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We present a description of saturation in small x deep inelastic scattering from power counting in a top-
down effective theory derived from quantum chromodynamics (QCD). A factorization formula isolates the
universal physics of the nucleus at leading power in x. The onset of saturation is then understood as a
breakdown in the expansion in an emergent power counting parameter, which is defined by the matrix
element of a gauge invariant operator. We identify a new radiation mode, which enables us to extend
previous literature by distinguishing the appearance of the saturation scale from the transition to nonlinear
evolution.
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One of the primary objectives of a future Electron Ion
Collider is an investigation of the partonic structure of
hadrons or large nuclei at high energies. The partonic
density at such high energies is enhanced due to quantum
radiative corrections leading to the phenomenon called
saturation [1–3]. The current understanding of saturation is
via the color glass condensate (CGC) [4–6] which treats the
hadron/nucleus as a classical source for small x gluons.
This is often thought of as a bottom-up effective theory [7],
whose degrees of freedom consist of color sources ρ at
large x with momenta above a cutoff, kþ > Λþ, and gauge
fields Aμ at small x with kþ < Λþ. The input is a gauge
invariant distribution WΛþ½ρ� which determines the prob-
ability of a configuration ρ, and at lowest order one solves
classical Yang-Mills equations for Aμ with ρ as a source.
This formalism incorporates soft gluon radiative correc-
tions via the nonlinear Balitsky-JIMWLK or the Balitsky-
Kovchegov (BK) (at large NC) [8–15] equations which
describe the evolution in the cutoff Λþ.
Our understanding of deep inelastic scattering (DIS) at

large x rests on the notion of nonperturbative factorization
which enables us to define operators which separate the
universal physics of the hadron from process dependent
short distance physics [16,17]. This can be thought of as a
top-down effective field theory derived from QCD [18],
where the power counting expansion parameter isΛQCD=Q.
Here Q2 ¼ −q2 > 0 where qμ is the momentum transfer

of the virtual photon in the electron-proton collision, x ¼
Q2=ð2P · qÞ where Pμ is the initial proton’s momentum,
and we define H ¼ ðPþ qÞ2, the photon-nucleus invari-
ant mass.
The goal of this letter is to derive an effective field theory

description of small x saturation physics from the top down,
and connect it to the CGC formalism. Starting from QCD
we setup a factorization framework for DIS at small x at all
orders in the strong coupling and leading power in x. This
leads to a definition for the universal physics of the nuclear
medium as an operator matrix element in the nuclear state.
Next we show that we can understand the appearance of the
saturation scale in terms of a breakdown in an emergent
power counting parameter that appears due to multiple
probe-medium interactions. Finally we give a distinct
power counting argument to understand how the form of
the factorization changes as we enter the regime with
nonlinear evolution in ln x, as we approach the Froissart
bound. Apart from the kinematical scales that we will
discuss in the next section, we foreshadow the importance
of three emergent length scales that are crucial for this
description. The first is LD, the average distance beyond
which color sources in the medium are uncorrelated.
The second is the timescale tc over which the partons in
the probe maintain quantum coherence. Finally we have the
mean free path of the dipole probe λmfp which is the average
distance between successive interactions of the probe with
the medium.
a. Kinematics and factorization: We want to describe

the small x ≪ 1 region or equivalentlyΛ2
QCD≪Q2≪2P ·q,

which is the high energy limit of QCD where H ≈ 2P · q.
Without loss of generality, we can orient our axes so that qμ

has no transverse momentum and work in a frame with
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ðq−; qþ; q⊥Þ ¼ ðQ;−Q; 0⊥Þ, where we decompose qμ ¼
q− nμ

2
þ qþ n̄μ

2
þ q⊥, with nμ ≡ ð1; 0; 0; 1Þ, n̄μ ≡

ð1; 0; 0;−1Þ, and ⊥ refers to momenta in the x − y plane.
For a proton of mass Mp, the momentum components in
this frame are ðM2

pQ=H;H=Q; 0Þ.
The dominant interaction is the photon fluctuating into a

quark-antiquark dipole which then scatters off the hadron/
nucleus [19]. The medium partons exchange a transverse
momentum of order Q with the dipole and scatter by an
angle θ ∼ qT=E ∼Q2=H ¼ x ≪ 1 which is the power
counting parameter of the effective field theory (EFT).
In terms of this expansion parameter, the partons in the

dipole scale as the soft mode ps ∼ H
Q ðx; x; xÞ while the

partons in the medium scale as an n̄ collinear mode pn̄∼
H
Q ðx2; 1; xÞ. Both these modes are propagating degrees of

freedom with an invariant mass p2 ∼Q2. This stage of the
EFT is therefore designed to describe IR physics at the
scale Q while separating out the physics at the scale H=Q.
The small angle scattering between these modes is medi-
ated by a Glauber mode whose scaling is fixed by the
constraint that both the dipole and medium partons must
retain their scaling in any interaction. Therefore, we can
write pG ∼ H

