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We construct a celestial conformal field theory on the horizon corresponding to a nonperturbative eikonal
scattering amplitude involving two massless scalars mediated by soft gravitons in the near-horizon region of
a large eternal Schwarzschild black hole. From the known two-dimensional near-horizon scattering
amplitude computed within the effective field theory framework, we first construct a four-dimensional
amplitude involving two external s-wave legs in a flat spacetime frame around the bifurcation sphere strictly
in a small angle approximation limit by resumming over the spherical harmonics. While the kinematics of
external particles in this frame at leading order are analogous to a Minkowski spacetime, the eikonal
amplitude differs from those about flat spacetime due to the near-horizon scattering potential. We derive a
celestial correlator following a Mellin transform that provides an all loop order result, with a universal
leading UV soft scaling behavior of the conformally invariant cross-ratio, and an IR pole for the scaling
dimension at each loop order. We argue these properties manifest soft graviton exchanges in the near-horizon
region and, consequently, the soft UV behavior of the amplitude.
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I. INTRODUCTION

Aspects of a holographic correspondence relating scat-
tering amplitudes with correlation functions of a dual
conformal field theory have been recently realized on the
celestial sphere at null infinity of asymptotically flat
spacetimes [1–37]. This correspondence follows from
the isomorphism between the four-dimensional (4D)
Lorentz group and those of the Mobius group for con-
formal transformations on the two-dimensional (2D)
celestial sphere [38–43]. In the case of asymptotic plane
wave states, the boundary conformal primary wave func-
tion generally follows from the Fourier transform of the
bulk-to-boundary propagator defined on hyperbolic folia-
tions of Minkowski spacetime. The massless limit is
realized as a Mellin transform of the plane wave, resulting
in the energy dependence of bulk fields being traded for a
scaling dimension dependence in the corresponding boun-
dary operators. As a consequence, the resulting correlation
functions of celestial conformal operators are manifestly

SLð2;CÞ invariant observables in a boost eigenbasis,
which have been proposed as duals of S-matrix elements
in an energy-momentum eigenbasis [2–4].
Celestial conformal field theories (CCFT) have been

investigated primarily from perturbative flat-spacetime
amplitudes and are associated with infinite-dimensional
asymptotic symmetry algebras [22–25]. Soft theorems for
scattering amplitudes are realized through conformal soft
theorems in CCFT [6,9,10] that constrain the operator
product expansions of celestial correlation functions [11].
A remarkable property of CCFTs, on account of their
involvement of boost scattering states, is that they invoke
the entire energy spectrum of a theory and thus access their
infrared (IR) and ultraviolet (UV) properties [20,33].
CCFTs possess several properties similar to conformal field
theories, including a conformal block expansion [23] and
state-operator correspondence [29]. However, due to their
correspondence with scattering amplitudes on flat space-
time, they differ from conformal field theories in certain
respects. This includes the presence of complex scaling
dimensions for normalizable states and a delta function over
the 2D cross ratio in CCFT correlation functions, with the
latter due to the translation invariance of scattering ampli-
tudes in momentum space [20,23,27,28]. More recent
developments include investigations on CCFTs to leading
loop orders [16,37,44], leading backreaction effects [32],
and their formulation on nontrivial asymptotically flat
spacetimes [18,19]. The celestial description of nonpertur-
bative eikonal amplitudes was also initiated in [31], which
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further demonstrates a correspondence with eikonal ampli-
tudes in AdS/CFT. The relationship between CCFT
and CFT2 correlation functions have also been explored
in [34,45–47]. We also note other potentially complemen-
tary approaches to holographic descriptions of scattering
amplitudes on flat spacetime, which includes Carrolian
holography defined along the codimension-one null boun-
dary of flat spacetime [30,48–52], and derivations from the
large anti–de Sitter (AdS) radius limit in AdS/CFT [53–58]
In this paper, we extend the analysis of [31] on eikonal

amplitudes in flat spacetime to ones in the near-horizon
region of a Schwarzschild black hole, with an impact
parameter x⊥ comparable to the Schwarzschild radius.
This amplitude has been investigated in detail over recent
years [59–63]. The motivation for such an amplitude can be
traced back to eikonal amplitudes defined on flat space-
times, which address trans-Planckian scattering processes
with center of mass energies far greater than the Planck
mass, i.e.,

ffiffiffi
s

p
≫ MPl and correspondingly large impact

parameters, i.e., x⊥ ≫ GN
ffiffiffi
s

p
with GN Newton’s constant.

On the other hand, flat spacetime eikonal amplitudes are
expected to diverge in the regime of x⊥ ∼GN

ffiffiffi
s

p
due to

strong gravitational effects associated with the formation of
a Schwarzschild black hole with a radius ofGN

ffiffiffi
s

p
. This can

be interpreted as an IR divergence associated with absorp-
tive soft graviton exchanges, thereby reflecting the need
for soft graviton bremsstrahlung [64] to yield IR-finite
results in accordance with Weinberg’s approach to IR
divergences [65]. These properties motivate a possible
eikonal description of the scattering process in the near-
horizon region with a different kinematic regime, i.e.,
x⊥ ∼GNM with M the mass of a background black hole,
as considered in [60–63]. The resultant near-horizon eikonal
amplitude then provides a description in the case of impact
parameters comparable to a Schwarzschild radius, with the
eikonal phase dominated by soft graviton exchanges.
This provides an interesting setting for a CCFT inves-

tigation on two grounds. First, since the near-horizon region
of a Schwarzschild black hole around the bifurcation sphere
can be well approximated by a flat spacetime frame in the
small angle approximation, translation symmetry of mass-
less particles can be restored in this frame. High energy
massless states in an eikonal scattering process near the
horizon can thus be investigated using known CCFT
approaches on flat spacetime. The underlying global con-
formal symmetries of CCFTs originate from the isometries
of the flat spacetime. This then generalizes the known
CCFTs originally defined in the full flat spacetime to those
defined only in the near-horizon region of a Schwarzschild
black hole. Second, due to the gravitational effects of the
background black hole that manifest in the phase of near-
horizon eikonal amplitude, we expect the resulting CCFT to
be quite different from those for scattering on flat spacetime.
The detailed dynamics for the near-horizon eikonal scatter-
ing have been studied in the aforementioned works [60–63].

In a boost basis, the corresponding CCFTamplitudes can be
expressed as the product of a universal conformal block for
external state conformal primaries with large conformal
weights (inclusive of intermediate exchanges) and a con-
formally invariant function of cross-ratio z ¼ −t

s ≪ 1. The
former provides a universal kinematic factor, while the latter
captures the underlying dynamics of CCFTs or its parent
theory in the momentum basis.
As we will show, the resultant eikonal phase obtained

in [60–63] will manifest a soft UV behavior in the
corresponding CCFT, suggesting a possible UV comple-
tion in the near-horizon regime. We find a closed-form
result for the near-horizon CCFT amplitudes, which, to all
loop orders, has a leading scaling behavior of z−1. This can
be noted as being softer than those for celestial eikonal
amplitudes on flat spacetime with massive mediating
particles, which at tree-level scales like ð ffiffiffi

z
p Þ−β [31].

Here, β ¼P4
i¼1Δi − 4 ≫ 1, with Δi being the scaling

dimensions of the external boosted eigenstates. More
significantly, the near-horizon CCFT has poles at β ¼
−2n with n∈N labeling the loop order. Since the loop
order corresponds to the number of exchanged soft
gravitons in the ladder diagrams, this implies these poles
are IR divergences due to the exchange of soft gravitons in
the eikonal limit. Interestingly, the near-horizon CCFT is
free from any poles for Reβ > 0, as might be expected
from a generic UV complete field theory, with an expan-
sion for the amplitude

P∞
n¼0 a

UV
n ω−2n. These results are

further consistent with the observation of [20,33] that
CCFTamplitudes for UV soft theories, such as those with a
stringy Hagedorn spectrum, only have negative integer
poles and correspond to the production of microscopic
black holes [66–68]. They may likewise be realized in a
theory with only an IR soft expansion, with the amplitude
going as

P∞
n¼0 a

IR
n ω2n. Thus, our results imply that the

β ¼ −2n poles are more or less universal for strong gravity
regimes, which can manifest either through black hole
production or the existence of an event horizon.
The rest of our paper is organized as follows. In the next

section, we review the derivation of the 2D near-horizon
eikonal amplitude from a perturbative analysis on the
Schwarzschild background through a spherical harmonic
decomposition of the fields. In Sec. III, we proceed to derive
the 4D near-horizon celestial eikonal amplitude. We first
uplift the 2D amplitude to a 4D partial sum amplitude in a
near-horizon region about the bifurcation sphere. The
spacetime considered is a nearly flat region that arises in
a small angle and large black hole limit of the near-horizon
background. We then carry out the partial resummation over
small angles to derive the eikonal phase. As this amplitude
involves massless external states, following the prescription
in [31], we derive the near-horizon celestial eikonal ampli-
tude from the Mellin transform. In Sec. IV, we study
properties of the near-horizon celestial eikonal amplitude.
This involves its exact evaluation to all loop orders. The
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CCFT result further provide IR poles and an overall z
dependence and we discuss their physical implications. We
conclude with a discussion of our results and future
directions in Sec. V.

