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To address quantum computation of quantities in quantum chromodynamics (QCD) for which chiral
symmetry is important, it would be useful to have the Hamiltonian for a fermion satisfying the Ginsparg-
Wilson (GW) equation. I work with a solution to the GW equation which is fractional linear in time
derivatives. The resulting Hamiltonian is nonlocal and has ghosts, but is free of doublers and has the correct
continuum limit. This construction works in general odd spatial dimensions, and I provide an explicit
expression for the Hamiltonian in one spatial dimension.
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Introduction. There are a number of computations in
quantum chromodynamics (QCD) that require a good
realization of chiral symmetry. These include the color-
flavor-locking phase [1] and the chiral symmetry restoring
phase transition [2], both of which one would hope to be
able to study on the lattice. The overlap operator [3,4] in the
Euclidean Lagrangian formulation offers the ideal realiza-
tion of lattice chiral symmetry in the form of Lüscher
symmetry [5], a lattice symmetry which tends toward chiral
symmetry in the continuum limit. However, computations
using the path integral are afflicted by sign problems. A
Hamiltonian approach on a quantum computer might be
able to solve these issues, but there currently does not exist
a Hamiltonian for Ginsparg-Wilson (GW) fermions.
Chiral symmetry can be expected to fail on the lattice

because the lattice spacing introduces a mass scale, and
masses violate chiral symmetry. This can be made more
precise by the Nielsen-Ninomiya no-go theorem [6]; there
is no lattice Dirac operator D in four spacetime dimensions
which has chiral symmetry, i.e., satisfies

fγ5;Dg ¼ 0; ð1Þ

and has other desirable features, namely the correct con-
tinuum limit, freedom from doublers, and locality [5].
Ginsparg and Wilson [7] suggested that this should be
replaced by

fγ5;Dg ¼ aDγ5D; ð2Þ

so that exact chiral symmetry fails at the order of the lattice
spacinga. The firstmethod for putting chiral fermions on the
lattice involved edge states of a domain wall defect in one
higher dimension [8]. Neuberger andNarayanan [3,4] found
that this system could be studied in four dimensions via the
“overlap” operator,

D¼M
2
ð1þVÞ; V¼ Dwffiffiffiffiffiffiffiffiffiffiffiffiffi

D†
wDw

q ; ð3Þ

whereM ¼ 1=a is the inverse lattice spacing, andDw is the
four-dimensional Wilson Dirac operator, which, in the
absence of gauge fields, can be written in momentum
space as

Dw ¼ i
X4
μ¼1

γμ sinðpμ=MÞ−1þ
X4
μ¼1

�
1− cosðpμ=MÞ�: ð4Þ

This operator has the correct continuum limit, and is not
Hermitian, but is instead “γ5-Hermitian”:

γ5Dγ5 ¼ D†: ð5Þ

In fact, it can be quickly checked that any operator of the
form

D¼M
2
ð1þVÞ; γ5Vγ5 ¼V†; V†V¼ I ð6Þ

satisfies Eq. (2) [9]. In this case, I say D is an overlap
operator, though in general it may not necessarily be
constructed in terms of a state overlap. Lüscher [5] first
observed that this operator has the following symmetry:

δψ ¼ γ5

�
1 − V
2

�
ψ ; δψ̄ ¼ ψ̄

�
1 − V
2

�
γ5: ð7Þ
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In the continuum limit, this becomes chiral symmetry.
Lüscher noted that the Jacobian of this transformation
produces the index of D, a lattice version of the Fujikawa
calculation [5,10] of the chiral anomaly. Indeed, there is a
good deal of freedom in defining this Lüscher symmetry;
hereafter I will refer to any symmetry

δψ ¼Γψ ; δψ̄ ¼ ψ̄ Γ̄; ð8Þ

for which

lim
M→∞

Γ ¼ lim
M→∞

Γ̄ ¼ γ5; ð9Þ

as a Lüscher symmetry [5], provided its Jacobian reproduces
the index of D.
To find a Hamiltonian describing a GW fermion, one

may try to compute the transfer matrix of Eq. (3) directly,
but this involves square roots of the time derivative and is
therefore challenging. Creutz et al. [11] considered the
following construction. First, define the three-dimensional
overlap operator,

d¼M
2
ð1þvÞ; v¼ dwffiffiffiffiffiffiffiffiffiffiffi

d†wdw

q ; ð10Þ

where dw is the three-dimensional analog of Eq. (4):

dw ¼ i
X3
i¼1

γi sinðpi=MÞ−Mþ
X3
i¼1

�
1− cosðpi=MÞ�; ð11Þ

and γi are 4 × 4 Clifford algebra matrices. Then by analogy
with the continuum Hamiltonian,

