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We describe an algorithm to organize Feynman integrals in terms of their infrared properties. Our
approach builds upon the theory of Landau singularities, which we use to classify all configurations of loop
momenta that can give rise to infrared divergences. We then construct bases of numerators for arbitrary
Feynman integrals, which cancel all singularities and render the integrals finite. Through the same analysis,
one can also classify so-called evanescent and evanescently finite Feynman integrals. These are integrals
whose vanishing or finiteness relies on properties of dimensional regularization. To illustrate the use of
these integrals, we display how to obtain a simpler form for the leading-color two-loop four-gluon
scattering amplitude through the choice of a suitable basis of finite integrals. In particular, when all gluon
helicities are equal, we show that with our basis the most complicated double-box integrals do not
contribute to the finite remainder of the scattering amplitude.
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I. INTRODUCTION

Feynman integrals are key building blocks for observ-
ables in high-energy physics. The integrals contributing to
any scattering amplitude satisfy many linear relations.
Within dimensional regularization [1,2], integration-by-
parts (IBP) identities [3,4] provide these relations system-
atically. Solving these relations allows us to express
scattering amplitudes in terms of a basis of so-called master
integrals. As with the basis in any linear space, the choice
of master integrals is not unique. Different choices may be
appropriate for different purposes. For instance, canonical
bases [5–7] are particularly well suited to the computation
of the integrals themselves via the method of differential
equations [8–11]. However, such bases are not necessarily
the best option when seeking a compact representation for
scattering amplitudes. The choice of an optimal basis for
general multiloop scattering amplitudes is not known;

indeed, even the criteria for such a representation are a
matter of debate.
In this article we investigate this problem, with Yang-

Mills and gravity theories in mind. These theories exhibit
both infrared (IR) and ultraviolet (UV) divergences. In
dimensional regularization both appear as poles in the
regulator ϵ. The IR structure of scattering amplitudes offers
a natural path to selecting bases of Feynman integrals. As
an example, the authors of Refs. [12,13], following two
different approaches, simplified the calculation of the four-
loop QCD cusp anomalous dimension. Each chose a basis
of master integrals that minimized the number and com-
plexity of IR-divergent integrals required. IR-finite inte-
grals have also been employed [14,15] to simplify the
calculation of the mixed QCD-electroweak corrections to
the production of a Higgs boson and a jet. These findings
support the idea that organizing integrals according to their
IR properties has the potential to simplify not only the final
form of the result but also the computation of scattering
amplitudes.
Leveraging IR factorization [16–21], a possible way of

making the IR structure of an L-loop amplitude manifest
is to split it into hard and IR-divergent parts, AðLÞ ¼
AðLÞ

hard þAðLÞ
IR , where the latter contains all IR divergences

of the amplitude. One would then expect that the hard part

AðLÞ
hard should be described in terms of IR-finite integrals,

while the IR part AðLÞ
IR in terms of a minimal set of
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(presumably simpler) divergent integrals. However, this

decomposition is not unique since AðLÞ
IR is only determined

up to finite contributions. While offering a complete
solution to this problem goes beyond the scope of this
paper, a comprehensive understanding of IR-finite
Feynman integrals provides a solid starting point to inves-
tigate these questions. This sets our immediate goal: in this
paper we focus on the algorithmic classification of finite
Feynman integrals. These integrals fall into three different
classes: locally finite, evanescent, and evanescently finite.
We provide a systematic approach to these classes, as well
as conjectures for all-loop results.
Locally finite integrals have integrands whose singular-

ities are integrable. They can be computed directly in four
dimensions and are in that sense more robustly finite than
integrals in the third category. Von Manteuffel et al.
previously developed [22,23] an approach to constructing
bases of finite integrals, which was then generalized in
Ref. [24]. Their approach relied on the study of Feynman
integrals in parametric representation, where their finite-
ness can be determined from the degree of divergence in the
individual integration parameters. Finite integrals can then
be determined by adding powers of the individual propa-
gators and considering them in different numbers of space-
time dimensions. While this approach is strictly guaranteed
to work only in the Euclidean case, it has already found
application in various state-of-the-art calculations [25–28].
In an entirely different approach, Anastasiou and Sterman
have shown how to analyze the IR structure of Feynman
integrands [29], and have also shown an application to an
amplitude [30]. Others [31–34] have relied on IR properties
to organize integrands for complete amplitudes rather than
studying Feynman integrals separately.
Finite integrals are simpler to evaluate. It is easier to

compute them analytically by direct integration [35]. They
also are easier to evaluate to high precision using purely
numerical methods either with sector decomposition [27] or
methods based on tropical geometry [36].
Evanescent integrals are a subset of locally finite

integrals which vanish in four dimensions, but are non-
trivial in D dimensions. That is, they evaluate to OðϵÞ and
therefore do not contribute to the finite part of scattering
amplitudes at the corresponding loop order (so long as there
are no factors of 1=ϵ in their coefficients). Instead, they give
rise to new linear relations between basis integrals up to
corrections which vanish in a physical observable. These
integrals have already found application within the method
of differential equations [37,38], where they can be used to
decouple systems near even integer dimensions.
Evanescently finite integrals feature a cancellation

between an otherwise evanescent numerator (vanishing
in four dimensions) and either UV or IR divergences, so
that the singularities of the integrand are not locally
integrable, but after integration one still obtains a finite
result. Both evanescent and evanescently finite integrals are

special to dimensional regularization, as both classes of
integrals are ill defined in four dimensions. In contrast,
locally finite integrals are well defined in four dimensions,
and are expected to be independent of the UV and IR
regulators.
In order to isolate finite integrals in a loop-momentum

representation, we make use of Weinberg’s theorem [39,40]
to establish UV finiteness and on the time-honored
approach of the Landau equations [41] to systematically
identify all possible sources of IR divergences.1 We use the
techniques of Anastasiou and Sterman [29] to analyze
the IR divergences of singular surfaces identified by the
Landau equations. We introduce a compact set of variables
that allows us to present the complete set of numerators
yielding finite integrals in a simple form. As an example,
we are able to describe the set of finite integrals to all loops
for ladder topologies.
The rest of this paper is organized as follows. In Sec. II

we review notation and ingredients for later sections. In
Sec. III, we review Weinberg’s theorem and conditions for
UV finiteness. In Sec. IV we present well-known aspects
of the theory of Landau singularities and then present
our general algorithm to solve them and identify finite,
evanescent, and evanescently finite integrals. In Sec. V we
explain our approach using the one-loop box as an
example. We continue in Sec. VI with a discussion of
evanescent and evanescently finite integrands in more
detail. We use the one-loop pentagon as an example.
Our main results are collected in Sec. VII, where we show
how to apply our techniques to increasingly complicated
cases, up to four loops. In particular, we also demonstrate
how choosing a basis of finite integrals helps make the
singularities of the leading-color all-plus four-gluon ampli-
tude manifest. We summarize in Sec. VIII. Explicit for-
mulas can be found in the Appendixes.

II. NOTATION

We write an L-loop Feynman integral in dimensional
regularization as

I½N ðliÞ� ¼
Z YL

i¼1

dDli
N ðliÞ

D1 � � �DE
; ð1Þ

where De ¼ q2e −m2
e þ iε are the E propagators of the

corresponding graph (with E edges) and N is a Lorentz-
invariant numerator. The edge momenta qe are linear
combinations of the loop momenta li and the external
momenta kj (j ¼ 1;…; n) with coefficients �1 or 0. We
consider integrals near four dimensions, D ¼ 4 − 2ϵ. The
problem of classifying all finite integrals for a given graph

1The topic has recently enjoyed renewed interest, with ex-
ploration of new approaches to determining the locus of singular
points associated to a given Feynman diagram [42–44].
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(also called topology) can then be solved by finding all
numerators N that make the integral (1) finite. Our goal is
to identify the general form of N .
Lorentz invariance requires numerators of Feynman

integrals to be built out of scalar products of all available
vectors: the loop momenta li, the external momenta kj, and
any other external vectors Qj independent of the loop
momenta appearing in scattering amplitudes, such as
polarization vectors. We take all external vectors to be
strictly four dimensional. Numerators of Feynman integrals
are then polynomials in li · lj, li · kj, and li ·Qj with
coefficients that are rational functions of the external
kinematic invariants. We can reduce scalar products of
the form li ·Qj to combinations of li · lj and li · kj
through a combination of standard tensor reduction and use
of a basis for external vectors. This allows us to write any
numerator in the form

N ðliÞ ¼
X
r⃗

cr⃗
Y
a

traa ; ð2Þ

where the ta belong to the list of allowed scalar products
described above,

ta ∈ fli · kjg ∪ fli · ljg; ð3Þ

and r⃗ are vectors of non-negative integer numbers repre-
senting the powers of each monomial. The coefficients c
are rational functions of the kinematic invariants. In this
article, we use the notation ki…j ≡ ki þ � � � þ kj, and use as
kinematic invariants the Mandelstam variables si…j ¼ k2i…j

alongside the distinct nonzero masses: external m2
i ¼ k2i

and internal m2
e. Some masses may vanish, or be equal to

other masses, as is the case for integrals arising in
amplitudes.2 In a slight abuse of language, we will refer
to the total degree in the loop momenta as the rank of a term
(rather than to the number of free indices); the rank of a
numerator expression will be the maximum rank of
any term.
The numerator representation given by Eqs. (2) and (3) is

not unique. For our purposes, it will be useful to consider
an alternative representation built using a van Neerven–
Vermaseren basis, which we define below. We first define
the generalized Gram determinant of two sets of R vectors
in D dimensions,

G
�
p1 � � � pR

q1 � � � qR

�
≡ detð2pi · qjÞ;

Gðp1 � � � pR Þ≡G

�
p1 � � � pR

p1 � � � pR

�
: ð4Þ

We define a Gram with a free index,

G

�
p1 � � � μ � � � pR

q1 � � � qR

�
≡ ∂

∂wμ
G

�
p1 � � �w � � � pR

q1 � � � qR

�
:

ð5Þ

Next, suppose that the space of external momenta for an
n-point process is spanned by a basis k1;…; kR, where
R ¼ minðn − 1; 4Þ in four dimensions. The well-known
van Neerven–Vermaseren basis can be defined as

vμi ≡
G

�
k1 � � � μ � � � kR
k1 � � � ki � � � kR

�
Gð k1 � � � pR Þ

; ð6Þ

which has the important property,

vi · kj ¼ δij for 1 ≤ j ≤ R; ð7Þ

and allows us to decompose any external momentum wμ as

wμ ¼
XR
j¼1

ðvj · wÞ kμj þ ŵμ; ð8Þ

with ki · ŵ ¼ 0 for i ¼ 1;…; R. The remainder ŵ satisfies
ŵ2 ≤ 0. In the rest of this manuscript we will reserve the
“hat” symbol for out-of-plane components of momenta.
We also introduce bli, the out-of-plane part of the loop

momentum li orthogonal to all external momenta kj. When
considering an n-point process with n > 4, this part is
strictly ϵ dimensional. Using Eq. (8) we can then write the
scalar products in Eq. (3) as linear combinations of those in
the set,

ta ∈ fli · vjg ∪ fbli · bljg; ð9Þ

which span the same space as the one generated by Eq. (3)
but greatly simplify the identification of IR-finite numer-
ators. This alternate basis will allow us to generalize our
analysis more easily than the standard basis in Eq. (3). It is
convenient to define the notation,

νij ≡ bli · blj ¼ G

�
li k1 � � � kR
lj k1 � � � kR

��
G

�
k1 � � � kR
k1 � � � kR

�
:

ð10Þ

Conveniently, all definitions above can be continued to D
continuous space-time dimensions, whenever necessary.
With the notation and numerator representations in hand,

we turn to the constraints on Eq. (2) imposed by UVand IR
finiteness. We consider UV constraints in the next section,
and IR constraints in following sections.

