (See [41] for an animation.).
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Γ ¼ ∞), as well as Γ ¼ 3 and Γ ¼ 2 polytropes, which
serve as examples of both highly and moderately stiff
candidates for the NS EOS.
We then solve the relativistic geodesic equations in order

to track the PBH’s orbit. As discussed in Sec. III of the
Supplemental Material [33], we choose to solve these
equations in terms of the isotropic metric and radius r
rather than the interior Schwarzschild metric and areal
radius R, although the conversion is straightforward. We
always start orbits with vanishing radial speed ur ¼ 0 at
an initial (areal) radius Rð0Þ ¼ RfracR� and with angular
momentum l ¼ lfraclcirc, where lcirc is the angular
momentum corresponding to a circular orbit at radius
Rð0Þ. For the examples shown in Fig. 1 we used Rfrac ¼
0.6 and lfrac ¼ 0.1. All orbits are confined to a plane,
which we arbitrarily take to be the x − y plane. We also
evaluate the leading-order GW signals hþ and h× along the
z axis using the quadrupole formalism [42–44].
As can be seen in the left column of Fig. 1, the rate at

which the PBH’s orbit precesses depends strongly on the
structure of the host star, and hence its EOS. For all three
examples we show the orbits for a time spanΔt ¼ 2000M�,
which corresponds to about 14 ms for M� ¼ 1.4M⊙. All
orbits start out on the positive x axis. For the constant-
density star in the top row, the orbit has rotated by just over
45° during this time, while for Γ ¼ 3 it has rotated by a little
less than 180°, and a little over 360° for Γ ¼ 2.
If the GW signal is dominated by one polarization

initially (in our case hþ), then it will be dominated by
the other polarization after the orbit has rotated by 45°, and
will return to the original polarization after a rotation
through 90°. The resulting GW beats, and their dependence
on the NS structure, can be seen in the right panels of Fig. 1.
Specifically, we observe that the signal has shifted from
being dominated by hþ to being dominated by h× for the
constant density star, while for Γ ¼ 3 it has gone from hþ to
h× and then back to hþ almost twice, and just over four
times for Γ ¼ 2.
The above behavior can be understood in part in the

context of Bertrand’s theorem ([45], see also [46]), which
states that for potentials VðRÞ ¼ V0 þ kRm, where V0 and
k are constants, only the exponentsm ¼ −1 andm ¼ 2will
always result in closed orbits.
The former exponent, m ¼ −1, corresponds to a

Newtonian point-mass potential, which is the leading order
term in the potential in the exterior of a star. In general,
deviations from this exterior potential result both from
relativistic corrections as well as several Newtonian effects,
including tidal and rotational deformations of the star
(which are not present for our static spherical stars).
These deviations result in precession of the orbit, including
the well-known relativistic perihelion advance of Mercury
(see Sec. IV.A of the Supplemental Material [33]).
The latter exponent, a harmonic-oscillator potential

with m ¼ 2, is realized in the interior of a Newtonian

constant-density star, for which MðRÞ ¼ 4πρR3=3 and
hence VðRÞ ¼ V0 þ 2πGρR2=3. In this case, deviations
result from both density nonuniformities and relativistic
corrections. While we do not expect any precession, either
in the interior or exterior, for a homogeneous spherical star
in Newtonian gravitation, relativistic effects will cause
precession for such a star both in the exterior and interior.
Even for an inhomogeneous star, the stellar core becomes

increasingly homogeneous as R → 0. In Newtonian gravi-
tation, the PBH’s orbit therefore starts with a nearly closed
orbitwithm ¼ −1 far outside theNS, and endswith a tighter,
nearly closed orbit with m ¼ 2 well inside the NS—quite
remarkably realizing both cases of Bertrand’s theorem as
extreme limits. Moreover, since the approximately homo-
geneous core extends to larger radii for stiffer EOSs than for
softer EOSs, we expect that, for a given orbital radius, the
precession will be slower for a stiffer EOS than for a softer
EOS in Newtonian theory. This precession rate variation is
also found in general relativity, as revealed in the numerical
examples of Fig. 1.
We can gain analytical insight into the above effects

by considering small perturbations of circular orbits.
Geodesics in static and spherically symmetric spacetimes
possess two conserved constants of motion, namely the
energy per unit mass e ¼ −ut and the angular momentum
per unit mass l ¼ uφ. Using the normalization of the four-
velocity ua, gabuaub ¼ −1, a first integral of the equations
of motion can be written in the form