Hc
ψ ¼

Z
d3xψ†iγ0γiDiψ ð12Þ

(where Di, Hc
ψ denote the continuum covariant derivative

and continuum Hamiltonian, respectively), it is reasonable
to identify γiDi with the three-dimensional Dirac operator,
and formulate a lattice prescription for a Hamiltonian via
the replacement γiDi → d:

Hψ ≡ ψ†iγ0dψ : ð13Þ

This system has the symmetry of Eq. (7), and associated to
that symmetry is the charge

Q5 ¼ ψ†γ5

�
1 − V
2

�
ψ : ð14Þ

This chiral charge is conserved with respect to Hψ , i.e.,
½Hψ ; Q5� ¼ 0, but upon introduction of the gauge field
Hamiltonian,

Hg ¼
1

2
ðE2 þ B2Þ; ð15Þ

one finds ½Hg;Q5� ≠ 0, since E2 involves derivatives with
respect to the gauge fields in the quantized theory, and the
V appearing in Q5 involves link variables.
It is important to note that the Hamiltonian considered by

Creutz et al. is not derived from a GW fermion in the
Euclidean Lagrangian; it is simply an ansatz. If it were, it
would enjoy a full Lüscher symmetry that descends to the
Hamiltonian formulation, even in the presence of gauge
fields.
Therefore it is sensible to start at the level of the

Lagrangian, with a modified overlap operator which still
solves the GWequation, but from which the extraction of a
Hamiltonian is considerably easier. It is simpler to consider
a theory which is fractional linear in time derivatives, i.e., a
rational expression linear in time derivatives. The feasibil-
ity of such an approach will become clear by construction
of an overlap operator in the continuum with ghosts,
namely a Pauli-Villars regulated fermion.
In the section titled Pauli-Villars as overlap, I will

describe the way in which Pauli-Villars fermions satisfy the
GW relation, and the Hamiltonian and Lüscher symmetry
associated to them. In Overlap Lagrangian, I will derive a
Lagrangian describing a GW fermion in discrete space and
continuous time, and generalizing the arguments of Pauli-
Villars as overlap, I will derive a Hamiltonian describing
the system. In Overlap Hamiltonian, I will describe the
properties of this Hamiltonian.

Pauli-Villars as overlap. In a recent paper generalizing the
GW relation [12], it was found that the GW equation holds
for a Pauli-Villars regulated fermion in the continuum. I
will derive the Hamiltonian for this example, as it is
instructive for generalization to the lattice.
A Pauli-Villars regulated fermion is equivalent to a

Lagrangian with the following Dirac operator:

L¼ ψ̄Dψ ; D¼M
=D

=DþM
; ð16Þ

where =D is the usual Euclidean Dirac operator, =D ¼ γμDμ.
This may be rewritten

D ¼ M
2
ð1þ VÞ; V ¼ =D=M − 1

=D=M þ 1
: ð17Þ

This D satisfies Eq. (6), so it is an overlap operator. For
reasons that will become clear shortly, is helpful to define
A ¼ =D=M − 1, and note V is of the form

V ¼ −A−1A†; γ5Aγ5 ¼ A†: ð18Þ
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In order to make this theory look familiar, I introduce ghost
fields ϕ, ϕ̄ with opposite statistics to the action, so that the
full Lagrangian is

Ltot ¼ ψ̄
M
2
A−1ðA − A†Þψ þ ϕ̄ϕ: ð19Þ

I perform the simultaneous change of variables,

ψ̄ 0 ¼ ψ̄A−1; ϕ̄0 ¼ ϕ̄A−1: ð20Þ

This change of variables has trivial Jacobian in the path
integral because of the opposite statistics. Under this
change of variables the Lagrangian becomes

Ltot ¼ ψ̄ 0=Dψ þ ϕ̄0ð=DþMÞϕ: ð21Þ

Consider how a Lüscher symmetry Γ, Γ̄ on ψ , ψ̄ is affected
by this change of variables. Γ is unaffected, while the new Γ̄
is related to the original by

Γ̄0 ¼ AΓ̄A−1: ð22Þ

In particular, consider the choice

Γ¼ γ5; Γ̄¼−Vγ5: ð23Þ

Since V is of the form of Eq. (18), Eq. (22) becomes

Γ̄0 ¼ A−1A†γ5A−1 ¼ A†γ5A−1 ¼ γ5AA−1 ¼ γ5: ð24Þ

In summary, the Pauli-Villars fermion described in
Eq. (16), with the Lüscher symmetry of Eq. (23) descends
to a massless fermion with ordinary chiral symmetry and a
heavy ghost fermion where the symmetry acts trivially. The
Hamiltonian of the theory is thus