II. REVIEW OF 2D BLACK HOLE EIKONAL
SCATTERING AMPLITUDE

In this section, we provide a detailed review of the near-
horizon eikonal scattering amplitude considered in [60–63].
The conventional eikonal limit of trans-Planckian 2-2
scattering in flat spacetime, with a center-of-mass energyffiffiffi
s

p
far larger than the Planckian mass MPL so that graviton

exchanges dominate, requires a large impact parameter to
suppress the transverse momentum transfer q⊥. Additi-
onally, to avoid divergent results caused by gravitational
collapse near the scattering center, the impact para-
meter x⊥ ∼Oðℏ=q⊥Þ should also be far larger than the
Schwarzschild radius associated with the center-of-mass
energy, i.e., x⊥ ≫ GN

ffiffiffi
s

p
[69,70]. The resultant eikonal

amplitude (for massless particles) is [71–74]

iM ¼ iκ2s2

q2⊥
Γð1 − iGNsÞ
Γð1þ iGNsÞ

�
4μ2

q2⊥

�−iGNs ð1Þ

with μ denoting an infrared cutoff. This amplitude has a
semiclassical interpretation as a 1-1 scattering of an ultra-
high energy massless particle against a null-like shockwave
background, which incorporates the backreaction [71]. This
is consistent with the expectation of an eikonal limit as a
resummation over ladder graviton exchanges in a coherent
background. Decomposing this eikonal amplitude in a
partial wave basis yields a unitary S matrix for each mode
represented by an eikonal phase,

δlðsÞ ¼
s
2
log

lðlþ 1Þ
s

: ð2Þ

This phase encodes the peculiar dynamics from the dom-
inant soft graviton contributions in the ladder diagrams.
Later, we will compare this phase to the one from eikonal
scattering in the near-horizon region.
The metric of the near-horizon region of the

Schwarzschild black hole is approximately a flat metric
with an implicit horizon scale in relation to the Rindler
metric. This raises the possibility of formulating the eikonal
scattering in the near-horizon region in a similar fashion to
the approach on flat spacetime. Indeed, this idea had been
proposed long ago [75,76], and has been recently refined
with further details [60–63,77]. Due to being restricted to
the near-horizon region, the kinematic constraints for
eikonal scattering are quite different from those on flat
spacetime. This especially concerns the impact parameter,
which is restricted to be lPL ≪ x⊥ ≈ R, where lPL is the
Planck length and R ¼ 2GNM is the Schwarzschild radius.
As shown in [60,61], eikonal scattering (small angle

scattering) in this regime requires
ffiffiffi
s

p
≫ γMPL with MPL

the Planck mass and γ ¼ MPL
M an emerging dimensionless

coupling between matter and gravitons of the effective
theory that results from integrating out the transverse
directions. Due to the smallness of γ for a typical macro-
scopic black hole, the new constraint on s implies that the
eikonal scattering can be non-Planckian in the near-horizon
region. Consequently, this enables us to circumvent the
breakdown of conventional eikonal amplitudes when deal-
ing with scattering at small impact parameters.
The Schwarzschild spacetime has the following metric in

static coordinates,

ds2Schwarzschild ¼ −
�
1 −

R
r

�
dt2 þ

�
1 −

R
r

�
−1
dr2 þ r2dΩ2

2;

ð3Þ

where R ¼ 2GNM is the Schwarzschild radius andM is the
black hole mass. To consider the near-horizon geometry,
we perform a transformation to Kruskal coordinates, which
is regular at the horizon and describes the maximally
extended spacetime. This can be derived from the following
definitions for x− and xþ,

x−xþ ¼ 2R2

�
1 −

r
R

�
e

r
R−1;

x−

xþ
¼ e

t
2R regions I and III;

¼ −e t
2R regions II and IV; ð4Þ

with the event horizons located at x−xþ ¼ 0 (Fig. 1).
This leads to Eq. (3) taking the form

ds2NH ¼ gμνdxμdxν ¼ −2Aðx−; xþÞdx−dxþ
þ r2ðx−; xþÞdΩ2

2; ð5Þ

with

Aðx−; xþÞ ¼ R
rðx−; xþÞ e

1−rðx− ;xþÞ
R : ð6Þ

FIG. 1. Kruskal spacetime with regions I;…IV; bifurcation
sphere O and x� ¼ 0 lines indicated.
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We will consider the theory of linearized Einstein gravity
minimally coupled with a massless scalar ψ in this back-
ground,

S½hμν;ψ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4
Rð1Þ½hμν; gμν� þ

1

2
ψ□ψ

þ 1

2
κhμνTμν

�
ð7Þ

where 1
4

ffiffiffiffiffiffi−gp
Rð1Þ½hμν; gμν� is the hμν-quadratic part

of 1
2κ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgþ κhÞp

R½gμν þ κhμν�, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
, and Tμν is

the stress tensor of the scalar ψ

Tμν ¼ ∂μψ∂νψ −
1

2
gμνgρσ∂ρψ∂σψ : ð8Þ

Exploiting the background spherical symmetry, one can
decompose the metric and scalar fields in a spherical
harmonic basis Ym

l , i.e.,

hμν ¼
X
l;m

hoddlm;μνY
m
l þ

X
l;m

hevenlm;μνY
m
l ;

ψ ¼
X
l;m

ψlmYm
l ð9Þ

with the additional choice of the usual Regge-Wheeler
gauge,1

hoddaA ¼ −haϵAB∂BYm
l ; hevenab ¼ HabYm

l ;

hevenAB ¼ KγABYm
l ;

where γAB and ϵAB are, respectively, the metric and Levi-
Civita tensor on the 2-sphere, while a, b are indices for the
longitudinal null coordinates x�. Spherical symmetry
further ensures the decoupling of the even and odd modes.
Moreover, the even parity nature of the scalar field yields
no coupling to the odd modes from the interaction vertex.
Therefore, only even parity graviton modes K and Hab will
be involved in the scattering of the massless scalar in the
reduced theory.
Since the longitudinal part of the near-horizon metric is

conformal to a flat metric, we can perform the following
Weyl transformation and field redefinitions to yield canoni-
cal kinetic terms in the reduced theory

gab → Aðx−; xþÞηab; Hab →
1

r
Aðx−; xþÞhab;

K →
1

r
K; ψ →

1

r
ϕ: ð10Þ

This can be used to obtain a 2D effective theory
by integrating out the transverse degrees of freedom.
By introducing a single traceless tensor mode, h̃ab ¼
hab − ηabð1

2
hþKÞ, for the 3-vertex coupling to two

scalars, and carrying out a field redefinition K̃ ¼
hþ 2R2

lðlþ1Þþ2
ðηab∂a∂b − 1

R2 lðlþ 1ÞÞK, we can also

remove the mixed contribution between K and hab.
The corresponding graviton propagators are complicated
due to the potentials arising from the Weyl scaling and
field redefinitions Eq. (10). However, if we focus on the
near-horizon region so that the metric becomes that of flat
spacetime

Aðx−; xþÞ ≈ 1; if r ¼ RþOðr − RÞ; ð11Þ

the resulting 2D effective theory has considerably simpler
properties.
Upon Fourier transforming all the fields and taking the

r → R limit of Eq. (11), the 2D effective action takes on the
following simple form [60–63]:

S½h̃ab;K̃;ϕ� ¼ 1

4

Z
d2kðh̃abP−1

abcdðkÞh̃cdþ K̃P−1
K K̃Þ

þ1

2

Z
d2pϕP−1

ϕ ðpÞϕ

þ γ

Z
d2Πh̃abðkÞp1ap2bϕ0ðp1Þϕðp2Þ; ð12Þ

where d2Π is a shorthand for d2kd2p1d2p2δ
ð2Þðkþp1þp2Þ,

and the dimensionless coupling for the 3-vertex is given by

γ ≔
κ

R
¼ MPL

M
: ð13Þ

The propagators have the expressions

PϕðpÞ ¼
1

p2 þ μ2 − iϵ
; PK ¼ 4R2

lðlþ 1Þ þ 2
;

PabcdðkÞ ¼ Pabcd
soft þ Pabcd

hard ðkÞ; ð14Þ

where we decompose the tensor mode propagator into
its soft (k-independent) and hard (k-dependent) parts as
follows [63]:

Pabcd
soft ¼ R2

lðlþ 1Þ þ 2
ðηabηcd − ηacηbd − ηadηbcÞ; ð15Þ

Pabcd
hard ðkÞ ¼ −

lðlþ 1Þ þ 2

lðlþ 1Þ− 2

1

k2 þ μ2
ðηab þ kabÞðηcd þ kcdÞ;

ð16Þ

with
1We will suppress l; m in scalar and graviton modes from this

point onwards.
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kab ≔
2R2

lðlþ 1Þ þ 2

�
kakb −

1

2
k2ηab

�
: ð17Þ

The soft graviton exchange associated with Pabcd
soft will give a

leading contribution to scattering amplitudes. While inte-
grating out the transverse part by using the orthogonality
relations between spherical harmonics, all the fields in the
effective field theory acquire an effective mass

μ2 ≔
lðlþ 1Þ þ 1

R2
; ð18Þ

which can be thought of as an infrared regulator.
We summarize an important assumption used in the

derivation of the interaction vertex in Eq. (12), namely the
absence of partial wave mixing. Apart from the interaction
vertex, all other terms in the effective action up to
quadratic order involve decoupled partial waves due to
the spherical symmetry of the background. To preserve this
property for the interaction vertex, it was argued in [60,61]
that scattering processes that do not distribute angular
momenta across the external legs through Clebsch-Gordan
coefficients are those that preserve the background spheri-
cal symmetry. This can be satisfied by fixing one of the
scalar particles in the interaction 3-vertex, ϕ0, to have no
angular momentum [as in the last line of Eq. (12)]. We now
elaborate more on this point. The reduced action for the
interaction vertex between the graviton and external scalars
will, in general, involve exchanges of angular momenta so
that it takes the following form:

Svertex ¼
γ

2

X
l;m

X
l1;m1

X
l2;m2

Z
dΩYm

l ðΩÞYm1

l1
ðΩÞYm2

l2
ðΩÞ

Z
d2xhablm∂aϕl1m1

∂bϕl2m2
; ð19Þ

which evaluates to involve the sum over Clebsch-Gordan
(CG) coefficients.2 As a result, the general interaction vertex
Eq. (19) involves partial wave mode mixings. In [60,61], it
was argued that such mode mixings are associated with
large transverse momenta exchanges that introduce non-
spherical corrections of the background geometry. To
suppress such nonspherical backreaction as the semiclass-
ical approximation requires, we must lift the mixing of
partial waves of different l and m in Eq. (19). This can be
implemented by fixing one of the external particles to be a s

wave (l2 ¼ 0 or l1 ¼ 0). This consequently simplifies the
vertex action Eq. (19) to

Svertex ¼ γ
X
l;m

Z
d2xhablm∂aϕlm∂bϕ0; ð21Þ

using
R
dΩYm

l ðΩÞYm1

l1
ðΩÞ ¼ δll1δmm1

, with the overall
factor of 2 accounting for either scalar particle being
considered in the l ¼ 0 state. The Fourier transform of
Eq. (21) is what appears as the interaction term in Eq. (12).
The above assumption of no partial wave mixing would
always hold at tree level. However in general partial wave
mixing will provide subleading eikonal corrections from
internal exchanges of the eikonal amplitude upon summing
over the Clebsch-Gordon coefficients. While these correc-
tions are beyond the scope of our paper, this is an important
problem that warrants further investigation.
We also note that transverse exchanges are realized

through the l dependent effective mass term in Eq. (18).
This will have a role in the description of external states
and the eikonal approximation for the reduced theory in
the following. From the effective theory in Eq. (12), we
can obtain the Feynman rules to compute the amplitudes
for the soft/hard graviton exchanges in the 2-2 scattering.
In the vanishing effective mass limit, the external states
are massless scalar particles described by longitudinal
plane waves, with incoming momenta p1 ¼ ðp1þ; 0Þ and
p2 ¼ ð0; p2−Þ, which define the Mandelstam s (center-
of-mass energy squared) in terms of 2D momenta as

s ¼ −ðp1 þ p2Þ2 ¼ 2p1þp2−: ð22Þ

Since only the tensor mode is coupled to the scalars via
the interaction vertex, we just need to consider 2-2
scattering amplitude involving the exchange of tensor
modes associated with graviton propagators Pabcd

hard and
Pabcd
soft . We denote the corresponding amplitudes as Mhard

and Msoft. Using the symmetry property: kab ¼ kba and
kabp1ap2b ¼ 0, the hard graviton exchanges contribute to

Mhard ∝
γ2s2

sþ μ2
; ð23Þ

while from the soft graviton exchange one can obtain

Msoft ¼ðiγp1ap1bÞð2Pabcd
soft Þðiγp2cp2dÞ¼

γ2R2s2

l2þlþ2
: ð24Þ

Note that this 2D soft amplitude is suppressed for large
l, contrary to the large l dominance of 4D eikonal
amplitude in flat space. Two important properties can be
inferred from the above results. Due to the effective mass
involving the Schwarzschild radius, we have a modified
regime for eikonal scattering in the near-horizon region

2The CG coupling is related to the CG coefficients
hl1;l2;m1; m2jl1;l2;l; mi via [78]

Z
dΩYm

l ðΩÞYm1

l1
ðΩÞYm2

l2
ðΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l1 þ 1Þ

4πð2lþ 1Þ

s

hl1;l2; 0; 0jl1;l2;l; 0ihl1;l2;m1; m2jl1;l2;l; mi: ð20Þ

CELESTIAL EIKONAL AMPLITUDES IN THE NEAR-HORIZON … PHYS. REV. D 110, 126011 (2024)

126011-5



s ≫ μ2 or
ffiffiffi
s

p
≫ γMPL: ð25Þ

In addition, in the large s limit we always have

Mhard

Msoft
∼Oðs−1Þ: ð26Þ

Thus, Mhard is a subleading contribution to Msoft in the
large s limit. As the soft graviton exchange dominates to all
loop orders, one can resum the corresponding ladder
diagrams to derive the leading contribution to the near-
horizon eikonal amplitude [61]

iAl
NH eikonalðsÞ ¼ 2sðeiχlðsÞ − 1Þ; ð27Þ

where the associated eikonal phase is

χlðsÞ ¼
κ2s

l2 þ lþ 2
: ð28Þ

with κ ¼ γR. The s and l dependences of this phase differ
from the ones in eikonal amplitudes on flat spacetimes
Eq. (2). In the following section, we generalize the eikonal
amplitude in Eq. (27) to a 4D amplitude within a small
angle approximation near the bifurcation sphere and
subsequently provide its CCFT description in a boost
eigenbasis.

III. CONSTRUCTION OF NEAR-HORIZON
CELESTIAL EIKONAL AMPLITUDE

We first provide detailed arguments for uplifting the 2D
black hole eikonal amplitude to a 4D partial wave amplitude
in a near-horizon region considered for a large black hole in
the small angle approximation. We then accordingly resum
the partial wave result Eq. (27) using known techniques in
the small angle approximation about flat spacetimes [79,80]
to derive an amplitude defined in terms of four-momenta
and the impact parameter. The 4D eikonal amplitude which
follows from the partial wave amplitude in the small
scattering angle limit is hence only defined in a near-
horizon Minkowski frame around the bifurcation sphere of
the maximally extended Schwarzschild spacetime, which
will be shown to be consistent with approximations used in
the derivation of the 2D near-horizon eikonal amplitude
reviewed in the previous section. We lastly perform the
Mellin transform on this momentum space amplitude to
derive a celestial correlator on the horizon.