1

2
ðuRÞ2 ¼ E − VeffðRÞ; ð2Þ

where the constant E≡ ðe2 − 1Þ=2 plays the role of the
kinetic energy at infinity for velocities v∞ ≪ 1, and where
we split the effective potential VeffðRÞ into the two terms

VeffðRÞ ¼
l2

2R2
þ VðRÞ: ð3Þ

In many cases (e.g., a Newtonian point-mass) VðRÞ is
independent of e and l, but we now allow this term to
depend on these two constants, which is the case for the
orbits in general relativity considered here. In the following
we assume the orbit to be in the equatorial plane, so that
θ ¼ π=2, and we provide details of how VðRÞ can be
determined in Sec. IV of the Supplemental Material [33].
For a stable circular orbit at (areal) radius R0 the effective

potentialVeffðRÞmust take aminimum there, so that we have
V 0ðR0Þ≡ðdV=dRÞR0

¼l2=R3
0. Since l¼gφφuφ¼R2dφ=dτ,

the proper time τφ needed to complete one orbit, i.e., to
advance from an angle φ0 to φ0 þ 2π, is given by

τφ ¼ 2πR2
0

l
¼ 2π

�
R0

V 0ðR0Þ
�

1=2
: ð4Þ
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In the vicinity of a stable circular orbit we may approximate
the effective potential as a parabola VeffðRÞ ≃ VeffðR0Þ þ
kη2=2, where k≡ V 00

effðR0Þ > 0 and η≡ R − R0. Inserting
these into (2) and taking a derivative with respect to proper
time τ results in the harmonic-oscillator equation η̈þ kη ¼ 0
for η, where the double dot denotes a second derivative with
respect to τ. Accordingly, the proper time τR needed to travel
from the orbit’s pericenter to the apcenter and back to the
pericenter is given by

τR ¼ 2π

k1=2
¼ 2π

�
R0

3V 0ðR0Þ þ R0V 00ðR0Þ
�

1=2
; ð5Þ

and the ratio between the two times τR and τφ is

τR
τφ

¼
�

V 0ðR0Þ
3V 0ðR0Þ þ R0V00ðR0Þ

�
1=2

: ð6Þ

For a Newtonian point-mass potential VðRÞ ¼ pR−1, where
p is a constant, we have τR ¼ τφ, as expected for Kepler
orbits. For a harmonic-oscillator potential VðRÞ ¼ pR2 we
have τR ¼ τφ=2, so that the orbit, which is centered at and
symmetric about the origin, features two pericenters in each
revolution.According toBertrand’s theorem, these two cases
are the only potentials that lead to closed orbits.
While perturbations of the point-mass potential in the

stellar exterior are familiar—yielding, for example, the
relativistic perihelion advance of Mercury—we now focus
on the stellar interior. Specifically, we show in Sec. IV.B of
the Supplemental Material [33] that, in the vicinity of the
center, the potential VðRÞ can be written in the form

VðRÞ ¼ V0 þ pR2 þ qR4 þOðR6Þ; ð7Þ

where V0, p, and q are constants. Inserting (7) into (6) and
assuming qR2

0 ≪ p we find, to leading order,

τR
τφ

≃
1

2

�
1 −

qR2
0

2p

�
: ð8Þ

As the black hole advances from one pericenter to the next,
its positional angle φ therefore advances by

Δφ ¼ dφ
dτ

τR − π ≃ −
π

2

qR2
0

p
ð9Þ

beyond the angle π that would result in a closed orbit.
We refer the reader to Sec. IVof the SupplementalMaterial

[33] where the constants p and q are evaluated in general
relativity for nearly circular orbits. Here we present a more
transparent Newtonian treatment in order to illustrate the key
ingredients. In the vicinity of the stellar center we may
approximate the density as ρðRÞ ≃ ρc þ ρð2ÞR2=2, where

