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We study the effect of a varying pion mass on the quantum chromodynamics (QCD) phase diagram in
the presence of an external magnetic field, aiming to understand it, for the first time, using Nambu–Jona-
Lasinio like effective models. We compare results from both its local and nonlocal versions. In both cases,
we find that the inverse magnetic catalysis (IMC) near the crossover is eliminated with increasing pion
mass, while the decreasing trend of crossover temperature with increasing magnetic field persists for pion
mass values at least up to 440 MeV. Thus, the models are capable of capturing qualitatively the results
found by lattice QCD (LQCD) for heavy (unphysical) pions. The key feature in the models is the
incorporation of the effect of a reduction in the coupling constant with increasing energy. Along with
reproducing the IMC effect, it enables models to describe the effects of heavier current quark masses
without introducing additional parameters. For the local NJL model, this agreement depends on how the
parameters of the model are fit at the physical point. In this respect, the nonlocal version, which, due to its
formulation, automatically exhibits the IMC effect around the crossover region, captures the physics more
naturally. We further use the nonlocal framework to determine the pion mass beyond which the IMC effect
around the transition region does not exist anymore.
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I. INTRODUCTION

The effect of an external magnetic field (eB) on the low-
energy dynamics of quantum chromodynamics (QCD) is
being extensively explored using different techniques:
lattice QCD (LQCD) [1–3], MIT bag model [4,5], func-
tional renormalization group [6,7], chiral perturbation
theory [8,9], Nambu–Jona-Lasinio (NJL) model [10–14],
Quark-meson (QM) model [15,16], Polyakov loop
extended models [17,18] etc. The major motivation for
such studies comes from heavy-ion collision (HIC) experi-
ments, where a magnetic field of strength ∼0.02–0.3 GeV2

can be generated depending on the collision energy [19].
Other relevant physical scenarios could include magnetars
[20–22] or the early epoch after the big bang [23].

Magnetic catalysis (MC) and inverse magnetic catalysis
(IMC) are two of the major phenomena that we observe in
such a magnetized QCD medium [2,3,24–26]. MC is
defined as the increasing magnitude of the chiral conden-
sate, which is the order parameter associated with the
spontaneous breaking of chiral symmetry, with increasing
eB and is typically seen at temperatures well below the
crossover temperature ðTCOÞ. On the other hand, the
magnitude of the chiral condensate decreases with increas-
ing eB around the TCO, and this is termed the IMC effect. It
is to be noted that the IMC effect and a decrease in TCO
with increasing eB occasionally coexist. This is the reason
that in much of the existing literature, the decrease in TCO
with respect to the magnetic field is often referred to as the
IMC effect.
However, this terminology is imprecise since one can

devise scenarios where the chiral condensate around the
TCO increases with increasing eB, but the TCO still shows
the decreasing trend, showing that these two effects need
not go together. This has been detailed in Ref. [27]. There,
the authors explored the QCD phase diagram in the T-eB
plane for different pion masses. They observed that at pion
masses heavier than the physical value, the IMC effect, the
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decreasing nature of the condensates with increasing eB,
disappears, but the decreasing trend of TCO persists. In
Ref. [28], these findings were supported and further
extended to find the maximum value of the pion mass
beyond which the IMC effect disappears. All these dis-
cussions, along with other important updates of the field,
have been recently reviewed in a recent review article [29].
The disappearance of the IMC effect can also occur in other
circumstances, such as in a magnetized nonextensive QCD
medium [30]. However, the phase diagram in the T–eB
plane shows nonmonotonic behavior depending on the
strength of the q-parameter, which defines the nonexten-
siveness of the system.
Two important points arise from the above discussion

in Ref. [27,28]—the importance of studying observables
beyond the physical points to understand the structure of
the underlying theory. The second point, which is asso-
ciated with the first one, is whether some properties (such
as the IMC in the present case) are intrinsic properties
linked to the structure of the theory as we push beyond
physical values.
In the quest for an analytical understanding of these

observations, we use an effective QCD model that captures
the global symmetries of QCD. Such models are simple but
powerful, particularly for acquiring a qualitative under-
standing of the underlying theory. There exist many such
models, such as the NJL model [31,32], the linear sigma
model (LSM) [33], etc.
We will be using the NJL model in both its local and

nonlocal avatars. Though one-to-one correspondence from
these two methods (LQCD and effective models) is not
feasible, we intend to use LQCD observation as a bench-
mark and test the models qualitatively. Such an exercise
aims to lead to a better understanding of these effective
models, exploring how they capture the essence of low-
energy QCD and checking their validity beyond the
physical point to capture the underlying structure.
In previous work, both the local [34–36] and the non-

local [24,26] models were used to analyze the phase
diagram of QCD at the physical pion mass in the presence
of the magnetic field. To obtain IMC [2,3] near the
crossover, the key ingredient is the weakening of the
coupling with increasing energy. In the local models, it
is incorporated via a eB and T dependent coupling
constant. In the nonlocal NJL model, it comes naturally
via an energy-dependent form factor whose strength
reduces significantly at and above a characteristic scale
Λ. However, the disappearance of the IMC effect beyond
the physical point and the subsequent phase diagram in the
T–eB plane [27,28] provide a nontrivial challenge for such
effective models.
Keeping that in mind, in the present paper, for the first

