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We study the thermodynamic properties of a rotating electrically charged Einstein-Euler-Heisenberg
black hole solution. This describes a QED generalization of the Kerr-Newman solution, which endows the
vacuum with an effective dielectric constant. The QED-induced modifications to the thermodynamic
quantities are presented and discussed. The Penrose process and the extraction of energy from the black
hole at the event horizon are reviewed. We also analyze the Euler-Heisenberg nonlinear effects in the cases
of supermassive, stellar, and primordial black holes. The evaporation of the black hole is analyzed as
blackbody radiation.
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I. INTRODUCTION

Quantum electrodynamical (QED) vacuum corrections
to the Maxwell-Lorentz theory, after one loop of quantiza-
tion, can be accounted for by an effective nonlinear
theory of the electromagnetic field derived by Euler and
Heisenberg [1,2], using the Dirac electron-positron theory.
Schwinger reformulated this result within a gauge-invariant
formulation of QED [3]. When the electric fields are
stronger than the critical value, Dc ≡m2c3=ðeℏÞ, sponta-
neous electron-positron pair production takes place, low-
ering the vacuum energy. The vacuum is treated as a specific
type of medium, the polarizability and magnetizability
properties of which are determined by clouds of virtual
charges surrounding the real currents and charges [4]. This
effect can be interpreted as an effective dielectric constant of
the vacuum, and the Euler-Heisenberg (EH) effective
Lagrangian is only valid for constant fields. This theory
is a valid physical theory [5].
Ruffini et al. [6] considered Einstein-Euler-Heisenberg

(EEH) static spherically symmetric black hole solutions
endowed with electric, magnetic monopole, and dyonic
charges, and they reduced the solutions to screened
Reissner-Nordström (RN) ones. The nonlinear effects act
only in the screening of the electric charge generating
clouds of virtual charges surrounding the real charges and
currents and affect the geometry only through the screened
values of the real charges, i.e., these are QED corrections to

the black hole horizon, the thermodynamic quantities,
entropy, total energy, and maximally extractable energy.
Therefore, the Euler-Heisenberg theory is considered as a
screened Maxwell theory [7–11]. Another viewpoint is the
work of Yajima et al. [12], who obtained, numerically or
analytically, electrically, magnetically, and dyonically
charged static black hole solutions. They treated the non-
linearity parameters as free parameters and studied the
effective Euler-Heisenberg Lagrangian as a low-energy
limit of the Born-Infeld theory. This standard way to
consider the nonlinear contribution of the Euler-Heisenberg
electrodynamics adds a term Q4=r6 in the mass-energy
function fðrÞ of the Maxwell linear electrodynamics, as can
be seen in Refs. [12–19], which cannot be interpreted as
screened Maxwell solutions. This additional term modifies
the geometrical structure and the thermodynamics of the
Maxwell theory [20–22].
On the other hand, Plebański introduced a class of non-

linear electrodynamic (NLED) theories [23], which contains
EH as a special case [4]. In the framework of the EEH theory,
Amaro et al. [7] derived an electrically charged static black
hole solution in terms of the Plebański dual variables, and its
shadow was also studied. Furthermore, Breton et al. [9]
followed the QED interpretation of Ruffini et al. [6] for
obtaining a screened Kerr-Newman (KN) black hole sol-
ution. They used the ansatz for a Kerr-like metric and the
electromagnetic Plebański dual variables, considered sym-
metries for Petrov type-D metrics, and solved the Einstein
equations. The nonlinearity introduces virtual charges,
which lead to a screening of the real charges, not directly
affecting the geometry of the underlying space-time.
Furthermore, the mechanism for the extraction of rota-

tional energy from a Kerr black hole was first proposed in
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1971 by Penrose et al. [24], the so-called Penrose process.
Due to the existence of the ergoregion, particles with a
negative axial component of the angular momentum could
be absorbed by the black hole along a negative energy orbit,
which would reduce the angular momentum of the hole. In
the meantime, particles will carry the reduced angular
momentum away from the ergoregion and propagate to
infinity. A stationary observer at infinity can regard this
total process as the black hole doing work on the outgoing
particles. The mass of the black hole decreases in this
process, but such a decrease in the mass is not indefinite.
Christodoulou showed that only up to around 29% of
the mass of an extreme Kerr black hole could be extracted
as rotational energy [25]. Additionally, electromagnetic
energy can also be extracted from a black hole [26]. One
could extract up to 50% of the mass of a hypothetical
extreme RN black hole. Moreover, for charged black holes,
the generalized ergoregion includes the electromagnetic
contribution of the charges of the black hole and the
captured particle [27,28].
The Penrose process allowed an analogy between the

black hole mechanics and thermodynamics. The four laws
of black hole thermodynamics were proposed in 1973 by
Bardeen et al. [29]. In this analogy, the mass of the black
hole corresponds to the energy of a thermodynamic system,
the surface gravity to the temperature, and the area of the
event horizon to the entropy, as previously proposed by
Bekenstein [30–32]. Additionally, in 1975 Hawking [33]
published the semiclassical derivation of black hole
radiation.
The gravitational collapse of a star to a KN black hole,

with all of the aspects of nuclear physics and electrody-
namics involved, is a complex problem in astrophysics [34].
Astrophysical black holes are more likely to be neutral, but
during gravitational collapse a process of charge separation
is expected when the gravitational energy of the collapsing
core is transformed into electromagnetic energy, and
eventually the creation of electron-positron pairs by vac-
uum polarization. Such QED effects have been studied by
Ruffini et al. [35,36] in the poweringmechanismof gamma-
ray bursts by means of black hole energy extraction. The
black hole solution, which takes into account such vacuum
polarization effects, is the EEH one. In this paper, we
consider the EEH rotating black hole as a thermodynamic
system, which incorporates EH corrections to the thermo-
dynamic properties of the KN black hole.
The outline of the paper is as follows. In Sec. II an EEH

rotating electrically charged black hole solution is revisited.
In Sec. III the Penrose process and the extraction of energy
from the black hole at the event horizon are reviewed. In
Sec. IV we explore the black hole thermodynamics. In
Sec. V we analyze the case of supermassive, stellar, and
primordial black holes. In Sec. VI the summary and
conclusions of the work are presented. In Appendix A
the evaporation of the black hole is analyzed as blackbody

radiation. In Appendix B the hypothetical θ dependence is
considered.

II. ROTATING EINSTEIN-EULER-HEISENBERG
BLACK HOLE

Using the ansatz for a Kerr-like space-time with the
EH NLED as a source, Bretón et al. [9] derived a rotating
electrically charged EEH black hole space-time. The
resulting solution to the Einstein field equations appears
as a screened KN solution, which in Boyer-Lindquist
coordinates is given by

ds2 ¼ −
�
1 −

2Mr − Q̃2

Σ

�
dt2 þ Σ

Δ
dr2

−
ð2Mr − Q̃2Þ2asin2θ

Σ
dtdϕþ Σdθ2

þ
�
r2 þ a2 þ ð2Mr − Q̃2Þa2sin2θ

Σ

�
sin2θdϕ2;

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2Mrþ a2 þ Q̃2 ¼ ðr − rþÞðr − r−Þ: ð1Þ

It is characterized by three parameters: the mass M, the
angular momentum a, and the screened electric charge Q̃,
given by

Q̃2 ¼ Q2

�
1 −

5α

225π

�
D2

Q − 4H2
Q

�
1 −

a2cos2θ
Σ

�

×

�
7 − 12

a2cos2θ
Σ

þ 12
a4cos4θ

Σ2

���
; ð2Þ

where the square of the radial components of the electro-
magnetic fields read

D2
Q ¼ Q2

Σ2D2
c
; H2

Q¼M2 cos2 θ
Σ3D2

c
: ð3Þ

Both fields DQ and HQ depend on the charge of the black
hole Q and critical field Dc ≡m2c3=ðeℏÞ at which elec-
tron-positron pairs are created. The magnetic field HQ is
induced by the rotation a and charge Q of the black hole
since it arises from the induced magnetic moment
M ¼ Qa. Additionally, the screened induced magnetic
dipole moment now reads M̃ ¼ Q̃a. It is important to note
that both fields DQ and HQ would also depend on r and θ
through the metric function Σ ¼ r2 þ a2 cos2 θ. However,
as mentioned above, the EH effective Lagrangian is only
valid for constant fields. Therefore, according to the QED
interpretation of the EH NLED [6], the vacuum polarization
acts as clouds of virtual charges surrounding the real
electric charge and thus the rotationally induced magnetic
moment and affecting the geometry only through the
screened values of the real charges, as it happens in flat
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space-time [34]. Therefore, the effects of the vacuum
polarization are nearly constant and affect only the electric
charge of the EH NLED. This means that Q̃ðr; θÞ [Eq. (2)]
has to be evaluated at constants r and θ, depending on the
point at which one aims to analyze the effect of the vacuum
polarization on the charge of the black hole. For example,
when analyzing black hole thermodynamics, one analyzes
the effects near the event horizon; or, when studying the
trajectories of test particles, one can restrict the motion to
the equatorial plane.
Throughout the article, we consider the EEH black hole

as a thermodynamic system affected by captured matter at
the equatorial plane, i.e., we consider Q̃ as evaluated at the
event horizon radius of the KN black hole,

RH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; ð4Þ

and perpendicular to the rotation axis, i.e., θ ¼ π=2. Then,
the screened charge reads

Q̃ ¼ Q

�
1 −

α

90π

Q2

R4
HD

2
c

�
; ð5Þ

which only depends on the black hole parameters a,Q, and
M, the fine-structure constant α, and the critical fieldDc. In
this case, the charge (5) is always screened, i.e., Q̃ < Q. As
a or Q increases, RH decreases, and then the EH effect
grows since it is proportional to R−4

H . Figure 1 presents the
screened charge Q̃ as a function of the angular momentum
a of the black hole, while Fig. 2 displays Q̃ as a function of
its real charge Q.
The size of the EH effects also depends on the mass

M of the black hole. It reads α
90πD2

c

ðQ=MÞ2
ðRH=MÞ4

1
M2, with

1 ≤ RH=M ≤ 2, and where the charge is restricted by the
event horizon condition, 0 ≤ jQj=M ≤ 1. The remaining
factor 1=M2 is responsible for the size of the quantum

corrections. Bigger masses and bigger charges are required
in order to visualize the EH effects. The geometric proper-
ties of the black hole, like the event horizon, as well as the
thermodynamics are modified by the presence of clouds of
virtual charges surrounding real charges of the black hole.