A. Uplifting the partial wave eikonal amplitude
to four dimensions

To uplift Eq. (27) to a 4D amplitude two key issues need
to be addressed. The first concerns the kinematic constraint
for the “eikonal limit” in the effective 2D theory, which
will differ in a 4D spacetime. Thus, it is a priori unclear if
one can promote the 2D black hole eikonal amplitude to a

4D one, which can also allow for a CCFT description. For
general amplitudes, such kinematic lifting could be diffi-
cult to realize. Thus, we need to consider a particular class
of amplitudes for our purpose. On a related note, we would
also need to address the status of momentum conservation
for scattering involving 4D momenta since translation is,
in general, broken on black hole spacetimes. The second
issue concerns the possible mixing between partial wave
modes due to introducing transverse exchanges. In the
presence of partial wave mode mixing, the resummation of
eikonal amplitudes will need to generalize the contribution
from the interaction vertex to the eikonal phase in Eq. (27).
Since both issues are closely associated with the possible
difference in kinematic symmetries between Minkowski
and Schwarzschild spacetimes, the best way to resolve
them is to discuss the recovery of Minkowski isometries in
the near-horizon region. In the following, we argue that
this can be achieved in a small angle and large black hole
radius approximation, and is of particular relevance for
near-horizon amplitudes satisfying the eikonal approxi-
mation and spherical symmetry in the Minkowski frame,
as we now explain.
We will be interested in the leading contribution of the

metric Eq. (5) in the r → R limit3

ds2NH ¼ −2dx−dxþ þ R2dΩ2
2 þOðR−1Þ: ð29Þ

In further considering a small angle approximation,
i.e., considering the leading planar approximation to the
angular coordinates in a region far smaller than R, the
spacetime can be transformed to a flat spacetime metric,
noted as a “Minkowski coordinate frame” in [59], around
the bifurcation sphere in the maximally extended
Schwarzschild spacetime. More specifically if we con-
sider dΩ2

2 ¼ dθ2 þ sin2 θdϕ2, and assume that the trans-
verse directions X and Y are related to the angles θ and ϕ
via [59]4

X ¼ R

�
θ −

π

2

�
; Y ¼ Rϕ; ð30Þ

Equation (29) gives the Minkowski coordinate frame
metric

3One may also be interested in the near-horizon metric up to
Oðr − RÞ,

ds2 ¼ −2dx−dxþ þ R2dΩ2
2

þ
�
4

�
r
R
− 1

�
dx−dxþ þ 2R2

�
r
R
− 1

�
dΩ2

2

�
:

4If instead we considered dΩ2
2 ¼ 4

ð1þzz̄Þ2 dzdz̄, then the trans-

formations z ¼ X
2R þ i Y

2R and z̄ ¼ X
2R − i Y

2R would also recover the
flat spacetime metric.
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ds2Minkowski frame ¼ −dxþdx− þ dx2⊥; ð31Þ

where we have replaced R2dΩ2
2 ¼ dX2 þ dY2 ≔ dx2⊥, and

have rescaled x� → x�=
ffiffiffi
2

p
for convenience. The small

angle approximation is implemented above by considering
the leading order terms in a Taylor series expansion of the
transverse metric with θ small.5 Therefore, Minkowski
isometries are formally recovered in this approximation.
While translation invariance is generally broken on a black
hole spacetime, it follows from the isometries of Eq. (31)
that translation invariance, and consequently momentum
conservation, are satisfied by scattering processes within the
Minkowski coordinate frame. We stress that the Minkowski
coordinate frame metric Eq. (31) for the near-horizon
geometry holds exactly only in the large R limit, so that
the subleading OðR−1Þ terms are negligible. An important
consequence of the large R limit is that we have a geometry
with large transverse directions. As a consequence, we may
consider forward scattering processes with small transverse
momenta exchanges in the Minkowski coordinate frame,
which we consider in the following.
Based on the Minkowski frame metric in the large R limit

of the near-horizon geometry, which is nothing but
Minkowski spacetime, we may directly apply the CCFT
formalism for flat spacetime to our near-horizon eikonal
amplitude by performing a Mellin transformation. However,
we note that 2D kinematic variables discussed in the
previous section, such as Mandelstam variables, differ from
the 4D ones by lack of transverse directions. Hence, for
general scattering states, the 2D Mandelstam s variable in
Eq. (22) will be incompatible with the 4D Mandelstam s
defined in the Minkowski coordinate frame. To bypass this
difficulty, we will restrict our consideration to forward
scattering amplitudes with small transverse momenta
exchange. Therefore for the 2-2 scattering process we define

pþ
i ¼p0

i þp3
i ≫pi;⊥; p−

i ≃0 for i¼ 1;3;

p−
i ¼p0

i −p3
i ≫pi;⊥; pþ

i ≃0 for i¼ 2;4;

t¼−ðp1þp3Þ2; s¼−ðp1þp2Þ2≈2pþ
1 p

−
2 ≈ s; ð32Þ

where i ¼ 1, 2 labels the incoming particles, and i ¼ 3, 4
the outgoing particles. We note from the last line of
Eq. (32) that we now have small nonvanishing exchange
momenta, and that the 4D Mandelstam variable in the
Minkowski coordinate frame approximately agrees with
the corresponding 2D Mandelstam in Eq. (22) up to p2

i;⊥
corrections. Our consideration of pi;⊥ small is consistent
with pA ≃ 0 as adopted in [60–63], and such states can also
be realized naturally in the context of trans-Planckian
scattering [75,81,82].

In short, to promote the 2D kinematic relations to the 4D
ones in the near-horizon Minkowski coordinate frame, and
with the purpose of subsequently deriving a CCFT descrip-
tion, we will only consider forward scattering amplitudes
for the 2-2 process with external states satisfying Eq. (32).
This subset of amplitudes can be lifted from 2D to 4D while
respecting eikonal kinematics. For more general scattering
amplitudes, the kinematic lifting will be more nontrivial.
We will now provide the upliftment of the near-horizon

eikonal amplitude. A general 4D N-particle scattering
amplitude can be formally obtained from the partial wave
analysis as follows [83,84]:

AN
4D ¼ N

X
fli;mig

Afli;mig
p:w:

Y
i

Yli;mi
ðΩiÞ; ð33Þ

where i ¼ 1;…; N label the external particles, N is a
normalization constant, Yli;mi

ðΩiÞ are the spherical har-
monics for the external particles defined on the 2-sphere at

Ωi, and A
fli;mig
p:w: is the partial wave amplitude equipped with

the constraints of angular momentum conservation. The
product in Eq. (33) is over the spherical harmonics for each
external particle of the amplitude. Hence the formal sum in
Eq. (33) generally leads to a complicated kernel for trans-
forming the partial wave amplitudes to the corresponding
4D amplitude. However, as we have discussed, for our
purpose of constructing the CCFT dual of uplifted eikonal
amplitudes in the near-horizon regime, we will only con-
sider forward scattering semiclassical amplitudes. Due to
small transverse momenta exchanges in these amplitudes,
additional partial wave mode mixings are not introduced.
This is consistent with the absence of partial wave mode
mixing to prevent nonspherical backreaction in the semi-
classical analysis of [60–63].6 For the 2-2 scattering, this
reduces the multisums over ðli; miÞ into a single sum of the
overall ðl; mÞ, i.e., this is reflected in the fact that the partial
wave amplitude Eq. (27) depends only on the overall ðl; mÞ.
We further recall that the label l in Eq. (27) refers to the
partial wave of one of the external states in the 2-2 process,
with the other particle fixed to be a l ¼ 0 state. Thus, by the
aforementioned assumption, the above formal partial wave
summation for the 2-2 eikonal scattering in the near-horizon
Minkowski frame simplifies to

ANH eikonal ¼
N
4π

X∞
l¼0

ð2lþ 1ÞPlðcos θÞAl
NH eikonalðsÞ; ð34Þ

where Al
NH eikonalðsÞ is given by Eq. (27) with the argument

in terms of the 2D Mandelstam s now replaced with the 4D

5More specifically, we have sin θ ¼ sin ðXR þ π
2
Þ ¼ 1þOðXRÞ.

