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We present the application of the nth order Eulerian perturbation theory (nEPT) for modeling the matter
bispectrum in real space as an advancement over the standard perturbation theory (SPT). The nEPT
method, detailed in Wang et al. [Phys. Rev. D 107, 103534 (2023)], sums up the density perturbations up to
the nth order before computing summary statistics such as bispectrum. Taking advantage of grid-based
calculation of SPT (GridSPT), we make a realization-based comparison of the analytical nonlinear
bispectrum predictions from nEPT and SPT against a suite of N-body simulations. Using a spherical-
bispectrum visualization scheme, we show that nEPT bispectrum matches better than SPT bispectrum over
a wide range of scales in general wCDM cosmologies. Like the power spectrum case, we find that nEPT
bispectrum modeling accuracy is controlled by σ8ðzÞ≡ σ8DðzÞ, where DðzÞ is the linear growth factor at a
redshift z. Notably, the 6EPT doubles the bispectrum model’s validity range compared to the one-loop SPT
for σ8ðzÞ < 0.5, corresponding to redshifts z ≥ 1 for the best-fitting Planck-2018 cosmology. For n ≥ 5,
however, nEPT bispectrum depends sensitively on the cut-off scale or the grid resolution. The percent-level
modeling accuracy achieved for the spherical bispectrum (where we average over all triangular
configurations) becomes much degraded when fixing configurations. Thus, we show that the validity
range of the field-level cosmological inferences must be different from that derived from averaged
summary statistics such as n-point correlation functions.

DOI: 10.1103/PhysRevD.110.103548

I. INTRODUCTION

The large-scale structure of the universe is one of the
major observables for extracting cosmological information.
The leading-order statistics of large-scale structure, the
two-point correlation function, has been the main summary
statistics for analyzing, for example, the anisotropies of
temperature and polarization of the cosmic microwave
background (CMB) radiation measured from WMAP [1]
and Planck [2] satellites, and the distribution of galaxies
measured from the galaxy redshift surveys such as Sloan
Digital Sky Survey and Dark Energy Spectroscopic
Instrument survey [3].
For further cosmological studies, for example, to deter-

mine the initial condition of the Universe, to study the

nature of dark matter and dark energy, and to test gravity on
large scales, many large-scale structure surveys with wider
sky coverages and deeper flux limits are currently under-
going or being planned. These include HETDEX [4],
Euclid [5] LSST of Vera Rubin Telescope [6], Subaru
PFS [7], HAWAS (High-Altitude Wide-Area Survey) of the
Roman Space Telescope [8], and SPHEREx [9].
While the large-scale structure traced by the CMB

radiation is measured to be nearly Gaussian [10], that
traced by galaxies is genuinely non-Gaussian due to the
nonlinearities in the late-time gravitational evolution, the
galaxy formation and evolution, and the redshift-space
distortion. Therefore, analyzing only the two-point corre-
lation function misses opportunities to extract the non-
Gaussian cosmological information [11,12], and fully
exploiting the galaxy clustering dataset demands analyses
beyond the two-point correlation function [13].*Contact author: zzw173@psu.edu

PHYSICAL REVIEW D 110, 103548 (2024)

2470-0010=2024=110(10)=103548(17) 103548-1 © 2024 American Physical Society

https://orcid.org/0000-0002-2970-3661
https://orcid.org/0000-0002-8434-979X
https://orcid.org/0000-0002-4016-1955
https://orcid.org/0000-0002-9664-0760
https://orcid.org/0000-0002-7934-2569
https://ror.org/04p491231
https://ror.org/041hz9568
https://ror.org/0589kgd85
https://ror.org/02kpeqv85
https://ror.org/02chw6z69
https://ror.org/057zh3y96
https://ror.org/05t70xh16
https://ror.org/01hjzeq58
https://ror.org/01hjzeq58
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.103548&domain=pdf&date_stamp=2024-11-27
https://doi.org/10.1103/PhysRevD.107.103534
https://doi.org/10.1103/PhysRevD.110.103548
https://doi.org/10.1103/PhysRevD.110.103548
https://doi.org/10.1103/PhysRevD.110.103548
https://doi.org/10.1103/PhysRevD.110.103548


The bispectrum, the Fourier equivalent of the three-point
correlation function, is the lowest-order statistics sensitive to
non-Gaussianities in galaxy clustering [14]. Incorporating
the galaxy bispectrum into the analysis disentangles param-
eter degeneracies in the power-spectrum-only analysis,
for example, between linear galaxy bias and σ8, and
significantly tightens the constraints on cosmological
parameters [15,16], including, but not limited to, the
neutrinomass [17–19] and primordial non-Gaussianity [20].
Standard perturbation theory (SPT) provides the foun-

dational tool for modeling the gravitational nonlinearities
in the cosmic density field. Treating the matter field on
large scales as pressureless perfect fluid, that is, neglecting
velocity dispersion and higher-order velocity moments in
BBGKY hierarchy, PT solves the Vlasov–Poisson equa-
tion perturbatively in the order of linear density contrast.
Then, the SPT solution is used to predict the ensemble
mean of the summary statistics, such as the power
spectrum [21] and bispectrum [22–24] on the quasilinear
scales. The most advanced analytical SPT bispectrum
calculations are at the next-to-leading (NLO, or one-loop)
order because higher-order loop corrections are tied to
complex, high-dimensional integrals, making calculations
computationally challenging [25,26]. Going beyond the
NLO, at the same time, SPT is also known for its poor
convergence when adding successively higher-order cor-
rections to the power spectrum [27,28]. With these
limitations and the back-reaction of small-scale nonlinear-
ities to large scales [29] that is not captured in SPT, the
application of SPT is limited to modeling nonlinearities in
high redshifts.
To improve the accuracy of SPT modeling and remedy

pathological convergence behavior for higher-order SPT,
beginning with [30], a plethora of renormalized PT schemes
have been proposed over the past two decades. These
include resummed Lagrangian perturbation theory [31],
renormalized perturbation theory (RPT) [30,32] including
MPTBREEZE [33,34] and regularized perturbation theory
(RegPT) [35], to name a few. Alternatively, the effective
field theory of large-scale structure (EFTofLSS) [36–38]
method is proposed to absorb the small-scale back-reactions
into a few counter terms; each counter term in the model for
the nonlinear power spectrum and bispectrum introduces a
free parameter, which must be determined along with the
cosmological parameters. Although the details of the per-
formance deviate method by method, these efforts success-
fully extend the range of model validity beyond SPT. We
often quantify the validity range by kmax, which is the
maximum wave number below which a theory accurately
models the nonlinearities.
Both renormalized PT and EFTofLSS methods have also

been used to model the nonlinearities in the matter
bispectrum. The success of resummed methods in increas-
ing the model’s validity range for nonlinear power spec-
trum, however, (see also [39,40]) has not been extended

much in modeling bispectrum [34,41], and only modest
improvement has been obtained. While the validity range of
the EFTofLSS for bispectrum modeling is, in general,
larger than SPT and renormalized PT [34,42–44], the
precise value of kmax depends on many factors, including
the configurations used for comparison, the total simulation
volume which determines the statistical uncertainties, the
range of wave number to determine the EFT free param-
eters and systematics by mass resolutions in N-body
simulations [41]. For example, the EFT parameters sig-
nificantly deviate from its low-k limit when fitted from the
bispectrum in N-body simulation with k > 0.12 h=Mpc at
z ¼ 1 [41].
In this paper, we present the nonlinear bispectrum model

using the novel nEPT (nth order Eulerian perturbation
theory) [45] method, which is proven to extend the kmax
well beyond the SPT for the nonlinear matter power
spectrum. While using the same nth order density contrast
computed using the SPT recursion relation, nEPT differs
from the standard PT practice in the way it computes the
summary statistics. Namely, nEPT first adds the nonlinear
contributions up to a fixed order n and then calculates the
summary statistics using the total density contrast. In
particular, we compute the nth order density fields from
the grid-based calculation of SPT (GridSPT) [46] with a
given linear density field. GridSPT allows a realization-by-
realization comparion of the nEPT result with the N-body
simulations starting from the exactly same linear density
field [45]. Reference [45] also shows that nEPT power
spectrum enjoys well-behaved convergence for succes-
sively increasing n, so long as the nonlinearities are not
too strong (for the redshifts z ≥ 1). One indication is that
kmaxðnÞ of power spectrum steadily increases as a function
of the PT order n. Furthermore, 5EPT is proven to out-
perform the two-loop SPT power spectrum at z ≥ 1 and
reach a similar level of accuracy as RegPTþ and EFT, but
without employing any free parameters.
A similar approach using the Lagrangian Perturbation