A. The event horizon

The event horizon rþ and inner horizon r− of the
EEH rotating black hole are obtained from the condition
Δ ¼ 0, i.e.,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

q
: ð6Þ

The event horizon of the KN black hole is a sphere with
radius RH and its size is modified by the screening of its
charge to a bigger radius rþ ≥ RH (see Fig. 3). Figure 4
displays rþ as a function of the black hole real charge Q
and angular momentum a.

B. Event horizon area

The area of the event horizon hypersurface, A, with
t ¼ const and r ¼ rþ, reads

A ¼
Z

2π

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgθθgϕϕj

q
dθdϕ

¼
Z

2π

0

Z
π

0

ðr2þ þ a2Þ sin θdθdϕ ¼ 4πðr2þ þ a2Þ

¼ 4π

�
2MðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

q
Þ − Q̃2

�
; ð7Þ

which can be rewritten, up to first order in α, as

A ¼ AKN þ 4α

45D2
c

Q4

R3
H

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 −Q2
p �

; ð8Þ
FIG. 1. Screened charge Q̃ (5) as a function of the angular
momentum a for different values of the charge Q and a fixed
mass, M ¼ 1 × 104M⊙.

FIG. 2. Screened charge Q̃ (5) as a function of the real chargeQ
for different values of the angular momentum a and a fixed mass,
M ¼ 1 × 104M⊙. The dashed line corresponds to the KN case.
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with the event horizon area of the KN black hole
AKN ¼ 4πðR2

H þ a2Þ. The values of the parameters M, a,
and Q vary if the black hole absorbs particles with mass,
angular momentum, or charge and, consequently, the area
A varies. In this case, the area increases due to the EH
effect. In particular, as Q increases, the area grows. The
extreme case M2 ¼ a2 þQ2 is restricted.
Throughout the article, the quantities corresponding to

the KN case are labeled with superscripts KN, while those
corresponding to the EEH case have no labels.

C. Surface gravity

The surface gravity of a general black hole is not well
defined. However, one can define the surface gravity for a
black hole whose event horizon is a Killing horizon. The
surface gravity κþ of a static Killing horizon is the
acceleration, as exerted at infinity, needed to keep an
object at the event horizon. Mathematically, if a Killing
vector ka is normalized kaka ¼ −1, then the surface gravity
is defined by

ka∇akb ¼ κþkb; ð9Þ

where the equation is evaluated at the event horizon.
For a static and asymptotically flat space-time like, for

instance, the Schwarzschild solution, ka is a time trans-
lation Killing vector, which becomes null at the horizon,
i.e., ka∂a ¼ ∂

∂t. A stationary space-time is axially symmetric
with a rotational Killing vector field kb∂b ¼ ∂

∂ϕ in addition
to the time translation one. Then, ðka∂aÞ will be a linear
combination of both,

FIG. 3. EEH event horizon for different values of the black hole
parameters and a fixed mass, M ¼ 1 × 104M⊙. The dashed line
corresponds to the KN case and the continuous line to the EEH
one. The horizon is enlarged.

FIG. 4. Event horizon radius rþ (6) of the EEH rotating black
hole (continuous line) compared to the KN one (dashed line) as a
function of the real charge of the black hole Q and the angular
momentum a and with a fixed mass, M ¼ 1 × 104M⊙.
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ðka∂aÞ� ¼ ∂

∂t
�Ω

∂

∂ϕ
: ð10Þ

The linear combination of the time-translation and axial-
symmetry Killing vectors is null at the horizon, where Ω is
the angular velocity of the black hole, which is constant at
the event horizon and is given by (16).
Therefore, the surface gravity, at the event horizon, for a

screened KN black hole is

κþ ¼ rþ− r−
2ðr2þþa2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

p
2M2− Q̃2þ2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

p ; ð11Þ

which up to first order in α can be rewritten as

κþ ¼ κKNþ þ α

90π

ð2a2þQ2Þ
D2

cðR2
Hþa2Þ2

�
Q4

R4
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2−Q2

p �
;

ð12Þ

where κKNþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
=ðR2

H þ a2Þ is the surface
gravity of the KN black hole. The extreme case is once
again restricted.

D. Ergoregion and other properties

The ergoregion is the region rþ < r < rst between the
event horizon and the static limit surface rst, defined as

rst ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − Q̃2 − a2 cos2 θ

q
: ð13Þ

Figure 5 shows the EH effect on the ergoregion of the black
hole. The static limit surface is enlarged, as it is the event
horizon. Nevertheless, since the EH effect is bigger at rþ
than at rst, the ergoregion of the EEH black hole is smaller
than that of the KN black hole. Consequently, less energy
could be extracted from the EEH black hole.
Additional quantities are the mass-energy parameter

ME¼
r2þþa2

2rþ
¼
	
2M

h
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2−Q̃2

p i
−Q̃2



2
	
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2−Q̃2

p 
 ; ð14Þ

the angular momentum of the black hole

J¼ a

�
r2þþa2

2rþ

�
¼
a
	
2M

h
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

p i
− Q̃2



2
	
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

p 
 ;

ð15Þ

the angular velocity of the event horizon

Ωrþ ¼
a

r2þþa2
¼ a

2M2þ2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

p
− Q̃2

; ð16Þ

and the black hole’s electric potential at the event horizon

Φrþ ¼ Q̃rþ
r2þ þ a2

: ð17Þ

III. THE PENROSE PROCESS
AND ENERGY EXTRACTION

Penrose et al. [24] first suggested that rotational
energy can be extracted from a rotating black hole.
Christodoulou et al. [26] considered energy extraction
from a static charged black hole and showed that electro-
magnetic energy can also be extracted. Energy extraction
by the Penrose process can be described as follows [37].
(i) Consider a rotating black hole and a test particle A
dropping from infinity with energy EA, charge qA, and
axial component of the angular momentum LA, and

FIG. 5. EEH ergoregion (continuous line) compared to the KN
one (dashed line) for different values of the black hole parameters
Q and a and for a fixed M ¼ 1 × 104M⊙. The area of the KN
ergoregion is bigger than the EEH one and thus more energy
could be extracted from a KN black hole.
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arriving following a geodesic at a point ðr; θÞ very close to
the event horizon rþ. (ii) At this point, it “splits” into two
particles, A → Bþ C, with the corresponding parameters
ðEB; qB; LBÞ and ðEC; qC; LCÞ. The particle B crosses the
event horizon, while C escapes to infinity. (iii) The
captured particle B will then change the black hole mass,
charge, and intrinsic angular momentum.
The equations of motion for a charged test particle

around an EEH rotating black hole were presented in [11].
The test particle constants of motion corresponding to the
Killing vectors ∂t and ∂ϕ are, respectively, the energy E and
the axial component of the angular momentum L, given by

E ¼ −gttṫ − gtϕϕ̇þ q̃ Q̃ r=Σ; ð18Þ
L ¼ gtϕ ṫþ gϕϕϕ̇þ a sin2 θq̃ Q̃ r=Σ; ð19Þ

with the screened test particle real charge (evaluated at the
event horizon and the equatorial plane) given by

q̃ ¼ q

�
1 −

α

30π

Q2

R4
HD

2
c

�
: ð20Þ

Since the screening term depends only on the black hole
parameters, which are the same for the three particles at the
splitting moment, it is straightforward to verify that the
conservation of the charge, q̃A ¼ q̃B þ q̃C, still holds, i.e.,

q̃A ¼ ðqB þ qCÞ
�
1 −

α

30π

Q2

R4
HD

2
c

�
¼ q̃B þ q̃C: ð21Þ

Additionally, after the splitting, the total 4-momentum is
conserved, pμ

A ¼ pμ
B þ pμ

C. Hence, from (18) and (19), the
energy and the axial component of the angular momentum
are also conserved:

EA¼EBþEC; LA ¼LBþLC: ð22Þ
To an observer at infinity, the change in the black hole

mass δM is equal to δM ¼ EA − EC, whereEA is the energy
of the particle,which is split near the event horizon, andEC is
the outgoing particle energy, both measured at infinity, and
similarly for δJ and for δQ̃. From (21) and (22), one obtains

