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We present the first lattice-QCD result for the Zemach and Friar radii of the proton and neutron. Our
calculation includes both quark-connected and -disconnected diagrams and assesses all sources of
systematic uncertainties arising from excited-state contributions, finite-volume effects, and the continuum
extrapolation. At the physical point, we obtain for the proton rpZ ¼ ð1.013� 0.010ðstatÞ � 0.012ðsystÞÞ fm
and rpF ¼ ð1.301� 0.012ðstatÞ � 0.014ðsystÞÞ fm. These numbers suggest small values of the Zemach and
Friar radii of the proton but are compatible with most of the experimental studies.
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Introduction. The most accurate determination of the
proton’s electric (charge) radius is derived from the
measurement of the Lamb shift in muonic hydrogen
spectroscopy [1,2]. This result exhibits a large tension
with some ep-scattering experiments [3,4], which is known
as the “proton radius puzzle.”
To infer the electric radius from the observed Lamb shift,

higher-order nuclear structure contributions need to be
subtracted. The leading contribution is the two-photon
exchange [5], the dominant, elastic part of which depends
on the third Zemach moment of the proton [6–8],
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The associated radius is known as the Friar radius of the
proton,

rpF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr3Eipð2Þ3

q
: ð2Þ

Avery large Friar radiuswas once suggested [9] as a possible
solution to the proton radius puzzle. For this purpose,
however, the Friar radius would need to be so large that
the expansion in radii would break down [10,11].
While the traditional proton radius puzzle awaits its final

resolution, the goal of reaching a consistent picture of all the
fundamental electromagnetic properties of the nucleon has
attained a new prominence. Historically, data-driven disper-
sive approaches had found values of the electric radii of the
proton consistent with the lower value of muonic-atom
spectroscopy measurements [12,13]. For the magnetic prop-
erties, a tension between dispersive approaches [14] and
z-expansion results [15] appeared; i.e., a separate puzzle
beclouds the magnetic properties of the proton. Underlining
the importance of the magnetic properties of the proton,
several experiments are under way to measure these from
spectroscopy on (muonic) hydrogen [16–19]. This can be
achieved by measuring, in addition to the Lamb shift, the
hyperfine splitting (HFS) in either electronic or muonic
hydrogen, which is caused by the magnetic spin-spin inter-
action between the nucleus and the orbiting lepton. The
influence of the electromagnetic structure of the nucleus on
the HFS is particularly pronounced for the S-states, since the
S-state wave function has a large overlap with the nucleus.
The leading-order proton-structure contribution to the

S-state HFS of hydrogen depends on the Zemach radius of
the proton [7,20],
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Having a first-principles prediction of the Zemach radius
prior to the experimental measurement of the ground-state
(1S) HFS in muonic hydrogen with ppm precision [16–19],
from which the Zemach radius could be extracted with
subpercent uncertainty, is highly desirable. Beyond helping
in narrowing down the frequency search range, such a
prediction allows for a crucial consistency check. We note
that the interpretation of the experimental HFS results relies
on theoretical input for the proton-polarizability effect,
where a discrepancy has emerged between data-driven
approaches and baryon chiral perturbation theory [21].
Eventually, combining precise HFS measurements in elec-
tronic and muonic hydrogen, the proton polarizability can be
determined from those as well and compared to theory [22].
In this Letter we present the first lattice-QCD calculation

of the Zemach and Friar radii, building on our results for the
electromagnetic radii of the proton and neutron [23,24]. Our
results for the Zemach and Friar radii of the proton have a
total precision of 1.5% and arewell compatible with most of
the experimental determinations [2,10,14,15,21,25].

