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We describe a measurement of charge-parity (CP) violation asymmetries in B0 → η0K0
S decays

using Belle II data. We consider η0 → ηð→γγÞπþπ− and η0 → ρð→πþπ−Þγ decays. The data were collected
at the SuperKEKB asymmetric-energy eþe− collider between the years 2019 and 2022, and contain
ð387� 6Þ × 106 bottom-antibottom meson pairs. We reconstruct 829� 35 signal decays and extract the
CP violating parameters from a fit to the distribution of the proper-decay-time difference between the two
B mesons. The measured direct and mixing-induced CP asymmetries are Cη0K0

S
¼ −0.19� 0.08� 0.03

and Sη0K0
S
¼ þ0.67� 0.10� 0.03, respectively, where the first uncertainties are statistical and the second

are systematic. These results are in agreement with current world averages and standard model predictions.

DOI: 10.1103/PhysRevD.110.112002

I. INTRODUCTION

In the standard model (SM), the only source of charge-
parity (CP) violation is an irreducible phase in the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix [1,2].
This phase ismeasuredwith high precision in tree-dominated
b → cc̄s decays [3–5], e.g., B0 → J=ψK0. In contrast,
b → sqq̄ decays, with q indicating u, d, or s quark, are
dominated by loop amplitudes, in which additional sources
of CP violation from physics beyond the SM could be
involved [6,7]. A comparison between CP asymmetries
measured precisely in b → sqq̄ and b → cc̄s transitions
can thus probe non-SM physics.
The B0 → η0K0

S decay is of particular interest due to its
relatively large branching fraction and limited contribution
from tree amplitudes compared to other b → sqq̄ decays.
The deviation of the mixing-induced CP asymmetry (Sη0K0

S
)

from sin 2ϕ1 is expected to be 0.01� 0.01 [8], in the SM,
where ϕ1 ≡ arg ð−VcdV�

cb=VtdV�
tbÞ is an angle of the CKM

unitarity triangle and Vij are the CKMmatrix elements. The
direct CP asymmetry (Cη0K0

S
) is predicted to be zero [9].

Measurements of Cη0K0
S
and Sη0K0

S
have been reported by

the Belle [11] and BABAR [12] experiments, yielding the
current world averages Cη0K0

S
¼ −0.05� 0.04 and Sη0K0

S
¼

0.63� 0.06 [13]. These are the most precise measurements
of CP asymmetries with b → sqq̄ transitions. However,
improved measurements are needed to match the precision
of the theoretical prediction of possible deviations from the
SM [8]. The sensitivity of experiments operating at hadron
colliders, such as LHCb, is limited by the challenge of the
reconstruction of neutral final-state particles.
At an eþe− flavor-factory, B0B̄0 pairs are produced

via the process eþe− → ϒð4SÞ → B0B̄0. We consider
the case when one neutral B meson (Btag) decays into a

flavor-specific final state at time ttag, and the other B (BCP)
decays into a CP eigenstate at time tCP. As the two neutral
B mesons remain in a quantum-entangled state until one of
them decays, the flavor of BCP is opposite to that of Btag at
ttag. We define qtag as the flavor of Btag at ttag, with qtag
taking the valueþ1ð−1Þ for B0 (B̄0). The decay rate for the
BCP can be given by

PðΔt; qtagÞ ¼
e−jΔtj=τB0

4τB0

½1þ qtagACPðΔtÞ�; ð1Þ

where Δt¼ tCP−ttag is the proper-time difference between
the BCP and Btag decays, τB0 is the B0 lifetime, and ACP is
the time-dependent CP asymmetry, defined as

ACPðΔtÞ ¼
ΓðB̄0 → η0K0

SÞ − ΓðB0 → η0K0
SÞ

ΓðB̄0 → η0K0
SÞ þ ΓðB0 → η0K0

SÞ
¼ Sη0K0

S
sinðΔmdΔtÞ − Cη0K0

S
cosðΔmdΔtÞ; ð2Þ

where Δmd is the mass difference between the two neutral
B -meson mass eigenstates.
This paper reports a measurement of CP asymmetries

Cη0K0
S
and Sη0K0

S
, based on the data collected by the Belle II

experiment in 2019–2022 at the SuperKEKB asymmetric-
energy eþe− collider [14], operating at the ϒð4SÞ reso-
nance. The total integrated luminosity is 362� 2 fb−1,
which corresponds to ð387� 6Þ × 106 BB̄ pairs.
We reconstruct the signal decay (BCP) by combining the