Hc ¼ Hc
ψ þHc

ϕ; ð25Þ

where

Hc
ψ ¼

Z
d3xψ†iγ0γiDiψ ; ð26Þ

Hg
ϕ ¼

Z
d3xϕ†iγ0γiDiϕ − ϕ†γ0Mϕ: ð27Þ

In order to study the dynamics of Hc
ψ alone, one must work

in the vacuum to vacuum sector of the ghost theory.
Excitations with energy less than the regulator mass M
(later taken to infinity) do not contribute to scattering
amplitudes involving the ψ field. Further discussion on
Pauli-Villars fermions can be found in any introductory text
on quantum field theory (e.g., [13]). They are not typically
dealt with in a Hamiltonian formalism. In this Letter, the
Pauli-Villars regularization prescription is simply a helpful

tool, as it allows one to regulate the UV divergence that
comes from the introduction of a continuous time coor-
dinate, and subsequently describe the low energy modes in
a simple effective way.

Combined overlap.

Overlap Lagrangian: Now I work in continuous time and
latticized space. Since the Pauli-Villars and overlap sol-
utions apply to continuum and lattice cases of an overlap
operator respectively, it is reasonable to try to write an
ansatz forDwhich combines the forms of Eqs. (17) and (3).
Such an operator is determined by a choice of unitary and
γ5-Hermitian V. Recall the three-dimensional analog v in
Eq. (10). Since the low energy spectrum of v is −1þ i=⃗p=M
in the free theory, a reasonable ansatz incorporating Pauli-
Villars regularization might be

V ¼ γ0∂t þMv
γ0∂t −Mv†

: ð28Þ

Here when I write the quotient, I mean left multiplication
by the inverse of the denominator, as in Eq. (18). Note that
the V of Eq. (28) also satisfies the relations of Eq. (18).
Furthermore V is γ5-Hermitian, unitary, and has the correct
low energy spectrum. However, this V has doublers: Note
that zero modes of D correspond to −1 modes of V, and
therefore generally an overlap operator has doublers if there
are any V ¼ −1 modes away from the origin in the
Brillouin zone. Note that at v ¼ 1, V ¼ −1, and so the
free theory already has doublers at p⃗i ¼ π=a. This is
because at ∂t ¼ 0, V ¼ −v=v†. Since complex conjugation
treats the v ¼ �1 modes identically, doublers arise at
∂t ¼ 0. Therefore, in order to find a V without doublers,
the v ¼ �1 modes need to be treated differently under
conjugation. One way to do this is to replace

v → −
ffiffiffiffiffiffi
−v

p ≡ ξ: ð29Þ

Then V becomes instead

V ¼
1
2
γ0∂t −Mξ

1
2
γ0∂t þMξ†

: ð30Þ

I define the square root
ffiffiffi
u

p
of a unitary matrix u generally

as the unique matrix whose log spectrum lies in the interval
ð−iπ=2; iπ=2�, and which squares to u; this can be
equivalently defined as the matrix whose eigenvalues are
the square root of the eigenvalues of u, with the same
eigenvectors. Such a definition involves choosing a branch
cut, namely

ffiffiffiffiffiffi
−1

p ¼ i, and therefore a discontinuity at the
edge of the Brillouin zone (which introduces nonlocality).
Note

ffiffiffiffiffi
u†

p
≠

ffiffiffi
u

p †, but instead
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ffiffiffiffiffi
u†

p
¼ ffiffiffi

u
p † þ 2iP−1; ð31Þ

where P−1 is the projector onto the −1 modes of u.
It is worth noting the denominator is not invertible at

v ¼ 1 and ∂t ¼ 2iM. However, it can be seen that V ¼ 1 in
this limit. In the free case, this guarantees DðpÞ is
continuous at the edge of the Brillouin zone, but higher
order derivatives are discontinuous, so this theory is non-
local. It should be noted this nonlocality is not so severe
that it precludes definition of a gauge theory entirely, as one
can still simply replace the free derivative with the
covariant derivative in the operator Eq. (4) (in the position
space representation).
In most cases, the complication which arises in Eq. (31)

can simply be ignored, and the V ¼ 1 case can be treated
separately. In particular, I will simply write

γ5ξγ5 ¼ γ0ξγ0 ¼ ξ†: ð32Þ

The operator V ¼ −A−1A† in Eq. (30) is, in general, not
unitary. Unitarity of V follows from normality of A.
However, for time dependent gauge fields,

A†A − AA† ¼ 1

2
γ0∂tðξþ ξ†Þ ≠ 0: ð33Þ

Furthermore, V is not in general γ5-Hermitian. Instead, note
that the weaker statement