Theory has been studied in [47,48] and well demonstrated
the powerfulness of the method. These Lagrangian studies,
however, typically focus on much larger scales by employ-
ing a somewhat conservative cutoff scale Λ≲ 0.2 h=Mpc.
Our Eulerian method complements the Lagrangian studies
on finding the extension of the modeling to smaller scales
by including the higher-order contributions.
The success of nEPT in modeling the power spectrum

may open a new avenue for the field-level modeling of the
nonlinear density field using nEPT scheme. To explore this
possibility further, we have to check the accuracy of the
nEPT modeling beyond the power spectrum, which is the
averaged amplitude modulus of the density field in Fourier
space. In this paper, we check the accuracy of the nEPT
modeling for the nonlinear bispectrum, again in a realiza-
tion-by-realization manner, by taking full advantage of the
GridSPT [46] method. This comparison is more stringent
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than the ensemble-mean-based comparison usually adopted
to test the accuracy range of the summary statistics of SPT,
renormalized PT, and EFTofLSS.
Being the three-point correlation function of density

contrast, the bispectrum depends on three wave vectors that
form a triangle in the Fourier space. Even after exploiting
the underlying statistical isotropy, we are left with three
parameters k1, k2, and k3, making visualization for bispec-
tra comparison hard. To facilitate the comparison between
the nEPT and the N-body results, we use the spherical
bispectrum [49] to reorganize the bispectrum information
according to the spherical wave number of the Fourier
triangles, ksph ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk21 þ k22 þ k23Þ=3

p
, with which we can

project the bispectrum amplitude onto one-dimension.
At the end, we confirm that nEPT’s accurate modeling of

the nonlinear density field holds up for the bispectrum as
well as the power spectrum [45]. The main finding of the
analysis is as follows. First, the nEPT has better conver-
gence behavior than SPT: the accuracy of nEPT bispectrum
model is excellent on large scales (lower wave number) and
deviates from the N-body results at increasingly smaller
scales as we include higher-order contributions to the
density field. This behavior is in contrast to the sign-
alternating residual curves common in the SPT model (for
example, see the three right panels of Fig. 1 in [45] or Fig. 2
in this paper). Furthermore, the improvement of ksph;max,
the maximum wave number defined with 2% residual of
spherical bispectrum, of nEPT compared to SPT is even
larger than that in the nonlinear power spectrum we have
reported in [45]. We also find a tight anticorrelation
between ksph;max and σ8ðzÞ, which characterizes the ampli-
tude of the linear density field and provides a common
ground to compare the result at different redshift with
various cosmologies. We also confirm that the statement
holds up for general wCDM cosmologies around the best-
fitting Planck2018 cosmology.
The rest of this paper is organized as follows. We

introduce the bispectrum modeling with nEPT and SPT
in Sec. II, the bispectrum visualization in Sec. III, and the
setup of N-body simulations in Sec. IV. Then, we compare
the nEPT bispectrum against the N-body results in Sec. V.
We conclude and discuss future work in Sec. VI. In
Appendix, we present a fast method of measuring the
density bispectrum from the GridSPT output.
Throughout the paper, we use the following convention

of Fourier transformation,

f̃ðkÞ ¼
Z

d3xfðxÞe−ik·x; ð1Þ

fðxÞ ¼
Z

d3k
ð2πÞ3 f̃ðkÞe

ik·x; ð2Þ

but remove the tilde of the Fourier mode in the rest of the
paper, as they are barely a different projection of the same

Hilbert-space function: fðkÞ ¼ hkjfi, fðxÞ ¼ hxjfi. For
the compactness of the equations, we use the following
convention for the sum of multiple vectors,

k1���n ¼
Xn
i¼1

ki: ð3Þ

II. PERTURBATION THEORY MODEL
OF NONLINEAR BISPECTRUM

A. Overview: Standard perturbation theory (SPT)

The standard perturbation theory (SPT) treats the large-
scale evolution of dark matter and baryon perturbations as
that of a pressureless perfect fluid, which follows the set of
fluid equations:

δ̇þ∇ · ½ð1þ δÞv� ¼ 0; ð4Þ

v̇þ ðv · ∇Þvþ ȧ
a
v ¼ −∇ϕ; ð5Þ

along with the Poisson equation:

∇2ϕ ¼ 4πGρ̄ma2δ: ð6Þ

Here, δ is the density contrast δ ¼ ρm=ρ̄m − 1 and v ¼ ẋ is
the peculiar velocity. Note that the dot represents the
conformal-time derivative [dτ ¼ dt=a, with the scale factor
aðtÞ and cosmic time t], and x is the comoving coordinate
in the FLRW spacetime, and ∇ is the comoving-coordinate
derivative. Finally, ϕ is the peculiar gravitational potential.
Furthermore, SPT [50] assumes irrotational velocity at

all orders and expands the density contrast δ and the
reduced velocity-divergence θ≡ −ð∇ · vÞ=ðaHfÞ as

δðτ; xÞ ¼
X
n

½DðτÞ�nδðnÞðxÞ; ð7Þ

θðτ; xÞ ¼
X
n

½DðτÞ�nθðnÞðxÞ: ð8Þ

In Fourier space, the spatial parts δðnÞðkÞ and θðnÞðkÞ can be
written as

δðnÞðkÞ ¼
Z
q1

� � �
Z
qn

ð2πÞ3δDðk − q1���nÞ

× Fnðq1;…; qnÞ
Y
i

δLðqiÞ; ð9Þ

θðnÞðkÞ ¼
Z
q1

� � �
Z
qn

ð2πÞ3δDðk − q1���nÞ

×Gnðq1;…; qnÞ
Y
i

δLðqiÞ; ð10Þ
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with the linear density field δL and the density and velocity
kernels Fn and Gn, respectively. Here, δD is the Dirac delta
operator. For general spacetime, the kernels depend on time
and satisfy the following differential equations [51]:

1

fðȧ=aÞḞnþnFn−Gn¼
Xn−1
m¼1

k1���n ·k1���m
k21���m

GmFn−m; ð11Þ

1

fðȧ=aÞ Ġn þ
�
3

2

Ωm

f2
þ n − 1

�
Gn −

3

2

Ωm

f2
Fn

¼
Xn−1
m¼1

k21���nðk1���m · kmþ1���nÞ
2k21���mk

2
mþ1���n

GmGn−m; ð12Þ

but the standard practice is to compute the kernels for the
Einstein de-Sitter (EdS; flat, matter-dominated) Universe
where Ωm ¼ f ¼ 1 where the kernels are time-indepen-
dent. That is, we fix the kernels to their EdS form, and the
cosmology dependence appears as the time dependence
coming through the linear growth factor DðτÞ. This
prescription is proven to be accurate at a subpercent level
for ΛCDM cosmologies [52,53] (see Ref. [47] for such
comparison in Lagrangian perturbation theory).

B. Grid-based calculation of
standard perturbation theory (GridSPT)

In EdS universe, the recursion relation for Fn and Gn are
algebraic equations, Eqs. (11) and (12) without the time-
derivative term. Even with that, however, implementing the
higher-order perturbative solutions in Fourier space requires
multidimensional convolution of Eqs. (9), (10) [54].
GridSPT [46] bypasses the difficulties by using the con-
figuration-space recursion relation

�
δðnÞðxÞ
θðnÞðxÞ

�
¼ 1

ð2nþ 3Þðn − 1Þ
�
2nþ 1 1

3 n

�

×
Xn−1
m¼1

 ∇ · ½δðmÞðxÞuðn−mÞðxÞ�
∇2½uðn−mÞðxÞ · uðn−mÞðxÞ�

!
: ð13Þ

Here, u≡ −v=aHf is the reduced peculiar velocity, which
is related to θ by uðnÞðkÞ ¼ −ikθðnÞðkÞ=k2. Note that we set
the DC (k ¼ 0) mode to be zero, uðk ¼ 0Þ ¼ θðnÞðk ¼ 0Þ ¼
0 to avoid any effect from the long-wavelength modes.
Equipped with the fast Fourier transformation (FFT)

algorithm, GridSPT generates SPT nonlinear density con-
trast and velocity field from a given linear density contrast
quite efficiently for both real-space [46,55] and redshift-
space [56]. The computational complexity reduces from
OðN2Þ [54] to OðN logNÞ, where N stands for the total
number of grids.