ρðnÞc ≡ ðdnρ=dRnÞR¼0. Integrating oncewe find the enclosed

mass MðRÞ, and integrating again we obtain the potential

VNewtonðRÞ ≃ V0 þ
2πG
3

ρcR2 þ πG
10

ρð2Þc R4: ð10Þ

Comparing with (7) we identify both p and q and compute

ΔφNewton ≃ −
3π

40

ρð2Þc R2
0

ρc
: ð11Þ

Evidently, the Newtonian pericenter advance is related to
the degree of inhomogeneity, consistent with our discus-
sion above.
We may evaluate the term ρð2Þc in (11) using the

Newtonian equations of hydrostatic equilibrium. For a
polytropic EOS (1) we find

ρð2Þc ¼ −
4π

3

Gρ2c
a2c

; ð12Þ

where a ¼ ðΓP=ρÞ1=2 is the (Newtonian) speed of sound.
Finally we may use the central condensation δ≡ ρc=ρ̄,
where ρ̄ ¼ 3M�=ð4πR3�Þ is the average density, to rewrite
the Newtonian pericenter advance as

ΔφNewton ≃
3π

40

GM�
a2cR�

�
R0

R�

�
2

δ: ð13Þ

For Newtonian polytropes δ depends on Γ only (see Table I
for specific values). For smaller Γ, δ is larger and a2c smaller
[for a given compaction GM�=ðc2R�Þ]; we therefore see
that the pericenter advance is larger for a softer EOSs (for a
given value of R0=R�).
While the above analysis captures the leading-order

Newtonian terms, we have found that the pericenter
advance in the NSs considered here is dominated by
relativistic terms. However, the pericenter advance’s
dependence on the EOS’s stiffness is similar to that
observed from the above Newtonian analysis even in the
context of general relativity—namely, a softer EOS will
lead to a more rapid precession of the orbit, and therefore
to higher-frequency GW beats. This can be observed in
Fig. 1 as well as in the Table I, where we list pericenter
adnvances Δφ for nearly circular orbits (lfrac ¼ 0.99) close
to the center (Rfrac ¼ 0.05) for a range of polytropic
indices. We compare numerical results from the integration
of the geodesic equation with analytical results from the
perturbation of nearly circular orbits and find excellent
agreement.
The range of polytropic exponents Γ listed in Table I

roughly covers values adopted in piecewise-polytropic
approximations for candidate nuclear EOSs (see Table III
in [47]; note in particular the larger range of values for Γ3,
which governs the high-density core). The resulting values of
Δφ show significant variation, suggesting that a potential
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observation of the resulting GW beats would provide a
sensitive probe of the EOS.
From the pericenter advanceΔϕwemay also compute the

precession frequency. Since we defined Δφ as the (excess)
advance from one pericenter to the next, and since, to leading
order, orbits in the stellar interior feature two pericenters per
orbit, the angular precession frequency measured locally is
given by Ωprec ¼ 2Δφ=τφ, where τφ is the orbital (proper)
period. Related to the precession frequency is the (proper)
precession period τprec that it takes either of the two GW
polarization amplitudes to go through one complete cycle,
i.e., for the pericenter to advance by an angle π,1

τprec ¼
π

Ωprec
¼ π

2Δφ
τφ: ð14Þ

The number of orbits completed during a precession period
τprec is therefore N orbit ¼ τprec=τφ ¼ π=ð2ΔφÞ. Since, dur-
ing one revolution, the GW signal completes two cycles, the
number of such GW cycles completed as either GW
polarization goes through a full beat cycle associated with
the GW envelope is given by

N GW ¼ 2N orbit ¼
π

Δφ
: ð15Þ

For the orbits in Fig. 1, for example, we foundΔϕ ¼ 0.0255,
0.0597, and 0.127 forΓ ¼ ∞, 3, and2, respectively, resulting
in N GW ¼ 123, 52.6, and 24.8. In Table I we also provide
data for N GW, τφ, and τprec for the nearly circular orbits
considered there.