2In the literature on Feynman integrals, such configurations are
sometimes called “exceptional/nongeneric kinematics.”
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III. UV DIVERGENCES AND WEINBERG’S
THEOREM

The UV divergences of a Feynman integral arise from
regionswhere loopmomenta become large. Theconvergence
criterion known today asWeinberg’s theoremwas introduced
by Dyson [39] and proven rigorously by Weinberg [40] in
the case of a Euclidean metric. A simpler proof and an
extension to theMinkowski casewas presented byHahn and
Zimmermann [45], while Nakanishi gave a proof based on
the parametric representation [46].
The power-counting theorem states that a Feynman

integral is UV finite if the integral itself as well as all its
subintegrations have a negative superficial degree of diver-
gence. Subintegration here means integrating over at most
(L − 1) independent loops of the graph while keeping the
remaining propagator momenta fixed to generic values.
For any given subintegration, we can always redefine the

loop-momentum variables so that they correspond to
integration over a proper subset S of the loop momenta
li holding the remaining ones fixed. Rescaling the unfixed
loop momenta in S as lμ → ρlμ with ρ ≫ 1, we find that
the product of integrand and measure scales as ρω, where ω
is the superficial degree of divergence of the subintegration.
Below we show explicitly how Weinberg’s theorem can

be used in practice to constrain a generic integral like the
one in Eq. (1). We take the simple two-loop “kite” integral
shown in Fig. 1 as an example.
Requiring the superficial convergence (ω < 0) of the

whole integral puts an upper bound on the numerator rank:

rankðN Þ ≤ rmax ¼ 2E − 4L − 1: ð11Þ

For Fig. 1, the rescaling l1;2 → ρl1;2 gives a superficial
degree of divergence ω ¼ rankðN Þ − 2, which implies
rankðN Þ ≤ 1: the numerator can be at most linear in the
loop momenta.
Requiring convergence of subintegrations puts addi-

tional constraints on the numerator. To find them, we first
need to identify all possible subintegrations. For simple
examples like the one considered here, it is convenient to
work in momentum space and what follows is one way of
doing this algorithmically.3

We start by listing all distinct linear combinations cðvÞi li
of loop momenta entering the denominators (equivalently,
the set of all propagator momenta evaluated at vanishing
internal masses and external momenta). We then pick a

subset V of these linear combinations fcðvÞi li ∈Vg, and fix
each element in the subset to a different constant,

cðvÞi li ¼ dv; ∀ v∈V; ð12Þ

and solve the corresponding system of equations for the loop
momenta. We retain only subsets which leave at least one li
unconstrained. In the kite integral, the different linear
combinations of loop momenta are fl1;l2;l1 þ l2g, while
the list of subsets and their corresponding constraints is

fl1 ¼ d1;l2 ¼ d2g; fl1 ¼ d1;l1 þ l2 ¼ d2g;
fl2 ¼ d1;l1 þ l2 ¼ d2g;

fl1 ¼ dg; fl2 ¼ dg; fl1 þ l2 ¼ dg: ð13Þ

The subsets in the top row leave no loop momentum
unconstrained. Conversely, each of the subsets in the bottom
row leaves 1 degree of freedom unfixed and therefore
corresponds to a subintegration. Graphically, these three
subsets can be associated to the diagrams shown in Fig. 2.
With the set of subintegrations at hand, we turn to

finding the corresponding additional constraints on the
numerator. We write down the most general Ansatzwith the
maximal allowed overall rank rmax as a linear combination
of all possible monomials. This is equivalent to setting to
zero all coefficients cr⃗ with

P
a ra > rmax in the general

Ansatz of Eq. (2). It turns the infinite-dimensional space of
polynomials into a finite-dimensional space of superficially
UV-convergent numerators:X

r⃗

cr⃗
Y
a

traa where
X
a

ra ≤ rmax: ð14Þ

For each subintegration we substitute the corresponding
solution in Eq. (12) into the general numerator, and rescale
all unfixed loop momenta as l → ρl. We then expand the
numerator in the scaling parameter ρ, and require that the
divergent orders in ρ vanish. This yields a system of linear
equations. Solving them for cr⃗ gives the most general
numerator consistent with UV finiteness. In the kite
example, the set of monomials is fl1 · l2;l1 · k;l2 · kg,
which give the superficially UV-convergent numerator,

FIG. 1. A simple two-loop two-point integral.

FIG. 2. Graphical depiction of subintegrations for the integral
in Fig. 1. The active subintegrations are indicated by dashed lines,
while the momenta corresponding to solid lines are kept fixed.

3As we shall discuss in Sec. IV B, we analyze more compli-
cated integrals in Feynman parameter space. One can then solve
the equations obtained by setting the first Symanzyk polynomial
to zero monomial by monomial in order to identify the “unfixed”
edges.
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N ¼ cð0;1;0Þl1 · kþ cð0;0;1Þl2 · k: ð15Þ

The three subintegrations of Fig. 2 provide respectively the
scaling rules,

fl1 ¼ d;l2 → ρl2g; fl1 → ρl1;l2 ¼ dg;
fl1 ¼ d − l2;l2 → ρl2g; ð16Þ

which impose no further constraint on the numerator
in Eq. (15).
Weinberg’s criterion gives a sufficient condition for

UV finiteness, but not a necessary one. Integrals which
have a UV divergence by power counting may have the
coefficient of that singularity vanish because of cancella-
tions. We denote an application of Weinberg’s criterion as
strong UV convergence, and a vanishing coefficient of a
potential UV divergence as weak UV convergence. In this
article we consider only integrands giving strongly UV
convergent integrals. In a purely numerical evaluation, the
former can be evaluated stably, while the latter would still
require a regulator.

IV. IR DIVERGENCES, LANDAU EQUATIONS,
AND POWER COUNTING

A. Potential singularities: The Landau equations

Infrared divergences of Feynman integrals are associated
to loop-momentum configurations in which a subset of the
propagators (equivalently a subset of the denominators) in
Eq. (1) vanish. In general, the domain of integration of an L-
loop Feynman integral (1) with E propagators will contain
IR-divergent surfaces of various dimensions. These corre-
spond to solutions of the Landau equations [41] (see also
Ref. [47] for an up-to-date literature review andRefs. [21,48]
for a pedagogical discussion of IR divergences). In present-
ing the Landau equations, it is convenient to rewrite the
integral of Eq. (1) in the mixed representation4:

I½N ðliÞ� ¼ ΓðEÞ
Z YL

i¼1

dDli

Z
∞

0

Q
E
e¼1 dαe
GLð1Þ

×
N ðliÞ

½α1D1 þ � � � þ αEDE�E
; ð17Þ

where the GL(1) denominator accounts for the projective
invariance of the integration over the Feynman parameters
αe. It is equivalent to the usual notation δð1 −

P
e∈A αeÞwith

A a subset of f1;…; Eg. Potential singularities of the integral
correspond to configurations of the integration variables5

which satisfy,

∀ i ¼ 1;…; L∶
XE
e¼1

αe
∂

∂li
De ¼ 0; ð18aÞ

∀ e ¼ 1;…; E∶ αeDe ¼ 0: ð18bÞ

These are the Landau equations, which should beviewed as a
system of equations for the loop momenta and the kinematic
invariants for some values of αe ≥ 0 where at least one αe is
strictly positive.
There are two classes of solutions to the Landau

equations. Solutions of the first class impose constraints
on the kinematic variables. Such solutions manifest them-
selves as singularities of the integrals as a function of these
variables, and are called Landau singularities. Kinematics-
independent solutions, on the other hand, correspond to IR
divergences, and manifest themselves as poles in the
dimensional regulator ϵ. In what follows we will only be
concerned with the latter class of solutions.

B. Solving the Landau equations

The set of equations (18a) are linear in the loop
momenta, while (18b) are quadratic. We proceed by first
solving the linear system (18a) for the loop momenta,
expressing them in terms of the external momenta and the α
parameters. We then substitute the solution into the
remaining Eq. (18b), and obtain a system of polynomial
equations for the α parameters. In many cases the latter
system can be solved easily, as we will see below.
This procedure relates the Landau equations to the

Symanzik polynomials of the Feynman graph (see
Refs. [46,50]),

UðαÞ ¼
X
T ∈ T 1

Y
e∉T

αe; ð19aÞ

F ðαÞ ¼
X
T ∈ T 2

kðTÞ2
Y
e∉T

αe − UðαÞ
XE
e¼1

m2
eαe; ð19bÞ

where T n is the set of spanning n forests of the graph, and
kμðTÞ is the total momentum flowing across the two-forest
T ∈ T 2. The Symanzik polynomials can be computed effi-
ciently by rewriting the combined denominator in the mixed
representation as a quadratic form in the loop momenta:

XE
e¼1

αeDe ¼
XL
i;j¼1

Aijli · lj − 2
XL
i¼1

li · Bi þ C; ð20Þ

so that

U ¼ detA; ð21aÞ

F ¼ detAð−BTA−1Bþ CÞ: ð21bÞ

4In the classic book [49], it is called the “second representa-
tion”.