C. nth order Eulerian perturbation theory (nEPT)

Unlike the traditional PT-based methods that compute
the statistical quantities up to a given total PT order, nEPT
first computes the sum of the density contrast up to nth
order to estimate the statistical quantities from the total.
That is, nEPT constructs the density contrast in the Eulerian
space from the first to nth order, which we denote as δn EPT,
then calculate the summary statistics of δn EPT.
In the strict SPT framework, the two methods must

converge in the limit of n → ∞. The series of assumptions
on which SPT is built, however, must also break down well
before that limit. In the literature, the limitation of SPT is
explored in relation to traditional PT methods. For exam-
ple, see [57,58] for the EFT correction of two-loop order
power spectrum and [2,43,44,59] for the one-loop bispec-
trum to improve the accuracy of SPT at low redshifts. The
limitation of nEPT way of modeling nonlinear density field
has never been done before. Therefore, the precise question
we address here is how far we can push the quasilinear
scales (kmax) by employing the nEPT method.
We contrast the difference between SPT and nEPT in

computing power spectrum and bispectrum as follows. The
nEPT power spectrum and bispectrum

PnEPTðk; τÞ ¼
X
i;j≤n

PijðkÞDðiþjÞðτÞ ð14Þ

BnEPTðk1; k2; k3; τÞ
¼
X
i;j;k≤n

Bijkðk1; k2; k3ÞDðiþjþkÞðτÞ; ð15Þ

which contains nonlinear contributions different from the
n-loop power spectrum and bispectrum in SPT

Pn-loop
SPT ðk; τÞ ¼

X
iþj≤nþ2

PijðkÞDðnþ2ÞðτÞ ð16Þ

Bn-loop
SPT ðk1; k2; k3; τÞ
¼

X
iþjþk≤nþ4

Bijkðk1; k2; k3ÞDðnþ4ÞðτÞ: ð17Þ

Here, we have defined

hδðiÞðk1ÞδðjÞðk2Þi≡ ð2πÞ3Pijðk1ÞδDðk12Þ; ð18Þ

hδðiÞðk1ÞδðjÞðk2ÞδðkÞðk3Þi
≡ ð2πÞ3Bijkðk1; k2; k3ÞδDðk123Þ: ð19Þ

One crucial difference between the traditional SPT method
and nEPT is the inclusion of the odd components in
summary statistics: Pij and Bijk when iþ j or iþ jþ k
are odd numbers. These contributions are neglected in the
traditional SPT methods because their ensemble mean
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vanishes for Gaussian linear density fields. When compar-
ing the power spectrum and bispectrum for a single
realization of GridSPT and N-body simulations, however,
these odd components make a nonzero contribution to the
statistics, and including the odd components indeed enhan-
ces the accuracy of the nEPT prediction. In addition, these
odd components also contribute to the statistical uncer-
tainties of measured summary statistics. In fact, fixed-pair
simulation suites [60–62] cancel out the odd components
and significantly decrease the statistical uncertainties. That
is the reason behind the good match between the fixed-pair
simulation suites simulation suites and traditional SPT
predictions.

III. BISPECTRUM VISUALIZATION

Correlating three density contrasts in Fourier space, the
matter bispectrum can, in principle, be a function of three
wave vectors k1, k2, and k3 with nine degrees of freedom
(d.o.f.) in total. However, statistical homogeneity reduces
the d.o.f. to six by demanding the triangular condition
k123 ¼ 0. Note that any three vectors subject to the
triangular condition must be on a plane, but statistical
isotropy demands that the matter bispectrum must be
independent from the direction of the plane (−2 d.o.f.)
and the rotation on the plane (−1 d.o.f.). The matter
bispectrum, therefore, can be fully characterized by the
rest of the three d.o.f.. Visualizing the three-dimensional
dependences is challenging as it would require a four-
dimensional display to fully encapsulate all information
(e.g., see [34]).
One common way of specifying the three d.o.f. is to use

the norm of three wave vectors, represented as ðk1; k2; k3Þ.
Earlier works [23,24,63] often show only a part of the
triangular shapes in one-dimensional plot. When showing
the full dependences, for example, Ref. [64] has condensed
the three wave numbers into a one-dimensional array of
flattened indices, with each index corresponding to a
specific triangle configuration. Figure 5 shows an example.
While spreading the bispectrum along the flattened index
allows a two-dimensional display of the bispectrum in its
entirety, it often fails to isolate key features in the
bispectrum, such as its scale and configuration dependen-
cies, and, thereby, obstructs the physical interpretation.
To enhance the clarity of bispectrum comparisons

between theory and N-body results, we adopt the spheri-
cal-bispectrum visualization technique [49] detailed in
Sec. III A. This approach highlights the scale dependence
of the bispectrum by collapsing the configuration depend-
ence. The spherical-bispectrum visualization suits well the
main goal of this paper of assessing the kmax of the nEPT
bispectrum.
Once we determine kmax, we shall reflect our findings

using the flattened-index visualization to check the con-
figuration dependence of the kmax. For constructing the
flattened index consistent with the spherical-bispectrum

visualization, however, we have invented a new permuta-
tion strategy, ordering the flattened index so that each
flattened-index chunk corresponds to the same ksph, differ-
ent from the usual practice aligning each chunk with the
same k1. We present the details of the new flattening index
in Sec. III B.

A. Spherical-bispectrum visualization

The Cartesian coordinate consisting of the triplet of wave
numbers ðk1; k2; k3Þ can be written in the corresponding
spherical coordinate ðksph; θsph;ϕsphÞ as

ksph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk21 þ k22 þ k23Þ=3

q
ð20Þ

θsph ¼ arctan

�
k3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q �
ð21Þ

ϕsph ¼ arctan ðk1=k2Þ: ð22Þ

The spherical bispectrum refers to binning the bispec-
trum according to the radius in the spherical coordinate ksph
of each Fourier triangle ðk1; k2; k3Þ. This binning scheme
allows to show the matter bispectrum as a one-dimensional
function of ksph, facilitating the comparison between
various perturbation theory outcomes to the N-body results
to determine the maximum spherical wave number ksphp;max

of each theory model.
In practice, we first measure both the bispectrum

Bðk1; k2; k3Þ and the number of triangles NBðk1;
k2; k3Þ that belong to each spherical-bispectrum bin:
j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
− ksphj < δksph=2. Then, the spherical bis-

pectrum in each ksph bin is obtained by the weighted
average:

BðksphÞ ¼
P

Bðk1; k2; k3ÞNBðk1; k2; k3ÞP
NBðk1; k2; k3Þ

: ð23Þ

Here, we sum over the triangles with spherical wave
number falling into the bin of ksph. Throughout this paper,
we set the bin size to be the fundamental wave number
kF ¼ 2π=L, where L is the side length of N-body box.
Let us consider the range of ksph for a fixed largest wave

number (k1 ≥ k2 ≥ k3). From the triangular condition, we
can find the minimum ksph as

k21 ¼ jk2 þ k3j2 ≤ k22 þ k23 þ 2k2k3

≤ 2ðk22 þ k23Þ ¼ 2ð3k2sph − k21Þ

→
k1ffiffiffi
2

p ≤ ksph: ð24Þ

where the second inequality comes from the Cauchy–
Schwarz inequality: a2 þ b2 ≥ 2ab. The equality holds
when k2 ¼ k3 ¼ k1=2 and k2kk3, which is the case for the
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folded triangles. The maximum ksph comes about for
the equilateral triangle (k1 ¼ k2 ¼ k3) where ksph ¼ k1.
Therefore, for a fixed k1, the spherical wave number ksph is
limited by

k1ffiffiffi
2

p ≤ ksph ≤ k1: ð25Þ

In other words, to complete the spherical bispectrum up to
some maximum spherical wave number ksph;max, we have to

measure the bispectrum up to k1 ¼
ffiffiffi
2

p
ksph;max.

