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We present an exploratory work on integrating lattice-QCD results with experimental data for elastic
scattering. Within the framework of generalized parton distributions, this approach allows for the extraction
of detailed information about nucleon tomography and the total angular momentum carried by valence
quarks. To accomplish this reliably, we introduce a new quantity, the “double ratio,” which significantly
reduces the systematic uncertainties inherent in lattice QCD computations. Moreover, we introduce a
“shadow” term in the extraction procedure, which is sensitive only to lattice-QCD results. This term allows
us to investigate the model dependence of the extraction, providing a more flexible description of the
nucleon that goes beyond the previously considered bell-shaped distribution.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–5] provide a
well-established framework within the factorization theo-
rems of perturbative quantum chromodynamics and offer a
wealth of unique information about the partonic content of
the nucleon. In particular, GPDs are needed for the so-
called nucleon tomography [6–8], where the density of
partons carrying a specific fraction of the nucleon’s
momentum is mapped in a plane perpendicular to the
direction of the nucleon’s motion. Additionally, within
the GPDs framework, one can access components of the
nucleon’s energy-momentum tensor and, from there, evalu-
ate the total angular momentum carried by specific partons
[2,3] as well as the “mechanical” forces induced in a
partonic medium [9,10]. GPDs may be inferred from
experimental data in exclusive processes. An alternative
source of information on GPDs is provided from first
principle lattice-QCD calculations, with x-dependent deter-
minations having become possible only very recently due
to the development of novel techniques, such as the quasi-
and pseudodistributions [11,12].
Experiments at DESY, CERN, and JLab have already

delivered data for exclusive reactions sensitive to GPDs,
such as deeply virtual Compton scattering (DVCS), deeply

virtual meson production (DVMP), and timelike Compton
scattering (TCS), the latter of which has only recently been
measured [13]. Additionally, the GPDs topic is a corner-
stone of future experimental programs, particularly those at
JLab [14] and electron-ion colliders in US (EIC) [15] and
China[16]. Despite this progress, it is clear that extracting
GPDs from experimental data will be very challenging, and
even data obtained in the foreseeable future may not result
in precise constraints on these objects. The reason is the
limited information that can be accessed from DVCS,
DVMP, and TCS, as evidenced by the presence of so-
called shadow GPDs [17,18], which decouple from observ-
ables for these processes.
One potential solution to this problem is the measure-

ment of processes with enhanced sensitivity [19], such as
double DVCS [20], exclusive production of diphotons
[21,22], or electro- and mesoproduction of the photon-
meson pairs [23–27], which either provide complementary
information on GPDs or allow for mapping them in the full
kinematic domain. However, the feasibility of measuring
these processes remains uncertain, primarily due to their
small cross sections.
Another potential solution is to complement information

with lattice-QCD results. Quantities describing the struc-
ture of hadrons have been computed on the lattice for
several years. However, the focus was on moments of
partonic distributions, which can be accessed via local
matrix elements [28–34]. In practice, this approach is
constrained to only the lower moments, since the higher
ones suffer from poor signal-to-noise ratios and unavoid-
able power-divergent mixings with lower-dimensional
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operators. In turn, direct access to light-front correlations
defining the x-dependent distributions is prohibited on a
Euclidean lattice due to the Wick rotation to imaginary
time. As mentioned above, novel techniques were intro-
duced to allow for indirect access, where an appropriate
lattice observable can be factorized perturbatively into a
light-front distribution. Starting with seminal papers of Ji
[11,35] that introduced quasidistributions, several other
approaches were proposed or revived [12,36–40], see
Refs. [41–46] for reviews. While the initial center of
attention were parton distribution functions (PDFs), the
introduced indirect approaches allow for a simple gener-
alization to include a momentum transfer between the
initial and the final state, thus giving access to GPDs.
Obviously, GPDs are more difficult to explore due to their
dependence on additional variables. However, much work
has already been performed, see, e.g., Refs. [47–57]. In
particular, the recent important development is to access
GPDs in asymmetric frames of reference [50], which
enables computations for several momentum transfer val-
ues at once, leading to much improved computational
efficiency. Nevertheless, the lattice calculations of GPDs
are still in their exploratory stage, and several sources of
systematic uncertainties remain to be quantified. Hence, it
is somewhat unclear how lattice results can be mean-
ingfully combined with experimental data in the phenom-
enology of GPDs, given significant sources of unquantified
systematics related to them, such as higher-twist and
higher-order corrections.
In this work, we address this question by exploring the

possibility of combining lattice and experimental data. We
focus specifically on the zero skewness case, that is, we
only utilize elastic scattering experimental data. Combining
these with lattice results allows us to address nucleon
tomography and to extract the total angular momentum of
partons, however, both only for the valence quarks. In
addition to accessing this information, we are also inter-
ested in studying the systematics of nucleon tomography
using the concept of shadow GPDs. We note that the
limitation to only the valence quarks comes solely from the
use of data for elastic scattering, as lattice-QCD results
provide information on both the valence and sea compo-
nents. The latter will be discussed in this work but will not
be used in the extraction of the aforementioned informa-
tion. For similar reasons, this work is limited to the so-
called unpolarized parton distributions, despite lattice QCD
also providing access to helicity and transversity cases
[48,49,54]. Possibilities of using techniques commonly
employed in phenomenological fits (such as neural net-
works), as well as of combining phenomenological and
lattice data to explore parton distributions were explored
also in the past, initially for PDFs, see Refs. [58–60].
Recently, the first global analysis of GPDs using lattice and
experimental data was performed in a framework that
parametrizes GPDs in terms of their moments [61], aiming

at the nonzero skewness case. Moreover, explorations of
the impact of lattice-QCD data on the extraction of GPDs
using machine learning techniques applied on pseudodata
were conducted [62].
This article is organized as follows. In Sec. II, we remind

the reader of the basics of the GPD formalism and define
the nomenclature used throughout this text, while in Sec. III
we briefly summarize the extraction of lattice observables
that are used in this work. In Sec. IV, we present a
comparison between lattice-QCD results and parametriza-
tions of PDFs, elastic form factors (FFs), and GPDs. In the
same section, we also present the double ratio, a quantity
that allows the cancellation of some sources of systematic
uncertainties associated with lattice-QCD computations. In
Sec. V, we describe the extraction of tomography infor-
mation, including the presentation of data for elastic
scattering and the introduction of the shadow term used
to study model dependence. Finally, in Sec. VI, we present
the obtained results, and in Sec. VII, we provide a concise
summary of this work.

