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We present a superfluid dark star model consisting of relativistic dark bosons with two-body self-
interaction. The obtained masses, radii, and tidal deformability depend in a simple way on the boson mass
and interaction strength. We report first results on binary mergers: the distinctive amplitude and frequency
of the emitted gravitational waves are well within reach of terrestrial interferometers.
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Introduction. Boson stars [1–3] are hypothetical objects
entirely made of bosons, see [4–7] for reviews. The idea
originated from the work of Wheeler on geons [8],
appropriately adapted to Einstein-Klein-Gordon solitons.
Indeed, in the literature boson stars are mainly identified
with localized solitonlike configurations stabilized by
gravity [9–13]. They can be viewed as macroscopic quan-
tum systems subject to their own gravitational attraction—
the collapse is typically prevented by the Heisenberg
uncertainty principle. In solitonlike stars, interactions
significantly determine the stellar configuration but do
not play an essential role in their gravitational stability.
In the present paper we discuss the equilibrium con-

figuration of a fluid of self-interacting dark matter bosons
subject to their own gravitational attraction. Besides the
gravitational pull, bosons statistically attract each other,
hence a short-range repulsion is needed to prevent the
collapse. Such approach parallels the observation that
stable stars made of charged pions [14–17] may be realized
if the pion electric charge is balanced [18]. In that case,
the configuration is not a soliton, but can be viewed as a
standard gas of self-gravitating matter.
We focus on a simple system of dark bosons, completely

decoupled from the Standard Model. We assume that the
system features a global number symmetry that is sponta-
neously broken, so that a superfluid is formed. The inter-
particle repulsion is modeled by a two-body self-interaction
[19,20], allowing to determine analytically the equation of
state (EoS). In the low-temperature limit, hydrostatically
stable configurations, hereafter superfluid dark stars, have
masses and radii linearly scaling with the ratio between the
square root of the self-coupling and the square of the boson

mass. Since superfluid dark stars have arbitrarily low
masses, they are compatible with the possible observation
of low-mass compact objects. For instance, the component
masses in the SSM200308 merger event [21] are estimated
to beM1 ¼ 0.62þ0.46

−0.20M⊙ andM2 ¼ 0.27þ0.12
−0.10M⊙, withM⊙

the solar mass. Such low masses challenge the standard
paradigm of hadronic compact stars [22–27] originating
from supernova explosion [22,28–30].
We address the tidal deformability and study numerically

the evolution of equal-mass binary systems, considering
canonical 1.4M⊙, as well as lighter 0.6M⊙, masses. We
report the corresponding gravitational waveforms and
amplitude spectral densities, as well as an estimate of
the ejected matter. We use natural units ℏ ¼ c ¼ GN ¼ 1.

The model. We consider an ensemble of bosons at vanish-
ing temperature and finite density. The system features
a global Uð1Þ symmetry associated to particle number
conservation. We analyze the simplest model: a massive
complex scalar field, Φ, having quartic self-interaction
coupling λ [11,31,32], with 0 < λ ≪ 1. Such system was
considered in the context of solitonic boson stars for the
first time in [33,34]. The corresponding Lagrangian density
can be written as

L ¼ DνΦ�DνΦ −m2
BjΦj2 − λjΦj4; ð1Þ

where mB is the boson mass and the covariant derivative

Dν ¼ ∂ν − i
μ

γ
uν; ð2Þ

appropriately includes the boson chemical potential μ
[35,36] and the fluid four-velocity, uν ¼ γð1;uÞ, with γ
the Lorentz factor. In the nonrelativistic limit, the above
Lagrangian is equivalent to the Gross-Pitaevskii one, which
captures the main features of dilute boson gases [37].
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Superfluid vortices can be included quantizing the velocity
field circulation; we comment on their possible relevance in
the conclusions.
Upon expanding the covariant derivative, we obtain the

potential minimum

jΦj2 ¼
(

1
γ2

μ2−m2
Bγ

2

2λ for jμj ≥ mBγ

0 for jμj < mBγ
; ð3Þ

where jμj ¼ mBγ corresponds to a second order quantum
phase transition. At vanishing temperature, neglecting
fluctuations, the quantum pressure in the superfluid phase