When fixing triangular configurations, the spherical
bispectrum only averages over the corresponding corners
in the ðk1; k2; k3Þ Cartesian coordinate. In such cases, the
required wave number range to complete the spherical
bispectrum also varies with the triangular configurations.
Interested readers can find the requirements in Table 1
of [49].

B. Flattened index with fixed ksph
The usual approach to constructing the flattened index is

alphabetically ordering ðk1; k2; k3Þ triplet (k1 ≥ k2 ≥ k3).
That is, for a fixed k1, varying ðk2; k3Þ doublet from
ðk2; k3Þ ¼ ð1=2; 1=2Þk1 (folded triangle) to ðk2; k3Þ ¼
ðk1; k2Þ (equilateral triangle).
When further decomposing the spherical bispectrum into

the triangular configurations, however, the flattened index
constructed in this manner is not compatible with the
spherical bispectrum, since triangles within the same k1
chunk may fall into different bins of spherical wave number
ksph. For example, ksph ¼ k1=

ffiffiffi
2

p
for folded triangles and

ksph ¼ k1 for equilateral triangles.
To remedy the situation, we construct the new flattened

index scheme by first fixing ksph then sampling ðk1; k2; k3Þ
alphabetically for those triplets falling in the same ksph bin.
As a result, the points on the fixed-k1 plane belong to
different chunks depending on their ksph values, as illus-
trated in Fig. 1. For a fixed ksph, the quadratic sum of k2 and
k3 follows �

k2
k1

�
2

þ
�
k3
k1

�
2

¼ 3

�
ksph
k1

�
2

− 1; ð26Þ

which are arcs with radius varies with ksph=k1. The new
sampling method naturally extends the spherical bispec-
trum to highlight the triangular configuration dependencies.
Figure 4 shows one such example.

C. Triangle configurations

In Sec. V C, we test the nEPT modeling of bispectrum
for different triangle configurations, including equilateral,
isosceles, o-isosceles, squeezed, elongated, folded, and
general triangles, whose definitions are visualized in

Fig. 1. However, some triangle configurations following
the strict definition could result in very limited number of
modes and stochastic bispectrum result.
To alleviate this problem, we use the following relaxed

definition of triangle shapes in Sec. V C, following [49],
(i) Equilateral: k1 ¼ k2 ¼ k3.
(ii) Isosceles-like: 0.95 < k2=k1 < 1 or k3=k2 > 0.95.
(iii) Squeezed-like: k1=k3 > 3; k2=k1 > 0.95.
(iv) Elongated-like: k1 > 0.95ðk2 þ k3Þ.
(v) General: all the other triangles.

Here the o-isosceles triangles are categorized into isos-
celes-like ones, and elongated-like triangles also include
folded triangles for the clarity of the plot. We also list the
fraction of the triangle numbers of each configuration
for ksph < 0.25 h=Mpc.

(i) Equilateral: 1.01%
(ii) Isosceles-like: 22.1%
(iii) Squeezed-like: 3.04%
(iv) Elongated-like: 8.28%
(v) General: 66.3%

For simplicity, we omit the “-like” suffix in the configu-
ration names in the rest of this paper.

IV. SETUP: N-BODY SIMULATIONS,
GRIDSPT, AND BISPECTRUM ESTIMATOR

We test the performance of nEPT in modeling the
nonlinear bispectrum by comparing the result of SPT
and nEPT against two groups of N-body simulation that
we call WMAP run and Dark-Quest run in what follows.
Since we use the GridSPT (Sec. II B) realization to
forward-model the nonlinear density field from the exact

FIG. 1. Illustration of constructing the flattened index for
sampled Fourier triplets (k1, k2, k3), where k1 ≥ k2 ≥ k3. Sam-
pling of triangles begins along the lighter green lines and
progresses to the darker green lines. Within each line, triangles
are sampled in the direction indicated by the arrows. We first fix
ksph and then sample triangles with all possible ðk1; k2; k3Þ that
correspond to the fixed ksph. Each green line corresponds to a

unique k1 value between k1 and
ffiffiffi
2

p
k1, as indicated in the plot. We

highlight the range of k1 for special triangle configurations,
including folded, elongated, squeezed, isosceles, o-isosceles, and
equilateral triangles.
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initial linear density field used to run the N-body simu-
lations (also see [45–47,65]), we can make such a com-
parison even with a single realization. This method must be
contrasted with the comparison between perturbation
theory and ensemble average of N-body simulation results
(for example, see [21,39,41,49]). Here, the variation that we
study among the WMAP run and Dark-Quest run is the
underlying cosmological model. Also, our implementation
for SPT or nEPT here does not contain any free parameters
so that the obtained validity range is not impacted by the
uncertainties of fitted parameter due to, for example,
limited simulation volume, which typically happens for
theories like EFTofLSS that involves free parameters [41].
The WMAP run uses an N-body simulation of 10243

particles and of box size L ¼ 1 Gpc=h, with the cosmo-
logical parameters consistentwith theWMAP-5 results [66].
We use the dark-matter distribution data at redshifts z ¼ 0,
0.5, 1, 2, 3, and 5 for our base-line comparison.
The Dark-Quest run consists of 20N-body simulations in

Dark Quest Project [67] with different stochastic initial
conditions. The 20 simulations are for the 20 test cosmol-
ogies arranged uniformly over the six-dimensional hyper-
rectangle, covering roughly up to a ∼10σ range of the 2015
Planck data [68]. Each simulation in Dark Quest uses 20483

particles, and the box size is the same as the WMAP
run L ¼ 1 Gpc=h.
The N-body simulation data we use here is the same as

the ones to test the performance of the nEPT power
spectrum in [45]. The softening length in all the simulations
are set to be 5% of the mean particle separation. The

cosmological parameters we use to perform GridSPT
calculation andN-body simulations can be found in Table I.
For both WMAP and Dark-Quest runs, we compute the

Fourier-space density contrasts by using the Julia imple-
mentation of FFTW of the dark matter particle density
assigned on the regular 10243 grid by the CIC (cloud-in-
cell) scheme. We also correct for the aliasing effect by
employing the interlacing method [69]. The measurement
error is much less than 1% up to the Nyquist frequency
of k ¼ 3.2 h=Mpc.
For the GridSPT calculation, we compute the nonlinear

density contrast up to sixth-order in PT, which is sufficient
for computing two-loop SPT and 6EPT bispectrum using
Eqs. (17) and (15), respectively. To avoid the aliasing effect
when using the recursion relation in Eq. (13), we use the
generalized Orszag rule [47,56]: we compute the GridSPT
onN3

grid regular grid, and the linear density field for thewave
vector jkj > ½2=ðnþ 1Þ�kNyq is set to be zero (called zero
padding) fornEPT.Here, kNyq ¼ π=ðL=NgridÞ is theNyquist
wave number. The requirement kUVcut < ½2=ðnþ 1Þ�kNyq for a
desired kUVcut sets the minimum Ngrid that we use for the
GridSPT calculation. For the baseline computation, we use
the fiducial UV cutoff kUVcut;fid ¼ 256kF ¼ 1.61 h=Mpc,
which sets Ngrid ¼ 1792. We also use two other UV cutoffs
kUVcut ∈ ð200; 340ÞkF ¼ ð1.26; 2.14Þ h=Mpc to study the
sensitivity of the modeled bispectrum to the UV cutoffs
(the grid resolution). This sets the Ngrid ∈ ð1400; 2380Þ.
Now we have the Fourier-space density grid from the

WAMP run, the Dark-Quest run, and corresponding

TABLE I. The cosmological parameters used for the baseline (WMAP run) and 20 Dark-Quest run simulations.