Q ðx2; x; xÞ. These same EFT modes are used
in [20] to derive small-x factorization for DIS with

applications to ln x resummation for DIS coefficient func-
tions and anomalous dimensions.
The QCD action can be systematically expanded

in θ ¼ x within the soft collinear effective theory
(SCET) [18,21–24], as shown in [25]. This allows us to
write an effective Hamiltonian at leading power in x

Heff ¼ Hs þHn̄ þHn̄s
G þ eqq̄sγμqsLμ þ… ð1Þ

This has an effective hard interaction mediated by a photon
between the electron current Lμ and the soft quark current,
where eq is the electric charge of the quark. Soft and
collinear modes of SCET are decoupled in the soft Hs and
collinear Hn̄ Hamiltonians, but couple through the Glauber
Hamiltonian density Hn̄s

G that mediates forward scattering
and has the form

Hn̄s
G ¼ CG

X
i;j∈ fq;gg

Oij
n̄s; Oij

n̄s ¼ OiB
n̄

1

P2⊥
OjB

s ; ð2Þ

where CGðμÞ ¼ 8παsðμÞ and Pμ
⊥ is a derivative operator in

the ⊥ direction. The gauge invariant n̄ collinear and soft
operators are

OqB
n̄ ¼ χ̄n̄TB =n

2
χn̄; OgB

n̄ ¼ i
2
fBCDBC

n̄⊥μ

n
2
· ðP þ P†ÞBDμ

n̄⊥

OqB
s ¼ χ̄sTB =̄n

2
χs; OgB

s ¼ i
2
fBCDBC

s⊥μ

n̄
2
· ðP þ P†ÞBDμ

s⊥ ; ð3Þ

which are built out of the gauge invariant building blocks

χn̄ ¼ W†
n̄ξn̄; Wn̄ ¼ FTP exp

�
ig
Z

0

−∞
dsn · An̄ðxþ nsÞ

�
;

χs ¼ S†n̄ξs; Sn̄ ¼ FTP exp

�
ig
Z

0

−∞
dsn̄ · ASðxþ sn̄Þ

�
;

BCμ
n̄⊥TC ¼ 1

g

�
W†

n̄iD
μ
n̄⊥Wn̄

�
; BCμ

s⊥TC ¼ 1

g

�
S†n̄iD

μ
S⊥Sn̄

�
: ð4Þ

FT stands for Fourier transform. These operators encode
bare quark and gluons dressed by Wilson lines. Since the
dipole probe can interact multiple times with the medium,
we can think of it as an open quantum system evolving in a
nuclear environment. We therefore follow the evolution of
the reduced density matrix for our probe. The initial state
density matrix can be written as

ρð0Þ ¼ je−ihe−j ⊗ ρA ð5Þ

where the electron is disentangled from the nuclear medium
(ρA). We will evolve this with Heff and measure the

properties of the electron, being inclusive over the hadronic
final states. In DIS we write the cross-section differential in
Q2 and x, which we indicate with a measurementM which
acts on the phase space of the final state e−. Since the
Glauber mode couples the soft and collinear sectors, we
have to expand out the density matrix element order by
order in the Glauber Hamiltonian, HG

n̄s in order to carry out
soft-collinear factorization,

Σ≡ lim
t→∞

Tr½e−iHeff tρð0ÞeiHeff tM� ¼
X
i

ΣðiÞ: ð6Þ
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This is an expansion in the number of interactions of the
probe with the medium and is often referred to as the
opacity expansion [26]. Taking the confinement length
scale Λ−1

QCD and boosting to obtain a scale relevant for the
size of a nucleon in the y− direction, LD ∼MpQ=ðHΛQCDÞ.
In reality LD might be substantially larger due to inter-
nucleon interactions, especially in larger nuclei. We also
consider the mean free path of the probe through the
medium, λmfp ∼ xQ=ðαsðQÞ2ΓÞ, which determines how
often the probe interacts with the medium, and depends
on the interaction strength and medium density. Here Γ is
the nucleon density per unit area, where Γ ∼ Λ2