Lattice setup. In order to compute the Zemach and Friar
radii of the proton and neutron, we need, according to
Eqs. (1) and (3), information on their electric and magnetic
form factors. For our lattice determination of the latter,
we employ a set of lattice ensembles with Nf ¼ 2þ 1

dynamical flavors of nonperturbatively OðaÞ-improved
Wilson fermions [26,27], using the tree-level improved
Lüscher-Weisz gluon action [28] and twisted-mass
reweighting [29,30], which have been generated as part
of the Coordinated Lattice Simulations effort [31]. The
ensembles entering our analysis are listed in Table I and
cover four lattice spacings a∈ ½0.050; 0.086� fm as well as
several pion masses down to slightly below the physical
one (E250). The calculation of the reweighting factors and
the correction of the strange-quark determinant are described
in Refs. [32] and [33], respectively. We include the con-
tributions from quark-connected as well as -disconnected
diagrams. For further details concerning the setup of the
simulations, the calculation of our raw lattice observables,
the extraction of the form factors, and the treatment of excited
states, we refer to Ref. [23].
All dimensionful quantities are expressed in units of the

gradient flow time t0 [34]. To this end, we use the numerical
determination at the flavor-symmetric point, tsym0 =a2, from
Ref. [35]. Only our final results for the radii are converted
to physical units using the FLAG estimate [36]

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p ¼ 0.14464ð87Þ fm ð4Þ

for Nf ¼ 2þ 1.

Fits to baryonic χPT. In Refs. [23,24], we have combined
the parametrization of the Q2-dependence of the form
factors with the extrapolation to the physical point

(Mπ ¼ Mπ;phys, a ¼ 0, L ¼ ∞). For this purpose, we have
fitted our form factor data to the next-to-leading-order
expressions resulting from covariant baryon chiral pertur-
bation theory (BχPT) [37]. While explicit Δ degrees of
freedom are not considered in the fit, we include the
contributions from the relevant vector mesons, as discussed
in detail in Ref. [23]. For the physical pion mass, we use the
value in the isospin limit [38],

Mπ;phys ¼ Mπ;iso ¼ 134.8ð3Þ MeV; ð5Þ

so that in units of t0, we employ
ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
Mπ;phys ¼

0.09881ð59Þ. Here, the uncertainty of Mπ;iso in physical
units is neglected since it is entirely subdominant compared
to the uncertainty of the scale

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
.

We perform several such fits, applying different cuts in
the pion mass (Mπ ≤ 0.23 GeV and Mπ ≤ 0.27 GeV) and
themomentum transfer (Q2 ≤ 0.3;…; 0.6 GeV2) and, at the
same time, varying our model for the lattice-spacing and/or
finite-volume dependence, in order to estimate the corre-
sponding systematic uncertainties. The aforementioned
relatively strict cuts in Q2 are required because the BχPT
expansion, from which our fit formulas are derived, is only
applicable for low momentum transfers. By including the
contributions from vector mesons, the range of validity of
the resulting expressions can be extended [37,39,40].
Nevertheless, as the heaviest vector meson we consider in
the isovector channel is the ρ, momentum transfers larger
thanM2

ρ ≈ 0.6 GeV2 cannot safely be described in this way.
For further technical details on our implementation of the
BχPT fits, we refer to Ref. [23].
We have extensively crosschecked our excited-state

analysis aswell as the parametrization of theQ2-dependence
and the extrapolation to the physical point; for details, see
Ref. [23] and its appendices.

TABLE I. Overview of the ensembles used in this study. For
further details, see Table I of Ref. [23].

ID β tsym0 =a2 T=a L=a Mπ ðMeVÞ
C101 3.40 2.860(11) 96 48 227
N101a 3.40 2.860(11) 128 48 283
H105a 3.40 2.860(11) 96 32 283

D450 3.46 3.659(16) 128 64 218
N451a 3.46 3.659(16) 128 48 289

E250 3.55 5.164(18) 192 96 130
D200 3.55 5.164(18) 128 64 207
N200a 3.55 5.164(18) 128 48 281
S201a 3.55 5.164(18) 128 32 295

E300 3.70 8.595(29) 192 96 176
J303 3.70 8.595(29) 192 64 266

aThese ensembles are not used in the final fits but only to
constrain discretization and finite-volume effects.
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Extrapolation of the form factors and integration. Given
that the Zemach radius and third Zemach moment are
defined as integrals over all possible (spacelike) values of
Q2 [cf. Eqs. (1) and (3)], an extrapolation of the BχPT fits
beyond their range of applicability is required if they are to
be employed to parametrize the form factors. For each
model, we evaluate the BχPT formula for Gp;n