6Here we have adopted the same spherical symmetry approxi-
mation used in [60–63] to remove the mixing of partial waves.
This approximation is valid for the tree-level amplitude. How-
ever, its validity for the internal legs in the eikonal amplitudes
remains to be clarified.
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Mandelstam s, and θ is the angle between the interacting
particles. In Eq. (34), we have used the sum over ðl; mÞ
which can be further simplified by the formula

Xl
m¼−l

YlmðΩÞY�
lmðΩ0Þ ¼ 2lþ 1

4π
Plðcos θÞ ð35Þ

because the 2-2 partial wave amplitude Al
NH eikonal is m

independent. Note that our assumption of small transverse
exchanges implies that Eq. (34) holds for small-angle
scattering.
SettingN ¼ 4π, we arrive at our final expression for the

Minkowski frame partial wave amplitude

ANH eikonal ¼ 2s
X
l

ð2lþ 1Þ
�
exp

�
iκ2s

l2 þ lþ 2

�
− 1

�

× Plðcos θÞ: ð36Þ

The normalization has been chosen to provide an overall
scaling consistent with graviton mediated eikonal ampli-
tudes and does not affect the main results in our analysis to
follow.
In summary, the 4D amplitude ANH eikonal given in

Eq. (36) provides a consistent uplifting of the 2D partial
wave eikonal amplitude given in Eq. (27), defined in
Minkowski frame about the bifurcation sphere. We caution
the reader that this does not apply for general scattering
amplitudes in the near-horizon Minkowski frame. It holds
for semiclassical forward eikonal amplitudes, which is what
we consider for the dual CCFT description. Equation (36)
bears the usual form for eikonal scattering with χl ¼ κ2s

l2þlþ2

appearing in Eq. (27) playing the role of eikonal phase.
However, it differs from its counterpart Eq. (2) for eikonal
scattering in flat spacetime due to different underlying
dynamics. While we kinematically go over to a flat
spacetime Minkowski frame in the small angle and large
Schwarzschild radius limit, the phase (resulting from
nonvanishing curvature contributions in this limit) pro-
vides a different eikonal resummation than on flat space-
times Eq. (2) and captures near-horizon effects of the
Schwarzschild spacetime on the scattering. In the following
subsection, we proceed to evaluate Eq. (36) using known
techniques in flat spacetime for small angle scattering.
For scattering processes in the near-horizon region to be

consistent with the small angle approximation and involving
plane wave states, we may thus adopt the usual approach for
CCFTs on flat spacetimes. As the near-horizon eikonal
amplitude is a high energy forward scattering process
involving massless plane waves as external states, a dual
celestial description can be derived using the Mellin trans-
form on the external states. We will return to a more detailed
discussion of these properties in Sec. III C. For the moment,
we point out three key differences with flat spacetime CCFT
constructions:

(1) Time is rescaled by a factor of 1
2R (and a constant)

relative to the “global time coordinate” t in Eq. (3).
As such, while we will still denote the frequency as
ω in the Mellin transform, it is related to the
frequency at null infinity by a factor of 2R.

(2) As evident from Eq. (29), the asymptotic conformal
boundary of the spacetime is entirely a portion of the
past and future event horizons about the bifurcation
sphere and not null infinity.

(3) Dual celestial correlators will be constructed only for
eikonal scattering processes (with small transverse
momentum exchange) respecting background spheri-
cal symmetry in the Minkowski frame (see Fig. 2)
near the bifurcation sphere.

We also note there exist earlier holographic proposals
based on AdS3 spacelike foliations of the near-horizon
geometry in the limit of approaching the nondegenerate
horizon [85,86] which realize the above features. In
particular, the Schwarzschild spacetime is conformal to
an optical metric with time rescaled by 1

2R and with the
conformal boundary located at the event horizon. However,
this formalism provides no particular advantage over known
approaches in flat spacetime for investigating scattering
processes in the near-horizon region involving plane wave
states (Fig. 2).

B. 4D near-horizon eikonal amplitude from partial sum

In this subsection, we will carry out the explicit sum of
Eq. (36). We recall that in Eq. (36) l labels the total angular
momentum for one of the partial waves in the scattering

FIG. 2. Minkowski frame defined in an OðRÞ region about the
bifurcation sphere O in the exterior region I of the global Kruskal
spacetime. Also indicated is a representative 2-2 scattering
process between particle with label l (bold) and l ¼ 0 (dashed)
mediated by a soft graviton (wavy).
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amplitude, s is the square of the center of mass energy in
4D momentum space, and θ is the small angle between the
incoming and scattered particles. The sum over l in
Eq. (36) can be traded for a 2D integral over the transverse
directions. This follows from the relation between the
transverse direction and angular momentum mode l arising
from the definition of angular momentum (squared). From
the angular momentum operator [74,81,82], we have

Jμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p1:p2

p ϵμνρσpν
1p

ρ
2x

σ; ð37Þ

with xσ the displacement between the two particles. On
squaring Eq. (37) and using J2 ¼ JμJμ ¼ lðlþ 1Þ, along
with the leading approximations in Eq. (32), we then arrive
at [81,82]

lðlþ 1Þ ≃ sjx⊥j2; ð38Þ

This turns the eikonal phase χl given in Eq. (36) to

χl ¼ κ2s
sjx⊥j2 þ 2

¼ κ2

jx⊥j2
þOðs−1Þ; ð39Þ

which receives its dominant contribution for large l (or
equivalently large s) and small x⊥, and is different from the
corresponding graviton mediated eikonal amplitude on flat
spacetime that grows with s [73,81]. In the following, we
retain the complete expression for the eikonal phase in
Eq. (39), which captures allOðs−1Þ properties. However, as
in all eikonal amplitudes, all corrections in the more
subleading Oð ffiffiffiffiffiffi

− t
s

p Þ are ignored.
Another ingredient is an integral representation of the

Legendre polynomials for small-angle scattering, for which
we have

Plðcos θÞ ¼
1

2π

Z
2π

0

dϕ exp

�
i2l sin

�
θ

2

�
cosϕ

�
; ð40Þ

sin

�
θ

2

�
¼

ffiffiffiffiffi
−t

p
2
ffiffiffi
s

p ¼ jp⊥j
2
ffiffiffi
s

p ; ð41Þ

where we used the known relation between Legendre
polynomials and Bessel functions in the small angle
approximation in Eq. (40), while Eq. (41) is the relation
between the exchanged momentum and center of mass
energy for small angle scattering.
Substituting Eqs. (38), (40), and (41) in Eq. (36), we find

the following result for the 4D near-horizon eikonal
amplitude [by ignoring all the subleading Oð ffiffiffiffiffiffi

− t
s

p Þ cor-
rections]

ANH eikonal ¼ 2s
Z

d2x⊥
�
exp

�
iκ2s

sjx⊥j2 þ 2

�
− 1

�
eip⃗⊥:x⃗⊥ :

ð42Þ

This differs from the expression for the eikonal amplitude
on asymptotically flat spacetimes through the eikonal
phase. The two main differences lie in the dependence
of the eikonal phase on s and the impact parameter x⊥. The
eikonal phase for graviton mediated scattering on asymp-
totically flat spacetimes grows with s and holds for large
impact parameters x⊥, which is evident from substituting
Eq. (2) in Eq. (38) [81]. In contrast, the subleading terms in
the eikonal phase of the near-horizon scattering process
decay with large s [as indicated in Eq. (39)] with the
dominant contribution from x⊥ ≪ 1 in units of the
Schwarzschild radius. In other words, one can see from
Eq. (39) that while we consider a high energy scattering
process with −t

s ≪ 1 near the horizon, the eikonal phase
grows more dominant as we reduce the impact parameter.
In the following subsection, we determine how this
manifests in a celestial description and compare our result
with the celestial eikonal amplitude on asymptotically flat
spacetimes.