δM¼EB; δJ¼LB; δQ̃¼ q̃B: ð23Þ
The changes in mass, charge, and angular momentum are
equal to the energy, charge, and axial component of angular
momentum that the captured particle B carries inside the
event horizon.
In a rotating black hole, the static limit surface rst is

defined by the condition gtt ¼ 0 and only coincides with
the event horizon rþ at the poles. In the region between the
two surfaces, the Killing vector ∂t becomes spacelike, i.e.,
in the ergoregion, where the energy E of an uncharged test
particle can be negative. If the energy of the captured
particle is negative, EB < 0, then the escaping particle

reaching infinity would have more energy than the original
one, EC > EA, and the mass of the black hole would
decrease, i.e., δM < 0. This is the Penrose process of
energy extraction [24].
In the case of a charged test particle, the energy (18) also

includes an electromagnetic contribution. Hence, the region
reached by charged particles with E < 0 corresponds to a
“generalized ergoregion” [27,28]. For charges q̃ and Q̃with
opposite sign, the generalized ergoregion is larger than the
original one, while it is smaller if the signs of the test
particle charge q̃ and black hole charge Q̃ are the same.
If small objects are captured by the black hole, they

would make infinitesimal changes in the black hole
parameters, i.e., dM, dQ̃, and dJ. These changes are
determined from the particle motion, analyzing the values
of the energy-at-infinity E that allow the test particle to
reach a point near the event horizon. The equations of
motion for a charged test particle in the EEH rotating black
hole space-time are of the same form as the ones for the KN
case [11], with the real charges replaced by the screened
charges (2) and (20),

ðΣθ̇Þ2 ¼ K − ½L − aE�2
− ½L2 csc2 θ þ a2ðμ2 − E2Þ� cos2 θ; ð24Þ

ðΣṙÞ2¼ ½ðr2þa2ÞE−aL− q̃ Q̃r�2−Δðμ2r2þKÞ; ð25Þ

where K is the modified Carter constant and μ is the test
particle mass. These equations depend on three constants of
motion, and can be combined in order to obtain a quadratic
polynomial in terms of E, L, and the velocities ṙ and θ̇.
Then, from (24) and (25), the quadratic polynomial,
ζE2 − 2χEþ ρ ¼ 0, reads

½ðr2 þ a2Þ2 − Δa2 sin2 θ�E2

− 2½ðaLþ q̃ Q̃ rÞðr2 þ a2Þ − aLΔ�Eþ ðaLþ q̃ Q̃ rÞ2
− ΔL2 csc2 θ − μ2ΔΣ − Σ2½ṙ2 þ Δθ̇2� ¼ 0: ð26Þ

The solution corresponding to the 4-momentum pointing
towards the future is the one with the positive square
root [37], i.e.,

E ¼ χ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − ζρ

p
ζ

; ð27Þ

with

ζ ¼ ½ðr2 þ a2Þ2 − Δa2 sin2 θ�
¼ ðr2 þ a2ÞΣþ ð2Mr − Q̃2Þa2 sin2 θ; ð28Þ

χ ¼ ðaLþ q̃ Q̃ rÞðr2 þ a2Þ − aLΔ

¼ ð2Mr − Q̃2ÞaLþ ðr2 þ a2Þq̃ Q̃ r; ð29Þ

AMARO, BRETON, LÄMMERZAHL, and MACÍAS PHYS. REV. D 110, 124020 (2024)

124020-6



and

ρ¼ðaLþ q̃ Q̃rÞ2−ΔL2 csc2 θ−μ2ΔΣ−Σ2½ṙ2þΔθ̇2�:
ð30Þ

In order for the energy extraction process to occur, E
must be negative. Outside the event horizon, ζ > 0; then,
in order to have E < 0 in (27), the function χ must be
negative, i.e., χ < 0. This only happens for aL < 0 or
q̃ Q̃ < 0, which would decrease the magnitude of the
angular momentum and/or the charge of the black hole.
Additionally, the contribution of ṙ and θ̇ to E is always

positive. Then, from (30), the minimum energy required to
extract energy from the black hole through a particle
crossing the event horizon can only occur when
ṙ ¼ θ̇ ¼ 0. From the condition ṙ ¼ 0 at rþ in (25), the
minimum energy is given by

Emin ¼
aLþ q̃ Q̃ rþ
ðr2þ þ a2Þ : ð31Þ

From (23), with dM ≥ Emin and J ¼ aM, one obtains the
inequality

dM ≥
a

ðr2þ þ a2Þ dJ þ
Q̃rþ

ðr2þ þ a2Þ dQ̃: ð32Þ

In the extreme case r2þ ¼ M2 ¼ a2 þ Q̃2, the inequality

MdM ≥ adaþ Q̃dQ̃ ð33Þ

is satisfied. This is interpreted as the preservation of the
event horizon, meaning that no naked singularity can be
created by means of infinitesimal processes, and corre-
sponds to the Penrose cosmic censorship conjecture.
Rotational and electromagnetic energies can be extracted

from a rotating charged black hole, which would lead to a
decrease in its mass. Nevertheless, such a decrease is not
indefinite [25]. The irreducible mass of a rotating charged
black hole is given by [26]

Mir ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
ð34Þ

and is used to compute the amount of energy that can be
extracted from a black hole. Since the irreducible mass of
the EEH black hole, Mir, is larger than that of the KN one,
MKN

ir , i.e.,

Mir ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
≥
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
H þ a2

q
≡MKN

ir ; ð35Þ

less energy can be extracted from an EEH black hole, as
concluded from the analysis of the respective ergoregions
(see Fig. 5). Moreover, from (34) one obtains

ðrþ − r−Þ
2Mir

dMir ¼ dM −
rþQ̃

r2þ þ a2
dQ̃ −

a
r2þ þ a2

dJ

¼ dM −ΦrþdQ̃ −ΩrþdJ; ð36Þ

and using (32) one gets the inequality

dMir ≥ 0: ð37Þ

The irreducible mass of a black hole cannot be decreased
by infinitesimal processes of matter injection. Processes in
which the irreducible mass remains constant are said to be
reversible. Additionally, rewriting (34), the mass-energy of
the EEH black hole is given by

M2 ¼
�
Mir þ

Q̃2

4Mir

�
2

þ J2

4M2
ir

; ð38Þ

which includes the contribution of the rotational and
electromagnetic energies to the total black hole mass-
energy. On the one hand, up to 29% of the mass-energy
of an extreme Kerr black hole (Q ¼ 0) can be stored in its
rotational energy term [25]. On the other hand, in the case
of a charged black hole, since Q̃ < Q andMir > MKN

ir , both

the electromagnetic term Q̃2

4Mir
and the rotational term J2

4M2
ir
are

smaller than those of the KN case, and thus less rotational
and electromagnetic energy can be stored. For J ¼ 0 the
static result in [6] is recovered.
In order to interpret the fact that there is less rotational

and electromagnetic energy available to be extracted from
the EEH black hole than there is in the KN case, one can
review the pair production in the KN space-time. By
considering that both the gravitational and electromagnetic
background fields of the KN black hole are stationary, i.e.,
the quantum field of the electron and QED phenomena such
as pair production, Damour et al. [38] obtained the rate of
pair production around a KN black hole by locally applying
the Schwinger formula [3,34]

Γ
V
¼ α

4π2
Eð1ÞBð1Þ

X∞
n¼1

1

n
coth

�
nπ

Bð1Þ
Eð1Þ

�
exp

�
−nπ

Ec

Eð1Þ

�
;

ð39Þ

where Γ=V is the decay rate of the vacuum per unit volume
in the electromagnetic field of the KN black hole, and
Eð1Þ ¼ QΣ−2½r2 − a2 cos2 θ� and Bð1Þ ¼ 2MΣ−2r cos θ are
the components parallel to ωð1Þ of the electric and induced
magnetic fields in the local Lorentz frame of a stationary
observer defined by the following tetrad [39]:
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ωð0Þ ¼
ffiffiffiffi
Δ
Σ

r
½dt − a sin2 θdϕ�;

ωð1Þ ¼
ffiffiffiffi
Σ
Δ

r
dr;

ωð2Þ ¼ 1ffiffiffi
Σ

p ;

ωð3Þ ¼ sin θffiffiffi
Σ

p ½ðr2 þ a2Þdϕ − adt�: ð40Þ

Furthermore, the number of pairs produced in a regionD of
the KN space-time,

N ¼
Z
D
d4x

ffiffiffiffiffiffi
−g

p Γ
V
; ð41Þ

grows as either the charge or angular momentum increases.
The bigger the values of Q and a, the more pairs are
produced, and thus the EEH effects become more visible,
i.e., less stored rotational or electromagnetic energy is
available. This can be interpreted as part of the stored
energy being used for the pair production.

IV. BLACK HOLE THERMODYNAMICS

The Penrose process of energy extraction and the works
of Christodoulou [25,26] allowed an analogy between
black hole mechanics and thermodynamics. On the one
hand, from (7) and (34), the black hole area A in terms of
the irreducible mass Mir reads

A ¼ 16πM2
ir; ð42Þ

and the inequality (37) becomes dA ≥ 0. On the other hand,
Bekenstein [30,32] studied the entropy of a black hole,
considering it as a thermodynamic system. Near equilib-
rium, a thermodynamic system at temperature T changes its
state, and the consequent increments of its energy and
entropy are related by the first law of thermodynamics [31]:

TdS ¼ dE − dW; ð43Þ

where dW is the work done on the system by external
agents. The change dM in the black hole’s mass is the
change dE in its energy. Since an external agent increases
the black hole’s charge by dQ̃ and its angular momentum

by dJ, the term rþQ̃
r2þþa2 dQ̃þ a

r2þþa2 dJ in (36) represents the

work dW done on the system. Using (42), and comparing

with (43), one can obtain the relation TdS ¼ ðrþ−r−Þ
4A dA ¼

κþ
8π dA, with the surface gravity (11).
In 1973, Bardeen, Carter, and Hawking formulated the

four laws of classical black hole mechanics [29], which
are analogous to the four laws of thermodynamics. The

proposed four laws of black hole thermodynamics can be
summarized as follows:
(1) The zeroth law of black hole mechanics states

that the surface gravity κþ of a stationary black
hole is constant over the event horizon, which is
essentially the requirement of transitivity of the
equilibrium state.