PðμÞ ¼
�
μ2=γ2 −m2

B

�
2

4λ
; ð4Þ

is obtained by maximizing the Lagrangian in Eq. (1). A
nonvanishing velocity not only reduces the pressure, a
relativistic effect analogous to the Bernoulli law, but it also
decreases the order parameter. Since in the merging
simulations the relativistic hydrodynamics is already taken
into account, hereafter we consider the fluid at rest
uν ¼ δν0. The superfluid depletion due to relativistic effects
will be discussed in future work.
For a superfluid at rest, the quantum pressure vanishes at

the transition point jμj ¼ mB, and it is independent of the
sign of μ. From dimensional analysis P ∝ ðμ2 −m2

BÞ2=λ,
where the 1=λ dependence reflects the depletion of the
superfluid with increasing repulsion. These arguments can
be easily generalized to include additional interactions,
as in [38], which would generate pressure contributions
proportional to powers of ðμ2 −m2

BÞ.
Using standard thermodynamic relations, we obtain the

number density and the adiabatic speed of sound

n ¼ μ
μ2 −m2

B

λ
and c2s ¼

μ2 −m2
B

3μ2 −m2
B
; ð5Þ

both vanishing at jμj ¼ mB. The speed of sound is a
monotonic increasing function of the number density,
approaching the conformal limit value for asymptotic
densities. Since cs ≤ 1=

ffiffiffi
3

p
, the obtained EoS is quite soft

compared to hadronic EoSs [24–27,39], which in many
cases have the speed of sound approaching the speed of
light at large densities. Given n and P, the energy density is

ϵ ¼ 2
m2

Bffiffiffi
λ

p ffiffiffiffi
P

p
þ 3P; ð6Þ

which agrees with the effective EoS derived in [34] for a
fluid star and in [40] for hybrid stars. The ansatz in the
approach of [34] is that Φ ¼ Φ0ðrÞ expð−iωtÞ, hence we
interpret Φ0ðrÞ as the order parameter associated to the
spontaneous symmetry breaking, while ω corresponds to

the boson chemical potential. With increasing λ, for fixed ϵ,
the pressure grows, hence the stiffness increases as the
interparticle repulsion strengthens.

Hydrostatic equilibrium. Knowing the EoS, we determine
the hydrostatic equilibrium configuration for nonrotating
mass distributions by solving the spherical Tolman-
Oppenheimer-Volkoff (TOV) equations [41,42]. To this
end, the following rescaling is useful

ϵ ¼ m4
B

λ
ϵ̂; P ¼ m4

B

λ
P̂; ð7Þ

r ¼
ffiffiffi
λ

p

m2
B
r̂; M ¼

ffiffiffi
λ

p

m2
B
M̂; ð8Þ

where r is the radial distance from the origin andM≡MðrÞ
is the gravitational mass within r. Both ϵ̂ and P̂ are dimen-
sionless in natural units. Upon substituting the above
expressions in Eq. (6), we have the dimensionless EoS

ϵ̂ ¼ 3P̂þ 2
ffiffiffiffî
P

p
; ð9Þ

while the TOV equations are

dM̂
dr̂

¼ 4πr̂2ϵ̂;
dP̂
dr̂

¼ ðϵ̂þ P̂Þ M̂ þ 4πr̂3P̂

2M̂ r̂−r̂2
; ð10Þ

which can be solved for a given central energy density, ϵ̂0.
Differently from solitoniclike stars [4–7], superfluid
dark stars have a well-defined radius, R, determined by
the vanishing pressure condition [22]. The gravitational
mass is MðRÞ.
In Fig. 1 we show the mass-radius diagrams of the

superfluid dark stars for different values of

x ¼
ffiffiffi
λ

p

m2
B
; ð11Þ

which is the parameter determining the scaling of masses
and radii in Eqs. (8). We compare the results with those
obtained using few hadronic EoSs. For given x, lowering
the central density, the mass decreases while the radius
increases. In the low density limit, the EoS (6) is approxi-
mated by the polytrope P ¼ x2

4
ϵ2 so that the radius is given

by R ¼ x
ffiffi
π
8

p
, which is confirmed in Fig. 1 for vanishingM.