γ5Aγ5 ¼ A† ð34Þ

still holds, so that for general gauge fields it holds that

γ5Vγ5 ¼ V−1: ð35Þ

As noted in [12], the operator D ¼ 1
2
ð1þ VÞ still satisfies

the relation Eq. (2), and still enjoys Lüscher symmetries,
e.g., Eq. (23). Under the Lüscher symmetry, the anomalous
symmetry violation of the expectation value of an observ-
able O is given by (cf. [5])

hδOi ¼ ð−tr γ5Dþ tr γ5ÞhOi: ð36Þ

The quantity tr γ5D can be evaluated using the arguments
of [5];

tr γ5D ¼ tr γ5 þ 2indD; ð37Þ

therefore,

hδOi ¼ 2indDhOi ð38Þ

and so this operator has the correct anomaly in the
Lagrangian formulation. It is worthwhile to note that
evaluation of tr γ5D in [5] relies on the point 0 being an

isolated point of the spectrum of D. This can clearly be
done when the spacetime lattice is finite, since the operator
D only has a finite number of eigenvalues. In the present
case, the eigenvalues ω of ∂t have no UV cutoff. However,
an IR cutoff is sufficient: the eigenvalues ω become
discrete. For very large ω, V ∼ 1. Therefore the lack of
a UV cutoff in time adds a dense set of eigenvalues near
D ¼ 1. Any eigenvalues at D ¼ 0 remain isolated.
Before proceeding with the prescription of Pauli-Villars

as overlap, I integrate out in the path integral the modes at
V ¼ 1, since they are at high energy and contribute only to
overall normalization. They come in chiral pairs and are
thus also invariant under the Lüscher symmetry of Eq. (23)
so cannot contribute to the anomaly.
Therefore, the operator D ¼ 1

2
ð1þ VÞ, with the choice

of V in Eq. (30) satisfies the Ginsparg-Wilson equation, and
has a Lüscher symmetry which correctly realizes the
anomaly.

Overlap Hamiltonian: The Hamiltonian following the
prescription in Pauli-Villars as overlap can be seen to be

H¼Hψ þHϕ;

Hψ ¼ψ†hψψ ; Hϕ ¼ϕ†hϕϕ; ð39Þ

where

hψ ¼ Mγ0ðξ† − ξÞ;
hϕ ¼ 2Mγ0ξ†; ð40Þ

and repeated (suppressed) indices are summed over. The
ghost fields here have been rescaled to be canonically
normalized. The ghost Hamiltonian Hϕ is clearly gapped;
since it is Hermitian and unitary its eigenvalues are all of
magnitude 2M. Therefore, I consider only ghost vacuum-
to-vacuum amplitudes of the combined quantum system at
energy scales much lower than the cutoff M, which are
described by Hψ.
Following the analysis in Pauli-Villars as overlap, the

Lüscher symmetry in Eq. (23) descends once again to
ordinary chiral symmetry, so that the chiral charge is

Q5 ¼ ψ†γ5ψ : ð41Þ

It is evident that both hψ and hϕ are Hermitian matrices.
Chiral charge is conserved for the ψ fermions, and violated
for the ghost fermions:

½γ5;hψ � ¼ 0; ½γ5;hϕ� ¼ 4Mγ5γ0ðξ†−ξÞ: ð42Þ

This is consistent with anomalous chiral symmetry viola-
tion of Pauli-Villars fermions in the continuum, where the
mass term in the ghost fermion violates chiral symmetry
explicitly. The gauge field Hamiltonian in Eq. (15) trivially
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commutes with γ5, so that the chiral charge is conserved in
the full theory describing the light ψ modes. This is in
contrast to the Creutz et al. [11] Hamiltonian of Eq. (13),
since the chiral charge in Eq. (41) no longer involves the
overlap operator as in Eq. (14), but is in direct analogy with
the continuum chiral charge.
It is easily checked that hψ has the right continuum limit,

since v → −1þ i=p. The same holds true in the presence of
gauge fields which are sufficiently smooth.
It is illuminating to consider replicating this construction

in d ¼ 1þ 1. One finds v ¼ −e−ipγ1=2M, and in this case
the free Hamiltonian is explicitly

hψ ¼ 2Mγχ sinp=4M; ð43Þ

where γχ ¼ iγ1γ2 is the three-dimensional analog of γ5.
This matches the continuum Hamiltonian for a free two-
component Dirac spinor in the low energy limit.

Conclusions. I have derived a Hamiltonian for a massless
fermion on a spatial lattice with exact chiral symmetry from
a spatial-lattice plus continuous-time Lagrangian for a GW
fermion, starting with an overlap operator with Lüscher
symmetry and introducing ghosts. This came at the expense
of locality.
One of the main motivations for this Letter is demon-

strating the difficulty of the formulation of a consistent
Hamiltonian describing GW fermions. I hope that this
Letter either spurs interest in a local solution for a GW
Hamiltonian, or in a no-go theorem that forbids the
formulation of a local Hamiltonian for Ginsparg-Wilson
fermions.
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