QCD for
nucleons stacked next to one another. We work in the

regime λ2 ¼ LD=λmfp ∼ Γ=Q2 ≪ 1 where successive inter-
actions of the probe with the medium happen with color
uncorrelated partons. The assumption λ2 ≪ 1 dictates that
only even powers of HG

n̄s contribute so as to have the same
number of Glauber exchanges on both sides of the cut.
λ2 ≪ 1 implies that each successive Glauber exchange
happens with an independent scattering center displaced in
the longitudinal direction by λmfp ≫ LD. Therefore at the
amplitude squared level, each Glauber exchange is accom-
panied by its complex conjugate, and odd number of
Glauber exchanges are excluded. The factorization formula
at Oð2mÞ in this series is

Σð2mÞ ¼ jCGðμÞj2m
Q4

�Z
dþpeM

�
Lαβ

Z
ȳ∈Nucleus

dȳþd2ȳ⊥

× Im

��
Πm

i¼1

Z
L−
N

0

dȳ−i Θðȳ−i − ȳ−iþ1Þ
Z

d2k⊥i
ð2πÞ2 Bn̄

�
k⊥i ; ȳ−i ; ȳþ; ȳ⊥; ν

	�
Sαβm

�
k⊥1 ;…k⊥m; ȳ−1 ;…ȳ−m; μ; ν

	�
: ð7Þ

It is written in terms of m copies of an n̄-collinear medium
structure function Bn̄ and a soft function S

αβ
m describing the

evolution of the dipole probe. The λ2 ≪ 1 expansion leads
to the product of Bn̄ functions, rather than a single multi-
interaction n̄ correlation function.

R
dþpe is the phase

space integral over the final state electron and Lαβ is the
leptonic tensor. The coordinate ȳ indicates the position
inside the nucleus. The physical picture is that the succes-
sive interactions of the probe dipole occur with color
uncorrelated partons in the nucleus at a single value of
ȳþ; ȳ⊥ but at increasing values of ȳ− as shown in Fig. 1.
The nucleus extends over a length L−

N in the y− direction.
k⊥i is the transverse momentum exchanged in the ith

interaction. The separation of collinear-soft physics leads
to rapidity divergences, for which we use the dimensional
regularization like rapidity regulator of [27] with the
corresponding renormalization scale ν. Bn̄ is a function

of ȳ so that it can also describe an inhomogeneous medium.
It is given by a current-current correlator in the nuclear
background

Bn̄ðk⊥; ȳ; νÞ ¼
1

2

1

k2⊥
ðN2

C − 1Þ
Z

d2ŷ⊥dŷ−eik⊥·ŷ
⊥

× Tr

�
OA

n̄



1

2
ð−ŷþ ȳÞ

�
OA

n̄



1

2
ðŷþ ȳÞ

�
ρA

�
:

ð8Þ

This captures the universal physics of the medium to all
orders in perturbation theory and is independent of any
measurements that are made on the probe. OA

n̄ can be
thought of as the operator analog of the color source
function ρ in the CGC approach [7]. The medium structure
function does not have any UV divergences but obeys a
renormalization group equation in rapidity which is the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) [28,29] equation
at one loop.

dBn̄ðk⊥; ȳ; νÞ
d ln ν

¼ −
Z

d2u⊥KBFKLðk⃗⊥; u⃗⊥ÞBn̄ðu⊥; ȳ; νÞ

¼ −
αsNC

π2

Z
d2u⊥

×

�
Bn̄ðu⊥; ȳ; νÞ
ðu⃗⊥ − k⃗⊥Þ2

−
k2⊥Bn̄ðk⊥; ȳ; νÞ
2u2⊥ðu⃗⊥ − k⃗⊥Þ2

�
: ð9Þ

Its natural rapidity scale corresponds to ν ∼H=Q for which
logarithms in this function are minimized. By RG con-
sistency, we haveFIG. 1. Interaction of the probe with the medium.
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dSαβm ðk1⊥;…km⊥; fȳ−i g; μ; νÞ
d ln ν

¼
Xn
i¼1

Z
d2u⊥KBFKLðu⊥; ki⊥Þ

× Sαβm
�
k1⊥; ::ki−1⊥; u⊥; kiþ1⊥; ::km⊥; fȳ−i g; μ; ν

	
: ð10Þ

The natural rapidity scale for this function is ν ∼Q. We can
use the rapidity RG equation to resum the large logarithms
in x by solving the BFKL equation, running the function Bn̄
from ν ≃ s=Q to ν ≃Q while setting ν ≃Q in the dipole
function, leading to an RG improved function BR

n̄ ðk⊥; ȳ; xÞ.
At leading log, we can resum the series in Eq. (6) to all
orders in the Glauber interactions