5We except UV singularities, which we assume have already
been removed.
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An immediate consequence of Eqs. (20) and (21a) is that the
linear system (18a) is nondegenerate if and only if U ≠ 0. Let
us consider this nondegenerate case first. As the square matrix
A is of full rank, the linear system (18a) admits a unique
solution,

lμ
i ¼ ðA−1ÞijBμ

j : ð22Þ

(A parametrization-independent form of the solution in terms
of the graph spanning trees can be found inRef. [47].)We now
substitute this solution into the quadratic equations (18b),
which become simply

∀ ¼ 1;…; E∶ αe
∂

∂αe
F ¼ 0: ð23Þ

These equations are also sometimes referred to as “the Landau
equations”; they describe singularities of the integrand in the
Feynman-parameter representation6 when U ≠ 0.7

To solve Eq. (23), observe that, due to Euler’s homo-
geneous function theorem, Eq. (23) implies F ¼ 0. In
many cases, F can be brought into a subtraction-free form,
meaning that each monomial in F has the same sign in a
certain region of the kinematic space (equivalently, there
exists a Euclidean region8 of the integral). In particular, this
holds for planar Feynman graphs with massless external
legs. In these cases the kðTÞ2 in Eq. (19b) are Mandelstam
invariants of consecutive external momenta (with respect to
the planar ordering), which can be made negative simulta-
neously (in general using complex momenta).
For αe ≥ 0, a subtraction-free polynomial F can only

vanish if each monomial in F vanishes independently,
which in turn implies Eq. (23). Therefore, for a subtraction-
free F , solving Eq. (23) is equivalent to setting all
monomials in F to zero independently. The solutions have
the form

αe1 ¼ 0;…; αem ¼ 0; ð24Þ

where e1;…; em is a proper subset of edge labels
f1;…; Eg.
WhenF does not admit a subtraction-free form, we must

solve Eq. (23) explicitly. It is believed that the general form
of the solution in such cases is nonetheless also given
by Eq. (24). That is, IR divergences cannot arise due to
cancellation between terms in F .

One possible strategy to prove this for a given diagram is
as follows. Instead of summing Eq. (23) to get F ¼ 0,
which is not subtraction free, consider the most general
linear combination of Eq. (23):

XE
e¼1

weαe
∂

∂αe
F ¼ 0: ð25Þ

The left-hand side of Eq. (25) contains the same monomials
as F , but the coefficients of these monomials are now
linear functions of we. Demanding that all coefficients are
nonzero and have the same sign in some region of the
kinematic space, one obtains a system of linear inequalities
on we. If one can find a solution of this system (e.g.,
using numerical linear optimization routines), then solving
Eq. (23) is equivalent to setting each monomial inF to zero
independently as in the subtraction-free case, therefore no
cancellations can occur. We illustrate this procedure in
Sec. VII C when we discuss the massless nonplanar double-
box integral.
Having solved the parameter-space Landau equa-

tions (23), it remains to check that the solution is consistent
with the condition U ≠ 0, and compute the corresponding
loop momenta using Eq. (22).
We turn next to the degenerate case, U ¼ 0. As we can

see from Eq. (19a), U is always subtraction free, so this
condition implies that a subset of αe vanishes, and all such
subsets are identified by setting all monomials in U to zero.
Each solution of U ¼ 0 corresponds to the situation where a
subdiagram γ of the original graph G (formed by the edges
for which αe ¼ 0) does not contribute to the Landau
equations; effectively, they turn into analogous equations
for the reduced diagram G=γ obtained by contracting the
subdiagram γ to a point. This means that solutions of the
Landau equations in the degenerate case can be found by
recursively solving the nondegenerate equations for the
reduced diagrams.
A convenient way to implement this in a computer code

is by using the following factorization formulas for the
Symanzik polynomials (for example, see Proposition 4.1 of
Ref. [42] and references therein):

UGjαγ→λαγ
¼ λLγUγUG=γ þOðλLγþ1Þ; ð26aÞ

FGjαγ→λαγ
¼ λLγUγFG=γ þOðλLγþ1Þ; ð26bÞ

where αγ → λαγ means that αe are replaced by λαe for all
edges in γ, while Lγ is the number of loops in the
subdiagram γ. Equation (26a) also shows that U vanishes
only when γ contains at least one loop, so the degenerate
case U ¼ 0 actually corresponds to IR subdivergences with
one or more loop momenta unconstrained.
The procedure just described for solving the Landau

equations can be summarized as follows:

6This is the “third representation” of Ref. [49].
7A version of Eq. (23) which captures also the singularities

with U ¼ 0 is obtained by replacing F with the worldline action
F=U suitably continued to the boundary (Remark 9.2 and
Theorem 12.1 of [46].

8The same term is sometimes used to refer to a region where all
Mandelstam variables are positive. This is not possible in general
for scattering processes when all external states are massless.
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(1) Compute the first Symanzik polynomial U using
Eq. (21a).

(2) Recursively find all reduced diagrams with one or
more loops contracted to a point by solving the
equation U ¼ 0 monomial by monomial, and using
Eq. (26a) to evaluate U for reduced diagrams.

(3) For the original diagram and each reduced diagram:
(a) compute the second Symanzik polynomial F

using Eqs. (21b) and (26b);
(b) if F is subtraction free, solve F ¼ 0 monomial

by monomial, otherwise solve Eq. (23) explic-
itly, e.g., by finding a subtraction-free linear
combination (25); and

(c) keep only solutions for which the correspond-
ing U ≠ 0.

(4) For each solution, which is given as a set of equality
constraints on αe, evaluate the corresponding con-
straints on the loop momenta using Eq. (22). These
constraints describe the sought-after surfaces in the
loop momentum space which contain all IR diver-
gences.

C. IR power counting

Solutions of the Landau equations turn out to impose two
types of constraints on the loop momenta: soft constraints
take the form qeðl; kÞ ¼ 0, where qeðl; kÞ is the momen-
tum of a massless line, while collinear constraints require
qeðl; kÞ ¼ xki, where ki is an external massless momen-
tum, and the proportionality coefficient x∈ ð0; 1Þ is the
ratio of unconstrained α parameters, such as α1=ðα1 þ α2Þ.
Following Anastasiou and Sterman [29], we use the IR

power-counting technique of Libby and Sterman [51] to
determine the behavior of the integral near a divergent
surface described by soft and collinear constraints. Namely,
we parametrize the vicinity of the divergent surface by
modifying the constraints as follows:

qμeðl; kÞ ¼ 0 → qμeðl; kÞ ¼ λσμe;

qμeðl; kÞ ¼ xek
μ
i → qμeðl;kÞ ¼ xek

μ
i þ λημi þ λ1=2q⊥;μ

e :

ð27Þ

Here, q̄e is a unit Euclidean-norm vector while ηi and q⊥e
satisfy

q⊥e · ki ¼ η2i ¼ q⊥e · ηi ¼ 0 and η̂i ¼ 0: ð28Þ

Solving the modified set of constraints for the loop
momenta, we obtain a scaling rule of the form li ¼ liðλÞ,
which can be used to find numerators canceling the
divergence the same way as we did in the UV case. For
every divergent configuration of the loop momenta, we can
substitute the scaling rules of Eq. (27) into the integration
measure, which yields

soft∶ dDl ¼ dΩD dλ λD−1 ∼ dλ λD−1;

collinear∶ dDl ¼ 1

2
dxe d2q⊥e dΩD−2ðki · ηiÞdλ λD=2−1

∼ dλ λD=2−1; ð29Þ

as well as into the integrand obtained from the UV-
compatible numerator obtained in the previous section.
We then Laurent expand the integrand in λ and retain
only powers leading to divergences. The coefficients of
divergent powers of λ are in general polynomials in the
quantities

li · vj; νij; l̂i · σ̂e; l̂i · q̂⊥j ; vi · q⊥j ; vi · ηj;

vi · σe; σ̂e · q̂⊥j ; q̂⊥i · q̂⊥j ; σ̂e1 · σ̂e2 ; xe; ð30Þ

with coefficients depending on the Ansatz parameters cr⃗,
and li being the unconstrained loop momenta. The set of
monomials in Eq. (30) is determined by substituting
the modified constraints of Eq. (27) into the Ansätze of
Eqs. (2) and (9).
However, not all monomials in Eq. (30) are independent.

We can find relations by applying the decomposition of
Eq. (8) to each of the vectors appearing in Eq. (28). We find

XR
j¼1

ðki · kjÞvj · q⊥e ¼
XR
j;h¼1

ðkj · khÞvj · ηi vh · ηi

¼
XR
j;h¼1

ðkj · khÞvj · q⊥e vh · ηi ¼ 0; ð31Þ

with i labeling a massless external momentum ki. The
first is a relation among degree-1 monomials while the
other two are among degree-2 monomials. We take these
relations into account and require that the coefficient of
every independent monomial should vanish. The solution
of the associated system of equations leads us to a set of
constraints on the Ansatz parameters.
The ki · kj factors appearing in Eq. (31) are the only

kinematics-dependent objects which enter the system of
linear equations induced by the IR finiteness constraints.
Moreover, they are only relevant when powerlike collinear
singularities are present. In practice, one can first solve
the system of equations which does not involve these ki · kj
and then solve a much smaller system coming from the
subleading contributions of the numerator which may
possibly depend on the ki · kj. This greatly simplifies the
determination of locally finite numerators and allows us to
compute them for topologies up to four loops on a laptop.
In practice when the problem involves large systems of
equations we use FiniteFlow [52] to obtain a solution
efficiently.
Repeating the procedure above for all IR-divergent

surfaces, we find the most general numerator consistent
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with IR finiteness for a given Ansatz. Denoting the space of
locally finite numerators by W, any element f∈W can
then be written in the form

fðlÞ ¼
X
i

giN iðlÞ; ð32Þ

where the N i are polynomials in the independent mono-
mials in Eq. (9) and the gi are unconstrained coefficients
independent of the loop momenta.
To guarantee IR finiteness, following Ref. [29], one must

check not only the divergent surfaces found from the
Landau analysis, but also subsurfaces. The latter do not
always show up as separate solutions of the Landau
equations. In particular, a solution with a soft constraint
may be a special case of a solution with a collinear
constraint when the proportionality coefficient xe reaches
its boundary value of 0 or 1. To include the subsurfaces
we also consider each solution of the Landau equations
where xe have been set to 0 or 1 in all possible combi-
nations. This is necessary only when the degree of
divergence of a subsurface is greater than that of any of
the parent surfaces. An example of this would be a set
of surfaces associated to logarithmic divergences intersect-
ing on a subsurface which leads to a powerlike divergence,
as in the case of the massless nonplanar double box, see
Sec. VII C.

D. Finite integral generators

Suppose we have the set of all locally IR-finite numer-
ators eW, constructed as above without imposing UV
finiteness. Multiplying any locally IR-finite numerator
f∈ eW by any polynomial p in the variables of Eq. (9)
yields another locally IR-finite numerator:

pf∈ eW: ð33Þ

This is the defining property of an ideal; it implies that
there exists a (nonunique) minimal set of polynomials
f1; f2;…∈W which generate eW:

eW ¼ hf1; f2;…i: ð34Þ
This means that any IR-finite polynomial can be written as
a linear combination of f1; f2;… with polynomial coef-
ficients, and vice versa, any such combination is IR finite.
As we shall see, only a small number of generators are
required. This allows us to capture all information on eW in
a very compact form.
Requiring UV finiteness then restricts us to a finite-

dimensional subspace within the ideal. We will call this the
truncated ideal of locally finite numerators, though it is
mathematically no longer an ideal. We will order generators
according to their UV behavior, favoring numerators with
lower degrees in the loop momenta.
One could of course impose the UV-finiteness and IR-

finiteness conditions in either order; we will impose the
UV-finiteness ones first. The set of generators we obtain
will be the same.