K0
S → πþπ− candidate with the η0 meson reconstructed in

two channels, η0 → ηð→γγÞπþπ− and η0 → ρð→πþπ−Þγ.
We also explore the channel η0 → ηð→π−πþπ0Þπþπ−, but
exclude it from the final result due to its large statistical
uncertainty. The Btag flavor is determined with a flavor
tagging algorithm [15]. The values of Cη0K0

S
and Sη0K0

S
are

extracted via a maximum-likelihood fit to the distributions
of Δt and other observables that discriminate signal from
background. The analysis technique and the Δt resolution
model are tested on the Bþ → η0Kþ control channel, where
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we do not expect any CP violation. The measurement of
the lifetimes of B0 and Bþ mesons validates Δt resolution
modeling. Charge-conjugated modes are implied unless
otherwise specified.

II. BELLE II DETECTOR AND SIMULATION

Belle II [16] is a particle physics experiment operating at
the SuperKEKB collider in Tsukuba, Japan. Several sub-
systems, cylindrically arranged around the interaction
point, enable reconstruction of heavy flavor particles and
τ leptons produced in energy-asymmetric eþe− collisions.
The innermost part of the detector comprises a two-layer
silicon pixel detector (PXD), surrounded by a four-layer
double-sided silicon microstrip detector (SVD). Together,
they provide information about the charged particle tra-
jectories (tracks) and B decay positions (vertices). The
momenta and charge of charged particles are reconstructed
with a 56-layer central drift chamber (CDC), which is the
main tracking subsystem. Only one sixth of the second
PXD layer is installed for the data analyzed in this paper.
Charged particle identification (PID) is accomplished by

a time-of-propagation counter and an aerogel ring-imaging
Cherenkov counter, located in the barrel and forward-end
cap regions, respectively. The CDC provides additional
PID information through the measurement of specific
ionization. An electromagnetic calorimeter (ECL), made
of CsI(Tl) crystals, is used for precise determination of the
photon energy and angular coordinates as well as for
electron identification. The tracking, PID, and ECL sub-
systems are surrounded by a superconducting solenoid,
providing an axial magnetic field of 1.5 T. A K0

L and muon
identification system is located outside of the magnet and
consists of flux-return iron plates interspersed with resistive
plate chambers and plastic scintillators. The central axis of
the solenoid defines the z axis of the laboratory frame,
pointing approximately in the direction of the electron
beam, with respect to which the polar angle θ is defined.
The analysis strategy is tested and optimized on

Monte Carlo simulated event samples before being applied
to the data. Simulation is also used to determine the signal
efficiency and the fit model. Quark-antiquark pairs from
eþe− collisions are generated using KKMC [17] with
Pythia8 [18], while hadron decays are simulated with
EvtGen [19]. The detector response and K0

S decays are
simulated using Geant4 [20]. Both data and simulated
samples are processed using the Belle II analysis software
framework [21,22].

III. EVENT RECONSTRUCTION AND SELECTION

The reconstruction of signal candidates starts by recon-
structing the B0 decay products, η0½→ηð→γγÞπþπ−�,
η0½→ρð→πþπ−Þγ�, and K0

S → πþπ−.
Charged particles, assumed to be pions, are recon-

structed using the tracking algorithm described in

Ref. [23], with measurement points from tracking sub-
detectors (PXD, SVD, and CDC). Pions are required to be
within the CDC angular acceptance (17° < θ < 150°) and
to have a distance of closest approach from the interaction
point less than 2.0 cm along the z axis and less than 0.5 cm
in the transverse plane, in order to reduce contamination
from tracks not produced in the collision. Furthermore, at
least one of the two charged pions from η0 or ρ, which are
used to reconstruct the BCP decay vertex, is required to
have at least one PXD measurement point.
The photons are reconstructed from ECL energy deposits

not associated to any track. They are required to be in the
CDC angular acceptance and have energy deposit in more
than one ECL crystal.
TheK0

S candidates are reconstructed from two oppositely
charged pions coming from the same vertex and required to
have a momentum direction compatible with the direction
defined by the K0