Σ ¼
Z

d2ȳ⊥dȳþ
Z

d2bF ðb⃗; QÞ
�
1 − Pe

−
R L−

N
0

dȳ−

λmfpðb⃗;Q;ȳÞ
�
;

ð11Þ

which is a path ordered exponential with λmfp given by a
RG improved medium structure function BR

n̄ ,

λ−1mfpðb⃗; Q; ȳÞ ¼
Z

d2k⊥
ð2πÞ2k2⊥

jCGðk⊥Þj2BR
n̄ ðk⃗⊥; ȳ; xÞ

×
�
eib⃗·k⃗⊥ − 1

�
: ð12Þ

Here λmfp is an emergent length scale, which can be
interpreted as the mean free path of the probe in the
medium in the y− direction. It depends on the local
properties of the medium at ȳ. The function F ðb⃗; QÞ
includes the transverse component of the dipole function
Sαβn at tree level,

F ðb⃗; QÞ ¼ 1

Q3

�Z
dþpeM

�
Lαβg

αβ
⊥

×
Z

d2p⊥d2p̄⊥eib⃗·ðp⃗⊥þ ⃗p̄⊥Þ

×
Z

1

0

dzðz2 þ ð1 − zÞ2Þ

×

�
p⃗⊥

Q2zð1 − zÞ þ p⃗2⊥
þ ⃗p̄⊥
Q2zð1 − zÞ þ ⃗p̄2⊥

�
2

with the transverse size of the dipole b⃗ ∼ 1=Q, as this is the
only scale in this function. The emergence of the mean free
path automatically defines a new power counting parameter
in the EFT

λ1 ¼
Z

L−
N

0

dȳ−

λmfpðb⃗; Q; ȳÞ
: ð13Þ

The appearance of the saturation scale is just the break-
down of the power expansion in this parameter, when

λ1 ∼ 1. Given the fact that the transverse size of the dipole b⃗
is conjugate to the scale Q, we can define the saturation
momentum scale QsðȳÞ via

Z
L−
N

0

dȳ−

λmfpðjb⃗j ¼ 1=Qs;Qs; ȳÞ
¼ 1: ð14Þ

This corresponds to the regime where the dipole is likely to
have multiple interactions with the medium.
Equation (13) will be equivalent to the Glauber-Gribov-

Mueller (GGM) formula [2]

λ1 ¼ Γðȳ⊥Þ
αsπ

2

NC
b2⊥xGNðx; 1=b⊥Þ; ð15Þ

if we model the nucleus as a bunch of noninteracting
nucleons with some effective Glauber gluon density
xGNðx; 1=b⊥Þ and a density of nucleons per unit area
ΓðȳÞ. Rescaling k⊥ → k̂⊥=jb⊥j in Eq. (12) using Eq. (8),
we find an overall factor λ1 ∝ b2⊥. We can then equate
the k̂⊥ and ȳ− integral of the rescaled B with
Γðȳ⊥ÞxGNðx; 1=b⊥Þ; the number density of small x gluons
per unit area. GN absorbs an αsNc, leaving αsπ

2=Nc as the
prefactor. This yields Eq. (15). In the CGC formalism
xGNðx; 1=b⊥Þ is obtained by treating the nucleus as a
source for small x gluons with radiative corrections from
the BFKL/BK equations. The resummation modifies the
saturation scale from its tree level valueQs0 to have a power

law scaling with x; QsðxÞ ¼ Qs0x
−2.44αsNC=π2 . The boun-

dary condition for this resummation, in our case Bðk⊥Þ, is
described in the CGC by the MV model [30–32].
b. Role of the medium size: From Eq. (7), we observe

potential sensitivity to another length scale L−
N ; the extent

of the medium in the y− direction. The relevant radiation
sensitive to this scale will have momenta pþ ∼ 1=L−

N , and
coherence time tc ∼ L−

N . If N is the typical number of
nucleons seen by the probe along its path, then the rest
frame size of the nucleus is LR ∼ N=Mp, and boosting
yields L−

N ∼ LRMpQ=H ∼QN=H. Retaining a common
virtuality ∼Q2, this is a collinear-soft mode with

pcs ∼
H
Q



Nx2;