II. BASICS OF GPD FORMALISM

For this investigation, we focus on the unpolarized case
for quark GPDs for the proton. The formal definition of
proton GPDs Hq and Eq for quarks, expressed through
matrix elements of quark operators on the light cone, is as
follows:

1

2

Z
dz−

2π
eixP

þz−hp0jq̄
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2
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�
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where M is the proton mass, and, for brevity, we omit the
Wilson line. The light-cone vectors are given by
n� ¼ ð1; 0; 0;�1Þ= ffiffiffi

2
p

, such that any four-momentum
can be expressed as

vμ ¼ vþnμþ þ v−nμ− þ vμ⊥; ð2Þ

where v� ¼ v · n∓ ¼ ðv0 � v3Þ= ffiffiffi
2

p
and v⊥ ¼ ð0; v; 0Þ.

Specific four-momenta and variables are defined with
the help of Fig. 1. GPDs depend on three kinematic
variables: x, ξ, and t. The variable x ¼ kþ=Pþ describes
the average longitudinal momentum of the active parton,
ξ ¼ ðpþ − p0þÞ=ðpþ þ p0þÞ ¼ −Δþ=ð2PþÞ the change of
this momentum, while t ¼ Δ2 (one of the Mandelstam
variables) characterizes the change of the proton’s four-
momentum. Additionally, GPDs also depend on the fac-
torization scale μ, but this dependence will be suppressed
throughout the text for brevity.

CICHY, CONSTANTINOU, SZNAJDER, and WAGNER PHYS. REV. D 110, 114025 (2024)

114025-2



The so-called forward limits of Hq and Eq are

Hqðx; 0; 0Þ ¼ qðxÞ; ð3Þ

Eqðx; 0; 0Þ ¼ eqðxÞ; ð4Þ

where qðxÞ is the unpolarized PDF, while eqðxÞ has no
correspondence in physics of (semi-)inclusive scattering
and is subject to modeling or a lattice-QCD calculation.
One of the most striking features of GPDs, being a
consequence of the Lorentz invariance of these objects,
is the so-called polynomiality, expressed by

Z
1

−1
dxxnHqðx; ξ; tÞ ¼

Xn
i¼0
even

ð2ξÞiAq
nþ1;iðtÞ

þmod ðn; 2Þð2ξÞnþ1Cq
nþ1ðtÞ; ð5Þ

Z
1

−1
dxxnEqðx; ξ; tÞ ¼

Xn
i¼0
even

ð2ξÞiBq
nþ1;iðtÞ

−mod ðn; 2Þð2ξÞnþ1Cq
nþ1ðtÞ: ð6Þ

The polynomiality states that a given Mellin moment of
GPD is a polynomial in even powers of ξ, where Aq

nþ1;iðtÞ,
Bq
nþ1;iðtÞ, and Cq

nþ1ðtÞ are generalized form factors. For
n ¼ 0, they are equivalent to the contributions of a given
quark to Dirac and Pauli FFs,

Z
1

−1
dxHqðx; ξ; tÞ ¼ Aq

1;0ðtÞ≡ Fq
1ðtÞ; ð7Þ

Z
1

−1
dxEqðx; ξ; tÞ ¼ Bq

1;0ðtÞ≡ Fq
2ðtÞ: ð8Þ

Nucleon tomography requires no knowledge of GPD at
ξ ≠ 0 and for an unpolarized proton is given by

qðx;b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥Hqðx; 0;−Δ2⊥Þ: ð9Þ

The impact parameter b⊥ ¼ ðbx; byÞ is defined in a coor-
dinate systemwhose origin is set by the center ofmomentum
of all proton constituents [7]. In the limiting case where the
entire proton’s momentum is carried by a single parton,
x ¼ 1, the origin of the coordinate system coincides with its
position. Therefore, qðx ¼ 1;b⊥Þ ¼ δðb⊥Þ, which requires
a vanishing t dependence of the GPD Hq at x ¼ 1,

lim
x→1

d
dt
Hðx; 0; tÞ ¼ 0: ð10Þ

Because of the coordinate system in which nucleon
tomography is defined, one can easily find the average
relative distance between the active parton and the spectator
system [63],

dq ¼
ffiffiffiffiffiffiffiffiffiffiffi
hb2iqx

p
1 − x

; ð11Þ

where

hb2iqx ¼
R
d2b⊥b2⊥qðx;b⊥ÞR
d2b⊥qðx;b⊥Þ

: ð12Þ

The requirement of keeping this distance finite at x → 1
results in the additional constraint on the parameters of the
GPD model used by us to describe the experimental and
lattice data [see Eq. (32)]. If the proton is not polarized
longitudinally, i.e. along the direction of its motion setting
the Z axis, but rather transversely, say, along the X axis, the
density of partons will be distorted and given by

qXðx;b⊥Þ ¼ qðx;b⊥Þ −
1

2M
∂

∂by
eqðx;b⊥Þ; ð13Þ

where

eqðx;b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥Eqðx; 0;−Δ2⊥Þ: ð14Þ

Additional information about the proton is provided by
fully considering the connection between GPDs and
elements of the energy-momentum tensor. For brevity,
we refrain from explaining this broad subject in detail
and instead refer to one of the available reviews, such as
[64]. However, from the point of view of this work, it is
important to recall the so-called Ji’s sum rule,

2Jq ¼ A2;0ð0Þ þ B2;0ð0Þ

¼
Z

1

−1
dxxðHqðx; ξ; 0Þ þ Eqðx; ξ; 0ÞÞ; ð15Þ

where A2;0ð0Þ and B2;0ð0Þ are the generalized form factors,
see Eq. (6). This sum rule is particularly important, as it

FIG. 1. (a) Momenta of the relevant particles and (b) their plus
components: four-momenta p and p0 describe the initial and
final-state protons, k − Δ=2 and kþ Δ=2 describe the emission
and reabsorption of a single quark, while xþ ξ and x − ξ
represent the fractional quark momenta, with t being the
Mandelstam variable describing the four-momentum transfer.
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allows for evaluating the total angular momentum carried
by specific partons.