S and BCP decay vertices (cos α > 0.99,
where α is the angle between the two directions) and have
an invariant mass 0.49 < mðπþπ−Þ < 0.51 GeV=c2.
For the first decay subchannel, the η → γγ candidates are

reconstructed from two photons with energies greater than
150 MeV and an invariant mass in the range 0.505 <
mðγγÞ < 0.580 GeV=c2. The candidate η and two oppo-
sitely charged pions are combined to form an η0, which
is retained if its mass satisfies 0.945 < mðηπþπ−Þ <
0.970 GeV=c2. The η mass is constrained to its known
value [10] to reconstruct the η0 candidate.
For η0 → ργ subchannel, we require two charged pions to

first form a ρ candidate. For this subchannel, the pions are
required to satisfy a PID requirement, computed using all
PID capable detectors, which has a π� identification
efficiency of about 90%, and a K� mis-identification
probability of about 10%. The pion tracks are also required
to have at least 20 measurement points in the CDC, which
is sufficient to provide high efficiency and a low rate of
misreconstructed tracks. The tighter selection for the
pions in the second subchannel helps to reduce the larger
background as well as the number of misreconstructed
signal candidates. A less restrictive requirement is applied
on the dipion mass, due to the broad width of the ρ
resonance: 0.51 < mðπþπ−Þ < 1.0 GeV=c2. The lower
bound of the invariant mass criterion avoids contamination
from K0

S decays. An η0 candidate is formed combining a ρ
and a photon candidate with energy greater than 250 MeV.
We require the invariant mass to be in the range
0.92 < mðργÞ < 0.98 GeV=c2. This subchannel has
broader η0 mass resolution due to lack of constraint of
ρ mass.
The invariant mass criteria for the η, η0, and K0

S
candidates correspond to approximately �1.7σm inter-
vals, where σm is the Gaussian mass resolution of each
decay mode.
The η0 and K0

S candidates are combined to form a B0

candidate. The B0 vertex is determined by fitting the entire
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decay chain with the TreeFitter algorithm [24,25],
constraining the mass of all intermediate mesons to their
known values [10], except for the ρ, due to its large width,
and requiring the fit to converge. The momenta of all
particles are updated after this vertex fit. The B0 vertex is
constrained to point back, along the direction of the
reconstructed B0 momentum, to the interaction region,
calibrated with eþe− → μþμ−.
For each B candidate, the beam-energy constrained mass

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
beam=c

4 − p�2
B =c2

p
and energy difference ΔE ¼

E�
B − E�

beam are calculated, where ðE; pÞ�B is the four-
momentum of the B candidate and E�

beam is the beam
energy, both calculated in the center-of-mass frame. For
correctly reconstructed signal events, Mbc peaks at the B0

invariant mass and ΔE at zero. The requirements Mbc >
5.2 GeV=c2 and jΔEj < 0.2 GeV are applied.
In data, the average B candidate multiplicity for events

with at least one reconstructed candidate is about 1.4 for
B0 → η0½→ηð→γγÞπþπ−�K0

S and 1.8 for B0 → η0½→ργ�K0
S.

The difference is due to the presence of an intermediate,
narrow resonance (η) in the first subchannel. If multiple B
candidates are present in an event, the one with the smallest
B0 vertex χ2 value is retained. In the simulation, this
criterion selects the correct candidate in more than 99% of
the cases when a true one is reconstructed.
The reconstruction efficiencies, determined using simu-

lation, are 28.3% and 19.2% for B0→η0½→ηð→γγÞπþπ−�K0
S

and B0 → η0½→ργ�K0
S, respectively. The lower efficiency

for the second subchannel is mostly due to PID require-
ments applied to the two pions from the ρ decay in order to
suppress background.
The control channel Bþ → η0Kþ uses an η0 reconstructed

as described above and a charged kaon candidate with
θ < 136°, excluding candidates in the backward part of the
detector, where the background is higher. The PID selection
for the Kþ candidate has an efficiency of about 90% for
kaons, and a misidentification probability for pions of
about 5%. In the control channel, the Kþ is not used for the
Bþ vertex determination in order to have a vertex resolution
similar to that of the signal channel.
The Btag candidate is reconstructed using all the charged

particles that are not associated to BCP, having measure-
ment points both in the SVD and CDC, and a momentum
greater than 50 MeV=c. The RAVE algorithm is used to
reconstruct the Btag vertex [26]. This algorithm down-
weights tracks with large contributions to the vertex χ2,
which are likely to originate from decays of secondary
long-lived charm hadrons. The decay position of Btag is
determined by constraining its direction, as determined
from its decay vertex and the interaction point, to be
collinear with its momentum vector, reconstructed from the
BCP and momenta of the colliding beams [27].
The proper-decay-time difference Δt between the

two B mesons is determined from the positions of their

reconstructed vertices along the Lorentz boost axis,
Δt ¼ Δz=βγγ�c, where βγ ¼ 0.287 is the boost of the
ϒð4SÞ with respect to the laboratory frame, and γ� ¼ 1.002
is the Lorentz factor of the B meson in the center-of-mass
frame. We reject poorly reconstructed events requiring
jΔtj < 8 ps and require the per-event uncertainty σΔt to
be less than 2 ps.
The main source of background is random combinations