E and Gp;n
M ,

using the low-energy constants as determined from the
corresponding fit, at the physical point and at 20 evenly
spaced points in Q2 ∈ ð0; Q2

cut�. Here, Q2
cut is the cut in the

momentum transfer corresponding to the respective varia-
tion of the BχPT fit.
In the next step, we fit a model which obeys the large-Q2

constraints on the form factors from perturbation theory [41]
to these data points and their error estimates.We note that the
data points exhibit an extremely high correlation due to the
way we generate them. Taking these correlations into
account when adjusting the extrapolation model would thus
not be meaningful, and would also be technically challeng-
ing because the resulting covariance matrices are extremely
badly conditioned. To describe the Q2-dependence, we use
the model-independent z-expansion [42],

Gp;n
E ðQ2Þ ¼

Xm
k¼0

ap;nk zðQ2Þk; ð6Þ

Gp;n
M ðQ2Þ ¼

Xm
k¼0

bp;nk zðQ2Þk; ð7Þ

with

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τcut þQ2

p
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τcut − τ0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τcut − τ0
p ; ð8Þ

where we employ τ0 ¼ 0 and τcut ¼ 4M2
π;phys. We truncate

the z-expansion beyondm ¼ 9 and incorporate the four sum
rules from Ref. [43] for each form factor, which ensure the
correct asymptotic behavior of the latter for large Q2. The
normalization of the electric form factor is enforced by
fixing ap0 ¼ 1 and an0 ¼ 0, respectively. For the determi-
nation of the Zemach radius, we fit GE and GM simulta-
neously, similar to the cross-check of our analysis in
Ref. [23], so that we have 11 independent fit parameters
altogether. For the third Zemachmoment, on the other hand,
only the electric form factor is required, so that we fit only
GE and have five independent fit parameters here. The
extrapolation fits are performed for the proton and neutron
independently. Usingmore than 20 data points for each form
factor or a higher degree of the z-expansion does not increase
the overlap between the original BχPT fit and the extrapo-
lation any further.
For the numerical integration of Eqs. (1) and (3), we

smoothly replace the BχPT parametrization of the form

factors by the z-expansion-based extrapolation in a narrow
window around Q2

cut. Concretely, we use the following
estimate for the form factor term,

FðQ2Þ ¼ 1

2

�
1 − tanh

�
Q2 −Q2

cut

ΔQ2
w

	�
FχðQ2Þ

þ 1

2

�
1þ tanh

�
Q2 −Q2

cut

ΔQ2
w

	�
FzðQ2Þ; ð9Þ

where FðQ2Þ≡GEðQ2ÞGMðQ2Þ=μM for the Zemach
radius and FðQ2Þ≡G2

EðQ2Þ for the third Zemach moment,
respectively. In Eq. (9), FχðQ2Þ represents our fit to BχPT,
while FzðQ2Þ denotes the z-expansion parametrization of
the form factors. For the width of the window in which we
switch between the two parametrizations, we choose
ΔQ2

w ¼ 0.0537t−10 ≈ 0.1 GeV2. We remark that for a con-
sistent calculation of the third Zemach moment, the
replacement according to Eq. (9) has to be applied to all
terms in Eq. (1), i.e., also to the value of hr2Ei. The
cancellation between the different terms of Eq. (1) at small
Q2 does not occur at the required numerical accuracy on all
our bootstrap samples. To facilitate the numerical integra-
tion, we therefore regulate the small-Q2 contribution to the
integral for the proton by replacing t0Q2 → t0Q2 þ 1 ×
10−7 in the denominator, which changes the result for
hr3Eipð2Þ by less than 10% of its statistical error.
The two parametrizations and their weighted average

according to Eq. (9) are illustrated in Fig. 1 for the case of
the Zemach radius of the proton. While the BχPT formula
is clearly not reliable for Q2 ≳ 1.7 GeV2 ≈ 0.9t−10 , the
z-expansion behaves well for arbitrarily large momenta,
which is due to the sum rules [43] we have included. In the
region where we adjust the z-expansion to the BχPT
parametrization (0 < Q2 ≤ 0.6 GeV2 for the case shown
in Fig. 1), however, the two curves overlap so closely that
they are indistinguishable by eye. The blue curve, which is
the one we use for the integration, smoothly switches from
the orange (BχPT) curve to the green (z-expansion) one in a
tight window around Q2