C. Near-horizon celestial eikonal amplitude

We have noted that the near-horizon geometry in the
limit of approaching the horizon can be described by a flat
spacetime metric. The near-horizon eikonal amplitude is a
scattering process restricted to this region involving exter-
nal massless plane wave states. Hence a near-horizon
celestial description of this amplitude can result from a
Mellin transform of the near-horizon eikonal amplitude
through its action on the external states, following the same
arguments as recently provided for flat spacetime eikonal
amplitudes in [31].
We accordingly define the 4D 2-2 near-horizon celestial

eikonal amplitude as the Mellin transform of the near-
horizon eikonal amplitude given in Eq. (42) including the
momentum conserving delta function

ÃNH eikonal

¼ ð2πÞ4
 Y4

i¼1

Z
∞

0

dωiω
Δi−1
i

!
ANH eikonalδ

ð4Þ
 X4

i¼1

pi

!
:

ð43Þ

We consider the momenta of the external states as
considered in [31]. This involves an all-outgoing conven-
tion with

pi ¼ ηiωiq̂i; i ¼ 1; � � � 4 ð44Þ

with ηi ¼ þ1 for the outgoing states i ¼ 3, 4, ηi ¼ −1 for
the incoming states i ¼ 1, 2, and q̂i a null vector
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parametrized in terms of the following transverse and
longitudinal components

q̂i ¼ ð1þ qi; qi;⊥; 1 − qiÞ;
¼ ð1þ ziz̄i; zi þ z̄i;−iðzi − z̄iÞ; 1 − ziz̄iÞ; i ¼ 1; 3;

ð45Þ

q̂i ¼ ð1þ qi; qi;⊥;−1þ qiÞ;

¼ 1

ziz̄i
ð1þ ziz̄i; zi þ z̄i;−iðzi − z̄iÞ; 1 − ziz̄iÞ; i ¼ 2; 4;

ð46Þ

where (z; z̄) is a point on the celestial sphere at the horizon.
The massless condition q̂2i ¼ 0 imposes 4qi ¼ jqi;⊥j2,
which relates the longitudinal component qi with the
transverse component qi;⊥, a two component vector. The
constraints then turn into the expressions of q̂is in terms of
zis. Hence for an eikonal scattering process with s ≫ −t,
we have qi ∼ jqi;⊥j2 ≪ 1, with ω1 ≃ ω3 and ω2 ≃ ω4. We
use ≃ to indicate an equivalence up to corrections sub-
leading in Oðq2⊥Þ.
The above considerations for the external states further

imply that for i ¼ 1, 3 we have pþ
i ¼ p0

i þ p3
i ¼ 2ηiωi ≫

pi;⊥ and p−
i ¼ p0

i − p3
i ≃ 0, while for i ¼ 2, 4 we have

p−
i ¼ 2ηiωi ≫ pi;⊥ and pþ

i ≃ 0. With the above defini-
tions, the delta function in Eq. (43) takes the form

δð4Þ
 X4

i¼1

pi

!
¼2δðpþ

1 þpþ
3 Þδðp−

2 þp−
4 Þδð2Þ

 X4
i¼1

pi;⊥

!
;

¼1

2
δðω1−ω3Þδðω2−ω4Þδð2Þ

 X4
i¼1

ηiωiqi;⊥

!
:

ð47Þ

Likewise, we have for the Mandelstam variables s and t

s ≃ −2pþ
1 p

−
2 ¼ 4ω1ω2;

−t ≃ ðp1;⊥ þ p3;⊥Þ2 ¼ ðω3q3;⊥ − ω1q1;⊥Þ2: ð48Þ

Substituting Eqs. (47) and (48) in Eq. (43), we get the
following expression:

ÃNH Eikonal ¼ 4ð2πÞ4
Z

∞

0

dω1

Z
∞

0

dω2ω
Δ1þΔ3−1
1 ωΔ2þΔ4−1

2

×
Z

d2x⊥
X∞
n¼1

1

n!

�
iκ2

jx⊥j2 þ 1
2ω1ω2

�
n

e−iω1q13;⊥:x⊥

× δð2Þðω1q13;⊥ þω2q24;⊥Þ; ð49Þ

where we have written the eikonal phase as a series
expansion and used the notation qi;⊥ − qj;⊥ ¼ qij;⊥.

With the exponential representation for the 2D delta
function

Z
d2x̄⊥ exp ð−ik · x̄⊥Þ ¼ ð2πÞ2δð2ÞðkÞ; ð50Þ

we may express Eq. (49) as

ÃNH Eikonal ¼ 4ð2πÞ2
Z

∞

0

dω1

Z
∞

0

dω2ω
Δ1þΔ3−1
1 ωΔ2þΔ4−1

2

×
Z

d2x⊥
Z

d2x̄⊥
X∞
n¼1

1

n!

�
iκ2

jx⊥j2 þ 1
2ω1ω2

�
n

× e−iω1q13;⊥:ðx⊥þx̄⊥Þe−iω2q24;⊥:x̄⊥ : ð51Þ

The second line in Eq. (51) can be further simplified. We
first express all frequencies appearing in the eikonal phase
as resulting from the action of celestial momentum oper-
ators on ωΔi−1

i for the incoming particles, Pμ
i ¼ −q̂μi e

∂Δi for
i ¼ 1, 2 [8]. We can expand the eikonal phase as an infinite
series

�
jx⊥j2 þ

1

2ω1ω2

�
−n

¼
X∞
k¼0

Ckþn−1
n−1 x−2ðnþkÞ

⊥
�
−

1

2ω1ω2

�
k

ð52Þ

with Ckþn−1
n−1 ¼ ðkþn−1Þ!

k!ðn−1Þ! . From the standard identity of the

celestial momentum operator acting on the integrand of the
Mellin transform [8,31]

ωΔ1þΔ3−1−k
1 ¼ e−k∂Δ1ωΔ1þΔ3−1

1 ;

ωΔ2þΔ4−1−k
2 ¼ e−k∂Δ2ωΔ2þΔ4−1

2 ; ð53Þ

we have the relation

�
iκ2

jx⊥j2 þ 1
2ω1ω2

�
n

ωΔ1þΔ3−1
1 ωΔ2þΔ4−1

2

¼
�

iκ2

jx⊥j2 þ 1
2
expð−∂Δ1

Þ expð−∂Δ2
Þ
�

n

× ωΔ1þΔ3−1
1 ωΔ2þΔ4−1

2 : ð54Þ

We hence see that a factor of s ¼ 4ω1ω2 can be
interpreted as arising from the action of a shifting operator
4e∂Δ1e∂Δ2 in the celestial basis following Eq. (53). We in
addition consider the transformation x⊥ þ x̄⊥ → x⊥ result-
ing in an eikonal phase that depends on the transverse
distance x⊥ − x̄⊥. By performing this transformation and
using Eq. (54) in Eq. (51), we get the result
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ÃNH Eikonal ¼ 4ð2πÞ2
Z

d2x⊥
Z

d2x̄⊥
X∞
n¼1

1

n!

�
iκ2

jx⊥ − x̄⊥j2 þ 1
2
expð−∂Δ1

Þ expð−∂Δ2
Þ
�

n

×
Z

∞

0

dω1ω
Δ1þΔ3−1
1 e−iω1q13;⊥:x⊥

Z
∞

0

dω2ω
Δ2þΔ4−1
2 e−iω2q24;⊥:x̄⊥ ;

≔ 4ð2πÞ2
Z

d2x⊥
Z

d2x̄⊥ðeiχ̂NH − 1Þ iΔ1þΔ3ΓðΔ1 þ Δ3Þ
ð−q13;⊥ · x⊥ þ iϵÞΔ1þΔ3

iΔ2þΔ4ΓðΔ2 þ Δ4Þ
ð−q24;⊥ · x̄⊥ þ iϵÞΔ2þΔ4

; ð55Þ

where in the last equation we defined the eikonal phase
operator

χ̂NH ≔
κ2

jx⊥ − x̄⊥j2 þ 1
2
expð−∂Δ1

Þ expð−∂Δ2
Þ ; ð56Þ

and made use of the identity

Z
∞

0

dωωΔ−1e−iηωq:x⊥ ¼ iΔΓðΔÞ
ð−q · x⊥ þ iηϵÞΔ : ð57Þ

Equation (57) provides a definition of massless con-
formal primary wave functions for scattering on asymp-
totically flat spacetimes, while the form of Eq. (55) is very
similar to the result for flat spacetime celestial eikonal
amplitudes given in [31]. The main difference with the flat
spacetime result stems from the form of the eikonal phase
operator Eq. (56). In [31] the eikonal phase operator for
graviton mediated scattering takes the following form7:

χ̂flat ∝ κ2 expð∂Δ1
Þ expð∂Δ2

ÞG⊥ðx⊥; x̄⊥Þ; ð58Þ

where G⊥ðx⊥; x̄⊥Þ is the transverse part of the propagator
of exchange graviton. Comparing Eqs. (56) and (58),
we see that one difference concerns the action of
expð∂Δ1

Þ expð∂Δ2
Þ, with the inverse dependence appearing

in near-horizon eikonal amplitudes. In the following
section, we will investigate Eq. (55) in more detail and
compare our results with those of celestial eikonal ampli-
tudes on asymptotically flat spacetimes.