time in an effective model framework, we study the effect
of increasing the current quark mass (and hence the pion
mass) on the phase diagram in the presence of the magnetic

field. We know that the chiral condensate ðhψ̄ψiÞ is the
observable (the order parameter) to explore the chiral
dynamics of the system, used both in LQCD and effective
model studies. We investigate this quantity to estimate the
effects of the pion mass.
To realize the heavy pion mass in effective models, we

vary the current quark mass while keeping the scale, Λ, and
the coupling constant, G, fixed. This is motivated by the
fact that the low-energy dynamics should not affect the
scale of the theory, Λ. Hence, in effective models, changing
only the current quark mass is a well-accepted way to
achieve unphysical pion masses, whether to attain the chiral
limit or to go beyond physical pion masses [37,38]. This, of
course, modifies the condensate and the pion decay
constant accordingly, satisfying the relevant equations.
Our major observation is that with increasing pion mass,

the IMC effect disappears, but the decreasing trend of TCO
persists. This is qualitatively consistent with the LQCD
results [27,28] and does not require the introduction of any
new parameters. However, the value of the pion mass at
which the IMC effect goes away is lower than that found in
the LQCD studies [27,28]. In the nonlocal model, the IMC
effect disappears around mπ ¼ 215 MeV. On the other
hand, for the 2þ 1-flavor local model, it disappears
between 220 and 340 MeV of pion mass, except for eB ¼
0.2 GeV2 for which the IMC effect survives up to the
highest pion mass value we tested.
This observation is true for both the nonlocal and local

models. Although, for the local model, the agreement
depends on how the parameters of the model are fit at
the physical point. For example, in the 2-flavor local model,
it is difficult to make any conclusive comment on the status
of the IMC effect beyond the physical point, and the trend
of the crossover temperature is nonsmooth for higher mπ-
values. On the other hand, in the 2þ 1-flavor local model,
the IMC effect for highermπ-values shows irregular pattern
for eB-dependence. In contrast, the IMC effect for beyond
physical mπ-value shows a regular pattern in the non-
local model.
Inspired by the LQCD study [28], we also perform an

analysis to determine the pion mass value above which the
IMC effect around the transition region exists no more.
Being the most consistent model to capture the beyond
physical point observations, we use the nonlocal frame-
work for the purpose. We analyze for the whole range of eB
that we explored and find a pion mass value of 215 MeV
with a 1.4% spread with a very small eB dependence.
Finally, we try to understand the observations by looking

at the characteristics of the effective coupling in these
frameworks. In a nonlocal model, with its running of
coupling, the IMC effect is captured automatically. On
the other hand, in the local models, one needs to introduce a
parametrized running of the coupling constant to reproduce
the IMC effect. Our findings suggest that the running of the
coupling enables models to describe the effects of heavier
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current quark masses without introducing additional
parameters. We conclude that a smooth decrease of the
effective coupling (with energy) via a form factor in the
nonlocal model captures the physics more naturally.
The present paper is organized as follows. In the

formalism Sec. II, we briefly discuss both the local and
nonlocal NJL models. We start with the nonlocal version
and then lead our discussion to the local ones. The essence
of the parameter fitting is also discussed in detail in the
respective subsections. We discuss our results in the
section III and compare them with LQCD results wherever
appropriate. We also check the model’s consistency in
producing the results in Sec. III C and in Sec. III E, we try
to understand them by exploring the running of the
coupling constants in different formalisms. Finally, we
conclude in Sec. IV.

II. FORMALISM

As discussed, we will explore the effect of changing the
current quark mass to obtain heavier than physical pion
masses to test the effect on the Nambu–Jona-Lasinio model
in the presence of an external magnetic field. We investigate
both the local and nonlocal versions. We will start our
discussion with the nonlocal version [39–42]. It is straight-
forward to reduce it to the local one by choosing an
appropriate form factor.

A. NJL model with nonlocal interaction

The Lagrangian for a 2-flavor nonlocal NJL model is
given by [26]

LNJL ¼ L0 þ Lsym þ Ldet; ð1Þ

where different pieces are given as

L0 ¼ ψ̄ði=∂ −mÞψ ;
Lsym ¼ G1fjaðxÞjaðxÞ þ j̃aðxÞj̃aðxÞg and

Ldet ¼ G2fjaðxÞjaðxÞ − j̃aðxÞj̃aðxÞg; ð2Þ

where ψ represents the light quark doublet containing the u
and d quarks with equal current quark masses, m. L0 is the
kinetic term, whereas Lsym and Ldet are the interactions.
Ldet is the term responsible for explicitly breaking the
Uð1ÞA symmetry and incorporating the QCD axial anomaly
in the effective model treatment. It is known as the ’t Hooft
determinant term, and its exclusion makes the total
Lagrangian symmetric under the SUð2ÞV × SUð2ÞA ×
Uð1ÞV × Uð1ÞA transformation. The previous statements
become evident as we make the currents explicit