cut ¼ 0.6 GeV2 ¼ 0.322t−10 .
Replacing the BχPT parametrization smoothly with a

constant zero instead of the z-expansion-based extrapola-
tion [i.e., setting FzðQ2Þ≡ 0 in Eq. (9)] allows one to
estimate the contribution of the form factors atQ2 > Q2

cut to
the resulting Zemach radius and third Zemach moment,
respectively. For Q2

cut ¼ 0.6 GeV2 (our largest, i.e., least
stringent, value for the cut), we find that the relative
difference of the thus obtained value for rpZ to the actual
result using the corresponding variation of the BχPT fits is
less than 0.9%. In other words, the form factor term at
Q2 > 0.6 GeV2 contributes less than 0.9% to the Zemach
radius of the proton. For the third Zemach moment, the
denominator in the integrand suppresses the large-Q2

contribution to the integral even more strongly than for
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the Zemach radius. Accordingly, we find a corresponding
relative contribution of less than 0.3% to the third Zemach
moment of the proton.
Due to this smallness of the contribution of the extrapo-

lated form factors, the precise form of the chosen model for
the extrapolation only has a marginal influence on the
resulting values for the Zemach radius and third Zemach
moment. For example, if we replace the z-expansion by a
dipole ansatz (which also fulfills the constraints from
Ref. [41]), we find that the Zemach radius of the proton
derived from any of our fit variations changes by at most
20% of the entire systematic error quoted in Eq. (10) below.
Thus, adding the variation in rpZ due to the extrapolation
model quadratically to the systematic uncertainty in
Eq. (10) would not change the latter significantly.
Finally, we note that the major advantage of our

approach based on the BχPT fits over an integration of
the form factors on each ensemble is that the Zemach and
Friar radii can be computed directly at the physical point, so
that an extrapolation of results for the radii to the physical
point, which would entail further significant systematic
uncertainties, is not required.

Model average and final result. As in Refs. [23,24], we do
not have a strong a priori preference for one specific setup
of the BχPT fits. Thus, we determine our final results as
well as the statistical and systematic error estimates from an
average over the different fit models and kinematic cuts,
using weights derived from the Akaike Information
Criterion [44–49]. All values for the Zemach radii and
third Zemach moments entering the average are listed in the
Supplemental Material [50], together with the associated

weights. More details on our procedure can be found in
Sec. V of Ref. [23]. As our final results, we obtain

rpZ ¼ �
1.013� 0.010 ðstatÞ � 0.012 ðsystÞ� fm; ð10Þ

hr3Eipð2Þ ¼
�
2.200�0.060 ðstatÞ�0.071 ðsystÞ� fm3; ð11Þ

rnZ ¼
�
−0.0411�0.0056 ðstatÞ�0.0040 ðsystÞ� fm;

ð12Þ

hr3Einð2Þ ¼
�
0.0078�0.0020 ðstatÞ�0.0012 ðsystÞ�fm3:

ð13Þ

This corresponds to Friar radii of rpF ¼ ð1.301 �
0.012 ðstatÞ � 0.014 ðsystÞÞ fm and rnF ¼ ð0.198�
0.017 ðstatÞ � 0.010 ðsystÞÞ fm, respectively.
In Fig. 2, our numbers for the proton are compared to

other determinations based on experimental data. There are
three main types of experiments which have been employed
in the literature to compute the Zemach radius of the proton:
muonic hydrogen HFS [2], electronic hydrogen HFS [51],
and ep scattering. In order to extract the proton Zemach
radius from an HFS measurement, input on the proton-
polarizability effect is required. This can be either taken
from BχPT [21] or evaluated in a data-driven fashion, i.e.,
using information on the spin structure functions [52–54]
(as was done in Refs. [2,25]). The form factors measured
in ep-scattering experiments, on the other hand, can be
analyzed with many different fit models, e.g., by employing
a (modified) power series [10], a z-expansion [15], or
dispersion theory [14].
While our result for rpZ agrees within one combined

standard deviation with the extractions based on BχPT [21]

FIG. 1. Product of the electric and normalized magnetic form
factors of the proton at the physical point evaluated with
different parametrizations. The orange curve shows one of the
BχPT fits to our lattice data with Q2

cut ¼ 0.6 GeV2 ≈ 0.322t−10 ,
the green curve shows the z-expansion-based extrapolation, and
the blue curve shows the weighted average of the two according
to Eq. (9).