V. A SIMPLE EXAMPLE: ONE-LOOP BOX

To illustrate the procedure described in the previous
sections, let us consider the one-loop massless box integral,
depicted in Fig. 3, as a simple example. We define the
momenta,

q1 ¼ l; q2 ¼ l − k1; q3 ¼ l − k12; q4 ¼ l − k123:

ð35Þ
We start by writing down the most general Ansatz for
a UV-finite numerator as described in Sec. III. Superficial
convergence imposes a maximum degree rmax ¼ 3 and as
there are no subintegrations the Ansatz reads

N ðlÞ ¼ c0 þ c1 l · v1 þ c2 l · v2 þ c3 l · v3 þ c4 l̂
2 þ c5 ðl · v1Þ2 þ c6 l · v1 l · v2

þ c7 ðl · v2Þ2 þ c8 l · v1 l · v3 þ c9 l · v2 l · v3 þ c10 ðl · v3Þ2 þ c11 l̂
2 l · v1

þ c12 l̂
2 l · v2 þ c13 l̂

2 l · v3 þ c14 ðl · v1Þ3 þ c15 ðl · v1Þ2 l · v2

þ c16 l · v1 ðl · v2Þ2 þ c17 ðl · v2Þ3 þ c18 ðl · v1Þ2 l · v3 þ c19 l · v1 l · v2 l · v3

þ c20 ðl · v2Þ2 l · v3 þ c21 l · v1 ðl · v3Þ2 þ c22 l · v2 ðl · v3Þ2 þ c23 ðl · v3Þ3: ð36Þ

Moving to the IR analysis, we start by computing the
auxiliary quantities [see Eq. (20)],

A11 ¼ α1 þ α2 þ α3 þ α4;

Bμ
1 ¼ ðα2 þ α3 þ α4Þ kμ1 þ ðα3 þ α4Þ kμ2 þ α4 k

μ
3; ð37Þ

so that the Symanzik polynomials for this diagram are

U ¼ α1 þ α2 þ α3 þ α4; F ¼ s α1α3 þ t α2α4: ð38Þ
Solving F ¼ 0 monomial by monomial, and then using

Eq. (22) together with Eq. (37), we obtain four solutions
corresponding to divergent surfaces of collinear type.
Intersecting these surfaces, or equivalently setting the
proportionality coefficients to 0 or 1, we find four soft
subsurfaces. We list the results in Table I.
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To each of the singular configurations we associate a
modified constraint l ¼ lðλÞ as described in Eq. (27) and

substitute it into the momentum-space representation of
the integral,

Box½N ðlÞ� ¼
Z

dDl
N ðlÞ

D1D2D3D4

: ð39Þ

Using the integration-measure scalings (29) together with
the scaling of the propagators De ¼ q2e þ iε, we find that
Box [1] behaves as dλ λ−1þOðϵÞ near D ¼ 4 for all the soft
and collinear configurations of Table I. Because of the
logarithmic nature of these singularities, we need to expand
the numerator only to Oðλ0Þ to obtain singular contribu-
tions to the integral. To this order in λ we find that the
monomials fl̂2;l · v1;l · v2;l · v3g take the values

C1∶ f0; x1; 0; 0g; C2∶ f0; 1; x2; 0g; C3∶ f0; 1; 1; x3g; C4∶ f0; x4; x4; x4g;
S1∶ f0; 0; 0; 0g; S2∶ f0; 1; 0; 0g; S3∶ f0; 1; 1; 0g; S4∶ f0; 1; 1; 1g; ð40Þ

where the xe stand for the collinear-fraction parameters which can be read off from Table I for the different collinear regions.
Let us study these configurations, extracting the corresponding constraints on the numerator. Substituting the collinear

configurations into Eq. (36) and setting the result to zero for every value of the xe we find the equations,

FIG. 3. The massless one-loop box graph.

TABLE I. Solutions of the Landau equations for the one-loop box and the corresponding IR divergent surfaces and subsurfaces.
Dotted lines indicate collinear subdiagrams while dashed lines represent soft propagators.

Surface Solution of F ¼ 0 Momentum constraint Subsurface Momentum constraint

α3 ¼ α4 ¼ 0 q1 ¼ α2
α1þα2

k1 q1 ¼ 0

α4 ¼ α1 ¼ 0 q2 ¼ α3
α2þα3

k2 q2 ¼ 0

α1 ¼ α2 ¼ 0 q3 ¼ α4
α3þα4

k3 q3 ¼ 0

α2 ¼ α3 ¼ 0 q4 ¼ α1
α4þα1

k4 q4 ¼ 0
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C1∶ c0 ¼ c1 ¼ c5 ¼ c14 ¼ 0;

C2∶ c0 þ c1 þ c5 þ c14 ¼ c2 þ c6 þ c15 ¼ c7 þ c16 ¼ c17 ¼ 0;

C3∶ c0 þ c1 þ c2 þ c5 þ c6 þ c7 þ c14 þ � � � þ c17

¼ c3 þ c8 þ c9 þ c18 þ c19 þ c20 ¼ c10 þ c21 þ c22 ¼ c23 ¼ 0;

C4∶ c0 ¼ c1 þ c2 þ c3 ¼ c5 þ � � � þ c10 ¼ c14 þ � � � þ c23 ¼ 0: ð41Þ

As anticipated these equations do not depend on the external kinematic invariants sij. Moving on, for each soft region Si we
get the following constraints:

S1∶ c0 ¼ 0;

S2∶ c0 þ c1 þ c5 þ c14 ¼ 0;

S3∶ c0 þ c1 þ c2 þ c5 þ c6 þ c7 þ c14 þ � � � þ c17 ¼ 0;

S4∶ c0 þ � � � þ c3 þ c5 þ � � � þ c10 þ c14 þ � � � þ c23 ¼ 0: ð42Þ

One can check that these constraints are satisfied auto-
matically if Eq. (41) holds. This comes as no surprise,
because in this case soft subsurfaces have the same degree of
divergence as their parent surfaces corresponding to collinear
regions (see the discussion at the end of Sec. IV C). There-
fore, cancellation of collinear divergences is sufficient for
IR finiteness.
The constraints in Eqs. (41) and (42) entirely fix 12

coefficients in the Ansatz of Eq. (36). Therefore, within the
space of UV-finite numerators of Eq. (36), described by 24
independent monomials, the subset of IR-finite integrals
has 12 degrees of freedom.

In general, the results of a UV-IR analysis such as
the one presented above can be summarized by simply
listing the generators of the ideal of IR-finite numerators.
A set of generators can be found using standard tech-
niques of computational algebraic geometry, such as
Gröbner bases, and then prettifying the results. In the
case of the massless one-loop box there are only three
rank-two generators: l̂2, ðl − k1Þ · v1 l · ðv2 − v3Þ and
l · v3 l · ðv1 − v2Þ. Using them we can write the most
general UV- and IR-finite numerator for the massless
one-loop box as

N ðlÞ ¼ ½b1 þ b2l · v1 þ b3l · v2 þ b4l · v3�ðl − k1Þ · v1 l · ðv2 − v3Þ
þ ½b5 þ b6l · v1 þ b7l · v2 þ b8l · v3�l · v3 l · ðv1 − v2Þ
þ ½b9 þ b10l · v1 þ b11l · v2 þ b12l · v3�l̂2; ð43Þ

where the bi are purely functions of the external momenta.
We end our discussion with two comments on Eq. (43):
(1) The generators obtained in the van Neerven–Vermaseren basis of monomials have a straightforward representation in

terms of Gram determinants,

ðl − k1Þ · v1 l · ðv2 − v3Þ ∝ G
�
l − k1 2 3

1 2 3

�
G
�
l 1 4

1 2 3

�
;

l · v3 l · ðv1 − v2Þ ∝ G

�
l 1 2

1 2 3

�
G

�
l 3 4

1 2 3

�
;

l̂2 ∝ G

�
l 1 2 3

�
; ð44Þ

where the constants of proportionality depend only on the external momenta (here and in what follows we represent
the external momenta ki inside the Gram determinants with the corresponding labels i). This observation generalizes
to higher loops.
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(2) Equation (43) is just one possible choice to represent
the same numerator. For instance, one could swap
the l · vi factors inside the brackets in Eq. (43) for
l · ki or rewrite them in terms of inverse propagators
where possible. As long as the UV power counting is
satisfied, one can choose different representations
depending on the context.

VI. EVANESCENT INTEGRANDS

Locally finite integrals, enumerated by the algorithmic
procedure described above, contain a noteworthy subset of
integrals which are manifestly of OðϵÞ while containing no
explicit appearances of ϵ (or D). We call these evanescent
integrals. To find integrands giving rise to evanescent
integrals, we start with the set of integrands of locally
finite integrals, and impose further restrictions on their
coefficients. In particular, we can split the numerator of the
integrand,

N ¼ N 4 þN D−4; ð45Þ

whereN 4 ¼ N jD¼4, so thatN D−4 vanishes exactly in four
dimensions for any value of the loop momenta. If the
integral I ½N � is finite then I ½N 4� is also finite as our
procedure to determine locally finite integrands could in
principle be performed purely in four dimensions.
Rewriting the equation above as

N D−4 ¼ N −N 4; ð46Þ

we see that as D → 4 the right-hand side has to vanish and
therefore ND−4 can be at most of OðϵÞ. To find evanescent
integrands we therefore require the integrand to vanish
when all loop momenta are four dimensional, that
is N 4 ¼ 0.
For (n > 4)-point integrals, setting the (D − 4)-dimen-

sional components of each loop momentum to zero
corresponds to fixing the extra components bli ¼ 0 so that
all νij vanish identically. For the numerator to vanish as
D → 4 we require a vanishing coefficient for every mono-
mial of the independent scalar products li · vj¼1;…;4. The
truncated ideal of evanescent numerators is then the
intersection of the locally finite truncated ideal W with
the one generated by the νij.
For (n ≤ 4)-point integrals we need to be more careful:

we can still freely set to zero the coefficient of every
monomial without a factor of νij, as these are linearly
independent and do not vanish as D → 4. Conversely νij ≠
0 in four space-time dimensions, so evanescence of a term
containing one of these factors is not guaranteed. Instead
the bli become linearly dependent if enough loops are
present because they span a (5 − n)-dimensional space. As
a consequence, any Gram determinant with m ≥ 6 − n
entries of the bli’s will automatically vanish. For instance,

with n ¼ 4 we need at least two loops to find an evanescent
numerator via the factor

Gð l̂1 l̂2 Þ: ð47Þ
This is in accordance with the fact that for the one-loop box
no evanescent numerator can be extracted from Eq. (43). In
general, within the space of polynomials defined by Eq. (2),
the ideal of evanescent numerators for n ≤ 4 is given by the
intersection of the locally finite ideal with the ideal
generated by all choices of the Gram determinant,

G

 
l̂i1 � � � l̂i6−n

l̂j1 � � � l̂j6−n

!
: ð48Þ

Evanescently finite integrals. Integrands can vanish in
four dimensions even if they fail the UV-finiteness power-
counting criterion, or if they fail to cancel all IR diver-
gences revealed by the Landau equations. In dimensional
regularization, these combinations can give rise to evan-
escently finite integrals. These are integrals which are finite,
but where the finiteness depends on cancellation of a pole
in ϵ (due to a UV or IR divergence) with a factor of ϵ that
arises from the evanescence properties of the integrand.
Their existence is special to dimensional regularization. We
will not study them exhaustively, but provide explicit
examples in Sec. VII. Integrals with a cancellation of a
UV divergence against evanescence arising from the IR
(UV-IR evanescently finite) are expected to play a role
computing rational terms in higher-loop amplitudes.