jaðxÞ=j̃aðxÞ¼
Z

d4zHðzÞψ̄
�
xþ z

2

�
Γa=Γ̃aψ

�
x−

z
2

�
; ð3Þ

where, Γ ¼ ðΓ0; Γ⃗Þ ¼ ðI; iγ5τ⃗Þ, Γ̃ ¼ ðΓ̃0;
⃗Γ̃Þ ¼ ðiγ5; τ⃗Þ,

with τ⃗ ¼ ðτ1; τ2; τ3Þ being the Pauli matrices and HðzÞ,
the nonlocal form factor in position space. It is easy to
notice that withHðzÞ ¼ δðzÞ, one arrives at the currents for
a local NJL model, which we discuss in detail in the section
dedicated to the local versions.
In an isospin and parity symmetric scenario, the model

properties are only dependent on G1 þ G2, as will be
discussed below. Hence, the coupling constants G1 and G2

need not be equal (which is assumed in the standard NJL
model, with only scalar and psuedoscalar-isovector inter-
actions). They can be parametrized via a parameter, c,
measuring the strength of the ’t Hooft interaction term
[26,43,44]. In fact, in an isospin symmetry-breaking
scenario, the inequality between the two coupling constants
makes more sense, as found in Ref. [26] with c ¼ 0.149�
0.103. However, in the present analysis, we are confined to
discussing only isospin symmetric observables like con-
densate or mean-field averages, which are not very sensi-
tive to c as shown in Ref. [26]. Thus, we stick to the usual
choice of c ¼ 1=2. Hence the coupling constants G1 ¼
G2 ¼ G0=2, removing the interaction through j̃aðxÞ cur-
rents from the Lagrangian.
The free energy is the most essential thing to obtain in

such an effective model framework. But as it stands,
calculating the partition function using Eq. (1) is quite
involved. One needs to linearize the theory through known
techniques such as Hubbard-Stratonovich (HS) transfor-
mation [45]. HS transformation introduces two auxiliary
fields associated with the two different types of interactions
that we have.

σðxÞ ¼ −
G0

2

Z
d4zHðzÞψ̄

�
xþ z

2

�
Γ0ψ

�
x −

z
2

�
;

π⃗ðxÞ ¼ −
G0

2

Z
d4zHðzÞψ̄

�
xþ z

2

�
Γ⃗ψ

�
x −

z
2

�
: ð4Þ

Here, we have used the notation σ and π to represent the
scalar-isoscalar and pseudoscalar-isovector auxiliary fields,
respectively. In the mean-field approximation, these fields
can acquire nonzero expectation values (while respecting
the symmetries of the theory) depending on the strength of
the interaction coupling. As we have started with an isospin
and parity symmetric Lagrangian, the mean-field values of
the auxiliary fields associated with Lorentz pseudoscalar
and isovector channels must be zero. In the absence of any
isospin breaking, the only relevant operator is in the scalar-
isoscalar channel, which we denote as σðxÞ. Expanding
the auxiliary fields σðxÞ and π⃗ðxÞ around their mean-field
values

σðxÞ ¼ σ̄ þ δσðxÞ
π⃗ðxÞ ¼ δπ⃗ðxÞ ð5Þ
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and assuming σ̄ to be space-time independent, one can
obtain the mean-field Lagrangian, which is bilinear in
quark fields. With this quadratic Lagrangian in quark fields,
it is straightforward to integrate out the fermionic degrees
of freedom, and one obtains the free energy per unit
volume as

Ω ¼ −2NfNc

Z
d4q
ð2πÞ4 ln ½q

2 þM2ðqÞ� þ σ̄2

2G0

: ð6Þ

The momentum-dependent constituent quark massMðqÞ is
given by

MuðqÞ ¼ MdðqÞ ¼ MðqÞ ¼ mþ hðqÞσ̄; ð7Þ

where hðqÞ is the nonlocal form factor in the momentum
space. Before going into the details of it, let us talk about
the free energy given in Eq. (6). The integral in the first
term is divergent if one considers all possible momentum
modes of quarks. As here we explore the low energy
dynamics of a system of quarks, it is a standard procedure
to suppress the quark degrees of freedom with momentum
larger than a specific scale. From chiral perturbation theory,
this scale is found to be of the order of 4πFπ ∼ 1 GeV [46].
Now, there are different ways of incorporating this scale,
which then render the free energy finite. The most used
procedure is to introduce this scale as the cutoff in the
3-momentum of the quark degrees of freedom [47,48].
There exist a couple of other known procedures: the scale
can be implemented as the covariant four-momentum cutoff
or via the mass of a fictitious heavy particle in Pauli–Villars
regularization or through an infrared red cutoff in the
proper time regularization. A detailed discussion on the
effect of regularization in the NJL model can be found
in Ref. [49].
In the nonlocal model, we have the momentum-dependent

form factor hðqÞ, which contains information about the scale
of the theory. Here, we will use the Gaussian form factor,
hðqÞ ¼ e−q

2=Λ2

, following the procedures in Refs. [26,50],
where Λ represents the scale of the theory. One can have a
different form factor, other than the Gaussian, as considered
in Ref. [50]. Again, to put it into context, for local
interaction, hðqÞ ¼ 1, and one needs an explicit cutoff to
ignore/suppress the large momentummodes to make the free
energy finite. An important point to note is that the nonlocal
form factor does not make the free energy finite (as we are
not allowed to put a cutoff in the momentum integration).
The standard technique is to subtract an identical term from
the equation with the effective quark mass, M, being
replaced by its current counterpart, m [51].
To study the chiral dynamics and vacuum properties, one

uses the principle of least action to obtain the ground state
of the system. In other words, the free energy is minimized
with respect to the mean field ðσ̄Þ, i.e., by solving ∂Ω