III. LATTICE-QCD INPUT

In this section, we briefly summarize the extraction of
lattice observables that are used in this work. For a more
detailed account, we refer to Refs. [50,55].
We calculate Euclidean matrix elements (MEs) of the

following nonlocal vector operator:

Fμðz; Pf; PiÞ ¼ hNðPfÞjψ̄ðzÞγμWð0; zÞψð0ÞjNðPiÞi; ð16Þ

with jNðPiÞi, jNðPfÞi denoting the nucleon’s initial and
final states with the corresponding four-momenta Pi or Pf,
respectively. The quark and antiquark fields of the operator
are spatially separated by a distance z along the 3-direction
and connected by a Wilson line Wð0; zÞ. For the con-
struction of H and E pseudo-GPD MEs, we use Dirac
indices μ ¼ 0, 1, 2 in the operator insertion. We also define
the momentum transfer Δ ¼ Pf − Pi, with t ¼ −Δ2, and
the so-called Ioffe time ν ¼ P3z.
The MEs of Eq. (16) are calculated in an asymmetric

frame of reference, in which the final state has a fixed
momentumPf ¼ ðP0

f; 0; 0; P
3
fÞ and the momentum transfer

is embodied by the initial state momentum, i.e.
Pi ¼ ðP0

f − Δ0;−Δ1;−Δ2; P3
fÞ. In this work, we only

consider momentum transfer along the transverse direc-
tions, i.e. we consider only zero skewness (ξ ¼ 0). Given
such a setup, we proceed by extracting Lorentz-invariant
amplitudes Ai and construct the H and E pseudo-GPDs in
terms of these amplitudes, see Ref. [50] for explicit
expressions. Out of the two pseudo-GPD definitions
proposed in Ref. [50], we use the Lorentz-invariant (LI)
one. It can be interpreted that different pseudo-GPD
definitions are characterized by different contamination
from power-suppressed higher-twist effects (HTEs). In the
present case of unpolarized GPDs, the LI variant turns out
to have a more favorable interplay of HTEs, with the
convergence improvement observed particularly for the E
case [51].
In our work, we use MEs computed in Refs. [50,55], and

we refer to these works for a more comprehensive dis-
cussion of the methodology. The lattice setup consists of
Nf ¼ 2þ 1þ 1 twisted mass clover-improved quarks (a
degenerate up and down quark doublet and a nondegen-
erate heavier doublet of strange and charm quarks) and
Iwasaki-improved gluons [65]. The lattice parameters are
a ≈ 0.093 fm (lattice spacing), L3 × T ¼ 323 × 64 (lattice
size, amounting to L ≈ 3 fm in physical units), and a pion
mass of approximately 260 MeV. All MEs are calculated at
a source-sink separation of ten lattice spacings, leading to
negligible excited-state contamination at our current level
of precision.

The use of the asymmetric kinematic frame discussed
above allows us to access several momentum transfer
vectors and values of −t. In this work, we use
Δ⃗ ¼ ðΔ1;Δ2; 0Þ with Δ1=2 ¼ f1; 2; 3; 4gð2π=LÞ and the
other transverse component Δ2=1 chosen such that
−t < 2.3 GeV2. This leads to the following combinations
for the transverse momentum transfer [in units of ð2π=LÞ]:
(1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (2, 1), (3, 1), (2, 2) with
permutations exchanging the role of Δ1=2 and sign changes
of both Δ1=2. In physical units, these combinations give
−t ¼ f0.17; 0.34; 0.65; 0.81; 1.24; 1.38; 1.52; 2.29g GeV2.
The MEs are obtained at several momentum boosts P3,
corresponding to P3 ¼ ð2π=LÞn, with n ¼ f0; 1; 2; 3; 4g,
amounting to P3 ¼ f0; 0.42; 0.83; 1.25; 1.67g GeV in
physical units. For more details of this setup, we refer to
Ref. [55], in particular to Table I in this publication, that
documents the numbers of used gauge field configurations,
source positions, and the total numbers of measurements.
In Refs. [50,55], only the flavor nonsinglet combination

u − d was considered, which profits from the cancellation
of quark-disconnected contributions in a setup of degen-
erate light quarks. However, it was shown in Ref. [95] that
the disconnected contributions are strongly suppressed in
the unpolarized case and, in particular, much smaller than
our current statistical precision. Hence, we neglect them
and consider flavor-separated GPDs of up and down
quarks.
After the extraction of bare pseudo-GPD MEs, we

renormalize them in a ratio scheme [96], canceling the
divergences related to the end points and the Wilson line
with zero-momentum unpolarized PDFs. The ensuing
objects, often referred to as pseudo-Ioffe time distributions
(pseudo-ITDs) are renormalization group invariant, but are
defined at particular kinematic scales given by 1=z and are
still Euclidean objects. Thus, they need to be related to

TABLE I. Elastic form factor and lattice-QCD data used in this
analysis. Data for Rn are taken from Ref. [66], evaluated from the
original material specified in this table. The two last columns
indicate the goodness of the fit for the set of central replicas.