The above periods are proper times as measured by an
observer comoving with the PBH. For the nearly circular
orbits in Table I we may simply multiply these periods with
ut in order to obtain the corresponding coordinate time
periods. In Table I we list the resulting GW frequency
associated with a single orbit, fGWorb ≃ 2=ðutτφÞ, and the GW
beat frequency fGWbeat ≃ 1=ðutτprecÞ, both as measured by a
distant observer.
To summarize, we discuss quasiperiodic GW beats as a

qualitatively new feature of continuous GW signals emitted
by PBHs captured inside NSs. The beats are due to orbital
precession, which is caused both by relativistic effects and
density nonuniformity. Adopting a polytropic EOS we
demonstrate both numerically and analytically that the beat
frequency depends quite strongly on the structure of the NS
and hence the stiffness of the EOS. For the NSs considered
here the precession rate and beat frequency are largely due to
relativistic gravitation, so that a Newtonian treatment would
significantly underestimate the effect. If such beatswere to be
observed by next-generationGWdetectors, e.g., the Einstein
Telescope [48], the Cosmic Explorer [49], or the Neutron
Star ExtremeMatter Observatory (NEMO) [50], they would
therefore provide valuable constraints on the nuclear EOS.
Clearly, the beat frequency also depends on the radius and

eccentricity of the PBH’s orbit, which would have to be
found independently. The latter is related to the relative
maximum and minimum amplitudes in each one of the GW
polarizations, and it may be possible to determine the radius
from the prior inspiral signal. Knowing these orbital param-
eters, as well as the host star’s compaction, an observed beat
frequency could then be compared with those found for
orbits insidegeneral relativistic stellarmodels constructed for

TABLE I. Numerical and analytical data for polytropic stellar models and pericenter advances for nearly circular orbits close to the
center of a stellar host with compaction GM�=ðc2R�Þ ¼ 1=6. We list, for different values of Γ ¼ 1þ 1=n, Newtonian values of the
central condensation δ ¼ ρc=ρ̄ (which depends on the Γ alone) and the Newtonian estimateΔφ=ðR0=R�Þ2, adopting numerical solutions
to the Lane-Emden equation, together with Δφ for R0=R� ¼ 0.05. For the relativistic data we computed δ from solutions to the OV
equations. Adopting R0=R� ¼ 0.05 again we computed Δφnum from numerical solutions to the geodesic equations, using lfrac ¼ 0.99
for nearly circular orbits, and Δφana analytically as presented in the Supplemental Material [33]. We also list the number of GW wave
cyclesN GW completed during a beat cycle [see Eq. (15)], and, assuming a host star with massM� ¼ 1.4M⊙, the orbital time τφ as well
as the precession time τprec. In the last two columns we provide the corresponding GW frequencies fGWorb ≃ 2ðutτφÞ−1 and fGWbeat ≃
ðutτprecÞ−1 as measured by a distant observer.

Newton GR

Γ n δ Δφ=ðR0=R�Þ2 Δφ δ Δφnum Δφana N GW τφ [ms] τprec [ms] fGWorb [kHz] fGWbeat [Hz]

1.75 1.33 4.89 1.26 0.00315 7.46 0.0161 0.0162 194 0.194 18.9 5.56 28.7
2.0 1.0 3.29 0.775 0.00193 3.98 0.00841 0.00844 372 0.273 51.0 4.48 12.1
2.25 0.8 2.60 0.556 0.00139 2.94 0.00608 0.00612 513 0.321 82.4 4.01 7.81
2.5 0.67 2.23 0.432 0.00108 2.43 0.00494 0.00498 630 0.354 111 3.73 5.91
2.75 0.57 2.00 0.352 0.00088 2.14 0.00427 0.00430 731 0.379 138 3.54 4.85
3.0 0.5 1.84 0.298 0.00075 1.94 0.00382 0.00385 816 0.398 163 3.41 4.18
3.25 0.44 1.72 0.257 0.00064 1.80 0.00351 0.00353 890 0.414 184 3.31 3.72
∞ 0 1 0 0 1 0.00164 0.00165 1904 0.553 527 2.62 1.38

1In the bottom panel of Fig. 1, for example, τprec ≃ 1000M�.
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candidate nuclear EOSs. While the GW amplitude depends
on the PBH mass, the precession frequency does not.
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