∂σ̄ ¼ 0.
It is straightforward to use Eq. (6) to obtain,

σ̄ ¼ 8NcG0

Z
d4q
ð2πÞ4 hðqÞ

MðqÞ
q2 þM2ðqÞ : ð8Þ

On the other hand, to obtain the chiral condensate, one can
use the Feynman-Hellmann theorem [51] by differentiating
the free energy with respect to the current quark mass, m

hψ̄fðxÞψfðxÞi ¼
∂Ω
∂m

¼ −4Nc

Z
d4q
ð2πÞ4

�
MðqÞ

q2 þM2ðqÞ −
m

q2 þm2

�
:

ð9Þ

There are a few important things to note here. The
minimization condition [Eq. (8)], known as the gap equation,
is convergent with appropriate nonlocal form factors. On the
other hand, the condensate, given by Eq. (9), is divergent
without the subtraction of the second term. The subtraction
process might appear ad hoc, but Eq. (9) can be obtained
using the Feynman-Hellmann theorem on the regularized
free energy. For the local scenario, one simply uses a cutoff
in the integration for both cases, which will be fixed to
produce physical observables. The second part of the Eq. (9)
does not appear as the subtraction is absent in the first place.
We will recall this subtraction technique once again in the
next section, wherewe learn that the subtraction is to be done
carefully in the presence of a magnetic field.
Another important thing to note is that the direct propor-

tionality between the meanfield and the condensate no longer
exists in a nonlocal NJL model, contrary to its local
counterpart. This is obvious from a comparison between
Eqs. (8) and (9). This introduces some subtlety in the
computation procedure and will be highlighted wherever
deemed necessary. So far, the discussion is for the vacuum.To
serve our purpose, we need to include both the temperature
and the magnetic field, which we will do in the next to next
section. Before that, we provide the details of the parameter
fitting, which plays a central role in our discussion.

B. Parameter fitting

To fit the model parameters, we use condensate ðhψ̄ψiÞ,
pion mass ðmπÞ and pion decay constant ðFπÞ. The
fitted parameters are the current quark mass (m), the
coupling constant (G0), and Λ. It is to be noted that Λ is
not exactly the cutoff we encounter in the usual NJL
model. Rather, Λ works as a scale that characterizes the
range of the nonlocal interaction, beyond which the
coupling constant becomes smaller and smaller with
increasing momentum.
To study the mesonic properties within the NJL frame-

work, one can expand the mean-field action in powers of
the fluctuations [see Eq. (5)] associated with the auxiliary
fields around their meanfield values. The coefficient of the
quadratic term in these fluctuations can be identified as
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the inverse of the propagator of the respective modes.
The inverse propagator for the σ and π0 modes are given
by [50]

G�ðp2Þ ¼ 1

G0

− 8Nc

Z
d4q
ð2πÞ4 h

2ðqÞ

×
½ðqþ · q−Þ ∓ MðqþÞMðq−Þ�

½ðqþÞ2 þM2ðqþÞ�½ðq−Þ2 þM2ðq−Þ� ; ð10Þ

where� signs in G� stands for sigma mode and pion mode,
respectively; with q� ¼ q� p=2. We are interested in the
pion mode, and the pion mass is obtained by equating

G−ð−m2
πÞ ¼ 0: ð11Þ

The pion decay constant (Fπ) can be extracted from the one
pion to the vacuum matrix element of the axial vector
current (Jaμ5) given below,

h0jJaμ5ð0ÞjπbðpÞi ¼ iδabFπpμ: ð12Þ

We follow the steps in Ref. [50] and use the following
expression for Fπ

m2
πFπ ¼ mZ1=2

π Jð−m2
πÞ; ð13Þ

with Jðp2Þ is given by

Jðp2Þ ¼ 8Nc

Z
d4q
ð2πÞ4 hðqÞ

×
½ðqþ · q−Þ þMðqþÞMðq−Þ�

½ðqþÞ2 þM2ðqþÞ�½ðq−Þ2 þM2ðq−Þ� ; ð14Þ

and Zπ is connected to the πψ̄ψ coupling constant and is
given as

Z−1
π ¼ dG−ðpÞ

dp2

����
p2¼−m2

π

: ð15Þ

We use Eqs. (9), (11) and (13) to fit the model parameters
m, G0 and Λ to reproduce the empirical values of the pion
mass, pion decay constant, and the chiral condensate. In
this study, we change the current quark mass, m, to get to
the values of unphysical pion masses. While doing this, we
keep G0 and Λ fixed (to their corresponding values at the
physical point), which is a widely used procedure to go to
unphysical pion masses (e.g., chiral limit, m ¼ 0) in
effective model framework. Changing m will change the
other observables, though the condensate and pion decay
constant are less sensitive than the pion mass. A similar
procedure has been implemented for the local framework as
well. The parameter fitting will be discussed in detail in the
result section.