We also find that at low densitiesM scales linearly with the
central density.
The maximal mass of superfluid dark stars scales linearly

with x, reaching the neutron star (NS) observational limit
of about 2.1M⊙, for x ≃ 20 GeV−2. Compared to hadronic
EoSs, the corresponding stellar radius is here about a
factor 2 larger. Since both R and M scale linearly with x,
extremely massive superfluid dark stars have radii much
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larger than standard NSs. On the other extreme, if x is very
small, light clumps of superfluid dark matter with very
small radii may be realized. This would happen for small
values of λ and/or for heavy dark bosons, namely large mB.
The thin straight lines in Fig. 1, indicate two different

values of the stellar compactness, C ¼ M=R. Given the
scaling in Eq. (8), the compactness is independent of x,
therefore these lines join configurations with the same
dimensionless central energy density but different x. Since
M ∝ M̂x and ϵ ∝ ϵ̂x−2, stars having the same compactness
but larger masses (and radii) have smaller central densities.
The maximum compactness is Cmax ≃ 0.16, which is
smaller than the values obtained with hadronic matter—
the dark boson EoS is relatively soft. Thanks to this upper
limit, future evidence of higher compactness may rule out
superfluid dark stars obtained with (1). Higher compactness
can be obtained with different contact interactions [38].
Such a measurement should result from gravitational
observations since dark bosons are not expected to emit
light. Hence, bounds from NICER [50] as well as from
GW170817 [51], which was followed by a kilonova [52],
cannot constrain our model.
Another possibility is to assess the existence of super-

fluid dark stars by tidal deformation measurements. We
calculate the so-called tidal Love number k2 as in [53–56]:
it ranges from about 0.045 to 0.25 for decreasing compact-
ness. In Fig. 2, we show the mass dependence of the
dimensionless tidal deformability parameter

Λ ¼ 2

3C5
k2; ð12Þ

together with the expected reach of the O4 run at Ligo-
Virgo-Kagra (LVK) [57,58] and the estimated sensitivity
of the Einstein Telescope (ET) [59]. We observe that for
each value of x there is a range of masses for which a
measurement should be possible. In particular, ET should
be able to probe the entire range of tidal deformabilities of
superfluid dark stars. For vanishing masses, all Λ curves in
Fig. 2 diverge. Toward maximalM, the lowest value Λmin ≃
290 is obtained, regardless of x, consistent with the fact that
the external part of the star can be described by a Γ ≃ 2
polytrope [56]. The two dots correspond to the stars used
in the merger simulations. Since these two configurations
have similar dimensionless central densities ϵ̂0 ∼ 10−4, they
also have similar tidal deformabilities ∼105. We remark
that as Einstein’s equations for a superfluid dark star can be
written in dimensionless units with the appropriate rescal-
ing of Eqs. (7) and (8), we expect that the value of any
dimensionless observable, e.g., the tidal deformability, at
fixed central density, ϵ̂0, should be independent of x.

Binary mergers. Considering dark bosons decoupled from
Standard Model particles, the only way to probe superfluid
dark stars is by their gravitational effects [61], see however
the discussion in [62] for possible light emission mecha-
nisms. In the context of solitonlike models, merging of
boson stars was considered in [63–65]. Here we study the
merging of two equal-mass inspiraling superfluid dark
stars, with compactness C ≃ 0.06, corresponding to the
two dots in Figs. 1 and 2. The first simulation is done with
stars having constituent mass1 Mb ≃ 1.4M⊙ and radius

FIG. 2. Dimensionless tidal deformability Λ, see Eq. (12), as a
function of the stellar gravitational massM. For any x in Eq. (11),
the curves are obtained changing the dimensionless central
energy density. The lowest value Λmin ≃ 290 is reached for the
maximal mass, while Λ diverges for low masses. The dots
correspond to the configurations used in the merger simulations.
The shaded area delimits the 3σ upper bound at fixed signal to
noise ratio SNR ¼ 12 in the O4 observational run in LVK
[57,58,60]. The black line corresponds to the 1σ tidal deform-
ability at 100 Mpc for the Δ − 10 km HFLF-Cryo configuration
of ET [59].