Observable Ref. No. of points χ2 χ2=no:

Gp
M;N [67] 54 46 0.86

Rp [67–77] 54 88 1.63
Gn

M;N [78–82] 36 22 0.63
Rn [83–92] 21 26 1.23
Gn

E [93] 12 2.5 0.21
r2nE [94] 1 7.3 7.3
ReDRu

H [55] 176 245 1.39
ReDRd

H [55] 176 253 1.44
ReDRu

E [55] 176 180 1.02
ReDRd

E [55] 176 324 1.84

Total 882 1185 1.34
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physical ITDs, theH and EGPDs in coordinate space. This
proceeds by applying perturbative evolution and matching
kernels [97–101]. The former evolve the ITDs from the
scales 1=z to a common scale μ, chosen to be 2 GeV, while
the latter convert the Euclidean objects to their light-cone
counterparts in the MS scheme. We restrict ourselves to
one-loop evolution and matching, with two-loop effect
found to be beyond our current precision [102]. The
explicit formulas are given in Ref. [55]. These formulas
should be applied at short distances to avoid large con-
tributions from Oðz2Λ2

QCDÞ HTEs. We adopt the pragmatic
criterion for the maximum value of z, zmax, discussed in
Ref. [55]. According to it, zmax is chosen such that matched
ITDs obtained from different combinations of ðP3; zÞ but at
a common Ioffe time are compatible among each other.
Since our combined analysis with experimental data uses
only the real part of lattice-extracted ITDs, we choose
zmax ¼ 9a ≈ 0.84 fm [55]. While this value seems rather
large from the perturbative point of view, the practical size
of HTEs is demonstrably suppressed for z ≤ zmax at the
current precision level, likely profiting from cancellations
of HTEs in the ratio scheme and the convergence properties
of the LI variant of pseudo-GPD definitions.
The final evolved and matched ITDs are input to our

analysis presented in the remainder of this paper. They are
physical objects, directly related to the internal structure of
the nucleon and are given for μ ¼ 2 GeV. Nevertheless,
one needs to keep in mind that, at this stage, they are still
contaminated by unquantified systematic effects, related to
lattice-specific features (e.g., a single lattice spacing and a
single lattice volume), the nonphysical pion mass and other
aspects (e.g., a limited nucleon boost).

IV. COMPARISON BETWEEN LATTICE-QCD
RESULTS AND EXISTING

PHENOMENOLOGICAL RESULTS

In this section, we compare lattice-QCD results used in
this work with models of GPDs and parametrizations of
elastic FFs and unpolarized PDFs. The comparison is done
in the space of Ioffe time ν that can be related to the usual
momentum space by the Fourier transform,

Ĥqðν; ξ; tÞ ¼
Z

1

−1
dxeixνHqðx; ξ; tÞ; ð17Þ

which is shown here for a quark flavor q. This relation also
holds for the GPD Eq, in which we are also interested in
this study.
It is instructive to rewrite Eq. (17) with the help of

charge-even HqðþÞ and charge-odd Hqð−Þ combinations of
GPDs, sometimes called “singlet” and “nonsinglet” (or
“valence”) combinations, which are defined as follows:

HqðþÞðx; ξ; tÞ ¼ Hqðx; ξ; tÞ −Hqð−x; ξ; tÞ; ð18Þ

Hqð−Þðx; ξ; tÞ ¼ Hqðx; ξ; tÞ þHqð−x; ξ; tÞ: ð19Þ

Because of the obvious symmetry properties, this gives us

ReĤqðν; ξ; tÞ ¼
Z

1

0

dx cosðxνÞHqð−Þðx; ξ; tÞ; ð20Þ

ImĤqðν; ξ; tÞ ¼
Z

1

0

dx sinðxνÞHqðþÞðx; ξ; tÞ: ð21Þ

Since in this analysis we are only interested in the case
ξ ¼ 0, which is relevant for nucleon tomography, in the
following, we will omit the ξ dependence in the formulas
for brevity. At ξ ¼ 0, further insight is provided by the
following decomposition into valence and sea contribu-
tions:

Hqð−Þðx; tÞ ¼ Hqvalðjxj; tÞ; ð22Þ

HqðþÞðx; tÞ ¼ ðHqvalðjxj; tÞ þ 2Hqseaðjxj; tÞÞsgnðxÞ; ð23Þ

where we used the following:

Hqvalðx; tÞ ¼ 0 for x < 0; ð24Þ

Hqseaðx; tÞ ¼ −Hqseað−x; tÞ: ð25Þ

We, therefore, see that the real part of Ĥqðν; tÞ is sensitive
only to valence quarks, while the imaginary part of this
quantity is also sensitive to the sea contribution. It is also
important to note that knowing Hqð−Þðx; tÞ is sufficient to
determineHqvalðx; tÞ. The latter can be used to evaluate any
Mellin moment of this quantity.
The quantity Ĥðν; tÞ must also fulfill the constraint (10),

which in Ioffe time space can be expressed with the help of
the inverse Fourier transform as follows:

lim
x→1

d
dt

Z
∞

0

dνe−ixνĤqðν; tÞ ¼ 0: ð26Þ

The comparison between lattice-QCD results and several
parametrizations of the up quark and down quarks of the
unpolarized PDF (t ¼ 0 case) and elastic FFs (ν ¼ 0 case)
is shown in Figs. 2(a) and 2(b), respectively. The para-
metrizations utilized in this comparison come from the
Goloskokov-Kroll (GK) [103,104] and Vanderhaeghen-
Guichon-Guidal (VGG) [105] GPD models (both imple-
mented in the PARTONS framework [106]) and the study
presented in Ref. [107], which we will refer to as MSW.
That is, for PDFs, we show the comparison for a custom fit
to the CTEQ6m set [108] (GK), the original MSTW08 set
[109] available via the LHAPDF library [110] (VGG), and
a custom fit to the NNPDF3.0 set [111] (MSW). For elastic
form factors, we have two simple parametrizations roughly
reproducing the main features of the data (GK and VGG)
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FIG. 2. Comparison of lattice-QCD results (markers with uncertainty bars) with GK [103,104] (solid curve) and VGG [105] (dashed
curve) GPD models and, only for (a) and (b), MSW analysis [107] (solid band). Left (right) plots are for real (imaginary) parts of
Hqðν; tÞ, while top (bottom) rows are for up (down) quarks. Each subfigure is made for different kinematics: as a function of (a) ν for
t ¼ 0, (b) jtj for ν ¼ 0, (c) ν for jtj ¼ 0.65 GeV2.
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and the result of the elaborate global analysis (MSW). The
figures demonstrate a moderate agreement between lattice-
QCD and parametrizations of PDFs and elastic FFs, which
does not come as a surprise, taking into account that the
current state of lattice-QCD computations is still very much
exploratory. The discrepancy is also visible in ν, t ≠ 0
cases, as demonstrated in Fig. 2(c). In this case, however,
one should keep in mind that the uncertainties of the two
presented GPD models are unknown. In particular, these
models are based on Radyushkin’s double distribution
Ansatz, but other modeling strategies, such as those based
on the Mellin-Barnes framework [112], dual parametriza-
tion [113,114], or artificial neural networks [115], could
yield different estimates.
The lack of agreement between lattice-QCD results and

parametrizations of PDFs and elastic FFs can be attributed
to a variety of effects, in particular, to a nonphysical pion
mass (for some discussion see, for instance, Ref. [116]).
These effects will be corrected over time and, in fact, the
comparison shown in Fig. 2 should be considered encour-
aging, given the current state of the art in lattice-QCD
computations. The fundamental question is whether the
presented lattice-QCD results can be used now in the
phenomenological studies of GPDs without introducing
significant bias and tension with better-known quantities.
To make this possible, we introduce a new quantity called
the double ratio (DR). It is separately defined for the real
and imaginary parts of Ĥqðν; tÞ,

DRĤq

Re ðν; tÞ ¼
ReĤqðν; tÞ
ReĤqðν; 0Þ

ReĤqð0; 0Þ
ReĤqð0; tÞ ; ð27Þ

DRĤq

Im ðν; tÞ ¼ lim
ν0→0

ImĤqðν; tÞ
ImĤqðν; 0Þ

ImĤqðν0; 0Þ
ImĤqðν0; tÞ : ð28Þ

The definitions of DRĤq

Re ðν; tÞ and DRĤq

Im ðν; tÞ must be
different, because both ImĤqð0; 0Þ and ImĤqð0; tÞ vanish.
The robustness of the DRĤq

Im ðν; tÞ definition is demonstrated
in Fig. 3, which shows the single ratio ImĤqðν; tÞ=
ImĤqðν; 0Þ as a function of ν for a few values of t. In
this figure, one can observe a plateau near ν ¼ 0, indicating

that limν→0ðImĤqðν; tÞ=ImĤqðν; tÞÞ can be reliably esti-
mated by examining ImĤqðν; tÞ=ImĤqðν; tÞ for small ν.
The plateau near ν ¼ 0, also observed in Figs. 2(a) and 2(c)
for the real parts, is not accidental. It is a consequence of the
limited domain of integration in Eq. (17) compared to the
usual definition of the Fourier transform. It appears when-
ever xν frequencies are much smaller than the limiting
x ¼ 1. In addition to the discussion presented in this
paragraph, we note a poor agreement between lattice-
QCD results and GPD models for single ratios, as also
shown in Fig. 3.
For the real part, the double ratio DRĤq

Re ðν; tÞ can be
interpreted as a function describing the deviation of
ReĤqðν; tÞ from the factorized Ansatz, being a product
of the corresponding PDF and the elastic FF. Explicitly,

ReĤqðν; tÞ ¼ Nq
H ×

qðνÞ
Nq

H
×
Fq
1ðtÞ
Nq

H
× DRĤq

Re ðν; tÞ; ð29Þ

where Nq
H ≡ ReĤqð0; 0Þ is 2 for up quarks and 1 for down

quarks, qðνÞ≡ ReĤqðν; 0Þ and Fq
1ðtÞ≡ ReĤqð0; tÞ. A

similar interpretation holds for the GPD Eq. However, its
forward limit is not probed by (semi-)inclusive scattering
and, therefore, is mostly unknown and a subject of modeling.
The interpretation of DRĤq

Im ðν; tÞ and DRÊq

Imðν; tÞ is, on the
other hand, spoiled by the vanishing ImĤqð0; tÞ ¼
ImÊqð0; tÞ ¼ 0, that is, undefined elastic FFs.
The comparison between lattice-QCD data and GPD

models for the double ratios is shown in Figs. 4(a) and 4(b),
as a function of ν and t, respectively. The comparison done
for PDFs and elastic FFs is trivial, as, by definition,
DRðν; 0Þ ¼ DRð0; tÞ ¼ 1 for both the real and imaginary
parts and for all GPD types. Based on the presented figures,
we find that the lattice-QCD results are now in much better
agreement with the models. They either agree with them, or
the discrepancy is within the spread between the models. It
therefore seems that by removing explicit information on
PDFs and elastic FFs, we have reduced many sources of
systematic errors. This statement should be scrutinized with
future lattice-QCD calculations, for instance, by studying

FIG. 3. Comparison of lattice-QCD results (markers with uncertainty bars) with GK (solid curve) and VGG (dashed curve) GPD
models for the single ratios ImĤuðν; tÞ=ImĤuðν; 0Þ. (a) jtj ¼ 0.34 GeV2, (b) jtj ¼ 0.81 GeV2, (c) jtj ¼ 1.52 GeV2.
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the stability of double ratios with a more accurate repro-
duction of PDFs and elastic FFs.