of tracks and photons that arise from continuum eþe− →
qq̄ (q ¼ u, d, s, c) events. A boosted-decision-tree (BDT)
classifier [28] is trained using 26 event-shape variables to
separate jet-like continuum events from more spherical BB̄
topologies. The variables, in order of decreasing discrimi-
nating power, are the cosine of the angle between the BCP
and Btag thrust axes [29], the cosine of the angle between
the BCP thrust axis and the z axis, the ratio of the second to
the zeroth Fox–Wolfram moments [30], the modified Fox–
Wolfram moments [31], the Btag thrust magnitude, and the
CLEO cones [32]. Variables that exhibit correlations
greater than 10% with those used for the CP asymmetry
measurement (Mbc, ΔE, Δt, and σΔt) are excluded. The
BDT training is performed using simulated signal events
and data in the sidebands (Mbc < 5.27 GeV=c2 and ΔE <
−0.07 or> 0.05 GeV), which are dominated by continuum
background. As a consistency check, we repeat the train-
ing with the off-resonance data collected 60 MeV below
the ϒð4SÞ resonance, for an integrated luminosity of
42 fb−1, and find the results to be in agreement with those
obtained with the nominal training. A high-efficiency
selection on the BDT output CBDT is applied, retaining
about 95% of the signal while suppressing 60% of the
continuum background.

IV. TIME-DEPENDENT CP ASYMMETRY FIT

The parameters Cη0K0
S
and Sη0K0

S
are extracted with an

extended unbinned maximum-likelihood fit using the Mbc,
ΔE, CBDT, Δt, and tag-flavor qtag observables, plus σΔt as a
conditional observable for Δt resolution function. The first
three observables provide discrimination between signal
and continuum background. The Δt and qtag ones provide
access to time-dependent CP asymmetry. Four different
sample components are considered: signal; self-cross-feed
(SxF), where a signal decay is misreconstructed, mostly
due to wrong γ associations; background from continuum;
and background from BB̄. The SxF sample amounts to
about 5% of the signal while BB̄ amounts to about 1% of
the continuum.
The fit is performed in two steps. In the first step the

shapes and yields of all sample components are reliably
determined in a time-independent fit, using Mbc, ΔE, and
CBDT distributions in the region Mbc > 5.2 GeV=c2 and
jΔEj < 0.2 GeV, which in turn simplifies the time-depen-
dent fit of the second step. In the first step most parameters
of the signal and all those of the continuum models are
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allowed to vary, as well as the yields of signal and
continuum. The SxF shape is fixed from simulated events,
as well as its normalization relative to the signal compo-
nent. The shape and yields of the BB̄ component are fixed
from simulation, as their contribution is too small to be
determined from data.
The second step of the fit uses Δt and qtag in addition to

the three observables utilized in the first step, and is
performed only in the signal region, defined by
Mbc > 5.27 GeV=c2 and −0.07 < ΔE < 0.05 GeV, where
approximately 98% of signal is present. In this region the
SxF amounts to about 3% of signal. In this step, the shapes
for Mbc, ΔE, and CBDT as well as the yields of all
components are fixed from the previous one, so the only
free parameters are Cη0K0

S
and Sη0K0

S
.

The Btag flavor is determined using the flavor tag-
ging algorithm described in Ref. [15], which uses the
properties of particles not associated with the BCP. The
algorithm provides the flavor qtag and the tagging quality
r ¼ ð1 − 2wÞ, where w is the mistagging probability. The
range of r varies from r ¼ 0 (no flavor information can be
obtained) to r ¼ 1 (corresponding to unambiguous flavor
determination).
Both fit steps are performed simultaneously in seven

subsets of data (bins) selected according to tagging quality
r, with boundaries set at 0, 0.1, 0.25, 0.45, 0.6, 0.725,
0.875, and 1, to gain statistical sensitivity from events with
different wrong-tag fractions. In the first step, the signal
and continuum yields of each bin are varied independently.
Each observable is modeled independently and hence the

total probability density function (PDF) is the product of
the four independent PDFs, as shown in Eqs. (3) and (4)

ModelðMbc;ΔE;CBDT;ΔtÞ
¼ F ðMbc;ΔE;CBDTÞ · PðΔtÞ; ð3Þ

with

F ðMbc;ΔE;CBDTÞ
¼ pdfðMbcÞ · pdfðΔEÞ · pdfðCBDTÞ; ð4Þ

where F represents the time-independent PDF, and pdf is
the PDF used to model each variable as described below.
The function P represents the time-dependent PDF, also
described below.
Correlations among observables are considered as

a source of systematic uncertainty. The largest linear
correlation is between Mbc and ΔE [10% for B0 →
η0½→ηð→γγÞπþπ−�K0