(2) The first law manifests a relation between variations
of the mass M, event horizon area A, angular
momentum J, and screened electric charge Q̃ if
the black hole is perturbed,

dM ¼ κþ
8π

dAþΩrþdJ þΦrþdQ̃; ð44Þ

where κþ is the surface gravity (11), Ωrþ is the
angular velocity of the event horizon (16), andΦrþ is
the electrostatic potential (17) of the black hole at its
event horizon.

(3) The second law of black hole mechanics is Hawk-
ing’s area theorem, which states that the surface area
of the event horizon never decreases with time,

dA ≥ 0: ð45Þ

(4) The third law is formulated by stating that it is
impossible to achieve κþ ¼ 0 in a finite series of
physical processes.

The close analogy between the four laws of black hole
mechanics and the laws of ordinary thermodynamics is
very interesting. In this analogy, the mass of the black hole
mathematically corresponds to the energy of a thermody-
namic system, the area of the horizon to the entropy, and the
surface gravity to the temperature. While the correspon-
dence between mass and energy is a physical identity, the
other two correspondences are only analogies in classical
general relativity. Classical black holes have zero temper-
ature, and the area of the event horizon has the dimension of
length squared. With the physical interpretation of the black
hole entropy by Bekenstein [31] and the semiclassical
derivation of black hole radiation by Hawking [33], we can
treat black holes as thermodynamic systems with the
Bekenstein-Hawking entropy

SBH ¼ A
4
¼ πðr2þ þ a2Þ ¼ rþ − r−

4TH
ð46Þ

and the Hawking temperature

TH ¼ κþ
2π

¼ rþ − r−
4πðr2þ þ a2Þ : ð47Þ

Investigations in gravitating systems have pointed out
that entropy functions with a nonextensive nature tend to
appear in systems with long-range interactions like gravity
(e.g., [40]). The Bekenstein-Hawking black hole entropy
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also seems to be nonextensive since it is proportional to the
area of the event horizon instead of being proportional to its
volume. It is important to mention that the calculation of
the black hole volume and its relation with the correspond-
ing event horizon area constitutes a nontrivial issue [41].
The entropy of the EEH rotating black hole is given by

SBH ¼ SKNBH þ α

45D2
c

Q4

R3
H

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 −Q2
p �

; ð48Þ

with SKNBH ¼ πðR2
H þ a2Þ. Figure 6 displays the Bekenstein-

Hawking entropy (46) as a function of the charge and angular
momentum of the black hole. The black hole parameters
satisfy the event horizon condition, a2 þ Q̃2 < M2, where
the extreme case is forbidden according to the third law. The
entropy of the EEH black hole is bigger than that of the KN
one, which would imply that the EEH case corresponds to a
more probable state. The EH effect on the entropy is bigger
for large values of Q and a.
In order to interpret this behavior, one can consider

absorbed charged particles that enter the black hole at the
equatorial plane, modifying the thermodynamics quan-
tities. Let us consider a charging process of the black hole,

where Q increases due to the captured particles having the
same-sign charge. According to the lhs of Fig. 6, in the KN
case the entropy decreases as the charge increases. For the
entropy to decrease, work has to be done on the hole by an
external agent, such as in-going matter in accretion proc-
esses. Only in the EEH case, the entropy begins to increase
when Q reaches a certain value. At this point, the EEH
effect becomes very relevant and, since going from a low-
entropy state to a higher-entropy one implies the possibility
of obtaining energy from the system, one could suggest that
virtual pairs would be produced at a faster rate, in
accordance with (39).
On the other hand, in a discharging process Q decreases

due to opposite-sign charges crossing the event horizon,
and the entropy increases in both the KN case and the EEH
one. The entropy of a system on which no work is done
increases. In a discharging process, opposite-sign charges
are additionally attracted by the electric force, and then no
work has to be done against a repulsive electric force.
Nevertheless, for the EEH case the entropy first has to
decrease if near-extreme values of the black hole param-
eters were previously reached. Some work would first have
to be done in order to lower the high pair production. This
would be the case if a previous large charging process took
place or when a charged black hole is the remnant of a
charged collapsed star.
Figure 7 displays the entropy as a function of the mass of

the black hole. The limit when mass tends to zero
corresponds to black hole evaporation. In the KN case,
the entropy tends to zero as the mass becomes smaller. In
the EEH case, the entropy tends to a value different from
zero. This is due to the fact that we are considering the first-
order EH correction to the entropy (48), which is different
from zero in that limit. It is associated with the entropy of
the vacuum polarization around the black hole. However, in
order to achieve the limit M → 0, one would first need to
extract all of the rotational and electromagnetic energy of
the black hole. Moreover, the irreducible mass cannot
decrease by matter injection, and the black hole can then
only be evaporated by Hawking radiation. The differences
between the EH process and Hawking radiation are dis-
cussed in Appendix A.

A. Zeroth law

The zeroth law of black hole mechanics, i.e., the surface
gravity is constant over the event horizon of a black hole, is
analogous to the zeroth law of thermodynamics, which states
that the temperature is constant throughout a body in thermal
equilibrium. It suggests that the surface gravity is analogous
to the temperature.AconstantTH in thermal equilibrium for a
normal system is analogous to a constant surface gravity κþ
over the event horizon of a stationary black hole.
There exist two independent versions of the zeroth law of

black holemechanics. The first one, owing toCarter [42,43],
states that for any black hole that is stationary, axially

FIG. 6. Entropy of the EEH black hole as a function of the black
hole parameters and for a fixed mass, M ¼ 1 × 104M⊙. The
dashed line corresponds to the KN case and the continuous line to
the EEH one.
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symmetric with the t − ϕ orthogonality property, the surface
gravity κþ must be constant over its event horizon, and this
outcome is totally geometric since it does not involve field
equations. The second one, by Bardeen, Carter, and
Hawking [29], establishes that if Einstein’s equation holds
with the matter stress-energy tensor satisfying the dominant
energy condition, then κþ must be constant on any Killing
horizon. Here the t − ϕ orthogonality property is released.
Therefore, the zeroth law of black hole mechanics states

that the surface gravity (9) of a stationary black hole is
constant over the event horizon, which is essentially the
requirement of transitivity of the equilibrium state. The zeroth
law of black hole mechanics is an assertion of the constancy
of the surface gravity on a stationary Killing horizon.
The Hawking temperature of the black hole event

horizon is proportional to the surface gravity, i.e.,

TH ¼ 1

2π
κþ ¼ rþ − r−

4πðr2þ þ a2Þ ;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

p
2π

	
2M2 − Q̃2 þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

p 
 ; ð49Þ

which up to first order in α is given by

TH ¼TKN
H þ α

180π2
ð2a2þQ2Þ

D2
cðR2

Hþa2Þ2
Q4

R4
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2−Q2

p ;

ð50Þ

with TKN
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
=½2πðR2

H þ a2Þ�. From (46),
the temperature can be written in terms of the entropy as
TH ¼ ðrþ − r−Þ=ð4SBHÞ. The Hawking temperature is
presented in Fig. 8 as a function of the charge and angular
momentum, which satisfy the event horizon condition. The
temperature of the KN black hole decays asQ or a increase.
Only for the EEH case does the temperature start to
increase at some point as the pair production intensifies.
Figure 9 shows the temperature as a function of the massM
of the black hole. In this case, the temperature also tends to
infinity as the black hole evaporates, which is called the
explosion of the black hole. The latter occurs earlier than in
the KN case, i.e., for a bigger value of the mass, since it can
be verified that the EH term in (50) is proportional to M−3,
while the KN one is proportional to M−1.

FIG. 7. Entropy of the EEH black hole as a function of the mass
of the black hole, and for different values of the black hole
parameters. The dashed line corresponds to the KN case and the
continuous line to the EEH one.

FIG. 8. Temperature of the EEH black hole as a function of the
black hole parameters and for a fixed mass, M ¼ 1 × 104M⊙.
The dashed line corresponds to the KN case and the continuous
line to the EEH one.
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B. First law

The fundamental thermodynamic relation, which con-
tains all of the information about the thermodynamic state
of the black hole matter, was given by Smarr in 1973 [44],

M2 ¼ 1

4

A
4π

þ 4π

A

�
J2 þ 1

4
Q̃4

�
þ 1

2
Q̃2; ð51Þ

which is equivalent to (38). The parameters A, J, Q̃ are a
complete set of quantities for the black hole system,
M ¼ MðA; J; Q̃Þ. In ordinary thermodynamics, extensive
parameters may be added together for composite systems.
Nevertheless, (51) is not homogeneous of first order in A,
J, and Q̃. Although the areas of two black holes are
additive, the sum of the areas of two black holes of
masses M1 and M2 is always less than the area of a
black hole obtained by merging these two together, i.e.,
ðM2

1 þM2
2Þ ≤ ðM1 þM2Þ2. Moreover, it is possible to

identify the event horizon area A with the entropy SBH:

SBH ¼ 1

4
kBA; ð52Þ

where kB is the Boltzmann constant. Then, (51) in units in
which kB ¼ 1=8π can be rewritten as

M2 ¼
�
2SBH þ 1

8SBH

�
J2 þ 1

4
Q̃4

�
þ 1

2
Q̃2

�
; ð53Þ

which is often used in its inverted form:

SBH ¼ 1

4
M2 −

1

8
Q̃2 þ 1

4
M2

�
1 −

J2

M4
−
Q̃2

M2

�
1=2

: ð54Þ

Equation (53) represents the fundamental thermodynamic
relation M ¼ MðSBH; J; Q̃Þ in terms of the parameters
SBH, J, and Q̃.
The first law of thermodynamics states that the total

energy in any thermodynamic system is conserved,

dE¼THdSBHþdW¼THdSBHþΩrþdJþΦrþdQ̃; ð55Þ

where dE is the change of energy, corresponding to the
change in the mass of the black hole, and dW is the work
done on the system by exterior agents. When the system is
one rotating with angular velocity Ωrþ and charged up to
electric potentialΦrþ , the changes in its angular momentum
J and charge Q̃ contribute to the work. If M changes
infinitesimally by dM, then

dM ¼ THdSBH þΩrþdJ þΦrþdQ̃; ð56Þ

where TH, Ωrþ , and Φrþ are given by

TH ¼ ∂M
∂SBH

¼ M−1
�
1 −

J2 þ 1
4
Q̃4

16S2BH

�
; ð57Þ

Ωrþ ¼ ∂M
∂J

¼ J
8MSBH

; ð58Þ

Φrþ ¼ ∂M

∂Q̃
¼ Q̃ðQ̃2 þ 8SBHÞ

16MSBH
: ð59Þ

These are the corresponding intensive parameters, constant
everywhere on the event horizon. Ωrþ is the angular
velocity of the event horizon linked to the angular
momentum J, Φrþ is the electric potential connected with
the screened electric charge Q̃, and TH is the temperature
related to the entropy SBH.
If one considers M ¼ MðSBH; J; Q̃2Þ, then (53) is a

homogeneous function of degree 1=2 in these parameters.
The Euler theorem requires

1

2
M¼THSBHþΩrþJþΘQ̃2¼THSBHþΩrþJþ

1

2
ΦrþQ̃;

ð60Þ

FIG. 9. Temperature of the EEH black hole as a function of the
mass of the black hole and for different values of the black hole
parameters. The dashed line corresponds to the KN case and the
continuous line to the EEH one.
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with the electric potential per unit charge

Θ ¼ Φrþ

2Q̃
¼ Q̃2 þ 8SBH

32MSBH
: ð61Þ

This relation was first introduced by Smarr [44] and
constitutes the black hole version of the Gibbs-Duhem
relation of ordinary thermodynamics. Differentiating (60)
and using the first law (56), one obtains

−
1

2
dM ¼ SBHdTH þ JdΩrþ þ Q̃2dΘ; ð62Þ

wherefrom

�
∂M
∂TH

�
Ωrþ ;Θ

¼ −2SBH; ð63Þ

�
∂M
∂Ωrþ

�
TH;Θ

¼ −2J; ð64Þ

�
∂M
∂Θ

�
TH;Ωrþ

¼ −2Q̃2: ð65Þ

C. Second law

In ordinary thermodynamics, the second law requires that
the entropy of a closed system always increases. While this
lawmay be satisfied by a system including a black hole, it is
not quite instructive in its original form. For instance, if
ordinary matter falls into a black hole, the ordinary entropy
S0 becomes invisible to an exterior observer, hence telling
that ordinary entropy increases do not provide any insight.
Therefore, one must include the black hole entropy in the
total entropy in order to give a more useful law, the
generalized second law of thermodynamics: the sum of
the ordinary entropy outside black holes S0 [45] and the total
black hole entropy always increases [46],

dS0þdSBH¼ dS0þ
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2−a2− Q̃2
p

×
h	

Q̃2−2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

q
−2M2



dM

þ
	
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2− Q̃2

q 

Q̃dQ̃þadJ

i
≥ 0:

ð66Þ

Whenmatter entropy flows into a black hole, the generalized
second law demands that the increase in black hole entropy
shall do more than compensate for the disappearance of
ordinary entropy from being observed.

D. Third law

To lead a system to absolute zero temperature requires an
infinite number of steps. From (49), the black hole temper-
ature vanishes when M2 − a2 − Q̃2 ¼ 0. KN-like black
holes satisfying this condition are called extreme. For
TH ¼ 0, the black hole entropy is not only nonvanishing,
but also depends on the angular momentum per unit mass
a, an analogue of a thermodynamic intensive parameter
directly related to the black hole angular velocity Ωrþ.
Hence, it is impossible to achieve κþ ¼ 0 in a finite series
of physical processes. Furthermore, it is impossible the
existence of the case M2 ¼ a2 þ Q̃2 equivalent to an
extreme black hole, it has lost its two horizons, and the
surface gravity κþ, and therefore the expected Hawking
temperature vanishes.
Surface gravity establishes a limit for the black hole,

consistent with the third law of thermodynamics. From
this, an expression is established for the Hawking temper-
ature of a KN-like black hole as a function of its mass M,
angular moment J, and screened charge Q̃. As the black
hole loses mass, its temperature increases in an inversely
proportional way. The temperature of the black hole
decreases when the mass increases, and therefore it has
a specific negative heat.

E. Heat capacity and phase transitions

One can rewrite (16) and (17) in terms of the Hawking
temperature as follows:

Ωrþ ¼ a

�
rþ − r−
4πTH

�
; ð67Þ

Φrþ ¼ Q̃rþ

�
rþ − r−
4πTH

�
: ð68Þ

This is a relation between increments in mechanical and
geometrical properties. It turns out that Ωrþ is precisely the
angular velocity of the black hole event horizon, at which
any test particle approaching it circumnavigates, andΦrþ is
the black hole electric potential in the sense that it equals
the line integral of the hole’s electric field from infinity to
any location on the horizon.
From the first law (56), the heat capacity at constant Q

and M is given by

CQ̃ ¼ TH

�
∂SBH
∂TH

�
Q̃;M

¼ −Ωrþ
∂J
∂TH

; ð69Þ

while the heat capacity at constant J and M is

CJ ¼ TH

�
∂SBH
∂TH

�
J;M

¼ −Φrþ
∂Q̃
∂TH

: ð70Þ
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For J or Q̃ held constant, it can be rewritten in terms of M,
J, Q̃, T, and SBH as

CJ;Q̃ ¼ TH

�
∂SBH
∂TH

�
J;Q̃

¼ 8MS3BHTH

J2 þ Q̃4=4 − 8T2
HS

3
BH

: ð71Þ

The specific heat diverges when its denominator
becomes zero. This corresponds to a phase transition of
second order, which separates two black holes with differ-
ent mass/horizon radii; there is a critical mass M0 sepa-
rating the two phases. Analyzing where the transition
occurs, we numerically (see Fig. 10) derive that in the
EEH black hole the phase transition occurs for bigger
charges Q̃ than those for the KN black hole, and fixed
parameters ðM;aÞ. Moreover, in the EEH black hole the
phase transition occurs for bigger values of the angular
momentum a and fixed parameters ðM; Q̃Þ. The determi-
nation of the critical massM0 that separates the two phases
can be done from the expression of the entropy as a
function of the temperature. One of the methods is to
search for a turning point in the ðTH; SBHÞ curve [47].

The temperature at which the phase transition occurs can
also be calculated by solving for TH the denominator of the
specific heat equaled to zero, obtaining

T0 ¼
M0

πðr2þ þ a2Þ

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2πðr2þ þ a2Þ

M2
0

s
− 1

9=
;; ð72Þ

which is lower than the one corresponding to the KN case.
The critical mass in terms of T0 and S0 is given by

M0 ¼
1

T0

−
1

2
T0S0: ð73Þ

For the EEH rotating BH, associated with the divergence
of the heat capacities, there are cases of one or two phase
transitions (see Fig. 10), and considering that a negative
heat capacity is associated with instability and a positive
heat capacity points to stability of the system, from the heat
capacity at constant charge, the BH goes from instability to
stability for charges in the interval Q ≤ 0.6, while in the
case of charges Q ≈ 0.8 the system again becomes unsta-
ble. Contrasting conclusions come from the heat capacity at
constant J, where for a ≥ 0.7 the system is stable, CJ > 0,
but for rotation in the range 0 ≤ a ≤ 0.6 the system transits
from instability to stability and then again to instability
after its second phase transition.
A detailed study of the thermodynamics of the EEH BH

through the behavior of the Gibbs free energy would
require the introduction of the cosmological constant,
which can be related to the thermodynamic pressure in a
standard definition of the pressure as p ¼ −Λ=8π; then,
along with its conjugate variable, the volume v, a state
equation could be derived and then it would be possible to
carry out the analysis of the critical points, similarly to
those performed for the static EEH cases in [15,16,22],
where the metric functions included a cosmological con-
stant as in [15,16], or with an “effective” cosmological
constant as in [22].