V. EXTRACTION OF TOMOGRAPHY
INFORMATION

In this section, we describe the extraction of tomography
information from lattice-QCD results and data on elastic
scattering, assuming a specific parametrization of PDFs.
For the H GPD, our Ansatz consists of two parts,

Hqðx; tÞ ¼ Hq
Cðx; tÞ þHq

Sðx; tÞ; ð30Þ

where Hq
Cðx; tÞ is a “classic” term contributing to the

description of both lattice-QCD results and data for elastic
scattering, whileHq

Sðx; tÞ is a shadow term only sensitive to
the double ratios.
For Hq

Cðx; tÞ, we take the Ansatz previously used in
Ref. [107],

Hq
Cðx; tÞ ¼ qðxÞ expðfqHðxÞtÞ; ð31Þ

where the profile function containing free parameters
pq
H;i is

fqHðxÞ ¼ pq
H;0 logð1=xÞ þ pq

H;1ð1 − xÞ2 − pq
H;0ð1 − xÞx:

ð32Þ
The opposite coefficients multiplying logð1=xÞ and
ð1 − xÞx terms allow us to keep the distance between the
active quark and the spectator system finite, see Eq. (11).
The shadow term must vanish both at t ¼ 0 (no con-

tribution to PDFs) and upon integration over x (no con-
tribution to elastic FFs),

Z
1

0

dxHq
Sðx; tÞ ¼ 0: ð33Þ

In addition, its contribution to Hqðx; tÞ in (30) must not
violate the positivity constraint and the requirement

FIG. 4. Comparison of lattice-QCD results (markers with uncertainty bars) with GK (solid curve) and VGG (dashed curve) GPD
models for the double ratios defined in Eq. (28) as a function of (a) ν for jtj ¼ 0.65 GeV2, (b) jtj for ν ¼ 3.14.
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expressed by Eq. (10). Since the shadow term is not determined by first principles, it is subject to modeling. As an example,
we propose the following Ansatz, fulfilling all the aforementioned requirements:

Hq
Sðx; tÞ ¼ pq

H;2 × ðð1 − xÞbqH − AðtÞð1 − xÞðbqHþ1ÞÞ × ðexpðpq
H;3ð1 − xÞtÞ − expðpq

H;4ð1 − xÞtÞÞ: ð34Þ

The function AðtÞ is found by requiring (33) and is given by

AðtÞ¼−ððbþ1Þp3p4tð−p3ð−p3tÞbΓðbþ1;−p4tÞþp4ð−p4tÞbΓðbþ1;−p3tÞþp3Γðbþ1Þð−p3tÞb
−p4Γðbþ1Þð−p4tÞbÞÞ=ðb2p2

3Γðbþ1Þð−p3tÞb−b2p2
4Γðbþ1Þð−p4tÞbþp2

3p
2
4t

2ep3tð−p3tÞbð−p4tÞb
−p2

3p
2
4t

2ep4tð−p3tÞbð−p4tÞbþbp2
3p4tð−p3tÞbΓðbþ1;−p4tÞþp2

3p4tð−p3tÞbΓðbþ1;−p4tÞ
−bp2

3ð−p3tÞbΓðbþ2;−p4tÞ−p2
3ð−p3tÞbΓðbþ2;−p4tÞ−p2

3p4tð−p3tÞbΓðbþ2;−p4tÞþ2bp2
3Γðbþ1Þð−p3tÞb

þp2
3Γðbþ1Þð−p3tÞb−bp3p2

4tð−p4tÞbΓðbþ1;−p3tÞ−p3p2
4tð−p4tÞbΓðbþ1;−p3tÞþbp2

4ð−p4tÞbΓðbþ2;−p3tÞ
þp2

4ð−p4tÞbΓðbþ2;−p3tÞþp3p2
4tð−p4tÞbΓðbþ2;−p3tÞ−2bp2

4Γðbþ1Þð−p4tÞb−p2
4Γðbþ1Þð−p4tÞbÞ; ð35Þ

where pi ≡ pq
H;i, b≡ bqH, Γða; zÞ ¼ R

∞
z dtta−1e−t is the

incomplete gamma function, and ΓðaÞ ¼ Γða; 0Þ. The
evaluation of Hq

S is typically unstable for jtj≲ 0.1 GeV2,
as both the numerator and denominator of Eq. (35) become
very small. This issue does not pose a threat to our fit, as the
lattice-QCD data used do not cover this region. However, it
may be relevant for the later extraction of tomography
information. Since AðtÞ is flat in the problematic region, it
is safe to approximate it there with the help of the Taylor
expansion done at, say, jt0j ¼ 0.2 GeV2. The coefficient
bqH controls the power behavior of the shadow term at
x → 1 and is set to match the corresponding coefficient
used in the parametrization of PDFs,

qðxÞ ¼ NH
q q0ðxÞ

��Z
1

0

dxq0ðxÞ
�
;

q0ðxÞ ¼ x−δ
q
Hð1 − xÞbqH

X4
i¼0

cqH;ix
i; ð36Þ

where the coefficients δqH, b
q
H, and c

q
H;i have been fixed in a

fit to the NNPDF3.0 set in Ref. [107], and where NH
u ¼ 2

for up quarks and NH
d ¼ 1 for down quarks. For brevity, we

omit the expression for the normalization integral, as it can
be easily computed analytically. The matching of bqH

coefficients helps keep the parton densities positive in
impact parameter space. In summary, in addition to the
feature described in the last sentence, the shadow term will
not contribute to PDFs, as Hq

Sðx; 0Þ ¼ 0, nor to elastic FFs,
because of Eq. (33), and it can only be constrained by
lattice-QCD results. Moreover, because of the use of
(1 − x) terms in the profile function, see Eq. (34), it fulfills
the requirement given by Eq. (10).
For the E GPD, we have

Eqðx; tÞ ¼ eqðxÞ expðfqEðxÞtÞ: ð37Þ

The profile function is

fqEðxÞ ¼ pq
H;0 logð1=xÞ þ pq

E;0ð1 − xÞ2 þ pq
E;1xð1 − xÞ;

ð38Þ

where the coefficient pq
H;0 is the same as in Eq. (32),

helping to keep the parton densities positive in the impact
parameter space. For the E GPD in the current analysis, we
refrain from using the shadow term, as the number of free
parameters is already inflated by the need to constrain the
forward limit in the fit,