FIG. 2. Comparison of our best estimates for the Zemach radius
and third Zemach moment of the proton (red downward-pointing
triangles) with determinations based on experimental data,
i.e., muonic hydrogen HFS [2,21] (crosses), electronic hydrogen
HFS [21,25] (squares), and ep scattering [10,14,15] (circles).
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and the z-expansion-based analysis of world ep-scattering
data [15], and still within two combined standard devia-
tions with the data-driven HFS extractions [2,25] and the
analysis of the A1 ep-scattering experiment [10], we
observe a 2.6σ tension with the dispersive analysis of
world ep-scattering data [14]. We also note that our
estimate is smaller than all of the above experimental
determinations except the one combining BχPT and elec-
tronic hydrogen HFS, which is slightly smaller than ours.
The proton’s third Zemachmoment can be extracted from

ep-scattering experiments in the same way as its Zemach
radius, andwe also compare to these results in Fig. 2. Again,
our value is comparatively small, but this time in good
agreement with both the z-expansion-based [15] and dis-
persive analyses [14]. Against the analysis of the A1
ep-scattering experiment [10], on the other hand, we
observe a clear tension of 5.3σ in hr3Eipð2Þ.
In interpreting the aforementioned discrepancies, one

must take into account that our results for the Zemach radii
and third Zemach moments are not independent from those
for the electromagnetic radii [23,24] because they are based
on the same lattice data for the form factors and the same
BχPT fits. Indeed, we observe a correlation of around 80%
both between

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
and rpZ and between

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
and rpZ,

while our correlation between
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
and rpF is even

larger, about 95%. A large positive correlation between the
proton’s electric and Zemach radii has also been reported in
the experimental literature [22,55]. Hence, our small results
for

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
in Refs. [23,24] naturally imply

small values for rpZ and rpF. By contrast, the dispersive
analysis [14] arrives at a significantly larger magnetic
radius than the A1-data analyses [3,43] and our lattice-
QCD-based extraction [23,24]. This may explain why we
observe a larger tension in the Zemach radius (which
equally probes electric and magnetic properties) with
Ref. [14] than with Ref. [10], even though the situation
is exactly the opposite for the third Zemach moment/Friar
radius (which only probes the electric properties). For a
deeper understanding of the underlying differences, a
comparison of the full Q2-dependence of the form factors
would be required, rather than merely of the radii.
Furthermore, the role of higher-order electromagnetic
corrections should be clarified.
The Zemach radius of the proton can also be computed

in the framework of heavy-baryon chiral perturbation
theory [56], which yields a much larger value of
rpZ ¼ 1.35 fm. However, the authors of Ref. [56] do not
quote an error estimate on this number and claim it to be
in good agreement with the experimental results, so that
the uncertainty is presumably rather large.
Our results for the neutron are very well compatible

with the z-expansion-based analysis of world en-scattering
data [15], albeit with a more than 2 times larger error.

Conclusions. We have performed the first lattice-QCD
calculation of the Zemach and Friar radii of the proton
and neutron, which includes the contributions from quark-
connected and -disconnected diagrams and presents a full
error budget. The overall precision of our results for the
proton is sufficient to make a meaningful comparison to
data-driven evaluations. Our final estimates, which are
given in Eqs. (10) to (13), point to small values for the
Zemach and Friar radii of the proton, but are consistent
with most of the previous determinations within two
standard deviations. We agree rather well with the dis-
persive analysis of Ref. [14] regarding the electric
properties of the proton (i.e., the Friar radius), but to a
much lesser degree on its magnetic properties (i.e., the
Zemach radius).
We stress that our results are highly correlated with those

for the electromagnetic radii [23,24]. Thus, our relatively
low values for the Zemach and Friar radii of the proton are
not unexpected, and they do not give rise to an independent
puzzle from the lattice perspective.
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