IV. PROPERTIES OF THE NEAR-HORIZON
CELESTIAL EIKONAL AMPLITUDE

Celestial amplitudes, on account of their involvement of
boost eigenstates, are known to be sensitive to both UVand
IR properties of scattering processes [20]. Lorentz and
translation invariance on the celestial sphere further

manifest in certain universal properties that celestial ampli-
tudes must possess.
The near-horizon celestial eikonal amplitude Eq. (55)

can be expanded as the sum of the Feynmann ladder
diagrams, which are classified by the number of exchanged
soft gravitons, i.e., denoted by n, or (n − 1) loops,

ÃNH eikonal ¼
X∞
n¼1

ÃðnÞ
NH eikonal ð59Þ

with

ÃðnÞ
NH eikonal ¼

4ð2πÞ2
n!

Z
d2x⊥

Z
d2x̄⊥ðiχ̂NHÞn

×
iΔ1þΔ3ΓðΔ1 þ Δ3Þ

ð−q13;⊥ · x⊥ þ iϵÞΔ1þΔ3

×
iΔ2þΔ4ΓðΔ2 þ Δ4Þ

ð−q24;⊥ · x̄⊥ þ iϵÞΔ2þΔ4
: ð60Þ

The form of Eq. (60) is exact for all n. Below, we will argue
that our result satisfies the expected universal properties of
celestial amplitudes and is consistent with the defining
properties of near-horizon eikonal amplitudes—that is it is
mediated by soft graviton exchanges in the large s limit.
We start with the integral representation of celestial

eikonal amplitude from Eq. (49), incorporating the defi-
nition Eq. (59)

ÃðnÞ
NH eikonal ¼ 4ð2πÞ4

Z
∞

0

dω1ω
Δ1þΔ3−1
1

Z
∞

0

dω2ω
Δ2þΔ4−1
2

×
Z

d2x⊥
1

n!

�
iκ2

jx⊥j2 þ 1
2ω1ω2

�
n

e−iω1q13;⊥·x⊥

× δð2Þðω1q13;⊥ þ ω2q24;⊥Þ: ð61Þ

One of the properties of this celestial eikonal amplitude
is that the integration over x⊥ can be evaluated exactly to
give the modified Bessel function of the second kind of
integer order n − 1,

7The form of Eq. (58) is consistent with Eq. (2) after replacing
the action of shift operators by s ¼ 4ω1ω2, along with the relation
Eq. (38) and the explicit form of G⊥ðx⊥; x̄⊥Þ ∼ ln jx⊥ − x̄⊥j.
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Z
d2x⊥

 
iκ2

jx⊥j2 þ 1
2ω1ω2

!
n

e−iω1q13;⊥·x⊥

¼ 2π
inκ2n

ðn − 1Þ!

 
ω1jq13;⊥j

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

2

r !
n−1

× Kn−1

 ffiffiffiffiffiffiffiffi
ω1

2ω2

r
jq13;⊥j

!
; ð62Þ

where we have used the known integral (cf. 6.565.4 of [87])

Z
∞

0

JνðbxÞxνþ1

ðx2 þ a2Þμþ1
dx ¼ aν−μbμ

2μΓðμþ 1ÞKν−μðabÞ;

−1 < Re ν < Re ð2μþ 3=2Þ; a; b > 0:

ð63Þ

Our analysis will be further considered in a center-of-
mass frame with

jq⊥j ≔ jq13;⊥j ¼ jq24;⊥j; ð64Þ

Hence, on substituting Eq. (62) in Eq. (61) and performing
the rescalings ω1jq⊥j → ω1 and ω2jq⊥j → ω2, we find

ÃðnÞ
NH eikonal ¼ 4ð2πÞ5 inκ2n

n!ðn − 1Þ! ðjq⊥jÞ
−β−n−3

Z
∞

0

dω1ω
Δ1þΔ3−1
1

Z
∞

0

dω2ω
Δ2þΔ4−1
2

×

�
ω1

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

2

r �n−1
Kn−1

� ffiffiffiffiffiffiffiffi
ω1

2ω2

r
jq⊥j

�
δð2Þðω1n13;⊥ þ ω2n24;⊥Þ; ð65Þ

where we defined the two-dimensional vectors

n13;⊥ ¼ ðn113;⊥; n213;⊥Þ ≔
q13;⊥
jq⊥j

;

n24;⊥ ¼ ðn124;⊥; n224;⊥Þ ≔
q24;⊥
jq⊥j

; ð66Þ

and

β ≔ Δ1 þ Δ2 þ Δ3 þ Δ4 − 4: ð67Þ

To further simplify Eq. (65), we consider the 2-2 scattering
in the center of mass frame with the following para-
metrization for the transverse momenta in terms of the
cross ratio z ¼ −t

s [31],

q13;⊥ ¼ ð−ð ffiffiffi
z

p þ ffiffiffī
z

p Þ; ið ffiffiffi
z

p
−

ffiffiffī
z

p ÞÞ;
q24;⊥ ¼ ð ffiffiffi

z
p þ ffiffiffī

z
p

; ið ffiffiffi
z

p
−

ffiffiffī
z

p ÞÞ; ð68Þ

so that

jq⊥j ¼ 2
ffiffiffiffiffi
jzj

p
;

n124;⊥n213;⊥ ¼ i
z − z̄
jq⊥j2

¼ −n224;⊥n113;⊥: ð69Þ

In the parametrization of q̂i of Eqs. (45) and (46), this
corresponds to the choice

z1 ¼ 0; z2 ¼∞; z3 ¼
ffiffiffi
z

p
; z4 ¼ −

1ffiffiffi
z

p ; ð70Þ

such that in the eikonal limit,

z ¼ −t
s
≈
z13z24
z12z34

≪ 1: ð71Þ

The two-dimensional delta function δð2Þðω1n13;⊥ þ
ω2n24;⊥Þ can be factored into a product of delta
functions [31]

δð2Þðω1n13;⊥ þω2n24;⊥Þ ¼
1

ω1

δ

�
ω2 þω1

n124;⊥
n113;⊥

�

× δðn124;⊥n213;⊥ − n224;⊥n113;⊥Þ;

¼ jq⊥j2
2ω1

δðω2 −ω1Þδðz− z̄Þ; ð72Þ

where in the second line of Eq. (72) we made use of
Eqs. (68) and (69), along with the standard scaling property
of the Dirac delta function. On carrying out the integral
over ω2 in Eq. (65) and using δðz − z̄Þ to write jq⊥j ¼ 2

ffiffiffi
z

p
,

we find

ÃðnÞ
NH eikonal ¼ 2ð2πÞ5 i

nκ2n2−β−2

n!ðn − 1Þ! 2
3
2
ð1−nÞ

× Kn−1ð
ffiffiffiffiffi
2z

p Þð ffiffiffi
z

p Þ−β−n−1δðz − z̄Þ

×
Z

∞

0

dω1ω
βþ2n−1
1 : ð73Þ

Lastly, we can perform the ω1 integral by analytically
continuing to the regime of large scaling dimensionΔi ≫ 1
with the following result [17]Z

∞

0

dω1ω
βþ2n−1
1 ≔ δðiðβ þ 2nÞÞ: ð74Þ
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Thus the integral in Eq. (74) is well defined when we set
β ¼ −2nþ ib. Hence, on substituting Eq. (74) in Eq. (73)
we arrive at the final result:

ÃðnÞ
NH eikonal ¼ 2ð2πÞ6 i

nκ2n2−β−2

n!ðn − 1Þ! 2
3
2
ð1−nÞ

× Kn−1ð
ffiffiffiffiffi
2z

p Þð ffiffiffi
z

p Þ−β−n−1
× δðz − z̄Þδðiðβ þ 2nÞÞ: ð75Þ

The contribution 2−β−2δðz − z̄Þ in Eq. (75) is part
of the universal kinematic contribution in all celestial
amplitudes [21,31]. The delta function over z in particular
manifests translation invariance on the celestial sphere.