Name ns h Ωb Ωm Ωw w σ8

WMAP 0.96 0.701 0.046 0.279 0.721 −1 0.8159

Dark Quest 1 0.9447 0.6971 0.0437 0.3115 0.6885 −0.842 0.8851
Dark Quest 2 0.9293 0.6315 0.0534 0.3635 0.6365 −1.074 0.6500
Dark Quest 3 0.9592 0.8937 0.0269 0.1883 0.8117 −1.114 1.0480
Dark Quest 4 0.9544 0.6064 0.0585 0.4046 0.5954 −0.918 0.9662
Dark Quest 5 0.9717 0.5783 0.0647 0.3936 0.6064 −1.126 0.6990
Dark Quest 6 0.9930 0.8051 0.0336 0.2129 0.7871 −0.982 0.7210
Dark Quest 7 0.9168 0.6067 0.0594 0.3772 0.6228 −0.946 0.8926
Dark Quest 8 0.9216 0.8620 0.0296 0.1938 0.8062 −1.022 0.8204
Dark Quest 9 1.0036 0.5553 0.0716 0.4347 0.5653 −0.870 0.6105
Dark Quest 10 0.9862 0.6557 0.0517 0.3443 0.6557 −1.014 0.6401
Dark Quest 11 0.9602 0.7839 0.0364 0.2513 0.7487 −0.966 0.7179
Dark Quest 12 0.9766 0.6364 0.0552 0.3334 0.6666 −1.146 1.0569
Dark Quest 13 0.9332 0.6834 0.0482 0.2951 0.7049 −1.182 1.0502
Dark Quest 14 0.9688 0.5676 0.0704 0.4237 0.5763 −0.822 0.9021
Dark Quest 15 0.9496 0.7800 0.0375 0.2348 0.7652 −0.802 0.8035
Dark Quest 16 0.9795 0.6910 0.0479 0.3170 0.6830 −0.894 1.1437
Dark Quest 17 1.0016 0.7022 0.0465 0.2677 0.7323 −0.934 0.8600
Dark Quest 18 0.9370 0.7998 0.0361 0.2212 0.7788 −1.094 0.7855
Dark Quest 19 1.0094 0.5768 0.0696 0.4456 0.5544 −1.058 0.7272
Dark Quest 20 0.9978 0.7246 0.0444 0.2759 0.7241 −1.170 0.8757
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GridSPT calculations. We finally measure the bispectrum
using the paralleled polyspectra estimator with slab-
decomposed paralleled FFT algorithm [70], which com-
putes the bispectra Bðn1kF; n2kF; n3kFÞ and number of
triangular configurations NBðn1kF; n2kF; n3kFÞ for each
triplet ðn1; n2; n3Þ of non-negative integers and the funda-
mental wave number kF ¼ 2π=L. The detailed steps of
measurement of SPT and nEPT bispectrum from GridSPT
density perturbations can be found in Appendix. Then, we
organize the full bispectrum dataset into spherical bispec-
trum according to III A, with the fundamental wave number
kF as the bin size ksph. Since both GridSPT and N-body
analyses follow the precisely same steps, the binning
corrections [49,71,72] do not impact the comparison here.
We also subtract the Poissonian shot noise from the
measured bispectrum in N-body simulations, but the effect
of shot noise is negligible. We compare the measured
bispectrum from nEPT and N-body simulations at 21
redshifts from z ¼ 0 to 1.48.

V. RESULTS: BISPECTRUM COMPARISON

In this section, we compare the matter bispectrum
computation of SPT and nEPT using GridSPT against

the N-body results. Here, the “SPT bispectrum” refers to
the usual tree-level, one-loop, and two-loop calculation as
described in Eq. (17), and the “nEPT bispectrum” refers to
the model detailed in Eq. (15). In Sec. VA, as a baseline
study, we compare the spherical bispectrum from nEPT and
SPT for the WMAP run adopting the ΛCDM cosmology.
We then extend this comparison to the Dark-Quest run
adopting the general wCDM cosmologies, as discussed in
Sec. V B. Finally, in Sec. V C, we scrutinize the precision
of nEPT bispectrum modeling by spreading the bispectrum
averaged in the ksph bin to the flattened index showing the
comparison at each ðk1; k2; k3Þ triplet.

A. Spherical bispectrum in ΛCDM cosmology:
WMAP run

Figure 2 shows the ratio of SPT (dashed lines) and nEPT
(solid lines) spherical bispectrum to the baseline N-body
results at six redshifts: z ¼ 0, 0.5, 1, 2, 3, 5. The yellow and
lavender bands in each panel highlight the one and two-
percentage error ranges. Note that the ranges of spherical
wave number ksph are different: the left three panels (z ¼ 0,
0.5, 1) shows for ksph ≤ 0.3 h=Mpc, and the right three
panels (z ¼ 2, 3, 4) shows for ksph ≤ 0.5 h=Mpc.

FIG. 2. The ratio of spherical bispectrum modeled by nEPT to N-body results for the baseline WMAP5 cosmology at redshifts
z ¼ 0; 0.5; 1; 2; 3; and 5. The thick solid lines are the result from nEPT calculations: 2EPT (green), 3EPT (blue), 4EPT (magenta), 5EPT
(cyan), and 6EPT (red). The think dashed lines are the result from SPT calculations: tree (green), one-loop (magenta), and two-loop
(red). Both nEPT and SPT results are measured from the density field forward modeled by GridSPT using the initial linear density field
of N-body simulation. The shaded regions show the variation with UV cutoff between ð1.26; 2.14Þ h=Mpc. The central lines are from
the results with fiducial UV cutoff kUV;fid ¼ 1.61 h=Mpc. The hatched area indicates the variation with higher UV cutoff than the
fiducial value. The yellow and lavender bands indicate the �1% and �2% regions.
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Figure 2 clearly demonstrates several advantages of
nEPT over SPT in bispectrum modeling.
First and foremost importantly, nEPT can model the

bispectrum accurately for a much wider range than SPT at
high redshifts, z ≥ 1. For example, 6EPT (red solid line)
bispectrum follows the N-body result to a subpercentage
accuracy up to ksph ¼ 0.25 h=Mpc at z ¼ 1, while two-
loop SPT bispectrum (red dashed line) crosses the one-
percent line at ksph ¼ 0.19 h=Mpc. Notably, the current
most advanced analytical SPT bispectrum calculation, the
one-loop (purple dashed line) SPT calculation, achieves a
percent accuracy only up to ksph ¼ 0.11 h=Mpc. That is,
compared to the one-loop SPT, using 6EPT expands kmax
by more than a factor of two, with which we expect
immense gain in the statistical information: This corre-
sponds to a factor of ð25=11Þ3 ≃ 11.7 increase in the total
number of triangular configurations, each of which con-
tains the factor 11.7 more NB. The enhancement provided
by 6EPT over the two-loop SPT bispectrum is more
substantial than the improvement that 5EPT yields in the
power spectrum compared to the two-loop SPT [45].
Second, successively higher order nEPT spherical bis-

pectrum shows better convergence than that of SPT at
z ≥ 2. Specifically, before reaching the kmax, nEPT spheri-
cal bispectrum’s agreement with N-body results improve
consistently as the order n increases. In contrast, the SPT
spherical bispectrum exhibits poor convergence from one-
loop to two-loop. For example, the one-loop SPT spherical
bispectrum (dashed-purple lines) maintains accuracy
within �2% up to k ¼ 0.5 h=Mpc at z ¼ 3 (the middle
left panel of Fig. 2). However, while the addition of two-
loop correction (dashed red lines) slightly improves the
accuracy at smaller k, it reduces the accuracy for
k ≥ 0.3 h=Mpc. With such a behavior in convergence of
SPT, it is reasonable to doubt that the good match between
one-loop SPT and N-body result beyond k ≃ 0.3 h=Mpc at
z ¼ 3 is rather a result of serendipity than an outcome of
robust modeling. We can observe similar patterns for z ¼ 2
and z ¼ 5 cases.
Finally, in Fig. 2, the residuals of the nEPT bispectra (for

n ≥ 4) are much smoother than the residuals of the SPT
bispectra. As explained earlier, we attribute the smoothness
to the inclusion of the odd-power terms, whose ensemble
averages vanish, to the nEPT calculation. These contribu-
tions turn out to be important for realization-by-realization
comparisons [60–62]. Even though the nEPT bispectra and
the SPT bispectra seem to model the N-body results to a
similar kmax at z ≥ 3, we argue that nEPT modeling of
spherical bispectrum is more robust than one-loop SPT
because, on top of the nicer convergence, nEPT residual is
much smoother.
However, all medications can have side effects. Both

nEPT and SPT modeling approaches have common lim-
itations which are most apparent for lower redshifts as
demonstrated in the left panels of Fig. 2.