A. Massless pentagon

The massless pentagon, depicted in Fig. 4, is the simplest
one-loop case where evanescent integrals arise. Let us
summarize the results of our procedure applied to the
pentagon. We start by writing a UV-compatible Ansatz for
the numerator, here a rank-five polynomial in the variables,

fl̂2; l · v1; l · v2; l · v3; l · v4g: ð49Þ
This polynomial has 166 independent monomials
whose coefficients are unfixed rational functions of the

FIG. 4. Massless pentagon.
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independent Mandelstam variables, for instance, the
set fs12; s23; s34; s45; s51g.
We proceed by listing all IR singularities. The list

generalizes that for the box integral (see Table I): here

we find a total of ten regions (five soft, five collinear).
Requiring the numerator to vanish appropriately in each of
the IR regions, we obtain a set of 141 locally finite inde-
pendent numerators. The ideal needs only six generators:

l · v4l · ðv1 − v2Þ; ðl − k1Þ · v1l · ðv2 − v3Þ; l · ðv1 − v2Þl · ðv3 − v4Þ;
l · ðv2 − v3Þl · v4; l · ðv3 − v4Þðl − k1Þ · v1; l̂2: ð50Þ

The same ideal can equivalently be expressed in terms of the closely related set of Gram determinants:

G

�
l 1 2 3

l 3 4 5

�
; G

�
l − k1 2 3 4

l 4 5 1

�
; G

�
l 3 4 5

l 5 1 2

�
;

G

�
l 4 5 1

l 1 2 3

�
; G

�
l 5 1 2

l − k1 2 3 4

�
; Gðl 1 2 3 4 Þ: ð51Þ

Turning to evanescent integrands, the further requirement that the numerator should vanish when the loop momenta
are purely four-dimensional leads us to a subset of 40 evanescent integrals, whose numerators belong to the ideal

generated by l̂2ð¼ Gðl 1 2 3 4 Þ=Gð 1 2 3 4 ÞÞ, which is consistent with the well-known result,Z
dDl

Gðl 1 2 3 4 Þ
D1 � � � D5

∝ ðD − 4Þ ×
Z

dDþ2l
Gð1 2 3 4Þ
D1 � � � D5

¼ OðϵÞ: ð52Þ

VII. RESULTS

In this section we present some explicit results. First, we
apply our procedure to characterize the locally finite
integrals for the planar double box, and then show how
a general conjecture for the all-loop ladder topology can be
justified. We then move to consider the nonplanar double
box and another two-loop four-point graph which we refer
to as the beetle graph. Both the nonplanar double box and
the beetle require dealing with powerlike IR singularities
and allow us to illustrate aspects of our procedure.

A. Planar double box

In this section, we apply the procedures of Secs. III
and IV to the massless planar double-box integral. We
parametrize the loop momenta as shown in Fig. 5(a). All
external momenta are outgoing and we label the edges from
1 to 7, so that their momenta read, in order of labels,

l1; l1−k1; l1−k12; l2; l2−k123; l2−k12; l1−l2:

ð53Þ

We start by imposing UV-convergence constraints and then
proceed to the IR analysis described in previous sections.

1. UV divergences

To avoid the overall UV divergence, the maximal allowed
numerator rank is 5, in accordance with Eq. (11).

Three distinct linear combinations of the loop momenta
enter the denominators: l1, l2, and ðl1 − l2Þ. Holding each
one of them fixed in turnyields three possible subintegrations
over the remaining variable l corresponding to the dashed
lines in Fig. 5(b). These give rise to the following constraints
on the numerator:

lim
ρ→∞

8>><>>:
ρ−4N ðl1 ¼ const;l2 ¼ ρlÞ ¼ 0;

ρ−4N ðl1 ¼ ρl;l2 ¼ constÞ ¼ 0;

ρ−8N ðl1 ¼ ρl;l2 ¼ constþ ρlÞ ¼ 0:

ð54Þ

The first and second constraints simply count the powers of
l2 and l1, respectively, so the numerator has to be at most
cubic in either of the loop momenta. The third constraint is
automatically satisfied for numerators of rank five. Hence, a
numerator for the double boxyields aUV-finite integral if it is

FIG. 5. The planar double-box graph (a) and and its subinte-
grations (b).
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atmost cubic inl1, at most cubic inl2, and has a total rank of
at most five.

2. IR divergences

Following our general algorithm of Sec. IV B, we start
by identifying all reduced diagrams of the double box. We
do this by computing the first Symanzik polynomial:

U ¼ ðα1 þ α2 þ α3Þðα4 þ α5 þ α6Þ
þ α7ðα1 þ α2 þ α3 þ α4 þ α5 þ α6Þ; ð55Þ

and setting U ¼ 0 term by term. This yields three solutions
which we collect in Table II. These solutions describe the
reduced diagrams of Fig. 5(b). Because these diagrams
already have only one loop, they represent all reduced
diagrams of interest for solving the degenerate-case Landau
equations: indeed, solving U ¼ 0 monomial by monomial
for the reduced diagrams gives no further solutions with at
least one αi positive.
We now have to solve the parameter-space Landau

equations for the original diagram and the three reduced
diagrams. We start with the planar double-box diagram
itself. As the graph is planar, it is natural to express the
second Symanzik polynomial F in terms of the indepen-
dent Mandelstam invariants of consecutive external
momenta, s ¼ ðk1 þ k2Þ2 and t ¼ ðk2 þ k3Þ2, so that F
is subtraction free:

F ¼ s½α1α3ðα4 þ α5 þ α6Þ þ α4α6ðα1 þ α2 þ α3Þ
þ α7ðα1 þ α4Þðα3 þ α6Þ� þ tα2α5α7: ð56Þ

We find ten solutions of F ¼ 0 monomial by monomial.
They are listed in the first column of Table III. The last
two solutions should be discarded as they nullify U as well.
For the remaining eight solutions, we evaluate the cor-
responding loop momenta, recognizing the well-known

double-collinear IR divergences of the planar double box.
For example, the solution on the first line of Table VI gives

l1 ¼
α2ðα4 þ α7Þ

ðα1 þ α2Þðα4 þ α7Þ þ α4α7
k1;

l2 ¼
α2α7

ðα1 þ α2Þðα4 þ α7Þ þ α4α7
k1; ð57Þ

describing a double-collinear IR divergence ðl1kk1;l2kk1Þ.
Computing all intersections of the surfaces associated

with the singular configurations in Table II, or equivalently
setting collinearity coefficients to zero or one, we reproduce
the double-soft and soft-collinear IR subdivergences. For
example, intersecting ðl1 kk1;l2 kk1Þwith ðl1 kk1;l2 kk4Þ
gives rise to the soft-collinear configuration ðl1 k k1;l2 ¼
0Þ as it sets α7 ¼ 0 in Eq. (57). Similarly, intersecting
ðl1 k k1;l2 k k1Þ with ðl1 k k4;l2 k k4Þ yields the double-
soft divergence ðl1 ¼ 0;l2 ¼ 0Þ setting α2 ¼ 0 in Eq. (57).
Notice that l1 ¼ 0 implies α2α7 ¼ 0. This forbids

the configuration ðl1 ¼ 0;l2 k k1Þ corresponding to a dis-
connected collinear diagram. More generally, the eight

TABLE II. One-loop reduced diagrams of the planar double box and corresponding Symanzik polynomials.

Reduced graph Solution of U ¼ 0 (full graph) Symanzik polynomials (reduced graph)

α4 ¼ α5 ¼ α6 ¼ α7 ¼ 0 U ¼ α1 þ α2 þ α3
F ¼ sα1α3

α1 ¼ α2 ¼ α3 ¼ α7 ¼ 0 U ¼ α4 þ α5 þ α6
F ¼ sα4α6

α1 ¼ α2 ¼ α3 ¼ α4 ¼ α5 ¼ α6 ¼ 0 U ¼ α7
F ¼ 0

TABLE III. Nondegenerate solutions of the Landau equations
for the planar double box.

Solution of F ¼ 0 Momentum constraints

α3 ¼ α5 ¼ α6 ¼ 0 l1 k k1 l2 k k1
α2 ¼ α3 ¼ α6 ¼ 0 l1 k k4 l2 k k4
α1 ¼ α4 ¼ α5 ¼ 0 ðl1 − k12Þ k k2 ðl2 − k12Þ k k2
α1 ¼ α2 ¼ α4 ¼ 0 ðl1 − k12Þ k k3 ðl2 − k12Þ k k3
α3 ¼ α6 ¼ α7 ¼ 0 l1 k k1 l2 k k4
α3 ¼ α4 ¼ α7 ¼ 0 l1 k k1 ðl2 − k12Þ k k3
α1 ¼ α6 ¼ α7 ¼ 0 ðl1 − k12Þ k k2 l2 k k4
α1 ¼ α4 ¼ α7 ¼ 0 ðl1 − k12Þ k k2 ðl2 − k12Þ k k3
α1 ¼ α2 ¼ α3 ¼ α7 ¼ 0 � � �
α4 ¼ α5 ¼ α6 ¼ α7 ¼ 0 � � �
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solutions of TableVI give rise to subdivergenceswhich are in
agreement with the results presented in Ref. [29].
Let us now turn to the reduced graphs of Table II. We

repeat the same procedure: find all solutions of F ¼ 0
monomial by monomial, and then compute the cor-
responding constraints on the loop momenta. The results
of the reduced-graph analysis are given in Table IV. The
first two graphs produce the familiar single-collinear
divergences, as well as the single-soft divergences
from intersections of solutions. The last graph gives rise
to an additional single-soft configuration, which is inte-
grable by power counting even with a trivial numerator,
therefore we discard it (if we allowed higher powers of
denominators, it could in principle become divergent).
As we now have the full set of singular configurations

for the loop momenta, we can proceed by imposing
finiteness constraints on the UV-finite numerator Ansatz,
as described in Sec. IV C. Because all divergences
(including subdivergences) are logarithmic, it suffices
to require that the numerator vanishes on all collinear
configurations, as in the one-loop box case. In Table V
we list the numbers of linearly independent finite and
evanescent [OðϵÞ] integrals up to a given rank, along
with the number of the corresponding generators arising
at each rank. We construct them in the next section.