C. Introduction of the temperature
and the magnetic field

This section briefly discusses the procedure to incorpo-
rate the effect of the temperature and magnetic field. Since
the Refs. [24,26] contains all the necessary details about the
derivations of the free energy, gap equations, condensates,
etc., within a nonlocal NJL model in the presence of
temperature and magnetic field. We will keep only those
directly associated with the results discussed in this article.
The major difference between the Ref. [26] and the present
study is that here, we have only one mean-field, σ̄, because
of our choice to work with c ¼ 1=2. This simplifies some
of the computational complexity.
To calculate the chiral condensate in the presence of the

magnetic field, once again, we use the Feynman-Hellmann
theorem, which is similar to the case of zero magnetic
fields. The differentiation of the free energy with respect to
m leads to

hψ̄fψfi ¼ −Nc
2jqfBj
2π

Z
d2qk
ð2πÞ2

(
M

sf;f
qk;0

q2k þ ðMsf;f
qk;0Þ

2
þ
X∞
k¼1

ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k ÞðM

þ1;f
qk;k þM−1;f

qk;k Þ
ð2kjqfBj þ q2k þM−1;f

qk;k M
þ1;f
qk;k Þ

2 þ q2kðMþ1;f
qk;k −M−1;f

qk;k Þ
2

)
; ð16Þ

where f stands for individual flavor u and d [52]. The
constituent mass ðMλ;f

qk;k
Þ in the presence of a magnetic field

with a Gaussian form factor is

Mλ;f
qk;k¼mþ σ̄

ð1− jqfBj=Λ2Þkþλsf−1
2

ð1þjqfBj=Λ2Þkþλsfþ1

2

expð−qk2=Λ2Þ; ð17Þ

with qk ¼ ðq3; q4Þ, k is the Landau level index, λ ¼ �1 is
the spin and sf ¼ signðqfÞ. To introduce the temperature,
we use the Matsubara formalism [53,54], which connects

the Euclidean time component of the momentum to the
temperature following the identity q4 ¼ ð2nþ 1ÞπT, for
fermions. There is subtlety in dealing with nonzero temper-
ature in a nonlocal framework. As opposed to its local
cousin, we cannot perform the sum analytically, and the
vacuum and the thermal contribution are entangled. Thus,
in a nonlocal setup, the Matsubara sum needs to be
performed numerically.
The expression is divergent at large momentum with

nonzero quark mass. To remove the divergence, we use the
same technique as we did for zero magnetic fields [Eq. (9)].
We subtract the same term, but without any interaction,
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i.e., M being replaced by m. The magnetic field and the
temperature also remain present. We call it the “free” term.
At this point, there arises an important difference as

compared to the vacuum case [Eq. (9)]. There, subtracting
the part with m was sufficient, as this “free” term is always
infinite. But here, in the presence of a temperature and a
magnetic field, that is not the case. The “free” term contains
a finite contribution, which we denote as “free,reg” and

needs to be added to the final expression [24,26]. Thus, the
regularized expression for the condensate, in the presence
of temperature and magnetic field, is

hψ̄fψfiregB;T ¼hψ̄fψfiB;T−hψ̄fψfifreeB;Tþhψ̄fψfifree;regB;T ; ð18Þ

where hψ̄fψfifree;regB;T is given as [12]

hψ̄fψfifree;regB;T ¼ −
Ncm3

4π2

�
lnΓðxfÞ

xf
−
lnð2πÞ
2xf

þ 1 −
�
1 −

1

2xf

�
ln xf

�
þ NcjqfBj

π

X∞
k¼0

αk

Z
dq
2π

m

Ef
kð1þ exp½Ef

k=T�Þ
; ð19Þ

with xf ¼ m2=ð2jqfBjÞ and αk ¼ 2 − δk0, is the Landau
level degeneracy factor. Here, we should remind ourselves
again that the regularized form of the condensate in
Eq. (18) can be directly obtained from a regularized
expression of the free energy. In that case, the free energy
needs to be regularized in the same fashion as it is described
for its zero magnetic field counterpart [Eq. (6)]. The first
term in the above equation is a pure magnetic field-
dependent term, for which the summation over the Landau
levels is performed [55].

D. NJL model with local interaction

It is very straightforward to arrive at the local version
of the NJL model from the nonlocal one. By choosing
the nonlocal form factor to be a delta functionHðzÞ ¼ δðzÞ,
the interaction becomes pointlike (local). Thus, to get to the
2-flavor local NJL model, one needs to replace the form
factor accordingly in Eq. (3). In momentum space, this
choice leads to hðqÞ ¼ 1, and one needs to put an explicit
cutoff in the momentum integration. Important to note that
the subtraction implemented to make the free energy finite
in the nonlocal scenario is no longer required with the
introduction of the explicit cutoff.
To study the 2-flavor local NJL model in a magnetic

field, we follow the framework given in Ref. [36], which
can be easily implemented following the above arguments.
Thus, we do not repeat them here. To obtain the IMC effect,
they fitted the coupling constant. For a better understanding
of the result, we rewrite here its form,

G0ðeB; TÞ ¼ cðeBÞ
�
1 −

1

1þ eβðeBÞðTaðeBÞ−TÞ

�
þ sðeBÞ;

ð20Þ

where the parameters c, β, Ta and s depend on only the
external magnetic field. Their fitted values can be found in
Ref. [56,57]. In our analysis, we do not change Eq. (20) as
we change the current quark mass.
The above argument also holds for a 3-flavor model.