First, increasing order in both SPT and nEPT calculation
does not always enhance the accuracy at lower redshift
(z≲ 0.5). For example, at z ¼ 0.5, the accuracy of 5EPT
stays below 1% up to k ¼ 0.11 h=Mpc, but 6EPT starts to
deviate more than 1% from k ¼ 0.01 h=Mpc. One can
observe similar trends for the one-loop and two-loop
bispectra at z≲ 0.5.
The second limitation is that the nEPT and SPT way

of modeling bispectrum are sensitive to the UV (high-k)
cutoff in the linear density field. The UV cutoff kUVcut ¼
ð2πNgridÞ=½ðnþ 1ÞL� corresponds to the resolution of the
GridSPT calculation. For the baseline GridSPT calculation,
we use kUVcut ¼ 1.61 h=Mpc, and check the UV-cutoff
dependence by repeating the calculation with kUVcut1 ¼
1.26 h=Mpc and kUVcut2 ¼ 2.14 h=Mpc. The shaded region
around each line in Fig. 2 encloses the variation of the result
when changing the kUVcut . Increasing UV cutoff decreases the
modeled bispectrum, as shown by the hatched area in
Fig. 2. The UV variation of bispectrum residual increases as
the modeling involves higher-order density perturbation
fields or as the nonlinearities are stronger (i.e. for the lower
redshifts). At z≲ 0.5 and for both 6EPT and two-loop SPT,
the UV variation could be as large as one percent, indicated
by the yellow band.
These pathological behaviors of GridSPT are shown at

lower redshifts and for higher-order density fields, both of
which signifywhennonlinearities are large. Incorporating the
back-reaction of small-scale effect on large-scale clustering,
as is done in the renormalized PT and EFTofLSS [30–38],
could be a remedy, and, if that is true, a full cure calls for a
field-level implementation of the renormalized PT and
EFTofLSS.

B. Spherical bispectrum in
general wCDM cosmologies

Can the SPT and nEPT modeling extend beyond the
ΛCDM cosmology? We extend the comparison in the
previous section with a suite of 20 Dark-Quest simulations
run with general wCDM cosmologies. Analyzing the
spherical bispectrum at 21 redshifts between z ¼ 0 and
z ¼ 1.48 of all simulations confirms the conclusion we
draw in the previous section also holds for these cosmol-
ogies. Of course, the limitations for nEPT and SPT also
persist across a broad range of wCDM cosmologies.
Most notably, we find the strong anticorrelation between

knEPT;�2%
sph;max , the maximum spherical wave number below
which nEPT works better than two-percent accuracy, and
the σ8ðzÞ ¼ σ8ðz ¼ 0ÞDðzÞ value at each redshift snapshot,
as shown by colored markers in Fig. 3. This anticorrelation
aligns well with the expectation that the accuracy of
perturbation theory improves when the density perturba-
tion’s nonlinearity is weaker. Conversely, the stronger
nonlinearities signal a break-down of the perturbative
treatment: for example, at σ8ðzÞ > 0.6, k6EPT;�2%

sph;max goes
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below k5EPT;�2%
sph;max and k4EPT;�2%

sph;max , which is far from the
expectation of well-converging perturbation theories.
Similar to the shaded region in Fig. 2, we indicate the

range of range of knEPT;�2%
sph;max from the GridSPT calculation

using the range of kUVcut as the vertical error bar. In general,
the range gets much broader for higher σ8ðzÞ, which is
consistent with the findings in the previous section.
For comparison, we also show the maximum spherical

wave number for one-loop SPT bispectrum as markers of
black plus. We find that the one-loop SPT spherical bispec-
trum works accurately up to 0.1 and 0.2 h=Mpc at redshifts
z ¼ 1 and z ¼ 2 in Planck cosmology. Our finding is
consistent with the ensemble-mean-based comparison of
spherical bispectrum done in [49] (see their Fig. 7). We also
find that 6EPT outperforms one-loop bispectrum at σ8ðzÞ <
0.62, which is equivalent to z > 0.5 in Planck cosmology.
Furthermore, 6EPT spherical bispectrum could reach twice
the range of validity of one-loop SPT modeling at σ8ðzÞ <
0.5, which corresponds to z > 1 in Planck cosmology.

FIG. 3. The anticorrelation between the maximum wave
number, knEPT;�2%

sph;max , where nEPT matches N-body result
more than 2% accuracy, and σ8ðzÞ for Dark-Quest simulation’s
all 20 cosmologies at 21 redshifts z ¼ 0 to z ¼ 1.48. The
error bars show the range of kmax with varying UV cutoff
between ð1.26; 2.14Þ h=Mpc. The dashed lines indicate the
value of σ8ðzÞ in Planck cosmology at redshifts z ¼ 0, 0.5, 1,
1.5, 2, 3.

FIG. 4. The ratio between 6EPT bispectrum and baseline WMAP simulation at six redshifts z ¼ 0, 0.5, 1, 2, 3, 5. The 6EPT bispectra
shown here are calculated with fiducial UV cutoff. The bispectra dataset is the same as that in Fig. 2 but visualized in flattened index.
Each chunk collects triangles with similar spherical wave number ksph. The interval of vertical lines equals to the bin width kF. We
distinguish configurations by different colored markers, including equilateral (blue), isosceles and o-isosceles (green), squeezed
(magenta), elongated (cyan), and general triangles (gray). The yellow and lavender bands in each panel highlight the one and
two-percentage error ranges.
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C. Modeling bispectrum at each configuration

In the previous sections, we have examined the accuracy
of SPT and nEPT bispectrum models in the spherical-
bispectrum projection and found that both predictions
provide accurate modeling for spherical bispectrum of
mildly nonlinear density fields. Does this accuracy also
hold for each bispectrum configuration Bðk1; k2; k3Þ?
To scrutinize the accuracy of the nEPT bispectrum of

individual configuration, Fig. 4 shows the ratio between
the nEPT bispectrum and N-body result using a flattened
index defined in Sec. III B. We stress again that the
flattened index we adopt here differs from the usual one,
for example used in Ref. [64]: we re-ordered the flattened
index so that each chunk contains configurations within
the same spherical wave numbers ksph bin. To examine the

configuration dependence of the model accuracy while
avoiding clutter, we only present the WMAP-run case and
the 6EPT model with the fiducial UV cutoff. In that case, a
single data point in the spherical bispectrum in Fig. 2
represents a weighted average of all the data points within
the corresponding chunk in Fig. 4, where the weights are
determined by the number of Fourier triangles contributed
to each point.
While Fig. 2 shows that 6EPT models the spherical

bispectrum to a subpercent accuracy on quasilinear scales,
the typical error of the bispectrum of each configuration
shown in Fig. 4 is larger by a factor of a few! For example,
on large scales where the 6EPT can model the spherical
bispectrum to a subpercent in Fig. 2, errors shown in Fig. 4
for individual configurations fluctuate a lot and reach