3. Finding a basis of generators

Thus far, we have identified the truncated ideals
corresponding to locally finite and evanescent numerators
for the double-box integral. We now turn to finding a
compact and nice representation for the generators of
these ideals. To do so, we start by defining9 the rank-one
monomials,

β1 ¼ l1 · v2; β2 ¼ ðl1 − k12Þ · v1;
β3 ¼ ðl2 − k12Þ · v2; β4 ¼ l2 · ðv2 − v3Þ;
β12 ¼ l1 · v3; β34 ¼ ðl2 − k123Þ · ðv1 − v2Þ: ð58Þ

These turn out to have simple representations in terms of
Gram determinants (see Appendix A 1). The βi variables
are rank-one numerators which vanish in the collinear
region associated to the ki; the βij are rank one which
vanish in the collinear regions associated to both ki and
kj. In addition, β1β2 and β12 vanish in all soft limits
involving l1; by symmetry, β3β4 and β34 vanish in those
involving l2.
Thanks to their properties we can use the βs together

with the νij as building blocks for the basis of the ideal
of locally finite numerators for the double box. We write
down the simplest combinations that cancel all diver-
gences, making sure not to repeat any lower rank basis
element when writing higher rank ones. Starting at rank
two, we find that only the combinations β12 β34 and ν12
are locally finite. In fact, they correspond to the desired
rank-two generators. At rank three we have more
options. For instance, we can tame the singularities
associated with legs 1 and 2 using two different βs, and
the ones of legs 3 and 4 with a single one: β1 β2 β34. By
symmetry we can also choose β12 β3 β4. In addition,
because the bli vanish in any IR limit, we can write
down two more rank-three generators, ν11 β34 and
ν22 β12. Finally, at rank four we have the following
options:
(1) cancel the divergence on each corner separately

using the product β1 β2 β3 β4;
(2) use β1 and β2 to remove the singularities associated

with l1, and ν22 to remove those of l2, using the
product β1 β2 ν22;

(3) use the flipped version β3 β4 ν11; and
(4) use only the l̂ components of the loop momenta,

with the product ν11 ν22.
Together, these options give us all four rank-four gener-
ators. Summarizing, we find the double-box generators,

TABLE IV. Solutions of the Landau equations for the one-loop
reduced diagrams of the planar double box.

Reduced graph Solutions of F ¼ 0 Momentum constraint

α3 ¼ 0
α1 ¼ 0

l1 k k1
ðl1 − k12Þ k k2

α6 ¼ 0
α4 ¼ 0

l2 k k4
ðl2 − k12Þ k k3

α7 ≠ 0 l1 − l2 ¼ 0

TABLE V. Results of the double-box numerator analysis. The
counts for the integrals are inclusive of lower ranks, while the
counts for generators are not.

Rank 1 2 3 4 5

Number of finite integrals 0 2 18 89 247
Number of new finite generators 0 2 4 4 0
Number of evanescent integrals 0 0 0 1 7
Number of new evanescent generators 0 0 0 1 0

9These definitions depend both on the loop-momentum
routing and the choice made for momentum conservation
(k4 ¼ −k1 − k2 − k3 in our case). Any changes will be reflected
on the explicit form of the βs.
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rank two∶ β12 β34; ν12;

rank three∶ β1 β2 β34; β12 β3 β4; ν11 β34; ν22 β12;

rank four∶ β1 β2 β3 β4; ν11 β3 β4; ν22 β1 β2; ν11 ν22:

ð59Þ

Using computational algebraic geometry, we have checked
that this set of generators is nonredundant and indeed gen-
erates the entire truncated ideal of locally finite numerators.
Because we have only three independent external

momenta, we can look to Gram determinants built out
of the l̂ components of the available loop momenta to build
evanescent generators [OðϵÞ]. At two loops the only
possible combination is

Gð l̂1 l̂2 Þ ¼ ν11 ν22 − ν212 ∝ Gðl1 l2 k1 k2 k3 Þ:
ð60Þ

This is indeed the only evanescent generator, as can be seen
from the counting in Table V. The evanescent ideal is then
generated by

ν11 ν22 − ν212: ð61Þ

Every evanescent numerator is by definition also locally
finite, and this generator can be written in terms of the

generators in Eq. (59). In order to make the subset of
evanescent numerators more manifest within the locally
finite ones, we could alternatively choose the rank-four
generators for the planar double box to be

β1 β2 β3 β4; ν11 β3 β4; ν22 β1 β2; ν11 ν22 − ν212: ð62Þ

Beyond evanescence, we can also form combinations
of locally finite integrands that for symmetry reasons
give rise to identically vanishing integrals (i.e., to all
orders in ϵ). We will not discuss these any further.
We also leave the question of combining local finite-
ness with integration-by-parts reduction to future
investigation.
We can obtain examples of evanescently finite integrands

for the planar double box within the evanescent ideal by
selecting UV-divergent numerators such as ðν11 ν22 −
ν212Þl1 · l2 or ðν11 ν22 − ν212Þl1 · k1 l2 · k2.

B. Ladder integrals: An all-loop conjecture

Assuming that all integrals with ladder topologies have
singularities that are at worst logarithmic in the IR (as is
plausible), the reasoning in the previous section can be
extended directly to all loop orders. In order to do so, we
generalize Eq. (58),

β1 ¼ l1 · v2; β2 ¼ ðl1 − k12Þ · v1; β3 ¼ ðlL − k12Þ · v2; β4 ¼ lL · ðv2 − v3Þ;
β12 ¼ l1 · v3; β34 ¼ ðlL − k123Þ · ðv1 − v2Þ: ð63Þ

Using these variables and defining the L-loop momenta as in Fig. 6, our conjecture for the generators of the truncated ideal
of locally finite numerators takes the remarkably simple form,

rank two∶ β12 β34; ν1;L;

rank three∶ β1 β2 β34; β12 β3 β4; ν1;i≠L β34; νL;i≠1 β12;

rank four∶ β1 β2 β3 β4; ν1;i≠L β3 β4; νL;i≠1 β1 β2; ν1;i≠LνL;j≠1: ð64Þ

We thus have two conjectured generators at rank two, 2L
generators at rank three, L2 generators at rank four, with no
additional generators beyond rank four. The larger number
of generators is simply due to having more loop momenta
at our disposal to build some of the νij combinations. The
role of the scattering-plane variables β is unchanged.

As to evanescent generators, we see that (see Sec. VI)
every Gram determinant involving at least two different bli
will automatically vanish as D → 4. It follows that the
truncated ideal of evanescent numerators is the intersection
of the locally finite one of Eq. (64) with the one generated
by the two-by-two Gram determinants,

G

 
l̂i1 l̂i2

l̂j1 l̂j2

!
¼ νi1j1 νi2j2 − νi1j2 νi2j1 : ð65Þ

We can write out the intersection explicitly, finding that it is
generated by the set,FIG. 6. All-loop ladder integral.
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rank four∶ ν1i νLj − ν1j νLi; ν1L νk1h1 − ν1h1 νk1L;

rank five∶ ðν1k1 νk3k2 − ν1k2 νk3k1Þ β34; ðνLh1 νh3h2 − νLh2 νh3h1Þ β12;
rank six∶ ðν1k1 νk3k2 − ν1k2 νk3k1Þ β3 β4; ðνLh1 νh3h2 − νLh2 νh3h1Þ β1 β2;

ðνl1l3 νl2l4 − νl1l4 νl2l3Þβ12 β34;
rank seven∶ ðνl1l3 νl2l4 − νl1l4 νl2l3Þ β12 β3 β4; ðνl1l3 νl2l4 − νl1l4 νl2l3Þ β1 β2 β34;
rank eight∶ ðνl1l3 νl2l4 − νl1l4 νl2l3Þ β1 β2 β3 β4; ð66Þ

where the indices are defined as

i; j ¼ 1;…; L; kr ¼ 1;…; L − 1; hr ¼ 2;…; L; lr ¼ 2;…; L − 1; ð67Þ

in order to avoid double counting of lower-rank generators
and are assumed to take values for which the corresponding
generator is nonzero, e.g., the choice l1 ¼ l2 ¼ l3 ¼ l4 ¼ 2
is forbidden because most generators at ranks six, seven,
and eight would vanish identically. The evanescent gen-
erators above can be written in terms of the locally finite
generators in Eq. (64). From Eq. (66) we find the following
numbers of generators at each rank:

rank four∶ ð3L2 − 9Lþ 8Þ=2;
rank five∶ ðL − 2ÞðL2 − 4Lþ 5Þ;
rank six∶ ðL − 2ÞðL3 − 9Lþ 16Þ=8;
rank seven∶ ðL − 2ÞðL − 3ÞðL2 − 5Lþ 8Þ=4;
rank eight∶ ðL − 2ÞðL − 3ÞðL2 − 5Lþ 8Þ=8: ð68Þ

We deduce that the rank-four generators are present for any
number of loops, while those at ranks five and six require a
minimum of three loops, and those at ranks seven and eight
first appear at four loops. All locally finite and evanescent
generators in Eqs. (64) and (66) are UV finite.
We have verified the validity of this conjecture at two,

three, and four loops by explicit computation of the ideals.

C. Nonplanar double box

We next consider the nonplanar double-box integral.
There are two important differences between the planar and
nonplanar double box integrals. In particular, the non-
planar one:
(1) lacks a subtraction-free form (see Sec. IV B) for the

F polynomial; and
(2) has powerlike soft divergences: regions of the loop

integration where the integrand scales as dλ λ−α

with α > 1.
For these reasons we believe the nonplanar box to be an
instructive example. We repeat the procedure outlined in
the previous section, highlighting the role of powerlike
divergences along the way.

The loop momenta are parametrized as shown in Fig. 7(a)
with all external momenta outgoing and we label the edges
from 1 to 7 so that their momenta read, in increasing order
of labels,

l1; l1 − k1; l1 − k12; l2;

l2 − k123; l2 − l1 − k3; l1 − l2: ð69Þ

As before, we start by imposing UV-convergence constraints
and proceed to the IR analysis afterwards.

1. UV divergences

The maximal allowed numerator rank is five and there
are three distinct subintegrations corresponding to the
dashed lines in Fig. 7(b). These give rise to the following
constraints on the numerator:

lim
ρ→∞

8<: ρ−4N ðl1 ¼ const;l2 ¼ ρlÞ ¼ 0;
ρ−6N ðl1 ¼ ρl;l2 ¼ constÞ ¼ 0;
ρ−6N ðl1 ¼ ρl;l2 ¼ constþ ρlÞ ¼ 0:

ð70Þ

Overall, a UV-finite numerator for the nonplanar double
box should be at most of rank five, with maximum degrees
of five and three in l1 and l2, respectively.