The NJL model with 3 flavors of quarks is a bit more

complicated with six-quark interaction, but within the
mean-field approximation, the free energy and other
expressions are analogous to those of the 2 flavors.
The basic structure of the Lagrangian is the same as in

Eq. (1) with some pertinent modifications. The Dirac spinor
is now a triplet with ψT ¼ ðu; d; sÞ and their masses make
the mass matrix m̂ ¼ diagðmu;md;msÞ. The symmetries of
the interaction terms Lsym and Ldet are similar to 2-flavor
with Nf ¼ 2 being replaced by Nf ¼ 3. The explicit forms
of these interactions are given below [47,48]

Lsym ¼ G1

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� and

Ldet ¼ −G2½det ψ̄ ið1 − γ5Þψ j þ det ψ̄ ið1þ γ5Þψ j�; ð21Þ

where the generators of SUð3Þ symmetry are represented
by the Gell-Mann matrices λ, and the determinant in Ldet is
taken in the flavor space. The coupling constants are
denoted as G1 and G2 to signify the similar physics that
the corresponding interaction terms represent in both 2- and
3-flavors. However, their explicit values, as mentioned
below, will be different. Once we have the Lagrangian, we
follow the same procedure as described earlier to derive the
free energy.
To introduce the magnetic field, we exactly follow the

procedure of Ref. [35]. Our goal is to apply the framework
developed there to test its validity beyond the physical
point. Thus, we skip repeating the formalism here.
However, to comprehend the result, we would require
the form of the coupling constant, as we did for the 2-flavor.
It is fitted as

G1ðξÞ ¼ G0
1

1þ aξ2 þ bξ3

1þ cξ2 þ dξ4
; ð22Þ

with a ¼ 0.0108805, b ¼ −1.0133 × 10−4, c ¼ 0.02228,
d¼1.84558×10−4; ξ ¼ eB=Λ2

QCD with ΛQCD ¼ 0.3 GeV,
and G0

1 ¼ G1ðeB ¼ 0Þ ¼ G1. Note that the external field
dependence is not considered for the other coupling, G2.
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The eB-dependence of the ’t Hooft determinant term has
been explored in Ref. [58].

E. Parameter fitting for a 2 + 1 flavor NJL model

The parameter fitting in a 3-flavor NJL model is different
and needs a separate discussion. It has a total of 5
parameters that need to be fitted to produce the empirical
values of the observables like meson masses, their decay
constants, etc. The 5 parameters are the light quark mass,m
(considering isospin symmetry), the strange quark mass,
ms, the two coupling constants, G1 and G2, and a three
momentum cutoff Λ. The most used parameter sets, from
Refs. [48,59], are obtained by fitting ms, G1, G2, and Λ to
reproduce the experimental values of masses of pion, kaon,
and η0 mesons and the pion decay constant while the light
quark mass,m is chosen to be 5.5 MeVas obtained in chiral
perturbation theory [60].
The detailed calculation of the different meson propa-

gators and decay constants are given in Refs. [48,59].
Going to the unphysical region in a 2þ 1 flavor NJL model
is not as straightforward as for the 2 flavor case. In other
words, simply changing the light quark mass while keeping
all other parameters fixed will not work due to the presence
of kaon and η mesons. For example, for a pion mass larger
than the physical value, if we only change the light quark
mass, the pions and kaons will become degenerate at
m ¼ ms. In order to maintain the correct mass hierarchy
between pions and kaons, it is necessary to adjust the
strange quark mass as well. The procedure for that is to
keep the ratio of light to strange quark mass fixed to the
physical value while going to the unphysical region by
changing quark masses [27,37]. We further discuss it in the
results section.

III. RESULTS

We divide our results into two major subsections: non-
local (Sec. III A) and local (Sec. III B). We show the result
for the nonlocal version first and then switch to the local
one. We start with reviewing the parameters of the two
models and how they are fitted. We then describe our
findings on individual models.
In a later subsection (Sec. III C), we investigate the

correlation between the IMC effect around the phase
transition temperature and the decreasing TCO by looking
at the condensate-average differences. To avoid confusion,
we note that this is different from the condensate difference,
in which the difference between the u and d-quark
condensate is calculated. The condensate-average differ-
ence is defined as the average of the u and d quark
condensates from which the value of the condensate
average for eB ¼ 0 is subtracted. This helps to recognize
the IMC effect more clearly. In Sec. III E, we try to
understand all the results by dissecting the model ingre-
dients—mainly the running of the coupling constants.

A. Nonlocal version

We begin by describing the parameter fitting. For the
nonlocal model, the physical point corresponds to the LH
parameter set of Ref. [26] with mπ ¼ 135 MeV, Fπ ¼
92.9 MeV and hψ̄ iψ ii1=3 ¼ 221.1 MeV. The model param-
etersm,G0 andΛ are fitted to obtain these obervables using
Eqs. (9), (11), and (13). The details of the parameters can be
found in Ref. [26].
To go to unphysical pion masses, we follow the most