S and 20% for B0 → η0½→ργ�K0
S,

respectively], due to the presence of photons in the final
state. Linear correlations between other observables are
smaller than 5%.
The Mbc distribution is modeled with a sum of two

Gaussian functions with a common mean for signal, a

Crystal Ball function [33–35] for SxF, an ARGUS
function [36] for continuum, and an ARGUS plus a
Gaussian function for BB̄. In the case of ΔE, two
Gaussian functions are used for signal and SxF, with
the addition of a linear function for B0 → η0½→ργ�K0

S.
For continuum, we use an exponential for B0 →
η0ð→ηð→γγÞπþπ−ÞK0

S and the sum of an exponential
and a wide Gaussian function for B0 → η0½→ργ�K0

S. For
BB̄, we use an exponential plus a Gaussian function. For
CBDT, the sum of an asymmetric and a regular Gaussian
function is used for signal, SxF, and BB̄, and two Gaussian
functions for continuum.
In the first step of the fit, for signal PDF we fix from

simulation the sigma of the wider Gaussian functions for
Mbc and ΔE, whose fractions are about 2% and 10% of the
total PDF for Mbc and ΔE, respectively. For CBDT, we fix
the mean and sigma of the wider regular Gaussian function
(fraction about 20%). The evaluation of the systematic
uncertainties associated with fixed parameters is described
in Sec. V.
The Δt model for the signal and SxF components is

derived from Eq. (1). Taking into account the probability of
assigning the wrong flavor, w, its difference between B0

and B̄0, Δw, and the tagging efficiency asymmetry for B0

and B̄0, atagϵ , Eq. (1) becomes

PðΔt; qtagÞ ¼
e−jΔtj=τB0

4τB0

n
1− qtagΔwþ qtaga

tag
ϵ ð1− 2wÞ

þ ½qtagð1− 2wÞ þ atagϵ ð1− qtagΔwÞ�
× ½Sη0K0

S
sinðΔmdΔtÞ−Cη0K0

S
cosðΔmdΔtÞ�

o
:

ð5Þ

The effect of detector resolution onΔt changes Eq. (5) to

PexpðΔt; qtagÞ ¼
Z

PðΔt0; qtagÞRðΔt − Δt0jσΔtÞdΔt0; ð6Þ

where R is the resolution function for Δt conditional on
σΔt. The R function has been determined in data using
B0 → Dð�Þ−πþ decays and it is described in details in
Ref. [37]. Like the resolution function, also the flavor
tagging parameters w, Δw, and atagϵ are extracted from data
using flavor-specific B0 → Dð�Þ−πþ decays. In simulation
all these parameters from B0 → Dð�Þ−πþ are compatible
with our expectations based on signal.
The Δt distribution for the continuum component is

modeled with three Gaussian functions and is determined
using the data sidebands described earlier. The Δt distri-
bution of the BB̄ background is also modeled with the sum
of three Gaussian functions and a component with an
effective lifetime, that accounts for the sizable B lifetime,
convolved with the same three Gaussian functions. Its
parameters are determined from simulation.
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The complete PDF used for the likelihood fit is the following:

pdfðMbc;ΔE;CBDT;Δt; qtag;Cη0K0
S
; Sη0K0

S
Þ

¼ Ysig½fF sigðMbc;ΔE;CBDTÞ þ fSxFF SxFðMbc;ΔE;CBDTÞg · PexpðΔt; qtag;Cη0K0
S
; Sη0K0

S
Þ�

þ Ycont½F contðMbc;ΔE;CBDTÞPcontðΔtÞ þ fBB̄FBB̄ðMbc;ΔE;CBDTÞPBB̄ðΔtÞ�; ð7Þ

where Ysig=cont is the yield of the corresponding component,
fSxF is the fraction of SxF with respect to signal, and fBB̄ is
the fraction of BB̄ with respect to continuum. Combined
PDFs for time-independent observables are represented by
F x [Eq. (4)] for each component x, and the time-dependent
one by Px [Eq. (6)].
To validate the resolution function, we determine

the B meson’s lifetime on data, using a simultaneous fit
to both η0 subchannels, separately for charged Bþ → η0Kþ

and neutral B0 → η0K0
S decays. The results are τBþ ¼

1.63� 0.04 ps and τB0 ¼ 1.55� 0.07 ps, where the uncer-
tainties are statistical. Both are in agreement with their
world averages [10].
The fit is further validated measuring the CP asymmetry