FIG. 1. Masses and radii of superfluid dark stars for different
x ¼ ffiffiffi

λ
p

=m2
B (dashed) compared with various hadronic EoSs

(solid) [43–47]. The top gray (blue) band corresponds to the
observational limits on pulsar masses in [48]([49]). The bottom
pink and yellow bands show the component masses in the
SSM200308 event [21]. The dots correspond to the configura-
tions used in the merger simulations. The two thin straight lines
indicate the maximum compactness (upper line) and the one used
in the merger simulations (lower line).

1This is the stellar mass computed integrating the energy
density over the proper volume.
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R ≃ 32.5 km at an initial distance of 90 km, while the
second has stars with Mb ≃ 0.6M⊙ and R ≃ 13.1 km at an
initial distance of 50 km.
The numerical setup employed is analogous to that

of [66], in which initial data for irrotational binaries are
generated with LORENE [67,68] and evolved dynamically
using the EINSTEIN TOOLKIT [69]. The spatial resolution
of the grid is chosen to reasonably represent the interior
of the stars while ensuring that the computational cost
remains manageable: production runs have been performed
with δ ¼ 553 m.
Figure 3 shows a summary of the two simulations. None

of the systems collapses to a black hole in the simulated
time, as expected from the low value of the compactness.
The top panels contain snapshots of the density distribution
at different times; the bottom one shows the extracted h22
component of the gravitational wave (GW) in magenta and
blue for the higher and lower mass respectively—see [70]
for detailed extraction procedure.
For Mb ¼ 1.4M⊙, the magenta line in Fig. 3(c) shows

the typical chirp, followed by the merger and the formation
of a bar-deformed remnant. Its imprint on the GW can be
seen in the spectral density Fig. 4 (left), where two
dominant frequencies appear: one at f ≃ 475 Hz and the
other at f ≃ 670 Hz. They turn on in the postmerger phase,
as shown by the spectrum of the waveform computed after
tmerger. We confirm that the peaks originate from the m ¼ 1

and m ¼ 2 matter oscillation modes, see, e.g., [71].

For Mb ¼ 0.6M⊙, a more peculiar behavior emerges,
see the blue line in Fig. 3(c). Somewhat evident are the
oscillations due to the residual eccentricity in the initial
data. They are expected to be pronounced for soft EoS
models and small stellar masses. In order to test the relia-
bility of the method, we estimated the residual eccentricity
in the Newtonian approximation (following the distance of
one star from the origin, see for instance [74,75]). The
result is about 5 × 10−2, compatible with residuals from
initial data. The right panel in Fig. 4 shows the correspond-
ing spectrum. It is qualitatively similar to the left one;
the two peaks are only shifted to higher frequencies,
f ≃ 1.1 kHz and f ≃ 1.54 kHz, and appear less intense
due to the shorter GW signal. It is encouraging to see that
in both simulations the peak frequencies are well within
the observational window of LVK [76], and for high
mass objects are at lower frequencies with respect to NS
mergers [73,77].
The obtained results confirm that for fixed compactness

observables scale with x. The ratio of the initial masses (or
equivalently, initial radii) is equal to the ratio of the used
values of x (in this case, 2.45).The spectral pattern is
peaked at frequencies that increase with decreasing x: the
peaks in the two plots of Fig. 4 have a ratio ≃2.3. A similar
value comes from the minimization of the L2 norm between
the two strains of Fig. 3(c), that is given by

arg min
d

kh1.4 − dh0.6k2 ≃ 2.3; ð13Þ

where d is a scaling factor. A relative error of about 6%may
be in part due to differences in the initial data (the exact
values of the two compactness differ by ∼4%) and in part to
numerical errors accumulated during the simulations, the
extraction procedure and the Fourier transform.
The formation of a disk of ejected matter surrounding the

remnant is visible in both Fig. 3(a)–3(b). Its constituent
mass can be computed as the three-dimensional integral of
the conserved rest-mass density D ¼ ffiffiffi

g
p

ρ̄γ [78] from the

FIG. 3. Results of the merger simulations. (a–b) Three snap-
shots of the matter density distribution ρ̄ ¼ ρG3M2