FIG. 7. The nonplanar double-box graph (a) and its subinte-
grations (b).
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2. IR divergences

As before, the relevant reduced diagrams correspond to the zeros of the first Symanzik polynomial:

U ¼ ðα1 þ α2 þ α3Þðα4 þ α5 þ α6 þ α7Þ þ ðα4 þ α5Þðα6 þ α7Þ; ð71Þ

and reproduce the subintegrations of Fig. 7(b). To solve the parameter-space Landau equations for the full diagram, we
compute the second Symanzik polynomial:

F ¼ s½α1α3ðα4 þ α5 þ α6 þ α7Þ þ α1α5α6 þ α3α4α7� þ tα2α5α7 − ðsþ tÞα2α4α6: ð72Þ

Unlike the planar case,F is no longer a sum of positive terms for appropriate signs of the Mandelstam invariants. Therefore,
we consider instead the most general linear combination of the Landau equations (25),

XE
e¼1

weαe
∂

∂αe
F ¼ sðw1 þ w3 þ w4Þα1α3α4 þ sðw1 þ w3 þ w5Þα1α3α5

þ sðw1 þ w3 þ w6Þα1α3α6 þ sðw1 þ w3 þ w7Þα1α3α7
þ sðw1 þ w5 þ w6Þα1α5α6 þ sðw3 þ w4 þ w7Þα3α4α7
þ tðw2 þ w5 þ w7Þα2α5α7 − ðsþ tÞðw2 þ w4 þ w6Þα2α4α6; ð73Þ

and require that each coefficient is strictly positive when
s; t > 0. It is straightforward to check that the resulting
system of linear inequalities is feasible: one possible
solution is

w⃗ ¼ ð0;−1; 1; 0; 2; 0; 0Þ: ð74Þ
This means that a subtraction-free linear combination of
the Landau equations exists, therefore we can find their
solutions simply by setting F to zero term by term as usual;
in other words, no divergences due to cancellations in F
can occur (see also Appendix A of Ref. [44]). For the
reduced diagrams, F is subtraction free itself, so their
analysis does not pose any difficulty.
Solutions of the Landau equations correspond to

double- and single-collinear IR divergences, all of which
are logarithmic. However, if we take intersections of

these solutions we find additional subdivergences, two of
which are powerlike. These are the double-soft configu-
rations ðl1 ¼ 0;l2 ¼ 0Þ and ðl1 ¼ k1 þ k2;l2 ¼ −k4Þ,
in accordance with Ref. [29]. Therefore, unlike the planar
case, cancellation of collinear configurations alone is
insufficient. In principle, one has to expand the UV-finite
Ansatz to a certain subleading order in the vicinity of the
powerlike configurations, and require that these divergent
contributions vanish. In practice, however, we find that
these additional constraints are satisfied automatically as
long as all collinear divergences are canceled. We report
the results of our analysis in Table VI.

3. Finding a basis of generators

By analogy with the planar double box we can define a
set of variables,

β1 ¼ l1 · v2; β2 ¼ ðl1 − k12Þ · v1; β3 ¼ ðl1 − l2Þ · v1;
β03 ¼ ðl1 − l2Þ · v2; β4 ¼ l2 · ðv1 − v2Þ;
β04 ¼ l2 · ðv2 − v3Þ; β12 ¼ l1 · v3; ð75Þ

which vanish on appropriate collinear and soft limits. In
particular, each βS (and β0S) vanishes on the collinear
configurations involving the particles in S, and also
vanishes on the soft limits involving the combinations of
loop momenta in its definition. In terms of these quantities
we find the generators:

TABLE VI. Results of the nonplanar double-box numerator
analysis. The counts for the integrals are inclusive of lower ranks,
while the counts for generators are not.

Rank 1 2 3 4 5

Number of finite integrals 0 0 9 65 230
Number of new finite generators 0 0 9 8 0
Number of evanescent integrals 0 0 0 1 7
Number of new evanescent generators 0 0 0 1 0
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rank three∶ β12 β3 β4; β12 β
0
3 β4; β12 β3 β

0
4; β12 β

0
3 β

0
4; β12 ðν12 − ν22Þ;

β3 ν12; β03 ν12; β4 ðν11 − ν12Þ; β04 ðν11 − ν12Þ;
rank four∶ β1 β2 β3 β4; β1 β2 β

0
3 β4; β1 β2 β3 β

0
4; β1 β2 β

0
3 β

0
4;

β1β2 ðν12 − ν22Þ; ν12 ðν11 − ν12Þ; ν12 ðν12 − ν22Þ; ν11ν22 − ν212: ð76Þ

Just as for the planar double box, we have only three
independent external and two loop momenta, so we expect
a single evanescent generator. This is indeed the case: it is
Gðl̂1 l̂2Þ ¼ ν11 ν22 − ν212.

D. Two-loop beetle

In this section we briefly treat the “beetle” integral of
Fig. 8(a). We will not show the whole procedure here, but
simply provide results for the locally finite and evanescent
truncated ideals.

This integral is of interest to us because it contains
powerlike double-collinear [see Fig. 8(b)] and soft-collinear
divergences, which did not appear in any of the cases treated
above. The presence of powerlike divergences involving
collinear configurations requires us to take into account
Eq. (31) for the first time in this article. In practice, as wewill
see shortly, this introduces a dependence on the Mandelstam
variables sij in the set of generators for the ideal of locally
finite numerators. To describe our results, we can define the
set of rank-one monomials,

β1 ¼ l1 · v2; β12 ¼ l1 · v3; γ1 ¼ l2 · v2; γ3 ¼ ðl2 − k12Þ · v2;
γ12 ¼ l2 · v3; γ14 ¼ l2 · ðv2 − v3Þ; γ34 ¼ l2 · ðv1 − v2Þ; γ23 ¼ ðl2 − k1Þ · v1; ð77Þ

so that the βS (respectively, the γS) vanish on collinear configurations of l1 (respectively, l2) involving the external
momenta in S. In terms of these variables,10 we can express the set of generators as follows:

rank three∶ γ12 γ34 ðs12β1 þ s13β12Þ; γ14 γ23 ðs12β1 þ s13β12Þ;
β1 ν22; β12 ν22; γ1 ν12; γ12 ν12;

rank four∶ β1 γ12 γ34 ðs12γ1 þ s13γ12Þ; β1 γ14 γ23 ðs12γ1 þ s13γ12Þ;
β12 γ

2
12 γ34; β12 γ12 γ23 γ14;

β1 γ23 ½s23γ21 þ ðγ1 þ γ34Þðs12γ1 þ s13γ12Þ�; ν12 ν22: ð78Þ

The polynomial β1s12 þ β12s13 and its equivalent with β → γ are related to standard scalar products of loop and external
momenta,

β1s12 þ β12s13 ¼ 2k1 · l1 and γ1s12 þ γ12s13 ¼ 2k1 · l2: ð79Þ

Finally we find that, within the UV power counting,
there are no evanescent numerators for the beetle
integral.

E. Two-loop four-gluon helicity amplitudes

In this section, we present a simple but concrete
application of the concepts and results discussed in
previous sections. We focus on the leading-color ampli-
tudes for two-loop scattering of four gluons in pure

FIG. 8. The beetle graph (a) and a collinear configuration
leading to a powerlike divergence (b). In (b) teal dotted edges are
collinear to k1.

10The variables in Eq. (77) are not all linearly independent. We
express our results in terms of an overcomplete set for the sake of
clarity.
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Yang-Mills theory. Very compact expressions for the
all-plus amplitude have been known for a long time [53]
and expressions for all other helicity configurations were
first computed in Refs. [54,55]. Our goal here is not to
obtain the most compact results, but rather to give a hint of
how using locally finite integrals allows us to shift IR
divergences out of the top-level topology. This offers a
simpler representation, where the overall divergence is

more manifest. For our example, we make use of the rank-
two locally finite numerators of Eq. (59),

f1ðk1; k2; k3; k4Þ ¼ β12β34; f2ðk1; k2; k3; k4Þ ¼ ν12;

ð80Þ
to write the bare four-gluon helicity amplitudes in a basis of
13 master integrals as follows:

ð81Þ

Here, A0→ggggðλÞ is the coefficient of the color factor
N2

c Tr½Ta1Ta2Ta3Ta4 � for the helicity configuration λ ¼
fλ1; λ2; λ3; λ4g (Nc is the dimension of the Yang-Mills
group and ai is the color index of the ith gluon). The
coefficients rλi are rational functions of the space-time
dimensions D and of the independent Mandelstam varia-
bles s12, s23. Finally, ΦðλÞ is an overall spinor factor.
The first four integrals in Eq. (81) are locally finite, and

contain the whole dependence on the double-box topology
(the one with the largest number of propagators). The
numerators of Eq. (80) correspond to linear combinations
of the chiral numerators presented in Ref. [56]. The
remaining nine integrals are chosen to match as closely

as possible the IR singularities obtained from the Landau
equations. Because our analysis is for the moment limited
to IR-finite integrals, we do not have a systematic way to
select IR-divergent integrals. We postpone an investigation
of this aspect to future work.
With the choice of master integrals adopted in Eq. (81),

we observe that all rational coefficients rλi are regular in the
limit ϵ → 0, implying that all divergences are contained in
the integrals themselves.
The helicity configurations which vanish at tree level

have an overall factor of ϵ so that, so long as we are
interested in the amplitudes only up toOðϵ0Þ, we can safely
drop all locally finite integrals. We then find

ð82Þ

where we have defined the rational coefficients r̃i to make
the overall factor of ϵ explicit, and where the ϵ-dependent
coefficient CðϵÞ approaches a finite constant as ϵ → 0. We
collect the explicit expressions for the coefficients in

Appendix B. A similar expression holds for the single-
minus amplitude. Our choice of master integrals makes
Eq. (82) free of contributions related to the double box, the
most complicated topology for this process.
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VIII. CONCLUSIONS

In this article, we presented a systematic approach to
finding locally finite integrands for Feynman integrals. Such
integrands yield integrals which are UV and IR finite, and
which are integrable everywhere in loop-momentum space.
They can be evaluated in four dimensions. The locally IR-
finite integrands form an ideal, which we can truncate to a
finite-dimensional space ofUV-finite integrands.We showed
how to write the generators of the ideal in a compact form
using either dual vectors or Gram determinants.
We also presented the class of evanescent integrands, a

subset of locally finite ones. These integrands give rise to
integrals which are of OðϵÞ in the dimensional regulator,
and so will vanish in the four-dimensional limit. They can
give rise to new identities between Feynman integrals. We
also briefly discussed evanescently finite integrands. These
give rise to finite integrals whose finiteness arises from
cancellation of a UV or IR divergence with a factor of ϵ
arising from the integration. Such integrands are special to
dimensional regularization, but may play a role in provid-
ing expressions for rational terms beyond one loop. We
leave a more thorough investigation of such integrands to
future work.
We presented several explicit examples at two loops: the

planar and nonplanar double boxes, as well as the integral
of Fig. 8. We also presented a conjecture for the locally
finite and evanescent integrands for all ladder integrals. We
verified the conjecture at three and four loops. Both classes
of integrands will be pruned through use of integration-by-
parts (IBP) identities [3,4], though ideally these would be
applied in a way that respects finiteness or evanescence. We
believe a compatible approach is possible and an interesting
subject for investigation.
The isolation of locally finite and evanescent integrands

represents the first step in a program of reorganizing
integrands in classes of uniform UV and IR divergence. A
next step, for example, could be isolating all integrals with
1=ϵ divergences of IR origin. We illustrated the promise of
such a reorganization by showing that the expressions
for planar two-loop four-gluon amplitudes simplify consid-
erably when we make use of finite integrals as master
integrals.