on the charged B decay, which is expected to be negligible,
with a simultaneous fit to the two η0 subchannels. The same
flavor tagger used for the neutral channels is used also for the
control ones. In the signal region we find 1345� 39 and
1694� 64 signal events for Bþ → η0½→ηð→γγÞπþπ−�Kþ
and Bþ → η0½→ργ�Kþ subchannels with purities (which is
the ratio of signal events over the total number of events in
the signal region) 77% and 24%, respectively. The resulting
CP violation parameters are Cη0Kþ ¼ −0.018� 0.044 and
Sη0Kþ ¼ −0.083� 0.059, where the uncertainties are stat-
istical. The results are consistent with expectations of zero
CP asymmetry. TheΔt distributions are shown separately for
B and B̄ tagged events in Fig. 1, along with the asymmetry as
defined in Eq. (2).
We then apply the fit to our signal, the neutral B samples.

The distributions of the fit observables,Mbc, ΔE, and CBDT

in the signal region are shown in Fig. 2 for the B0 →
η0½→ηð→γγÞπþπ−�K0

S subchannel, and in Fig. 3 for B0 →
η0½→ργ�K0

S together with the fit results of the four compo-
nents. The Δt distributions are shown separately for B0 and
B̄0 tagged events in Figs. 4 and 5 for subchannels B0 →
η0½→ηð→γγÞπþπ−�K0

S and B0 → η0½→ργ�K0
S, respectively,

and in Fig. 6 for both, along with the asymmetry as defined
in Eq. (2).
The resulting signal yield is 358� 20 for B0→

η0½→ηð→γγÞπþπ−�K0
S, and 471�29 for B0 → η0½→ργ�K0

S.
The purities for the two subchannels are 79% and 30%,
respectively. Results for CP parameters from a simulta-
neous fit of the two subchannels are Cη0K0

S
¼ −0.19� 0.08

and Sη0K0
S
¼ þ0.67� 0.10, where the uncertainties are

statistical and obtained from a scan of the likelihood ratio.

The results for individual channels are summarized in
Table I. The correlation between Cη0K0

S
and Sη0K0

S
is þ3.4%.

We also explore the subchannel B0 → η0ð→ηπþπ−ÞK0
S

with η (→πþπ−π0). We reconstruct this final state combin-
ing four charged pions, selected using the same criteria for
the second subchannel, and one neutral pion decaying to a
pair of photons, with an invariant mass 0.120 < mðγγÞ <
0.145 GeV=c2. We require Eγ > 80 MeV for photons
detected in the forward region, 30 MeV for the barrel
region, and 60 MeV for the backward region, to account
for the different levels of background in the three ECL
regions. The selection on Eγ are looser than for the other
subchannels to improve efficiency. The η candidate is
required to have an invariant mass in the range 0.52 <
mðπþπ−π0Þ < 0.57 GeV=c2 while the mass difference Δm
between η0 and η candidates must satisfy 0.40 < Δm <
0.42 GeV=c2. The other selection criteria for theK0

S and B
0

candidates are the same as for the other subchannels.
The signal yield is 55� 8, and the purity is 55%. We
perform the vertex fit and determine the resolution model,
whose functional form is similar to that used in Ref. [39].

FIG. 1. Distribution of Δt for control channels Bþ → η0Kþ

separately for B and B̄ tags, combining the two subchannels
Bþ → η0½→ηð→γγÞπþπ−�Kþ and Bþ → η0½→ργ�Kþ. The back-
ground contribution is shown as a shaded area. The fit projections
corresponding to B (qtag ¼ 1) and B̄ (qtag ¼ −1) tags are shown
as solid red and dashed blue curves, respectively. The bottom
panel shows the asymmetry as defined in Eq. (2), after subtracting
the background using the sPlot technique [38].
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FIG. 2. Distributions of Mbc, ΔE, and CBDT on data for
B0 → η0½→ηð→γγÞπþπ−�K0

S, with fit projections overlaid. The
bottom panel shows the pull, which is the difference between data
and fit, normalized to the statistical uncertainty on data.

FIG. 3. Distributions of Mbc, ΔE, and CBDT on data for
B0 → η0½→ργ�K0

S, with fit projections overlaid. The bottom panel
shows the pull.
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The measured CP asymmetries, Cη0ð3πÞK0
S
¼ 0.11þ0.32

−0.31

and Sη0ð3πÞK0
S
¼ 0.25þ0.47

−0.53 (the uncertainties are statistical)
are consistent with those determined in the other two
subchannels, but significantly less precise. Figure 7
shows the results of the CP asymmetry fit on the

B0 → η0½→ηð→πþπ−π0Þπþπ−�K0
S subchannel. The results

of this subchannel are not used for final results since their
statistical significance is negligible.