V. SUPERMASSIVE, STELLAR,
AND PRIMORDIAL BLACK HOLES

The charge of a black hole may be different from zero
during the accretion of charged matter like plasma and
during the gravitational collapse of a star to a KN black
hole. In the latter conditions, processes of charge splitting
and consequent pair production by vacuum polarization
occur, when the gravitational energy of the collapsing core
is transformed into electromagnetic energy and electron-
positron pairs created by vacuum polarization [34].
Moreover, due to the conservation of angular momentum,
it is expected that such rotating black holes will have big
spin values. Black holes formed by collapsing stars are

FIG. 10. Heat capacity (70) at constant J ¼ aM (top) and Q
(bottom), for fixed M ¼ 1 × 104M⊙. The dashed lines corre-
spond to the KN case, where there is only one phase transition.
The continuous lines correspond to the EEH case, in which an
additional phase can occur for near-extreme values of the black
hole parameters (see figure on the top).
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stellar black holes, with masses that are a few solar masses
above the critical mass of neutron stars, M > 3.2M⊙.
As mentioned above, the size of the EH effects depends

on the mass of the black hole. The screened charge (5)
includes the coefficient

�
α

90πD2
cM2

� ðQ=MÞ2
ðRH=MÞ4≈9.24×107

�
M⊙

M

�
2 ðQ=MÞ2
ðRH=MÞ4 ;

ð74Þ

with the bounded quantities 1 ≤ RH=M ≤ 2 and 0 ≤
jQj=M ≤ 1. Then, the term 1=M2 is responsible for the
size of the EH correction. In the previous examples, a mass
of M ¼ 1 × 104M⊙ was used, which results in the value
∼0.924ðQ=MÞ2=ðRH=MÞ4. The more massive the black
hole is, the bigger the charge needed to visualize the EH
effects. Moreover, similar terms emerge in the EH mod-
ifications of the black hole properties, like the entropy (48)
and temperature (50).

A. Supermassive black holes

The EH corrections are inversely proportional to the
mass of the black hole. The biggest astrophysical black
holes are supermassive black holes, with masses millions to
billions times the mass of the Sun. For instance, Sagittarius
A* has a mass ofM ¼ 4.0 × 106M⊙, while the mass of the
black hole at the center of the galaxy M87 (we will call it
M87*) is M ¼ 6.5 × 109M⊙ [48]. Equation (74) for Sag
A* is ∼5.774 × 10−6ðQ=MÞ2=ðRH=MÞ4. Choosing the
biggest charge value Q ¼ M, which corresponds to a static
extreme black hole and results in RH ¼ M, the EH effect on
the charge would be of the order of ∼5.774 × 10−6.
Analogously, for M87* it would be ∼2.187 × 10−12.
This means that for a supermassive black hole, with an
extreme charge and therefore zero rotation, the EH effects
would barely be visible.
Astrophysical black holes are not expected to carry

big charges, and the Event Horizon Telescope measure-
ments of the shadows of Sag A* and M87* suggest that
both rotate [48]. Even in the case in which supermassive
black holes are described by extreme EEH static solutions,
the tiny variations induced in the shadows are in general not
observable unless one has extremely accurate mass and
distance measurements of the black hole, which is usually
not the case. A Kerr black hole with a slightly altered mass
could produce the exact same shadow.

B. Stellar black holes

For stellar black holes, the EH effects become relevant
for smaller charges. For a stellar black hole with a mass of
ten solar masses, Eq. (74) is ∼9.24 × 105ðQ=MÞ2=
ðRH=MÞ4. One can then consider charges of the order of
Q ∼M=1000 and still have an impact from the EH effects.

Such small charges allow big values of the angular
momentum, which is expected from its conservation during
the process of gravitational collapse. On the other hand,
small charges are also required in order for the EH

FIG. 11. Screened charge Q̃ (5) as a function of the real chargeQ
for different values of the angular momentum a and a fixed stellar
mass, M ¼ 10M⊙. The dashed line corresponds to the KN case.

FIG. 12. EH effects on the event horizon and ergoregion (top)
and the radius of the event horizon as a function of Q (bottom),
for different values of a, and for a fixed stellar mass M ¼ 10M⊙.
The continuous lines correspond to the EEH case, while the
dashed ones correspond to the KN case.
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modifications to be considered first-order corrections to the
case of a KN stellar black hole.
The screened charge of a stellar black hole with

M ¼ 10M⊙ is displayed in Fig. 11. If this black hole is
static, the maximum allowed charge is of the order
of Q ∼ 0.004M. Nevertheless, for a ¼ 0.8, the charge
Q ¼ 0.004M is not allowed since the EH term would no
longer be a correction. Then, one would have to choose
values of the parameters that are below the curve Q̃ and
Q̃ > 0. In the following figures, in order to compare the EH
effects for different values of the parameters at the same
scale, we use near-extreme values close to Q ∼ 0.001M,
and a ∼ 0.9999995M.
Examples of modifications of the event horizon and

ergoregion are shown in Fig. 12. The ergoregion is barely
affected. The EH effects on the event horizon are visible,
but small.
The size of the EH effects on the thermodynamic

properties are also different for stellar black holes. For
bigger values of the angular momentum, both the entropy
and temperature grow (see Fig. 13), while in the KN case,

both keep decreasing. The black hole begins to heat up
when reaching a value of a when the pair production
intensifies.
Something similar happens when increasing the charge

of the black hole, although in this case, the EH effects on
both the entropy and temperature become visible with very
small increments ofQ (see Fig. 14). In the KN case, the EH
effect of such small values of Q is not visible, and then the
thermodynamic properties are more similar to those of a
Kerr black hole. Hence, stellar black holes are much more
sensitive to changes in their charge since the vacuum
polarization produced by the corresponding electric field
also modifies the geometric and thermodynamic properties.

C. Primordial black holes

The existence of galaxies today implies inhomogeneity
in the early stages of the Universe. One would expect some
regions to become sufficiently compressed for gravitational
attraction to overcome pressure and produce black holes
with masses from 10−5g upwards [49]. These are called

FIG. 13. Entropy (left) and temperature (right) of the EEH black hole (continuous lines) as a function of the angular momentum a,
compared to the KN ones (dashed lines), for a stellar black hole with mass M ¼ 10M⊙.

FIG. 14. Entropy (left) and the temperature (right) of the EEH black hole (continuous lines) as a function of the black hole charge Q,
compared to the KN ones (dashed lines), for a stellar black hole with mass M ¼ 10M⊙.
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primordial black holes, and some would have grown by
accreting nearby matter.
For a primordial black hole with the mass of the Earth,

M ∼ 5.97 × 1024 kg ∼ 3 × 10−6M⊙, Eq. (74) is ∼3.08×
1013ðQ=MÞ2=ðRH=MÞ4. Charges of the order of Q ∼
10−7M can produce EH effects.
From the time of evaporation byHawking radiation (A11),

using the age of the Universe ∼ 13.78 × 109 years, the mass
of an isolated Schwarzschild black hole, which would be
evaporated by now, is of the order of M ∼ 1012 kg. For a
primordial KN black hole with this mass, Eq. (74) is
∼1.84 × 1026ðQ=MÞ2=ðRH=MÞ4, and the EH effects would
become relevant for charges of the order of Q ∼ 10−14M.

VI. SUMMARY AND CONCLUSIONS

QED vacuum corrections to the Maxwell-Lorentz theory
can be accounted for by the effective QED theory resulting
after one loop of nonperturbative quantization, i.e., the EH
NLED [1]. The vacuum is treated as a specific type of
medium, the polarizability and magnetizability properties
of which are determined by clouds of virtual charges
surrounding the real charges and currents. This fact can
be interpreted as a kind of dielectric constant of the
vacuum. The EH effective Lagrangian is only valid for
constant fields. The EEH generalization of the KN black
hole solution was recently performed by Bretón et al. [9].
They considered the QED interpretation of the EH NLED
and generated a rotating, electrically charged black hole
solution by assuming that the nonlinearity only influences
the electric charge by screening it. The geometry is only
affected through the screened values of the real charges and
the induced magnetic dipole moment. The black hole
solution is then reduced to a screened KN one, as it
happens for the static solution, which is considered as
screened RN [6,7].
Energy extraction from a black hole by the Penrose

process [24–26] allowed an analogy between the four laws
of black hole mechanics [29] and the four laws of thermo-
dynamics. The area of the event horizon is related to the
entropy of the black hole, and the surface gravity to its
temperature.We considered the rotating electrically charged
EEH black hole solution as a thermodynamic system
affected by captured matter on a plane perpendicular to
the rotational axis, and analyzed the EH effects on the black
hole properties. Both the event horizon and the static limit
surface grow compared to those of theKNblack hole, but the
ergoregion diminishes. Consequently, less energy can be
extracted from an EEH black hole, which was verified after
analyzing the Penrose process. The irreducible mass of the
EEH black hole is bigger than the KN one, and less stored
rotational and electromagnetic energy is available to be
extracted from an EEH black hole, which can be interpreted
as part of aKNblack hole’s stored energy already being used
for the pair production. In this sense, the process of particle

creation carries away both the charge and part of the angular
momentum from a KN black hole, as concluded in [38].
We then presented the four laws of black hole thermo-

dynamics and studied the EH corrections to the entropy and
temperature of the black hole. The KN entropy is smaller
than the EEH one, which implies that the latter is a more
probable state. In a charging process, the EEH entropy first
decreases, but then increases for bigger charges, when the
pair production intensifies. If such big charge values were
previously reached, some work would first have to be done
in order to counteract the pair production (the entropy
decreases). Afterwards, the black hole discharges and the
entropy increases. A similar behavior occurs for changes in
the angular momentum. Additionally, as the mass is
reduced, the entropy decreases, but in the EEH case the
limiting entropy value is different from zero.
The temperature of the EEH black hole is also higher

than the KN one, and also increases after reaching big
values of charge and angular momentum. The produced
pairs in the equatorial plane heat up the black hole. As a
consequence, the more virtual particles arise, the higher
the temperature. On the other hand, in the KN case the
temperature tends to zero for near-extreme values of the
parameters. Furthermore, the temperature also tends to
infinity as the mass tends to zero, which is known as the
explosion of the black hole in the evaporation process. But
in the EEH case, such an explosion occurs earlier, i.e., for
bigger masses.
We also studied the heat capacity, which defines the phase