1

N
; x

�
: ð16Þ

We can consider two important regimes of the consequent
EFTas we dial down the value of xwith fixedQ, keepingN
to be large but fixed as shown in Fig. 2. We see that at not so
small x ∼ 1=N, the soft and collinear-soft modes are the
same so that the two mode factorization formula discussed
above, Eq. (7), is accurate.
This means that while in a dense enough medium, λ1 ≳ 1

puts us in the saturation regime, it does not necessarily lead
to a nonlinear evolution. If the medium is large (L−

N ∼ 1=Q)
we still have a linear BFKL evolution.
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For smaller x ≪ 1=N ≪ 1, the collinear-soft and soft
modes decouple, while still being well separated from the
collinear function. Even though we will leave the explicit
derivation of the factorization formula in this regime for a
future paper, we can still say a lot about the physics. The
dipole needs to interact at least twice with the nucleus to
know its size, hence Eq. (7) is modified for m ≥ 2. In
particular, the soft function Sμνm must be further factorized
into a ȳ−ðmedium sizeÞ insensitive soft function Ŝαβm (with
L−
N → 1=ν) and a collinear-soft function sensitive to L−

Nν.
The m copies of the function Bn̄ remains unchanged and
still obey the BFKL equation with the same natural rapidity
scale ν ∼Q=x ¼ H=Q. The refactorization will modify the
rapidity RG equation for the soft function away from BFKL
with a natural rapidity scale ∼Q. However, by RG con-
sistency the combination of collinear-soft and soft function
must still obey the BFKL equation. The natural rapidity
scale for the CS function is ν ∼H=ðQNÞ, so evolution to
the soft function sums logs of Q2N=H ∼ xN. Thus ln x
summation will now have two contributions: the linear
BFKL piece from Bn̄; and that from the CS function.
At leading order the latter modifies terms with at least
two copies of Bn̄, so we expect it to reproduce the non-
linear Balitsky-Kovchegov(BK) [8,15]/JIMWLK equation
[9,12,33]. As a bonus, the CS function’s RG evolution also
sums lnN terms. The linear to nonlinear evolution refers to

the transition from pure BFKL to a nonlinear evolution
which allows for both splitting and merging of what are
referred to in literature as BFKL pomeron which in our case
is the BFKL resummed B function. The interference
generated between successive interactions with the medium
through a collinear soft mode, would allow this merging
and splitting thereby leading to terms in the evolution
equation with a higher powers of the B function, going
beyond linear BFKL proportional to just a single B.
Finally, as we approach N ¼ 1, the collinear soft mode

merges with the collinear mode. The OðmÞ glauber
exchange yields a two mode factorization involving the
same ȳ− insensitive dipole function Ŝαβm mentioned in the
previous paragraph. However, in this case the independent
scattering approximation breaks down, so rather than m
copies of Bn̄ two-point correlators, we now have m point
correlators Bm

n̄ . This dependence on distinct boundary
conditions for each m seems to complicate the resumma-
tion. To determine from our EFTwhether them dependence
of these boundary conditions is calculable atQwith a small
number of nonperturbative functions at ΛQCD requires a
further scale separation Λ2

QCD ≪ Q2 that we have not
performed here. This assumption has been implemented
when the CGC formalism has been applied to a single
hadron [34,35].
We setup a top-down EFT for small x DIS on a large

inhomogeneous nucleus, with specific power counting
parameters that define its range of validity. We gave a
factorization formula which has an operator definition for
the universal physics of the medium, and separates out the
probe and small-x evolution. The structure at all orders in
the number of independent probe-medium interactions
leads us to define the mean free path of the probe by an
operator matrix element in the nuclear state. This yields a
power counting parameter that controls the importance of
multiple interactions with the medium, and a means to
define the saturation scale. The case x ≪ 1=N ≪ 1 requires
the introduction of a new soft-collinear radiation mode,
providing a distinct condition for understanding the tran-
sition to nonlinear evolution in small-x resummation.

We thank Ira Rothstein and Raju Venugopalan for
helpful discussions. This work was supported by the
U.S. Department of Energy, Office of Science, Office of
Nuclear Physics, from DE-SC0011090 and in part by the
Simons Foundation through the Investigator Grant
No. 327942. V. V is supported by startup funds from the
University of South Dakota.

FIG. 2. Small x regions for large N nuclei (top panels) and
small N nuclei (bottom panel).
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