The scaling behavior of the amplitude will follow from
ð ffiffiffi

z
p Þ−β−n−1Kn−1ð

ffiffiffiffiffi
2z

p Þ, which, as we now show, has a
universal n-independent leading scaling behavior for all

Ãðn≥2Þ
NH eikonal. The leading contribution of Kn−1ð

ffiffiffiffiffi
2z

p Þ at each
order n is given by

Kn−1ð
ffiffiffiffiffi
2z

p Þ ≈ −
1

2
ð− ffiffiffiffiffi

2z
p Þn−1∂n−1z ln

�
z
2

�
: ð76Þ

We consider Eq. (76) in Eq. (75) at tree level (n ¼ 1) and
higher loops more generally (n ≥ 2). For the tree-level
exchange, we find

Ãð1Þ
NH eikonal ¼ −ð2πÞ6iκ22−β−2 ln

�
z
2

�
ð ffiffiffi

z
p Þ−β−2δðz − z̄Þδðiðβ þ 2ÞÞ þ � � � ;

¼ −ð2πÞ6iκ2 ln
�
z
2

�
δðz − z̄Þδðiðβ þ 2ÞÞ þOð ffiffiffi

z
p Þ; ð77Þ

where we utilized δðiðβ þ 2ÞÞ in the second line of Eq. (77) and � � � in the first line represent contributions subleading in
small z. The tree-level exchange is hence dominated by z0 ln z. Similarly, for n ≥ 2 by using (76) and δðiðβ þ 2nÞÞ in
Eq. (75), we find the result to be

Ãðn≥2Þ
NH eikonal ¼ ð2πÞ6 inκ2n

ðn − 1Þn! 2
−β−ðnþ3Þð ffiffiffi

z
p Þ−β−2ðnþ1Þδðz − z̄Þδðiðβ þ 2nÞÞ þ � � � ;

¼ ð2πÞ6 inκ2n

ðn − 1Þn! 2
n−3z−1δðz − z̄Þδðiðβ þ 2nÞÞ þOðð ffiffiffi

z
p Þ−1Þ: ð78Þ

We hence find the universal leading behavior of z−1 for all
n ≥ 2 loop orders in the near-horizon celestial eikonal
amplitude. It is quite interesting to consider the dynamical
interpretation of the factor δðiðβ þ 2nÞÞ in Eq. (75). Recall
that the same pole structures are also proposed and
discussed for the celestial amplitudes of IR or UV soft
theories [20]. For the IR soft ones, these poles appear after
Mellin transforming the IR expansion of the amplitude in
the momentum basis, i.e.,

P∞
n¼0 a

IR
n ω2n. In a UV soft

theory, such as string theory, the UV behavior is softened
by the productions of stringy Hagedorn states, which can be
understood as the microscopic black holes by the string/
black hole correspondence [66–68]. This implies that the
celestial amplitudes can capture both nonperturbative phys-
ics in both UV and IR sides through the characteristics of
β ¼ −2n poles. In our case, we are considering the celestial
eikonal amplitudes for which the β ¼ −2n appears with n
labeling the order of the loop/ladder diagrams. Thus, a
natural interpretation of these poles is the dominance of the
soft graviton exchanges, with n corresponding to the
number of soft gravitons appearing in the ladder diagrams.
An additional consequence is the absence of poles for
Re β > 0 in a manner analogous to UV soft theories. In this

sense, these poles are the manifestation of the IR divergence
due to soft graviton exchanges in the near-horizon region.
This implies that celestial amplitudes can capture non-
perturbative effects of strong gravity due to either black hole
production or the existence of an event horizon.

V. SUMMARY AND CONCLUSION

Eikonal amplitudes provide an important class of non-
perturbative scattering processes that have been recently
investigated in the celestial basis. In this paper, we consid-
ered the celestial description of eikonal amplitudes past the
critical length scale for the impact parameter, which is taken
to be large in the usual eikonal approximation. In this
regime, the leading approximation to the eikonal amplitude
is governed by a resummation over soft graviton exchanges
in the near-horizon geometry of a Schwarzschild black hole.
Hence, near-horizon celestial eikonal amplitudes provide an
interesting case of nonperturbative scattering processes in
the boost eigenbasis beyond those on flat spacetime.
The near-horizon eikonal amplitude [60–63] accounts for

the leading backreaction about a Schwarzschild background
and is a two-dimensional result following the integration
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over spherical harmonics. The resulting eikonal phase (28)
is dominated by small l modes and transverse directions
x⊥. In Sec. III we first derived the corresponding four-
dimensional eikonal amplitude through a partial sum of the
two-dimensional result and subsequently performed a
Mellin transform on the external states to derive the near-
horizon celestial eikonal amplitude. The conformal primary
wave functions describing the external states are the same as
those for the celestial eikonal amplitude on flat spacetimes,
which follows from the isometries of the near-horizon
region in the small angle approximation being identical
to those on flat spacetimes. However, the eikonal phase,
which captures the interactions of the external states with
the exchanged gravitons near the horizon, crucially differs
from the flat spacetime eikonal phase. More specifically, the
four-dimensional near-horizon eikonal amplitude is defined
from impact parameters comparable to the Schwarzschild
radius and a perturbative series in s−1 around s being
infinite. This manifests the property that the near-horizon
eikonal amplitude are mediated by soft graviton modes.
In Sec. IV we investigated the near-horizon celestial

eikonal amplitude to derive the main results of our paper,
namely an exact all-loop order result for the celestial
amplitude. The result involves universal kinematic factors
of celestial amplitudes on flat spacetime. This is expected
from our consideration of the near-horizon region in the
small angle approximation, which simply provides a flat
spacetime for the scattering process. However, the dynami-
cal content of the celestial amplitude differs considerably
from celestial amplitudes on flat spacetime. One of these
differences follows from the δðiðβ þ 2nÞÞ contribution.
While this behavior is consistent with the expectation of
soft UV behavior in CCFT, the near horizon celestial
eikonal amplitude provides the specific representation of
exchanged soft gravitons with loop order n. We, in addition,
have a

ffiffiffi
z

p −β−n−1Kn−1ð
ffiffiffiffiffi
2z

p Þ term as an all-loop order
contribution from the near-horizon eikonal phase. This term
on expanding about z ≪ 1, and in conjunction with
δðiðβ þ 2nÞÞ, provides a universal leading n-independent
behaviour for

ffiffiffi
z

p
. Thus, the leading scaling behavior of the

cross-ratio z in the celestial amplitude result is independent
of loop order.

There are several further avenues to explore in the context
of near-horizon amplitudes. It will be interesting to go
beyond the small angle approximation used for the near-
horizon background. In particular, we expect a correction to
the 2-sphere part of the metric in (3), which are also known
to influence near-horizon symmetries [88–90]. The first
nontrivial corrections to the “Minkowski coordinate frame”

results can be obtained by treating rðx−;xþÞ−R
R ≈fðx−;xþÞ≪ 1

as a perturbation parameter. The metric, including the
leading-order correction, takes the following form:

ds2 ¼ −ð1 − 2fðx−; xþÞÞdx−dxþ
þ R2ð1þ 2fðx−; xþÞÞdΩ2 þOðfðx−; xþÞ2Þ: ð79Þ

With this correction, the transverse part of the metric will
now depend on the light-cone coordinates ðx−; xþÞ. As a
result, the two-dimensional eikonal amplitude and its four-
dimensional uplift will require us to account for partial wave
mode mixing, which leads to angular momentum transfers
and nontrivial Clebsch-Gordan coefficients. In addition, it
will also be important to better understand the celestial
correspondence between the 1-1 scattering of a massless
scalar field on a shockwave background and the 2-2
graviton mediated eikonal amplitude for massless external
scalar fields. We expect this correspondence to hold for the
near horizon eikonal amplitude upon considering a shock-
wave in the near horizon region.
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