transitions. We derived that in an EEH black hole the phase
transition occurs at bigger values of charge or angular
momentum than in a KN black hole, as well as at a lower
temperature. Moreover, a new phase transition occurs in the
EEH case for near-extreme values of the parameters, which
does not occur in the KN case. Additionally, following [46],
we presented a proportional relation between the EEH
entropy and the KN one under Hawking radiation and found
that the EEH entropy grows in time at a higher rate than the
KN entropy.
For a primordial black hole with the mass of the Earth,

charges of the order ofQ ∼ 10−7M can produce EH effects.
For a supermassive black hole, with an extreme charge and
therefore zero rotation, the EH effects would barely be
visible. For stellar black holes, the EH effects are visible for
small values of the charge of the black hole. We concluded
that a small increment of the charge would very rapidly
increase the entropy and temperature of a stellar black hole
due to pair production. Both also increase for near-extreme
values of the angular momentum. During the gravitational
collapse of stars to stellar black holes, processes of charge
separation and consequent pair production by vacuum
polarization occur [34], which can drastically modify their
electromagnetic structure. Hence, EH effects on both the
geometric and thermodynamic properties of such black
holes should be considered.
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We highlight the contributions of our paper, as compared
with previous studies of EEH static black holes (see, for
instance, [15,16,22]). First of all, the EEH rotating BH
presents several characteristics associated with the BH
angular momentum. The horizons are different, and there
is an ergoregion from which chargeless test particles can
extract energy (Sec. V); also, the available extractable energy
is less than that for theKNBH.Moreover, since in [16,22] the
BH charge was magnetic and the magnetic field did not
contribute to the pair production rate, another novelty of our
paper is the analysis of the effects of electron-positron
production in thermodynamic quantities like the entropy,
temperature, and surface gravity, which we presented in the
form of the KN term plus the nonlinear EH contribution, a
form that facilitates distinguishing the EH contribution. In
spite of the fact that the rotation or angular momentum
introduces the distortion of the observed BH shadows,
nowadays there are no available BH observations with the
needed precision to distinguish the nonlinear EH effects.

Note added. During the revision process of this paper, one
of the coauthors, Alfredo Macías passed away.
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APPENDIX A: HAWKING RADIATION
AND BLACK HOLE EVAPORATION

In order to write the generalized Stefan-Boltzmann law
for the screened KN black hole, we change to Eddington-
Finkelstein coordinates [26,50] ν and ξ,

dν¼ dtþ r2þa2

Δ
dr; dξ¼ dϕþ a

Δ
dr: ðA1Þ

Therefore, the screened KN metric takes the form

ds2¼−
Δ−a2 sin2 θ

Σ
dν2þ2dνdr

−
2aðr2þa2−ΔÞsin2 θ

Σ
dνdξþΣ2dθ2

−2asin2 θdrdξþðr2þa2Þ2−Δa2 sin2 θ
Σ

dξ2: ðA2Þ

During the process of Hawking radiation, the black
hole’s area, and therefore its entropy, decreases, since the
black hole mass decreases, in violation of the second law of
thermodynamics (45). This fact reflects a failure of
the energy condition as a result of the quantum fluctuations
that produce the radiation. The generalized second law of
thermodynamics (66) predicts that the emergent Hawking
radiation entropy contributions more than compensate for
the decrease of the black hole entropy.
The evaporation process of a black hole can be regarded

as blackbody radiation. Under this basic assumption, the
temperature of the black hole measured by a stationary
observer at infinity is the Hawking temperature, and the
radiation process needs to satisfy a Stefan-Boltzmann law.
The generalized Stefan-Boltzmann law, which can be used
to investigate Hawking radiation with energy, charge, and
angular momentum, can be written as [46]

−σT4
HA ¼ dM

dν
−

a
r2þ þ a2

dJ
dν

−
Q̃rþ

r2þ þ a2
dQ̃
dν

¼ dM
dν

−Ωrþ
dJ
dν

−Φrþ
dQ̃
dν

; ðA3Þ

where σ is a positive constant related to the number of
quantized matter fields coupled to gravity, A is the area of
the event horizon, and rþ is the radius of the event horizon.
Identifying the coefficients as the event horizon angular
velocity (16) and electric potential (17), the correction
terms in the modified laws are, respectively, the dJ and dQ̃
terms in the first law of black hole thermodynamics (56).
So the generalized Stefan-Boltzmann law can be seemingly
regarded as consistent with the first law. Thus, the
Bekenstein-Hawking entropy satisfies the relation dSBH ¼
−σT3

HAdν, and the evolution equation reads

dSBH
dν

¼ −
σ

16π2
ðrþ − r−Þ3
ðr2þ þ a2Þ2 : ðA4Þ

In the process of Hawking radiation, the Bekenstein-
Hawking entropy decreases with time. Then, in order to
satisfy the generalized second law (66), the ordinary entropy
outside the black hole should increase, dS0=dν > 0.
On the other hand, we can rewrite the entropy of the EEH

rotating black hole as the entropy of the KN one plus an EH
correction, i.e., (48). One can also rewrite the evolution
equation as

dSBH
dν

¼ dSKNBH
dν

−
ασ

180π3
Q4

D2
cR4

H

ðR2
H þ 3a2Þ

ðR2
H þ a2Þ3

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; ðA5Þ

with

dSKNBH
dν

¼ −
σ

2π2
ðM2 − a2 −Q2Þ3=2

ðR2
H þ a2Þ2 ; ðA6Þ
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or rewrite (A5) as

dSBH
dν

¼
�
1þ α

90π

Q4

D2
cR4

H

ðR2
H þ 3a2Þ

ðR2
H þ a2Þ

×

�
1

M2 − a2 −Q2

��
dSKNBH
dν

; ðA7Þ

which is the proportional relation between both entropies,
with a positive coefficient that grows as one approaches the
extreme case. This means that the EEH entropy changes at
a higher rate than the KN one under Hawking radiation.
Hence, the ordinary entropy outside the black hole S0
should also change at a higher rate.
As pointed out by Damour et al. [38], the process of

particle creation in the EH framework differs from the
process of Hawking radiation.
First of all, the EH process does not require a time-

varying background geometry, and is necessarily caused by
the presence of an electric or magnetic field. The rate of pair
production around a KN black hole is obtained from locally
applying the Schwinger formula [3] to the case of a curved
KN geometry, based on the equivalence principle. Then,
pair production occurs when the electric field of the black
hole reaches the critical value Dc.
Second, pair production in the EH process uses part of

the electromagnetic and rotational energy of the KN black
hole [51] and increases its irreducible mass, as verified
from (35). The entropy and irreducible mass are related
via (42) and (46) as

S ¼ 4πM2
ir: ðA8Þ

Consequently, when EH pair production takes place the
entropy increases, as analyzed, for instance, in Eq. (48)
and Fig. 6, satisfying the second law of black hole
thermodynamics. On the contrary, in the Hawking radi-
ation process the entropy decreases, in violation of the
second law. The irreducible mass is radiated away and
decreases with time, which is called the evaporation of
the black hole. A rough procedure to analyze the latter is
the following. Let us consider a Schwarzschild black
hole, whose mass is the irreducible mass, i.e., M ¼ Mir

from (38) with Q̃¼ J¼ 0. The Stefan-Boltzmann law (A3)
for the Schwarzschild black hole is given by

dM
dt

¼ −σAT4
H ∝ −M2

�
1

M

�
4

¼ −
1

M2
: ðA9Þ

After integrating from an initial black hole mass M0

decreasing up to a mass close to the Plank mass mp, with
the assumption M0 ≫ mp, one obtains [52]

tðM0Þ ∝ ðM3
0 −m3

pÞ ∝
�
M0

mp

�
3

: ðA10Þ

Putting back the units by using the Plank time tp, such that
tðM0Þ ¼ tpðM0=mpÞ3, the time required for a black hole of
mass M0 to evaporate is

tðM0Þ ≈ 1065
�
M0

M⊙

�
3

years: ðA11Þ

Finally, the EH effects may be relevant even for
astrophysical black holes, in particular for stellar black
holes with masses larger than the critical mass of neutron
stars [34],M ≥ 3.2M⊙, as analyzed in the previous section.
On the other hand, from (A11) the required time for the
evaporation of a stellar Schwarzschild black hole of 4M⊙
by Hawking radiation is around 1066 years, which is more
than 1056 times the age of the Universe ∼ 1010 years.
Summarizing, an astrophysical black hole surrounded by

matter would follow the laws of black hole thermodynam-
ics. It stores electromagnetic and rotational energy, and its
irreducible mass, area, and entropy always increase. Only a
completely isolated black hole could begin to evaporate
by vacuum polarization processes as follows. A charged
rotating black hole with an electric field bigger than the
critical field Dc, would create particles by the EH process,
which carries away both the charge and part of the angular
momentum from the black hole. When the electric field of
the black hole is smaller than Dc, the charged black hole
would continue to lose its charge by spontaneous particle
emission [53]. For the rotational energy, something similar
happens. As shown by Page [54], a rapidly rotating black
hole would lose angular momentum through the Hawking
process several times faster than its mass. The area and
entropy of a rotating black holewould initially increasewith
time as heat flows into the hole from particle pairs created in
the ergoregion. As the rotation decreases, the thermal
emission becomes dominant, drawing heat out of the hole
and decreasing its area. In this way, any initially rotating
black hole spins down to a nearly nonrotating state before
most of its mass has been given up. When the charge and
rotation of the black hole are lost, i.e., M ¼ Mir from (38),
the irreducible mass is radiated away by the Hawking
process, which corresponds to the evaporation of a
Schwarzschild black hole.