⊙c−6, taken
during inspiral, merger and postmerger for Mb ¼ 1.4M⊙ (a), and
Mb ¼ 0.6M⊙ (b). (c) The extracted GW signals in magenta and
blue corresponding to (a) and (b), respectively.

FIG. 4. Amplitude spectral densities 2jh̃×j
ffiffiffi
f

p
(see, e.g., [72])

at 20 Mpc for binary merging of equal mass stars, for M ¼
1.4ð0.6ÞM⊙ respectively in the left (right) panel and magenta
(blue) lines. The dotted black lines show the spectrum for DD2
EoS [73]. The solid black lines are the sensitivity curve of
Advanced LIGO [58].
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minimum value to some upper limit Dcut. Here g is the
determinant of the 3-metric gij, γ the Lorentz factor and
ρ̄ the density in geometrized units. However, there is no
unambiguous way to choose the threshold to separate the
remnant from the disk.
To this end, we look at the density profile of the fluid on

the XY plane at a time in which the mass density reaches a
steady state and the m ¼ 2 deformation is subdominant
with respect to the overall axial symmetry. Figure 5 (left)
shows, for both simulations, its average over the entire
azimuthal angle

D�ðrÞ ¼ 1

2π

Z
π

−π
D dϕ; ð14Þ

in magenta for Mb ¼ 1.4M⊙ and in blue for Mb ¼ 0.6M⊙.
Looking at this plot together with the third panel of
Figs. 3(a) and 3(b), it is possible to distinguish the main
features of the remnant: in the center there is a region of
lower density around which two clumps of matter rotate,
slowly dissipating energy (in our simulations only via GW
emission). We set the density threshold looking for the
distance at which the logarithmic derivative of the density is

d logðD�Þ
d logðrÞ ¼ −4.53; ð15Þ

where the numerical value guarantees that disk masses in
the two simulations satisfy the x–scaling. In Fig. 5 (right)
we show how the computed disk mass varies when the
upper limit in the density integration is changed, and where
our estimates lie. The values found are marked as dashed
vertical lines. As can be seen from the right panel of Fig. 5,
they approximately capture the change in slope of the mass
profiles. The corresponding disk masses are Mdisk ≃
0.36M⊙ and Mdisk ≃ 0.16M⊙, respectively. They are about
13% of the initial total mass.

Conclusions and outlook. We presented a star model
composed of self-gravitating superfluid dark matter, show-
ing that its stellar structure depends on just two parameters:
the central density and the x parameter given by the ratio
of the square root of the coupling to the square boson mass.
The observational ∼2.1M⊙ constraint on the compact star
mass is compatible with our findings only if their radius is
larger than ∼20 km. Large and massive superfluid dark
stars may be realized for large value of the x parameter,
see Eq. (11).
Given that superfluid dark stars are not expected to emit

light and neutrinos as standard NSs, the only viable way to
assess their existence and constraint their masses, radii and
tidal deformations is by gravitational observations. In this
respect, we have reported a study of superfluid dark-stars
merger, showing that for relatively low masses the final
object is gravitationally stable. The GW signal is quite
different from that of hadronic star mergers and possibly
detectable by LVK.
This analysis can be extended and improved in various

different ways. We could simulate merging events of two
very massive superfluid dark stars, having masses of 20M⊙,
or even larger, and then compare the GW signal with that of
a black hole merger. For such large masses, the uncertainty
in the determination of the tidal deformability in ET [59]
should be low enough to allow to distinguish superfluid
dark stars from black holes. Hybrid compact stars in which
standard hadronic matter coexists with superfluid dark
matter may be realized, as well. Such hybrid models have
been already discussed in several cases [40,79–91], in
particular dark matter in the Bose-Einstein condensed
BEC phase has been considered in [40,82,88,90], showing
a softening of the EoS as a consequence of the dark matter
presence.
The results of the merging simulation show that observ-

ables scale with x. However, it is worth remarking that we
obtained such results for fixed mB. Varying the value of the
boson mass while keeping x constant should produce a
number of effects. The particle velocities are expected to
change resulting in the condensate depletion. Rotating
superfluids host quantized vortices with core size of the
order ξ ≃ ð ffiffiffi