The interplay between finite or evanescent integrands
and the class of so-called local integrands [5] also offers an
interesting subject for investigation. The local integrands
allow one to express scattering amplitudes in a manifestly
local form. In addition, they give rise to integrals with
especially simple analytic properties. The integrals fulfil
simple differential equations, and can be expressed as pure
combinations of functions of uniform transcendental
weight [7]. The algorithms presented in this paper, in
combination with a suitable set of IBP identities as
described above, offer an opportunity to investigate these
classes of integrals from a more general perspective.
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APPENDIX A: GRAM DETERMINANT
REPRESENTATION FOR LOCALLY FINITE

NUMERATORS

In this section we present examples of Gram-determinant
representations for the truncated ideals of locally finite
numerators.

1. Double box

We found that Eq. (59) is a complete basis of locally finite
numerators for the double-box topology. An equivalent basis
can be obtained in terms of Gram determinants and reads

rank two∶ G

�
l1 1 2

l2 3 4

�
; G

�
l1 1 2 3

l2 1 2 3

�
;

rank three∶ Gðl2 3 4 ÞG
�
l1 1 2

1 2 4

�
; Gðl1 1 2 ÞG

�
l2 3 4

1 2 4

�
;

ðl2 þ k4Þ2G
�
l1 1 2

1 2 4

�
; ðl1 − k1Þ2G

�
l2 3 4

1 2 4

�
rank four∶ ðl2 þ k4Þ2Gðl1 1 2 Þ; ðl1 − k1Þ2Gðl2 3 4 Þ;

ðl1 − k1Þ2ðl2 þ k4Þ2; Gðl1l2123 Þ: ðA1Þ
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The lone rank-four evanescent generator of Eq. (61) corresponds to the Gram determinant,

Gðl1 l2 1 2 3 Þ: ðA2Þ

The basis in Eq. (A1) is not unique; in general, one can take linear combinations of the generators to construct different
bases. For example, an alternative choice for the rank-two generators is

G

�
l1 1 2

l2 3 4

�
; G

�
l1 1 2

1 2 3

�
G

�
l2 3 4

1 2 3

�
: ðA3Þ

2. Nonplanar double box

One possible choice of Gram-determinant representation for the locally finite basis of Eq. (76) is

rank three∶ G

�
l1 1 2

1 2 3

�
G

�
l2 4

1 2

�
G

�
l1 − l2 3

1 2

�
; G

�
l1 1 2

1 2 3

�
G

�
l2 4

2 3

�
G

�
l1 − l2 3

2 3

�
;

G

�
l1 1 2

1 2 3

�
G

�
l2 4

3 4

�
G

�
l1 − l2 3

3 4

�
; G

�
l1 1 2

1 2 3

�
G

�
l2 4

4 1

�
G

�
l1 − l2 3

4 1

�
;

G

�
l2 4

l1 − l2 3

�
G

�
l 1 1 2

1 2 3

�
; G

�
l2 4

1 2

�
G

�
l 1 1 2

l1 − l2 3 1

�
;

G

�
l2 4

2 3

�
G

�
l 1 1 2

l1 − l2 3 1

�
; G

�
l1 − l2 3

1 2

�
G

�
l 1 1 2

l2 4 1

�
;

G

�
l1 − l2 3

2 3

�
G

�
l 1 1 2

l2 4 1

�
;

rank four∶ ðl1 − k1Þ2G
�
l2 4

1 2

�
G

�
l1 − l2 3

1 2

�
; ðl1 − k1Þ2G

�
l2 4

2 3

�
G

�
l1 − l2 3

2 3

�
;

ðl1 − k1Þ2G
�
l2 4

3 4

�
G

�
l1 − l2 3

3 4

�
; ðl1 − k1Þ2G

�
l2 4

4 1

�
G

�
l1 − l2 3

4 1

�
;

Gðl1 1 2 ÞG
�

l2 4

l1 − l2 3

�
; G

�
l1 1 2

l2 1 2

�
G
�

l2 4

l1 − l2 3

�
;

ðl1 − k1Þ2G
�

l2 4

l1 − l2 3

�
; Gðl1 l2 1 2 3 Þ; ðA4Þ

while the lone evanescent generator is proportional to the same Gram determinant given in Eq. (A2).

3. Two-loop beetle

As for the other topologies in this appendix, we provide the Gram determinant form of the locally finite ideal for the
beetle integral defined in Sec. VII D. A possible choice of basis is

rank three∶G
�
l1 1

1 2

�
G

�
l2 1 2

l2 3 4

�
; G

�
l1 1

1 2

�
G

�
l2 1 4

l2 − k1 2 3

�
;

Gðl2 1 2 4 ÞG
�
l1 1

1 2

�
; Gðl2 1 2 4 ÞG

�
l1 1

2 3

�
;

G

�
l2 1

1 2

�
G

�
l2 1 2 2

l1 1 2 3

�
; G

�
l2 l1 1 2

l2 1 2 3

�
;
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rank four∶G
�
l2 1

1 2

�
G

�
l1 1

2 3

�
G

�
l2 1 2

1 2 3

�
G

�
l2 3 4

1 2 3

�
;

G

�
l2 1

1 2

�
G

�
l2 4

1 2

�
G

�
l1 1

2 3

�
G

�
l2 − k1 2 3

1 2 3

�
;

G

�
l2 1

1 2

�
G

�
l1 1

2 3

�
G

�
l2 1 4

l2 − k1 2 3

�
; G

�
l2 1

2 3

�
G

�
l2 3 4

1 2 3

�
G2

�
l2 1 2

1 2 3

�
;

G
�
l1 1

2 3

�
G
�
l1 1 2

1 2 3

�
G
�

l2 1 4

l2 − k1 2 3

�
; Gðl2 1 2 3 ÞG

�
l2 1 2 2

l1 1 2 3

�
: ðA5Þ

APPENDIX B: RATIONAL COEFFICIENTS OF THE ALL-PLUS AMPLITUDE

In this section we list the rational coefficients for the all-plus gluon amplitude of Eq. (82). In terms of the variable
x ¼ −s13=s12, we find

r̃þ5 ¼ 1

x
−

1

x2
þ
�
55

6x2
−
193

6x
−

10

x− 1
− 1

�
ϵþ

�
−

92

3x2
þ 218

3x
þ 82

x− 1
þ 49

6

�
ϵ2 þ

�
151

3x2
−
205

3x
−

513

2ðx− 1Þ− 25

�
ϵ3;

r̃þ6 ¼ −
1

x2
þ xþ 3

x
− 3þ

�
−10x3 þ 6x2 þ 55

6x2
þ 191x

6
−

9

2x
−
65

2

�
ϵþ
�
82x3 −

1175x2

6
−

92

3x2
þ 403x

3
þ 50

x
−
239

6

�
ϵ2

þ
�
−
513x3

2
þ 1453x2

2
þ 151

3x2
−
4295x
6

−
133

x
þ 657

2

�
ϵ3;

r̃þ7 ¼ 6−
6

x
þ
�
3xþ 55

x
− 55

�
ϵþ
�
−
79x
2

−
184

x
þ 184

�
ϵ2 þ

�
291x
2

þ 302

x
− 302

�
ϵ3;

r̃þ8 ¼ −
1

x2
þ 2

x
− 1þ

�
55

6x2
− x−

118

3x
þ 247

6

�
ϵþ
�
−
92

3x2
þ 49x

6
þ 87

x
−
253

2

�
ϵ2 þ

�
151

3x2
− 25x−

221

3x
þ 1205

6

�
ϵ3;

r̃þ9 ¼ −
1

x2
þ 2

x
− 1þ

�
10x2 þ 55

6x2
þ 8

3x
−
131

6

�
ϵþ
�
−62x2 −

92

3x2
þ 213x

2
þ 107

3x
−
99

2

�
ϵ2

þ
�
305x2

2
þ 151

3x2
− 357x−

383

3x
þ 1691

6

�
ϵ3;

r̃þ10 ¼
1

x2
−
1

x
þ
�
−

55

6x2
þ 193

6x
−

5

x− 1
− 41

�
ϵþ
�
92

3x2
−
218

3x
þ 11

x− 1
þ 767

6

�
ϵ2 þ

�
−
151

3x2
þ x
2
þ 231

4ðx− 1Þ þ
205

3x
−
117

2

�
ϵ3;

r̃þ11 ¼
1

x2
− x−

3

x
þ 3þ

�
−5x3 − 3x2 −

55

6x2
þ 43x

6
þ 9

2x
þ 11

2

�
ϵþ
�
11x3 þ 317x2

6
þ 92

3x2
−
382x
3

−
50

x
þ 497

6

�
ϵ2

þ
�
231x3

4
−
853x2

4
−
151

3x2
þ 3433x

12
þ 133

x
−
853

4

�
ϵ3;

r̃þ12 ¼
6

x2
−
12

x
þ 6þ

�
30x2 −

55

x2
þ 21xþ 92

x
− 118

�
ϵþ
�
−126x2 þ 184

x2
− 19x−

221

x
þ 368

�
ϵ2

þ
�
51x2

2
−
302

x2
− 198xþ 199

x
− 182

�
ϵ3;

r̃þ13 ¼
6

x
−

6

x2
þ
�
55

x2
− 30xþ 30

x− 1
−
73

x
þ 129

�
ϵþ
�
−
184

x2
þ 186x−

126

x− 1
þ 331

x
− 604

�
ϵ2

þ
�
302

x2
−
915x
2

þ 51

2ðx− 1Þ−
707

x
þ 1431

2

�
ϵ3: ðB1Þ
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Terms of Oðϵ4Þ do not contribute to the finite part of the amplitude. The overall coefficient reads

CðϵÞ ¼ 16

ð−3þ 2ϵÞ2ð−1þ 2ϵÞ2ð−2þ 3ϵÞð−1þ 3ϵÞ : ðB2Þ
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