APPENDIX B: HYPOTHETICAL
θ DEPENDENCY

The EEH rotating black hole solution (1) was derived
following the QED interpretation of the EH NLED [9],
which states that the effects of the vacuum polarization
are nearly constant and affect the geometry only through
the screened values of the real charges [34]. When the
electromagnetic field of a KN black hole reaches the critical
field Dc, pair production occurs and the clouds of virtual
charges affect the real charge. Such modifications are
described by the definition of the charge Q̃ [Eq. (2)],
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which has to be evaluated at constant r and θ, depending on
the point at which one analyzes the EH effects. In the
previous sections, we considered the EEH black hole
as a thermodynamic system affected only by captured
matter on the plane perpendicular to the rotational axis.
Consequently, Q̃ was fixed for θ ¼ π=2 and r ¼ RH, i.e.,
we used the charge (5).
Furthermore, although the QED EH effective Lagrangian

is only valid for constant fields, in order to gain some
physical insight into the EH modifications we consider
other locations, choosing different values of θ in (2). If
the EH corrections were dependent on θ, the charge of the
black hole would be screened at locations close to the
equatorial plane and magnified near the poles, as can be
seen in Fig. 15. The effect on Q̃ can strongly change for
some values of θ. For instance, for a particle captured at the
poles of the black hole, where θ ¼ 0; π, one obtains

Q̃2 ¼ Q2

�
1 −

5α

225π

Q2

ðR2
H þ a2Þ2D2

c

�
1 −

4a2

ðR2
H þ a2Þ

×

�
1 −

a2

ðR2
H þ a2Þ

��
7 −

12a2

ðR2
H þ a2Þ

þ 12a4

ðR2
H þ a2Þ2

���
; ðB1Þ

and the charge is magnified for some values of the angular
momentum a, i.e., Q̃ > Q, contrary to our QED screened
Maxwell assumption. This fact is presented in Fig. 16,
where the modified charge of the black hole can appear
either screened or magnified for some values of the
parameters and different fixed values of θ. In particular,
the charge can be magnified after previously being
screened, due to the increment of the angular momentum.
This could be interpreted as most of the produced virtual

charges being dragged by the rotation of the black hole,
modifying the charge distribution. In the rotating case, the
dragged virtual charges near the equatorial plane would
screen the charge in that location, while at the poles the
induced magnetic moment would magnify it. Moreover, the
event horizon is shrunk near the poles and is expanded near
the equatorial plane, as presented in Fig. 17. In this case,
while the event horizon of the KN black hole is a sphere of
radius RH, the event horizon of the EEH one would no
longer be a sphere, but would be distorted, as shown
in Fig. 18.
We now briefly analyze the effects on the thermody-

namic quantities. We again consider a particle captured by
the black hole at different locations of θ.
The minimum energy required for energy extraction by

the Penrose process (31) does not depend explicitly on θ,
and is defined by the condition ṙ ¼ 0. Nevertheless, the
condition θ̇ ¼ 0 should also be satisfied, as concluded from
the analysis of (30). Consequently, one can still use the
definition of the irreducible mass (34) and the related Smarr
formula (38). Hence, near the poles of the black hole, where
Q̃ > Q and Mir < MKN

ir , there is more stored energy
available for extraction, since both the electromagnetic

energy Q̃2

4Mir
> Q2

4MKN
ir

and the rotational one J2

4M2
ir
> J2

4ðMKN
ir Þ2

increase.

FIG. 15. Hypothetical charge distribution at the event horizon
RH as a function of θ and for different values of Q. The black hole
parameters are M ¼ 1 × 104M⊙ and a ¼ 0.8M. The minimum
value of Q̃ occurs at the equatorial plane θ ¼ π=2, where the
induced magnetic field vanishes, i.e., HQ ¼ 0.

FIG. 16. Q̃ [Eq. (2)] as a function of Q and a, for different
values of θ and fixed mass M ¼ 1 × 104M⊙.
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For the entropy, which is related to the horizon surface,
something similar happens. On the one hand, the equatorial
plane is a location with bigger entropy, as shown in Fig. 6.
In fact, the entropy takes there its highest value (see
Fig. 19). On the other hand, the location with the lowest
entropy is at the poles. This could be interpreted as there
being more clouds of virtual particles near the equatorial
plane, which would also indicate that the pair production
intensifies there. If one relates the entropy with probability,
it is more probable to find the clouds of virtual particles
close to the equator. It is also more probable for a particle to
be captured at the equatorial plane than at the poles.
The entropy after integration of θ reads

SBH ¼ SBHKN
þ α

10800D2
c

Q4

R2
H

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2−a2−Q2
p �

×

�
405R9

H

ðR2
Hþa2Þ5−

165arctanða=RHÞ
a

−
165a8RHþ850a6R3

Hþ368a4R5
Hþ430a2R7

H

ðR2
Hþa2Þ5

�
;

ðB2Þ

FIG. 17. Event horizon radius rþ (6) as a function of Q and a,
for different values of θ and fixed mass M ¼ 1 × 104M⊙.

FIG. 18. Hypothetical distorted event horizon of the EEH
rotating black hole (continuous line) compared to the KN one
(dashed line), for fixed M ¼ 1 × 104M⊙ and a ¼ 0.8M.

FIG. 19. Entropy SBH [Eq. (46)] as a function of Q and a, for
different values of θ and fixed mass M ¼ 1 × 104M⊙.
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which only depends on the black hole parameters a,Q, and
M. These can be restricted to values at which the entropy is
always bigger than the entropy of the KN black hole, i.e.,
SBH > SBHKN

. Figure 20 displays the entropy (B2) as a
function of its charge and angular momentum. If the
angular momentum increases, the entropy might be smaller
than in the usual KN case. For smaller values of a, the
entropy is bigger. In the static limit, a → 0, the entropy is
always bigger.
The temperature would be given by

TH ¼ TKN
H þ α

180π2D2
c

�
Q4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 −Q2
p �

×

�
4a4sin2θcos2θ
ðR2

H þ a2Þ
Θ0

Σ8
KN

þ ð2a2 þQ2Þ
ðR2

H þ a2Þ2
Θ1

Σ2
KN

�
; ðB3Þ

with ΣKN ¼ R2
H þ a2cos2θ,

Θ0 ¼ 15R8
H − 58R6

Ha
2 cos2 θ þ 32R4

Ha
4 cos4 θ

− 38R2
Ha

6 cos6 θ þ a8 cos8 θ;

and

Θ1 ¼
�
1 − 4

a2cos2θ
ΣKN

�
1 −

a2cos2θ
ΣKN

�

×

�
7 − 12

a2cos2θ
ΣKN

þ 12
a4cos4θ
Σ2
KN

��
:

Figure 21 displays the temperature as a function of θ.
It is higher near the equatorial plane and lower near the
poles. The temperature of the black hole is displayed in
Fig. 22 as a function of Q and a and for different values
of θ.
Furthermore, one could average the charge distribu-

tion (2) by integrating Q̃ðRH; θÞ around the angular
coordinates as

Q̂≡ 1

4π

Z
2π

0

Z
π

0

Q̃ðRH; θÞ sin θdθdϕ; ðB4Þ

¼ Q

�
1 −

α

21600πD2
c

Q2

R3
H

�
405R9

H
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−
165 arctan ða=RHÞ

a

−
165a8RH þ 850a6R3

H þ 368a4R5
H þ 430a2R7

H

ðR2
H þ a2Þ5

��
ðB5Þ

and study the black hole solution as the KN one with an
effective average charge Q̂, which only depends on the
black hole parameters. One can restrict their values in
such a way that the charge is always screened and not
magnified. The latter is the same restriction as that for
the entropy, which would again be given by (B2). The
irreducible mass would be (37) with Q̂.
Hence, when Q̂ is screened the entropy is bigger than the

KN one, it is a more probable state, and there would be less

FIG. 20. Entropy as a function of Q and of a, for a fixed mass
M ¼ 1 × 104M⊙. The dashed line corresponds to the usual KN
case and the continuous line to that with EH corrections.

FIG. 21. Temperature as a function of θ and for different values of
Q. The black hole parameters areM ¼ 1 × 104M⊙ and a ¼ 0.8M.
The maximum temperature occurs at the equatorial plane.
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stored energy since part of the energy is used for the pair
production. When it is magnified, the entropy is smaller, it
is a less probable state, and more energy can be extracted.
One can reduce the entropy of a thermodynamic system by
doing work on it, and one can then obtain energy from this
low-entropy system, which would now increase the
entropy. As interpreted above, the clouds of virtual charges
would be dragged closer to the equatorial plane and more
energy could be extracted by particles located near the
poles.
To sum up, the EH corrections described by the

solution (1) must be considered constant since the EH
NLED is only valid for constant fields. This allows one to
study the thermodynamic properties of the EEH rotating
black hole as corrections to the KN case at different
locations, like the poles or the equatorial plane. One could
consider the charge Q̃ [Eq. (2)] as explicitly depending on
θ, and the charge distribution would be different than in
the KN case, which would modify the black hole proper-
ties. In any case, this charge distribution Q̃ comes from
the underlying symmetry of the space-time structure and
the energy-momentum tensor [9].
On the other hand, if one considered the standard

approach [12], where the EH Lagrangian is derived as
the low-energy limit of the Born-Infeld theory, one should
obtain another charge distribution. In this case it is
expected a similar thermodynamic behavior of the rotating
EEH solution found within the Yajima-like approach.
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