used procedure for effective models where one increases
the current quark masses while keeping other parameters
such as G0 and Λ fixed [37,38]. The argument is that Λ,
being the scale of the theory, should not be affected by the
low energy dynamics. On the other hand, G0, being the
coupling constant, should not be affected by the varying
current quark masses with a fixed Λ. Following these
arguments, we solve Eqs. (8) and (11) consistently to obtain
the desired pion masses. The unphysical pion masses and
the corresponding current quark masses are mentioned
in Table I. They are obtained with Λ and G0 kept fixed
to their values at physical point: Λ ¼ 605.05 MeV and
G0 ¼ 29.38=Λ2. The major motivation behind these chosen
values comes from the LQCD study [27]. However, in
LQCD, the analysis reaches pions above 600MeV, which is
not feasible in the models considered here.
To keep the present discussion in perspective, we would

like to mention that with the parameter set for the physical
point, one gets a reasonable match for the condensate and
scaled crossover temperature as a function of eB while
comparing with LQCD results [26]. Here, we are focused
on the IMC effect and the behavior of TCO. Thus,
calculating the condensate average will be enough for
us. We also seek a qualitative understanding of our result
and do not aim for a quantitative matching. Thus, we
calculate hψ̄ iψ ii without any further scaling or subtraction,
which is required to match with the LQCD result [3,26] and
present the average of the u and d-quark condensates,
denoted as hψ̄ψiAve.
Let us start discussing the result by looking at Fig. 1,

where we present hψ̄ψiAve as a function of temperature for
different values of the pion mass in the presence of a
magnetic field. In the figure, the changing color from blue
to red stands for the increasing strength of the magnetic
field, with blue and red representing 0 and 1 GeV2 eB,
respectively, in steps of 0.2 GeV2. We observe that the
effect of IMC starts to decrease as we increase the mass of

TABLE I. Fittedm-values for different pion masses for all three
models explored here.

mπ (MeV) 135 220 340 440

m (MeV)
Nonlocal 2f: 6.9 18.3 42.9 70.8
Local 2f: 5.5 13.2 32.2 54.2

Local 2þ 1f: 5.5 14.5 34.1 56.1

QCD PHASE DIAGRAM IN THE T–eB PLANE FOR VARYING … PHYS. REV. D 110, 096011 (2024)

096011-7



the pion, which qualitatively resembles the observation in
LQCD [27]. The IMC effect disappears for larger values
of mπ. It happens at a much lower value in the present
model as compared to the LQCD. At this point, one must
look into the behavior of TCO as a function of eB for
different values of mπ.

This is what Fig. 2 displays. We follow the known
method of calculating the pseudo-critical temperature for
the restoration of the chiral symmetry by finding the
inflection point from the temperature gradient of the
condensate average. We have plotted the temperature
gradient of the condensate average with increasing mπ

FIG. 1. Condensate average as a function of temperature for different values of eB, with increasing strength from blue to red as
denoted by the legends. The subfigures (a)–(d) correspond to mπ ¼ 135, 220, 340, and 440 MeV, respectively. The condensate average
values are scaled with a factor of 103.

FIG. 2. Temperature gradient of the condensate average as a function of temperature for different values of eBwith increasing strength
from blue to red as denoted by the legends. The subfigures (a)–(d) correspond to mπ ¼ 135, 220, 340, and 440 MeV, respectively.
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from left to right. The plots are shown at least once to give
readers an understanding of the overall behaviors of such a
quantity. It is obvious, in all the cases, that the peak of the
gradient (signals the inflection point) shifts to the left with
increasing strength of the magnetic field. This is what the
authors of Ref. [27] have observed in an LQCD simulation.
It is interesting to observe that simple effective models

like NJL, constructed through symmetry arguments, are
capable of capturing the major essence of an LQCD
calculation. In this regard, the nonlocal version, introduced
to capture the essence of the running of the strong coupling,
is efficient. Previously, it was used without any further
tweaking like its local counterpart [34,36,61] to reproduce
the IMC effect. Here, we extend it to test successfully
whether it can be trusted in the region away from the
physical point. Such an extension validates the most
important motivations behind considering a nonlocal
version of the NJL model [25,50,51] showing its
usefulness.
Let us draw the phase diagram for better visualization of

the behavior of TCO for different pion masses. We have
presented the crossover temperature as a function eB for
different values of the pion mass in Fig. 3. The left panel of
the figure shows the values of the crossover temperature as
a function of the magnetic field for different values of pion
masses. With increasing pion mass, the values of the TCO
increase, but with increasing strength of eB, it always has a
decreasing trend. This was already evident from different
panels of Fig. 2. However, here in Fig. 3, we can have a
quantitative estimation along with a relative impact of
different pion masses. This is similar to Fig. 11 in Ref. [27].
To compare with the LQCD findings, we have presented

the scaled crossover temperature as a function of the
magnetic field for different values of pion masses in the
right panel of Fig. 3. The LQCD data has been taken from
Ref. [2]. The result for the physical mπ is known from the
Ref. [26], which we calculated here as well. With increas-
ing mπ , the decreasing trend of the scaled transition

temperature slightly goes up, especially for higher values
of eB. This is also qualitatively similar to Fig. 12 in
the Ref. [27].

B. Local versions

As mentioned earlier, there are a few ways to obtain the
inverse magnetic catalysis effect in the presence of a
magnetic field within the NJL framework in its local
version. We focus on two local NJL model frameworks:
one where the interaction strength is a function of both the
magnetic field and temperature [56] and another where it is
dependent only on the magnetic field [35]. However, both
approaches rely on the main idea that the interaction
strength should be energy-dependent.