TABLE II. Mean values of fitted parameters with uncertainties. The values presented in this table are for tentative orientation only.
Directly using them may lead to incorrect conclusions, as it would neglect the correlations.

pu
H;0 pu

H;1 pu
H;2 pu

H;3 pu
H;4 pd

H;0 pd
H;1 pd

H;2

0.876� 0.076 −0.32� 0.12 0.7� 4.1 1.07� 0.85 0.82� 0.80 0.500� 0.068 0.72� 0.18 0.0� 2.9

pd
H;3 pd

H;4 pu
E;0 pu

E;1 δEu pd
E;0 pd

E;1 δEd

0.95� 0.76 0.80� 0.74 −0.44� 0.25 −0.93� 0.17 0.710� 0.039 −0.36� 0.22 −0.37� 0.31 0.806� 0.034

NUCLEON TOMOGRAPHY AND TOTAL ANGULAR … PHYS. REV. D 110, 114025 (2024)

114025-9



eqðxÞ ¼ NE
qeq0ðxÞ

��Z
1

0

dxeq0ðxÞ
�
;

eq0ðxÞ ¼ x−δ
E
q ð1 − xÞbEq ð1þ γEq

ffiffiffi
x

p Þ; ð39Þ

where NE
q ¼ κq are the “partonic” anomalous magnetic

moments, bEu ¼ 4.65, bEd ¼ 5.25, γEu ¼ 4, γEd ¼ 0, and δEq is
a free parameter. This Ansatz for eqðxÞ has been originally
proposed in Ref. [66]. Releasing some of the fixed eqðxÞ

coefficients in the fit is possible, however, this is left for
future, more elaborate analyses.
Both lattice-QCD and elastic data used in our fit are

specified in Table I. The latter were initially selected in
Ref. [66], and they consist of the following observables:

(i) The normalized magnetic form factors

Gi
M;NðtÞ ¼

Gi
MðtÞ

μiGDðtÞ
; ð40Þ

FIG. 5. Lattice-QCD and elastic FF data (markers with uncertainty bars) compared with the fit results (dashed bands). The data coming
from lattice-QCD computations (double ratios) are shown in the first two rows for only jtj ¼ 0.65 GeV2.
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where μi are magnetic moments, i ¼ p, n, and

GDðtÞ ¼
1

ð1 − t=M2
DÞ2

ð41Þ

is the dipole form factor with M2
D ¼ 0.71 GeV2.

(ii) The normalized ratios of electric and magnetic form
factors,

RiðtÞ ¼ μiGi
EðtÞ

Gi
MðtÞ

; ð42Þ

where i ¼ p, n.
(iii) The squared charge radius of neutron,

r2nE ¼ 6
dGn

EðtÞ
dt

����
t¼0

: ð43Þ

The relationships between the Sachs, Dirac, and Pauli form
factors for the proton and neutron are as follows:

Gi
M ¼ Fi

1 þ Fi
2;

Gi
E ¼ Fi

1 þ
t

4m2
Fi
2; where i ¼ p; n: ð44Þ

Finally, the partonic elastic FFs directly related to GPDs via
Eqs. (7) and (8) are

Fp
i ¼ euFu

i þ edFd
i ;

Fn
i ¼ euFd

i þ edFu
i ; where i ¼ 1; 2: ð45Þ

The fit is performed using both MINUIT [117] (for the
initial minimization without the shadow term) and a genetic
algorithm [118] (for the final approach). Data sensitive to
all considered GPDs and flavors are fitted together. We
therefore simultaneously constrain 16 parameters: 10 for
the GPDH and 6 for the GPD E, see Table II. To propagate
uncertainties, we use replicas for each type of input data:
PDF, lattice-QCD, and elastic FF data. The fitting pro-
cedure is repeated 101 times to match the number of
replicas available for each type. In each repetition, ith fit is
done for ith replica of PDF, ith replica of lattice QCD, and
ith replica of elastic FF data. This approach preserves
correlations within each data type while maintaining
independence across different data types. Replicas for
elastic FF data are generated by randomly smearing the
central values of data points according to their associated
uncertainties, see Ref. [107]. The positivity is enforced
numerically by performing a simple numerical test for each
potential solution of the fit to determine if it satisfies the
positivity constraint. If it does not, the solution is discarded,
which is particularly straightforward when using genetic
algorithm minimization. The obtained value of χ2 normal-
ized to the number of elastic FF and lattice-QCD data is

1185=882 ≈ 1.34 for the set of central replicas. We do not
observe any specific kinematic domain that contributes
markedly more to this value than others. The quality of the
fit could certainly be improved with more sophisticated
Ansätze, particularly those involving machine learning
techniques, such as the methods proposed in Ref. [115].
We note that if the shadow term is not included in our fit,
the value of normalized χ2 becomes 1488=882 ≈ 1.68,
indicating that lattice-QCD results have a constraining
power on this term. The quality of the fit can be inspected
visually in Fig. 5.

VI. RESULTS

We begin the discussion of our results by illustrating the
impact of the shadow term on the tomographic images, as
shown in Fig. 6. Several interesting features can be
observed, some of which are anticipated based on the
construction of this term. First, the shadow term contributes
both positively and negatively, which is necessary to cancel
out its overall contribution in

R
dbqðx; bÞ. However, the

shadow term does not make qðx; bÞ negative at any point, a
result of careful parameter selection and the numerical
enforcement of positivity. Second, the shadow term modi-
fies the bell shape imposed by the classic Ansatz utilizing
the expðfðxÞtÞ function. This makes it a useful tool for
studying more peculiar geometries of the proton. Finally,
the shadow term primarily contributes in the region of high
x. At low x, it does not compete with the classic term that
includes x−δ in the PDF parametrization. While it seems
possible to modify the shadow term to resemble the PDF
more closely, this is left for future, more systematic studies
and is beyond the scope of this exploratory work.
The tomographic images obtained from lattice-QCD and

elastic FF data are shown in Fig. 7 for both unpolarized and
transversely polarized (along the x-axis) protons. This
figure includes one-dimensional profiles, which allow us
to present the uncertainties, as well as 2D distributions
normalized so that a common color scale can be used for all