2
p

mBcsÞ−1 [37], while the velocity circulation
is quantized in units of 1=mB. Changing mB, the whole
vortex structure changes, hence, rotation properties of
superfluid dark stars are not scalable with x but explicitly
depend on the boson mass. For sufficiently lowmB, rotating
boson stars are expected to host a small number of very
large vortices. In this case, the phenomenology can be
forecast from cold atom experiments; for instance vortex
core precession could take place as observed in ultracold
dilute gases [92].
Since in this model it is possible to have light dark matter

lumps, heavy superfluid dark stars may result from sequen-
tial merging of small droplets. Clearly, temperature effects
should be included and may lead to new phenomena [93].

FIG. 5. Left: azimuthal average of ρ̄ as function of the radial
distance r. The dashed line represents the radius at which its
logarithmic derivative is −4.53 for Mb ¼ 1.4M⊙ in magenta and
Mb ¼ 0.6M⊙ in blue. Right: total constituent mass computed
integrating densities up to Dcut.
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However, for virialized dark stars we expect that T ∝ mBC,
while the BEC critical temperature is Tc ∝ n2=3=mB (cor-
rections due to interactions are negligible for sufficiently
small λ [94,95]), thus (at fixed x) the condition T ≪ TC is
satisfied for sufficiently small values the boson mass. Upon
substituting the numerical values of the parameters we find
an upper bound on the boson mass of hundreds of MeV.
During the binary merging, due to the high energies
involved, part of matter could evaporate. In principle, if
the two colliding objects are sufficiently light, they may
evaporate even before the merging is concluded. Hence,
arbitrary small dark lumps of condensed bosons are not
expected to form unless they are ultracold and survive
encounters. In this respect, it would be interesting to study
whether viscous effects [96] may influence the thermal
and hydrodynamic evolution of merging dark droplets.
One should analyze their collisions to infer whether they
merge or dissolve. In the latter case they may contribute to
the cold dark matter component. Indeed, self-interacting

dark matter happens to be a good candidate to alleviate
some of dark-matter problems [97,98], see as well the
discussion in [99,100]. A guidance in the study of dark
droplet interactions can derive from studies of colliding
ultracold atom droplets [101], which result in either
merging or separation depending on their incoming relative
velocity.
If the merging droplets of dark bosons are sufficiently

compact and cold, they may create tiny black holes. This
would be of great astrophysical interest due to the quick
evaporation by Hawking emission, resulting in a mecha-
nism to turn dark matter into Standard Model particles.
The present model may be extended to include appropriate
self-interactions that drive the system in a supersolid
phase [102–105], and rotating supersolid dark stars may
be quantum simulated as in [106].
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https://lorene.obspm.fr/ (1999).
[68] E. Gourgoulhon, P. Grandclément, K. Taniguchi, J.-A.

Marck, and S. Bonazzola, Phys. Rev. D 63, 064029
(2001).

[69] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R.
Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G.
Allen, M. Campanelli, and P. Laguna, Classical Quantum
Gravity 29, 115001 (2012).

[70] I. Hinder et al., Classical Quantum Gravity 31, 025012
(2013).

[71] N. Stergioulas, A. Bauswein, K. Zagkouris, and H.-T.
Janka, Mon. Not. R. Astron. Soc. 418, 427 (2011).

[72] L. Rezzolla and K. Takami, Phys. Rev. D 93, 124051
(2016).

[73] A. Bauswein, N. Stergioulas, and H.-T. Janka, Eur. Phys. J.
A 52, 56 (2016).

[74] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D
90, 064006 (2014).