FIG. 5. Comparison between the 6EPT bispectrum (with fiducial UV cutoff kUV;fid) and N-body results in the baseline WMAP
simulation at z ¼ 1. The bispectra are visualized in a flattened index, with each chunk representing a bin of fixed ksph and bin size kF.
Configurations are highlighted with different colors: equilateral (blue), isosceles (green), squeezed (purple), elongated (cyan), and
general (gray). The top panel shows the bispectra from the N-body simulation (black dots) and 6EPT (pluses). These results are
measured from a single realization, so the bispectra can be negative due to cosmic variance. The middle panel displays the ratio between
the 6EPT and N-body bispectra. The bottom panel shows the variation of the 6EPT ratio due to UV cutoffs between 1.26 and
2.14 h=Mpc. The yellow and lavender bands in the middle and bottom panels highlight the one and two-percentage error ranges. Across
all panels, red circles highlight data points where the ratio exceeds the mean value in its chunk by more than 3.5σ in the third panel.
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nearly ten percent. The residual errors also show some
tendency depending on its triangular configurations. 6EPT
tends to overpredict the bispectra of equilateral and
isosceles triangles while underpredicting the bispectra of
elongated triangles. Such a wide scatter of errors has been
canceled and has remained invisible to the spherical
bispectrum. That is, when averaged over the points in
the chunk, the errors of different configurations cancel out.
This is the reason why the error of spherical bispectrum in
Fig. 2 is much smaller.
In addition to the scatter in the residual error, we observe

that for some (about 1.5% of the total at z ¼ 1) configu-
rations, the residual error significantly exceeds that of other
points in the same ksph bin. Figure 5 further elaborates on
this point for the z ¼ 1 case. The top panel of Fig. 5 shows
the bispectra from the 6EPT (plus marker) and N-body
simulations (black dots). First of all, note that while the
theoretical prediction of the ensemble average of the PT
bispectrum is positive, the bispectrum itself is not a positive
definite quantity so its value in a realization can be
negative. Indeed, certain data points at lower ksph in the
top panel of Fig. 5 are negative.
The ratios between 6EPT and N-body bispectra, shown

in the middle panel of Fig. 5, mirror those in the bottom left
(z ¼ 1) panel of Fig. 4. In that panel, we also highlight the
outliers at each ksph-bin chunk by red. We define outliers as
the data points deviating from the chunk’s mean by more
than 3.5σ, with σ representing the normalized mean
absolute deviation (NMAD) within each ksph chunk.
Note that the distribution of residual is highly non-
Gaussian so that 3.5σ outliers at each side consists of
1.5% of the total configurations. Comparing the circled
data points in Fig. 5 on large scales, we find a pattern
among these outliers that their bispectra, serving as the
denominator in fractional error calculation, are significantly
lower—by one or two orders of magnitude—compared to
other data points in the chunk. We also find that the outliers
in the DarkQuest simulation with similar σ8ðzÞ appears not
for the same triangular configurations shown in Fig. 5.
These findings suggest that the outliers in the fractional
error may not be as troublesome as they seem, and we
surmise that by averaging over a sufficient number of
realizations would remove the outliers.
Finally, the bottom panel of Fig. 5 shows that the

variation of bispectrum of each configuration due to UV
cutoff between ð1.26; 2.14Þ h=Mpc is less than or around
one percent among all the scales we presented here. So the
UV variation becomes a subdominant factor in the sys-
tematic errors of 6EPT bispectrum for each configuration.
Figure 6 shows the ratio between the 4EPT (the top

panel), 5EPT (the middle panel), and 6EPT bispectra (the
bottom panel) of each configuration against N-body results
at z ¼ 1. The mean ratios for each chunk of 4EPT and
5EPT deviate from one around k ¼ 0.1 h=Mpc and
k ¼ 0.15 h=Mpc, respectively, which is consistent with

the bottom left panel of Fig. 2. Another notable feature is
the decrease in scattering within each chunk as the order of
nEPT increases, indicating that higher-order nEPT indeed
improves the modeling of the bispectrum for individual
configurations. Such information is absent from the spheri-
cal bispectrum in Fig. 2.

D. The residual of the nEPT modeling
of Fourier-space density field

Why is the matter bispectrum modeling residual for each
configuration several times larger than the spherical bis-
pectrum at a fixed scale? Since the bispectrum depends on
both the moduli and phases of the three density modes, the
residual of nEPT bispectrum is determined by the residual
of the density fields at the field level. To take a cursory
look, we compare directly the nonlinear density contrast
δ ¼ jδjeiθ of N-body simulation with the nEPT prediction.
Figure 7 shows the 60% quantile range of the density-

moduli ratio (the left panels) and phase difference (right
panels) between δnEPTðkÞ and δN−bodyðkÞ. The plot is for
the baseline WMAP run, and we compute the 60% spread

FIG. 6. Comparison between 4EPT (the top panel), 5EPT (the
middle panel), and 6EPT bispectrum (the bottom panel) with
fiducial UV cutoff kUV;fid and N-body results in the baseline
WMAP simulation at z ¼ 1. The legends are the same as
that in Fig. 5.
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within a Fourier bin of size Δk ¼ kF ¼ 0.00628 h=Mpc.
Again, δnEPTðk; zÞ ¼

P
n
i¼k½DðzÞ�kδðkÞðkÞ is the nEPT den-

sity contrast computed from GridSPT. Figure 7 shows the
results from 2EPT to 6EPT (colors as indicated in the
legend) at z ¼ 1, 2, 3 (from top to bottom). We emphasize
that the result is computed based on the distribution of the
ratios in each bin, which is different from the binned
average.
Since the power spectrum is the square of the density

modulus, the density-moduli ratio plot (left panel of Fig. 7)
essentially shows the spread of the power spectrum in a
mode-by-mode manner. Surprisingly, we find that the
nEPT density moduli have residuals larger than the
averaged power spectrum by a factor of few, even on large
scales where we have found a subpercent accuracy of
nEPT power spectrum in [45]. For example, the residual of
5EPT power spectrum stays within the subpercent level to
k ¼ 0.25 h=Mpc at z ¼ 1 (see Fig. 1 of [45]), but the 60%
quantile of the moduli difference could be �10%.
Therefore, this plot also indicates that the accuracy of
averaged summary statistics does not guarantee the mode-
by-mode level match.

The phase residuals (right panel of Fig. 7) for all wave
numbers have a smaller scatter than the moduli residual, but
the match is still worse than what has been reported using
summary statistics. For example, the cross-correlation
coefficient used in Ref. [46] is defined as

RðnÞ
corrðkÞ ¼

P
Re½δN-bodyðkÞδnEPTð−kÞ�

ðP jδN-bodyðkÞj2Þ1=2ð
P jδnEPTðkÞj2Þ1=2

; ð27Þ

where all sums add the Fourier modes within the bin.
Figure 10 of [46] shows that for k ≤ 0.2 h=Mpc at z ¼ 1,
the cross-correlation coefficient between both 4EPT and
5EPT against N-body results stay very close to unity
without much scatter. The denominator is the bin-averaged
power spectra, which are rather smooth, so the lack of
scatter in the cross-correlation coefficient reflects that the
numerator, for which scatter from both moduli and phase
can contribute, is also smooth when taking an average
within the bin. Again, the fact that cross-correlation
coefficient at a given k close to one does not guarantee
the small phase residual at each Fourier mode. Indeed, we

FIG. 7. The comparison between the density fields in N-body simulations and that forward modeled by nEPT (GridSPT) at z ¼ 1, 2, 3.
Left panel: the ratio of the modulus of each Fourier density mode. Right panel: the phase difference of each Fourier density mode. The
colored regions represent the 60% quantile of the data, which is computed among all the Fourier modes within a k-bin, where the bin
size is kF.

PERTURBATION THEORY REMIXED. II. IMPROVED MODELING … PHYS. REV. D 110, 103548 (2024)

103548-13



find that the largest phase residual of 5EPT could reach
0.4π at k ¼ 0.2 h=Mpc at z ¼ 1. While the Fig. 10 of [46]
shows that the 4EPT and 5EPT perform almost identically
for the cross-correlation coefficient, from the top right
panel of Fig. 7, we find that the 5EPT clearly outperforms
4EPT in the modeling of phase on k < 0.2 h=Mpc at z ¼ 1.
For both modulus residual and phase residual plots, the

large scatter in the field-level residuals can be mitigated
through binning, which reduces the residuals in the binned
power spectrum, spherical bispectrum, or the cross-corre-
lation coefficient. As the binning includes more number of
modes, the field-level residuals we show in Fig. 7 are more
likely to average out to yield smaller residuals of summary
statistics. That is, a coarse-grained binning strategy such as
spherical bispectrum could better hide the field-level
residuals compared to the bispectrum for a fixed configu-
ration. This is the reason behind the larger scatter in Fig. 4
than Fig. 2. As the bottom panel of Fig. 5 shows, changing
the UV cutoff only gives a minor correction to the scatter.
For the statistical field-level analysis using the GridSPT,

the distribution of residuals that we show in Fig. 7 must be
quantified to construct the field-level likelihood function.
We will present the result elsewhere in the future
publication.