FIG. 6. Nucleon tomography for up valence quarks in an
unpolarized proton at (a) x ¼ 0.2 and (b) x ¼ 0.5. The plots
are obtained using the set of central replicas for PDFs, elastic FFs,
and lattice-QCD data and separately show the contributions of the
classic (dashed lines) and shadow terms (dotted lines), cf. Eq. (30),
as well as their sum (solid lines).
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FIG. 7. Nucleon tomography for unpolarized and transversely polarized protons at (a),(b) x ¼ 0.2 and (c),(d) x ¼ 0.5. The left column
shows 1D profiles as a function of b ¼ ðb2x þ b2yÞ1=2 (for unpolarized proton) or by (for transversely polarized proton) for up (blue) and
down (red) valence quarks. The fit results (dashed bands) are compared to GK (solid lines) and VGG (dashed lines) models. The middle
and right columns show xuvðx; bx; byÞ=2 and xdvðx; bx; byÞ distributions, respectively, with the same color scales. The origins of the
coordinate systems are marked by white crosses.
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FIG. 8. First Mellin moments of GPDs (a) H and (b) E, see Eq. (6) for the definition, at ξ ¼ 0 for up (blue) and down (red) valence
quarks. The fit results (dashed bands) are compared to GK (solid lines) and VGG (dashed lines) models.
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images. The inflation of uncertainties near b ¼ 0 is due to
the somewhat moderate constraint of the shadow term,
primarily caused by the limited range in t provided by the
lattice-QCD data. The deviation from the bell shape is not
observed within the estimated uncertainties. The shift in
parton densities induced in a transversely polarized proton
is clearly visible and, as expected, is opposite for up and
down quarks.
Finally, in Fig. 8, we present the first six Mellin moments

for both GPDs, Hq and Eq. These plots may serve as a
convenient tool for comparison between this work and the
calculations of Aq

i;0ðtÞ and Bq
i;0ðtÞ quantities by other lattice-

QCD groups. Additionally, according to Eq. (15), we
evaluate total angular momenta of valence quarks from
Aq
2;0ð0Þ and Bq

2;0ð0Þ. The outcome is Juv ¼ 0.195� 0.010
and Jdv ¼ 0.0173� 0.0046 evaluated at μ ¼ 2 GeV. As
proven by Fig. 9, we observe only a small correlation
between these two quantities in the extraction. The
extracted values are similar to those obtained in
Ref. [66], i.e. Juv½88� ¼ 0.230þ0.009

−0.024 and Jdv½88� ¼ −0.004þ0.010
−0.016 ,

which is not entirely surprising, as our analysis shares
several components with that one, in particular a similar
Ansatz for the GPD eqðxÞ and the same selection of elastic
data. The similarity with the values obtained in Ref. [119],
i.e. Ju½119� ¼0.229�0.002þ0.008

−0.012 , J
ū
½119� ¼0.015�0.003þ0.001

−0.000

and Jd½119� ¼ −0.007� 0.003þ0.020
−0.005 , Jd̄½119� ¼ 0.022�

0.005þ0.001
−0.000 , may appear a bit more unexpected, as that

analysis is based on a completely different approach, where
the Sivers transverse-momentum distributions probed in
semi-inclusive scattering are connected to eqðxÞ via the so-
called “lensing function” [120]. The comparison between
various extraction strategies provides an indicator of the
level of robustness of the obtained estimates. For other
estimates of Juv and Jdv see Ref. [121] and references
therein. Comparison with other analyses based on lattice

QCD, such as Ref. [52], is difficult, because results specific
to valence quarks are not provided.

VII. SUMMARY

In this article, we explored the possibility of combining
lattice-QCD and elastic scattering data in a single analysis.
Using the framework of GPDs, we extracted information on
nucleon tomography and evaluated the total angular
momentum of partons, however, only for valence quarks.
Full information about sea quarks can be obtained by
combining lattice QCD with exclusive scattering data, a
possibility we plan to explore in the future. It should be
noted, however, that at low-ξ, nucleon tomography infor-
mation can be directly extracted from experimental data.
This technique has been employed by HERA and CERN
experiments (see Ref. [122] and references therein) and will
be further explored at the EIC [123]. This highlights the
strong complementarity between the current work on
valence quarks and future analyses focusing on the sea
component.
From the comparison between popular models of GPDs

and parametrizations of PDFs and elastic FFs with lattice-
QCD data, it is clear that it is not advantageous to
straightforwardly use them in their original form in
phenomenological applications. This is not surprising,
and one can certainly expect the situation to improve over
time. However, it seems that many sources of systematic
uncertainty can be reduced by using the double ratios
introduced in this work, though at the cost of losing direct
information on PDFs and elastic FFs. This opens up the
possibility of using lattice-QCD data now, which, among
many obvious benefits, also provides much-needed feed-
back to lattice-QCD groups, stimulating improvements in
future computations. Clearly, the systematic uncertainties
in lattice-extracted observables can be rigorously
quantified or eliminated with additional calculations
performed at multiple lattice spacings and volumes,
directly at the physical pion mass, with increased nucleon
boosts, etc.
Finally, in this work, we introduced a new type of

shadow GPD, this time in the ðx; 0; tÞ space, whereas
previous applications of this concept focused on ðx; ξÞ
while neglecting the t dependence. We demonstrated the
usefulness of shadow terms in assessing model uncertain-
ties and showed that they can be used to study nucleon
tomography beyond the bell shape. The obtained
results certainly still contain unknown model uncertainties,
but this analysis is an important step toward a precise
phenomenology of GPDs augmented with lattice-QCD
computations.
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