[75] T. Dietrich, N. Moldenhauer, N. K. Johnson-McDaniel, S.
Bernuzzi, C. M. Markakis, B. Brügmann, and W. Tichy,
Phys. Rev. D 92, 124007 (2015).

[76] B. Abbott et al., Living Rev. Relativity 23, 3 (2020).
[77] A. Bauswein, H.-T. Janka, K. Hebeler, and A. Schwenk,

Phys. Rev. D 86, 063001 (2012).
[78] F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martí, and J. A.

Miralles, Astrophys. J. 476, 221 (1997).
[79] I. Goldman and S. Nussinov, Phys. Rev. D 40, 3221 (1989).
[80] G. Bertone and M. Fairbairn, Phys. Rev. D 77, 043515

(2008).
[81] P. Ciarcelluti and F. Sandin, Phys. Lett. B 695, 19 (2011).
[82] X. Li, F. Wang, and K. S. Cheng, J. Cosmol. Astropart.

Phys. 10 (2012) 031.
[83] J. Ellis, G. Hütsi, K. Kannike, L. Marzola, M. Raidal, and

V. Vaskonen, Phys. Rev. D 97, 123007 (2018).
[84] A. Nelson, S. Reddy, and D. Zhou, J. Cosmol. Astropart.

Phys. 07 (2019) 012.
[85] O. Ivanytskyi, V. Sagun, and I. Lopes, Phys. Rev. D 102,

063028 (2020).
[86] H. C. Das, A. Kumar, B. Kumar, S. Kumar Biswal, T.

Nakatsukasa, A. Li, and S. K. Patra, Mon. Not. R. Astron.
Soc. 495, 4893 (2020).

[87] Z. Berezhiani, R. Biondi, M. Mannarelli, and F. Tonelli,
Eur. Phys. J. C 81, 1036 (2021).

[88] E. Giangrandi, V. Sagun, O. Ivanytskyi, C. Providência,
and T. Dietrich, Astrophys. J. 953, 115 (2023).

[89] A. Kumar, H. C. Das, and S. K. Patra, Mon. Not. R.
Astron. Soc. 513, 1820 (2022).

SUPERFLUID DARK STARS PHYS. REV. D 110, L021301 (2024)

L021301-7

https://arXiv.org/abs/hep-ph/0204199
https://doi.org/10.1103/PhysRevD.77.103014
https://doi.org/10.1103/PhysRevD.77.103014
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevD.108.103043
https://doi.org/10.1103/PhysRevD.108.103043
https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1103/PhysRevD.105.023001
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1051/0004-6361/201731604
https://doi.org/10.1051/0004-6361/201731604
https://doi.org/10.1140/epja/s10050-022-00706-w
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.3847/2041-8213/abe2b4
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://arXiv.org/abs/2402.18656
https://doi.org/10.21468/SciPostPhysCore.3.2.007
https://doi.org/10.1103/PhysRevD.106.084004
https://doi.org/10.1103/PhysRevD.106.084004
https://doi.org/10.1103/PhysRevD.77.044036
https://doi.org/10.1103/PhysRevD.77.044036
https://doi.org/10.1088/1361-6382/aae87c
https://doi.org/10.1088/1361-6382/aae87c
https://doi.org/10.1103/PhysRevD.96.104058
https://doi.org/10.1103/PhysRevD.101.064052
https://lorene.obspm.fr/
https://lorene.obspm.fr/
https://lorene.obspm.fr/
https://doi.org/10.1103/PhysRevD.63.064029
https://doi.org/10.1103/PhysRevD.63.064029
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1111/j.1365-2966.2011.19493.x
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1140/epja/i2016-16056-7
https://doi.org/10.1140/epja/i2016-16056-7
https://doi.org/10.1103/PhysRevD.90.064006
https://doi.org/10.1103/PhysRevD.90.064006
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1103/PhysRevD.86.063001
https://doi.org/10.1086/303604
https://doi.org/10.1103/PhysRevD.40.3221
https://doi.org/10.1103/PhysRevD.77.043515
https://doi.org/10.1103/PhysRevD.77.043515
https://doi.org/10.1016/j.physletb.2010.11.021
https://doi.org/10.1088/1475-7516/2012/10/031
https://doi.org/10.1088/1475-7516/2012/10/031
https://doi.org/10.1103/PhysRevD.97.123007
https://doi.org/10.1088/1475-7516/2019/07/012
https://doi.org/10.1088/1475-7516/2019/07/012
https://doi.org/10.1103/PhysRevD.102.063028
https://doi.org/10.1103/PhysRevD.102.063028
https://doi.org/10.1093/mnras/staa1435
https://doi.org/10.1093/mnras/staa1435
https://doi.org/10.1140/epjc/s10052-021-09806-1
https://doi.org/10.3847/1538-4357/ace104
https://doi.org/10.1093/mnras/stac1013
https://doi.org/10.1093/mnras/stac1013