V. SYSTEMATIC UNCERTAINTIES

We consider several sources of possible systematic
uncertainties, which are listed in Table II.
To determine most of the systematic uncertainties, we

use ensembles of simulated samples. For signal and SxF
events we use sampling with replacement [40] from the
available simulated samples, while continuum and BB̄
backgrounds are sampled from the PDF used for modeling,
due to the limited size of simulated samples.
To evaluate the impact of the uncertainties of signal and

continuum yields in the second fit step, we vary them
individually by assuming alternate values, corresponding to
�1-standard-deviation fluctuations of the first fit results.

FIG. 4. Distribution of Δt for signal channels separately for B0

and B̄0 tags, for B0 → η0½→ηð→γγÞπþπ−�K0
S. The background

contribution is shown as a shaded area. The fit projections
corresponding to B0 (qtag ¼ þ1) and B̄0 (qtag ¼ −1) are shown
as solid and dashed curves, respectively. The bottom panel shows
the asymmetry as defined in Eq. (2), after subtracting the
background using the sPlot technique [38]. The horizontal bars
represent the widths of the variable-size bins used.

FIG. 5. Distribution of Δt for signal channels separately for B0

(qtag ¼ þ1) and B̄0 (qtag ¼ −1) tags, for B0 → η0½→ργ�K0
S. The

background contribution is shown as a shaded area. The fit
projections corresponding to B0 and B̄0 are shown as solid and
dashed curves, respectively. The bottom panel shows the asym-
metry as defined in Eq. (2), after subtracting the background
using the sPlot technique [38]. The horizontal bars represent the
widths of the variable-size bins used.

FIG. 6. Distribution of Δt for signal channels separately for B0

(qtag ¼ þ1) and B̄0 (qtag ¼ −1) tags, combining the two sub-
channels, B0 → η0½→ηð→γγÞπþπ−�K0

S and B
0 → η0½→ργ�K0

S. The
background contribution is shown as a shaded area. The fit
projections corresponding to B0 and B̄0 are shown as solid and
dashed lines, respectively. The bottom panel shows the asym-
metry as defined in Eq. (2), after subtracting the background
using the sPlot technique [38]. The horizontal bars represent the
widths of the variable-size bins used.

TABLE I. Summary of results on Cη0K0
S
and Sη0K0

S
for the three

subchannels, identified by the η0 decay. The last subchannel is not
included in the simultaneous fit. The uncertainties are statistical
only.

Channel Signal yield Cη0K0
S

Sη0K0
S

η0 → ηγγπ
þπ− 358� 20 −0.10� 0.13 0.69� 0.14

η0 → ργ 471� 29 −0.24� 0.10 0.65� 0.13
η0 → η3ππ

þπ− 55� 8 0.11� 0.32 0.25� 0.50
Sim. fit 829� 35 −0.19� 0.08 0.67� 0.10
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We then consider the difference between the values of Cη0K0
S

and Sη0K0
S

from the nominal results as a systematic
uncertainty.
The SxF and BB̄ yields are fixed to their values obtained

in simulation. To estimate the systematic uncertainties, we
let the fit determine the BB̄ yield for all r bins, one at a time

to ensure the fit convergence. The average ratio between the
fit result and expectation is 0.9� 0.2, and the average
uncertainty of BB̄ yield in each bin is about 50%. We vary
the BB̄ yield by this uncertainty and take the variations in
the CP asymmetry parameters as a systematic uncertainty.
We also vary the SxF yield by the same uncertainty (50%),
and evaluate the variations on CP asymmetry parameters.
The impact of the choice of training sample for CBDT is

evaluated by comparing the results obtained using the data
sidebands for its training with those in which the training is
performed on continuum simulated events.
Similarly to what is done for yields, the parameters of

PDF shapes used to model the various components are
varied within their statistical uncertainties if they are
determined in the first step of the fit. This is the case
for the signal and continuum components. The variations of
Cη0K0

S
and Sη0K0

S
due to alternative values of each parameter

are summed linearly, to account for possible correlation,
and used as a systematic uncertainty. The parameters fixed
from simulation are allowed to vary, individually, in the
yield fit, and then the CP asymmetry fit is performed using
the varied yields as input. We take the difference of Cη0K0

S

and Sη0K0
S
from the nominal results as a systematic uncer-

tainty, summing the differences in quadrature.
The impact of the correlation between the fit observ-

ables, mostly between Mbc and ΔE, is estimated using
ensembles of signal events simulated with correlation,
sampled with replacement from the available simulated
samples, and without correlation, by sampling the PDFs,
and comparing the two sets of results.
The systematic uncertainty due to the Δt resolution

model is estimated by repeating the fit under alternative
assumptions for values of the resolution parameters within
the uncertainties obtained from the fit on the B → Dð�Þ−πþ
control sample. We also compare the result of a fit using the
resolution parameters obtained by fitting the simulated
B → η0K0

S signal events with the nominal fit, and take the
difference on Cη0K0

S
and Sη0K0

S
as a systematic uncertainty.