VI. DISCUSSION

In this paper, we compare the nEPT modeling of the
nonlinear matter bispectrum in real space to the N-body
simulation results to confirm the success of nEPT extends
beyond modeling the nonlinear matter power spectrum as
shown in Ref. [45].
Starting from the GridSPT outcome, nEPT first sum up

the density contrast up to the nth order and then compute
the summary statistics such as the matter bispectrum. This
is an alternative to the conventional loop-by-loop calcu-
lation of the SPT bispectrum. We show that nEPT bispec-
trum has following advantages over the SPT bispectrum:
(A) better regulated convergence when successively
increasing the order n, (B) much smoother residual, and
(C) substantial increase of the quasilinear scales.
Although 5EPT and 6EPT bispectrum model signifi-

cantly extend the quasilinear scale, they are most sensitive
to the UV cutoff in the initial linear density field (or the grid
size adopted to compute GridSPT density contrast). As we
can see from Fig. 2, changing the UV cutoff by about a
factor of two (from 1.26 h=Mpc to 2.14 h=Mpc) yields a
percent-level variation of 6EPT bispectrum around kmax.
Since the residual curve for z > 2 varies rather shallowly, a
percent-level change could shift the kmax by a larger factor.
While we find nEPT models spherical bispectrum

accurately more than percent-level on quasilinear scales,
the typical error of bispectrum of individual configuration
is several times larger than that of the spherical bispectrum.
This is because the error of bispectrum of different
configurations are canceled out when get averaged to get

spherical bispectrum. We prove this by showing that the
large errors observed in the bispectrum of specific configu-
rations originate from the spread between nEPT density
contrast and N-body results. These field-level residuals can
bemitigated through the binning of summary statistics, such
as the measured nEPT power spectrum reported in [45], the
cross-correlation coefficient calculated through the binned
auto- and cross-power spectrum [46], or the nEPT spherical
bispectrum [49] used in this study. This suggests that the
dynamic range of nEPT, and essentially GridSPT, for field-
level inferences is more limited than that for n-point
correlation functions (refer to [73–78] for examples of using
forward modeling at field-level by Lagrangian perturbation
theory). Further studies are in order to quantify the statistics
of the forward-modeling residuals, which can be used to set
up the likelihood function for the field-level cosmological
analysis.
The poor convergence we observe at low redshift

(z < 0.5) where nonlinearities are strong, the UV-cutoff
dependence of the nEPT outcome, and the field-level
residual of the density field may all be stemmed from
the limitations of standard perturbation theory, which
neglect (A) vorticity, and (B) higher-order cumulants of
phase space distribution beyond momentum (n ¼ 1). The
N-body simulations solve full Vlasov-Poisson equation
without these assumptions. Therefore, a theory beyond SPT
must include all higher-order cumulants, which are gen-
erated by shell crossing in the nonlinear regions [29], into
Vlasov-Poisson equation. Recently proposed Vlasov per-
turbation theory (VPT) [79,80] aims to achieve this goal.
Their solutions suppress the UV power in linear density
modes and kernel of nonlinear density modes compared to
SPT solutions, which are potentially helpful to reduce the
UV sensitivity and also improve the accuracy of the field-
level modeling.
In order to apply the nEPT framework to the analysis

of the galaxy power spectrum and bispectrum, we have to
incorporate the perturbative galaxy bias expansion [81]
into GridSPT. Further details on the proper renormaliza-
tion of bias operators will be addressed in a forthcoming
paper [82]. For modeling the galaxy power spectrum and
bispectrum in redshift space, nEPT can utilize the
velocity field from each grid in GridSPT. This approach
includes implementing nonlinear redshift-space distortion
mapping [56] and accounting for selection bias [83]
directly at the field level. Leveraging the efficiency of
GridSPT, it is also feasible to calculate the covariance
matrix of the galaxy power spectrum and bispectrum,
incorporating the survey geometry from a large number
of realizations [55]. We anticipate that nEPT fundamen-
tally changes the way of modeling summary statistics
from perturbation theory in Eulerian space and enable
more accurate modeling of galaxy summary statistics on
smaller scales and enhance the extraction of cosmological
information from galaxy surveys.
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APPENDIX: MEASURE THE BISPECTRUM
COMPONENTS IN GRIDSPT
WITH MINIMUM STEPS

To measure nEPT and SPT bispectrum from density
perturbation fields at each order in GridSPT, we need to
measure all components appearing in Eqs. (15) and (17). In
this section, we introduce a novel strategy to quickly
measure all these components by taking advantage of
the permutational symmetry. We denote the order of
nEPT as n and the number of redshifts as Nz.
For estimating the SPT and nEPT bispectrum, we first

compute each component at z ¼ 0 and use the power of
linear growth factor DðzÞ to rescale the components to
targeted redshift and then sum up all components,

hδðiÞðk1ÞδðjÞðk2ÞδðkÞðk3ÞiDiþjþkðzÞ: ðA1Þ

Here, i; j; k ≤ n. The naïve way of computing all compo-
nents up to n requires us to run the estimator for n3 times.
We can also combine the components above to estimate the
nEPT bispectrum.
We reduce the number of bispectrum estimation calcu-

lations by using the index-permutation symmetry as fol-
lows. Let us begin by classifying the bispectrum
components into three groups and estimating the number
of required calculations.
(1) Biii, n times.
(2) Biij þ 2 perms, 3nðn − 1Þ times.
(3) Bijk þ 5 perms, nðn − 1Þðn − 2Þ times.

We cannot change the times of estimation in Biii. For Biij,
we can use the following tricks. We first add δðiÞ and δðjÞ,
denoted as δiþj, and then measure its bispectrum, which is

Biþj ≡ hδiþjðk1Þδiþjðk2Þδiþjðk3Þi0
¼ Biii þ Bjjj

þ ðBijj þ 2 permsÞ þ ðBiij þ 2 permsÞ ðA2Þ

To separate the last two terms, we need to measure the
bispectrum from another linear combination of δðiÞ and δðjÞ.
The easiest way is to compute the bispectrum of δðiÞ minus
δðjÞ, denoted as δi−j, which is

Bi−j ≡ hδi−jðk1Þδi−jðk2Þδi−jðk3Þi0
¼ Biii − Bjjj

þ ðBijj þ 2 permsÞ − ðBiij þ 2 permsÞ ðA3Þ

Then we have

ðBijj þ 2 permsÞ ¼ 1

2
½Biþj þ Bi−j� − Biii ðA4Þ

ðBiij þ 2 permsÞ ¼ 1

2
½Biþj − Bi−j� − Bjjj ðA5Þ

Since we know Biii and Bjjj, we can get Bijj and Biij

along with their permutations from the two equations
above. What we have done is to measure Biþj and Bi−j
for all possible i > j. In total, measuring Biij-type bispectra
along with the two permutations in this way requires
running estimator only for nðn − 1Þ times, which is smaller
by a factor of three compared to the naive algorithm.
Lastly, to measure Bijk along with its five permutations,

we can first add δðiÞ, δðjÞ, and δðkÞ, denoted as δiþjþk, and
then measure its bispectrum, which is

hδiþjþkðk1Þδiþjþkðk2Þδiþjþkðk3Þi0
¼ Biii þ Bjjj

þ ðBijj þ 2 permsÞ þ ðBiij þ 2 permsÞ
þ ðBikk þ 2 permsÞ þ ðBiik þ 2 permsÞ
þ ðBjkk þ 2 permsÞ þ ðBjjk þ 2 permsÞ
þ ðBijk þ 5 permsÞ ðA6Þ

Since we have measured all terms other than Bijk, we can
get Bijk along with five permutations by only running
estimator once for given fi; j; kg. Spanning over all
possible unpermuted fi; j; kg requires nðn − 1Þðn − 2Þ=6
times of measurement, which is smaller by a factor of six
compared to the naive algorithm.
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In summary, with the new algorithm, measuring all the
three groups of bispectrum components, we need to run the
estimator for

nþ nðn − 1Þ þ nðn − 1Þðn − 2Þ=6
¼ nðnþ 1Þðnþ 2Þ=6 ðA7Þ

times.

Throughout this paper, we use n ¼ 6 for assessing the
6EPT and 2-loop bispectrum derived from density fluctua-
tions within GridSPT. The conventional algorithm neces-
sitates n3 ¼ 216 times of measurement. However, with the
introduction of our advanced algorithm, this requirement
diminishes to 56, marking a reduction by approximately a
factor of four.
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