[90] S. Shakeri and D. R. Karkevandi, Phys. Rev. D 109,
043029 (2024).

[91] P. Thakur, T. Malik, A. Das, T. K. Jha, and C. Providência,
Phys. Rev. D 109, 043030 (2024).

[92] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A.
Cornell, Phys. Rev. Lett. 85, 2857 (2000).

[93] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[94] H. T. C. Stoof, Phys. Rev. A 45, 8398 (1992).
[95] P. Grüter, D. Ceperley, and F. Laloë, Phys. Rev. Lett. 79,

3549 (1997).
[96] S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996).
[97] D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84,

3760 (2000).
[98] S. Tulin and H.-B. Yu, Phys. Rep. 730, 1 (2018).
[99] A. Ianni, M. Mannarelli, and N. Rossi, Results Phys. 38,

105544 (2022).
[100] F. Nesti, P. Salucci, and N. Turini, Astronomy 2, 90 (2023).

[101] G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno,
M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Phys.
Rev. Lett. 122, 090401 (2019).

[102] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen,
M. J. Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Nature
(London) 596, 357 (2021).

[103] T. Bland, E. Poli, C. Politi, L. Klaus, M. Norcia, F. Ferlaino,
L.Santos, andR.Bisset, Phys.Rev. Lett.128, 195302 (2022).

[104] M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J.
Mark, L. Santos, R. N. Bisset, and F. Ferlaino, Phys. Rev.
Lett. 129, 040403 (2022).

[105] L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E.
Casotti, R. N. Bisset, M. J. Mark, and F. Ferlaino, Nat.
Phys. 18, 1453 (2022).

[106] E. Poli, T. Bland, S. J. M. White, M. J. Mark, F. Ferlaino,
S. Trabucco, and M. Mannarelli, Phys. Rev. Lett. 131,
223401 (2023).

CIPRIANI, MANNARELLI, NESTI, and TRABUCCO PHYS. REV. D 110, L021301 (2024)

L021301-8

https://doi.org/10.1103/PhysRevD.109.043029
https://doi.org/10.1103/PhysRevD.109.043029
https://doi.org/10.1103/PhysRevD.109.043030
https://doi.org/10.1103/PhysRevLett.85.2857
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/PhysRevA.45.8398
https://doi.org/10.1103/PhysRevLett.79.3549
https://doi.org/10.1103/PhysRevLett.79.3549
https://doi.org/10.1103/PhysRevD.53.5799
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.rinp.2022.105544
https://doi.org/10.1016/j.rinp.2022.105544
https://doi.org/10.3390/astronomy2020007
https://doi.org/10.1103/PhysRevLett.122.090401
https://doi.org/10.1103/PhysRevLett.122.090401
https://doi.org/10.1038/s41586-021-03725-7
https://doi.org/10.1038/s41586-021-03725-7
https://doi.org/10.1103/PhysRevLett.128.195302
https://doi.org/10.1103/PhysRevLett.129.040403
https://doi.org/10.1103/PhysRevLett.129.040403
https://doi.org/10.1038/s41567-022-01793-8
https://doi.org/10.1038/s41567-022-01793-8
https://doi.org/10.1103/PhysRevLett.131.223401
https://doi.org/10.1103/PhysRevLett.131.223401