The flavor-tagging parameters are varied within their
statistical uncertainties. The same is done for the physics
parameters τB0 and Δmd, using the uncertainties on their
world-average values. Small fit biases found on Cη0K0

S
and

Sη0K0
S
by fits to large simulated samples are also included.

The impact of tracker misalignment is estimated with
dedicated simulation samples with four different misalign-
ment scenarios. The effects on charged-particle momentum
scale due to imperfect modeling of the magnetic field, and
the uncertainty on the beam spot determination, were
studied in a previous analysis that used similar
reconstruction strategies [41].
We estimate the effect of neglecting the small motion of

the Bmeson in theϒð4SÞ rest frame by calculatingΔt from
simulated signal events and comparing the true Δtwith that
based on true Δz.

FIG. 7. Distribution of Δt for the B0→η0½→ηð→πþπ−π0Þ×
πþπ−�K0

S channel, separately for B0 (qtag ¼ þ1) and B0

(qtag ¼ −1) tagged events. The fit projections corresponding to
B0 and B̄0 are shown as solid and dashed lines, respectively. The
background is shown as a shaded area. The bottom panel shows
the asymmetry as defined in Eq. (2), using the sPlot technique
[38] to subtract the background. The horizontal bars represent the
widths of the variable size bins used.

TABLE II. Summary of systematic uncertainties for Cη0K0
S
and

Sη0K0
S
.

Source Cη0K0
S

Sη0K0
S

Signal and continuum yields <0.001 0.002
SxF and BB̄ yields <0.001 0.006
CBDT mismodeling 0.004 0.010
Signal and background modeling 0.011 0.011
Observable correlations 0.008 0.001
Δt resolution fixed parameters 0.005 0.009
Δt resolution model 0.004 0.019
Flavor tagging 0.007 0.004
τB0 and Δmd <0.001 0.002
Fit bias 0.003 0.002
Tracker misalignment 0.004 0.006
Momentum scale 0.001 0.001
Beam spot 0.002 0.002
B-meson motion in the ϒð4SÞ frame <0.001 0.017
Tag-side interference 0.027 <0.001
BB̄ background asymmetry 0.008 0.006
Candidate selection 0.007 0.009

Total 0.034 0.034
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TheΔtmodel in Eq. (2) assumes that the Btag decays into
a flavor-specific mode. The impact of tag-side interference,
namely the presence of Cabibbo-suppressed b → uc̄s
decays in the Btag with different weak phase [42], intro-
duces a systematic which has been evaluated as described
in [3]. We conservatively assume that all events are tagged
by hadronic B decays, where the effect is largest. We use
the difference with respect to the nominal asymmetry as a
systematic uncertainty.
The BB̄ background is small and dominated by b → c

decays. The possible presence of CP violation in the BB̄
background is estimated conservatively by assuming that all
this background has a CP asymmetry with ðCCP; SCPÞ ¼
ð�0.2; 0Þ or ð0;�0.2Þ and taking the largest variation on
Cη0K0

S
and Sη0K0

S
as a systematic uncertainty.

Finally, the impact of the candidate selection is evaluated
by repeating the full analysis with all multiple candidates
and comparing with the results obtained using only the one
with best vertex-χ2.

VI. SUMMARY

A measurement of CP asymmetries in B → η0K0
S

decays is conducted using eþe− collision data collected
in 2019–2022 by the Belle II experiment at the
SuperKEKB collider. We find 829� 35 signal decays in
a sample of ð387� 6Þ × 106 BB̄ events and measure the
CP asymmetries to be

Cη0K0
S
¼ −0.19� 0.08� 0.03;

Sη0K0
S
¼ þ0.67� 0.10� 0.03; ð8Þ

where the first uncertainties are statistical and the second
systematic. This measurement is based on the subchannels
B0 → η0½→ηð→γγÞπþπ−�K0

S and B0 → η0½→ργ�K0
S.

This is the first measurement of CP violation in this
channel at Belle II. The results are in agreement with the
current world averages, and have sensitivities close to those
of Belle [11] and BABAR [12], despite the smaller data size.
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