1. T and eB dependent coupling constant

One of the very first references to reproduce the IMC
effect in a 2-flavor NJL model was reported in Ref. [34].
The running of coupling as a function of the external field
and the temperature through some fitted parameters enables
the model to capture such a phenomenon. The authors
further improved on their fitting in their next investigation
in Ref. [36]. The condensate averages determined by
LQCD study [3] are used as the observables to fit. This
fitting [62] has been extensively used to calculate other
quantities in the presence of a magnetic field, for example,
transport coefficients [56].
Thus, we use the method of Ref. [36] for our purpose to

go beyond the physical point and check its validity. As
before, we begin with the parameter fitting that is required
to attain higher pion masses. The method is similar to the
2-flavor nonlocal version. We keep the coupling constant
and the cutoff fixed and obtain higher pion masses with
higher values of current quark masses.
Obviously, we take the parameter set for the physical

point from Ref. [36] as the fittings are done for that set.
Then, to go to the larger pion mass, we use expressions for

FIG. 3. Left: crossover temperatures as a function of eB for differentmπ . Right: the same plot with crossover temperatures scaled with
respective zero eB-values and compared with LQCD result [3] for physical pions, shown with the magenta band. The lines are solely
intended to guide the eyes.
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the relevant observables such as mπ, Fπ and hψ̄ψi in sync
with the formalism used there. However, it is to be
mentioned that the parameter values considered at the
physical point are not exactly obtained by solving the
relevant expressions. Rather, the values ofmπ , Fπ andm are
chosen to match with the condensate value found by the
LQCD study [3] through the Gell-Mann-Oakes-Renner
(GOR) relation. Then they consider a cutoff value,
Λ ¼ 650 MeV, as a standard value for the model and fit
the lattice-defined condensate average to calculate G0 at
zero T and eB.
All these parameter values fall within the range of the

standard NJL model, and the percentage change is not
much as compared to the ones calculated by solving the
relevant expressions. To go to the heavier pions, as
mentioned, we use the relevant observable and find the
m to attain a particular value of mπ while we keep the
values of G0 and Λ fixed to their values, G0 ¼ 4.5 GeV−2

and Λ ¼ 650 MeV. The fitted numbers are mentioned in
Table I.
Once the current quark masses are found for a given

value of pion mass, we follow the same strategies as for the
nonlocal model. We calculate the condensate average for
these different pion masses as a function of T for different
values of eB. The plots are shown in Fig. 4. The first panel
expectedly matches with the result of Ref. [36]. As we
increase the pion mass, the IMC effect seems to go away for
some values of eB. At the highest values of mπ we
investigated, it seems that the IMC effect is gone except
for some higher values of eB. However, to really know
whether there is still some hint of IMC or not, we need to
calculate the condensate-average difference, i.e., the
change in the condensate average due to the presence of
the magnetic field, for which we have dedicated a separate

section later. It is difficult to make clear statements on the
fate of the IMC effect with increasing values of mπ from
this Fig. 4. This is in contrast with our observation from the
2-flavor nonlocal model.
Next, in Fig. 5, we show the phase diagrams obtained in

this model setup. In the left panel, we plot TCO calculated
for different values of mπ with increasing eB. Though the
decreasing trend of TCO is present for all values of mπ , the
decrease is not regular, and there appears a jump around
the eB-values 0.4–0.6 GeV2. This can be understood by
looking at the behavior of the running of the coupling
constant, as discussed at the end of the result section.
In the right panel, we have the same plot scaled by

eB ¼ 0 transition temperatures and compared with the
LQCD result. Though scaling makes the result appear
relatively smoother, however, the irregular pattern remains
for both increasing values ofmπ and eB. Thus, though with
the fitting, the model successfully captured the IMC effect
and the decreasing behavior TCO, it does not work that
efficiently when we try to utilize it beyond the physi-
cal point.

2. eB dependent coupling constant

Along with the Ref. [34], there came another treatment
of the NJL model, which could successfully capture the
IMC effect [35]. It also uses the same idea of the running of
the coupling constant. However, there are some differences.
First of all, this is a 2þ 1-flavor calculation, and the fitted
coupling constant depends only on the external field [63].
The fitting is done to reproduce the chiral TCO determined
by LQCD study [2] at different values of eB. This is
another well-known method to capture the IMC effect in a
local version and has been so far extensively used by the

(a) (b)

(c)
(d)

FIG. 4. Temperature dependence of the condensate average as a function of T for different mπ-values in a 2-flavor local NJL model.
For notations and legends, the readers are referred to Fig. 1. Note that here eB reaches up to 0.8 GeV2.
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community. Thus, we use it here to test its applicability
beyond the physical point.
As mentioned earlier, the parameter fitting is more

involved here since there is now strange quark in the
system. To go beyond the physical point, we keep the ratio
of strange to light quark ratio to its physical value, 25.58,
following the arguments in Refs. [27,37]. Thus, to attain a
higher value of mπ , one needs to not only change the light
quark mass but also adjust the strange quark mass to satisfy
the aforementioned ratio. We follow this procedure while
solving the relevant observables equation consistently
keeping both the coupling constants, G1 and G2, and
the cutoff, Λ fixed: G1 ¼ 3.67=Λ2, G2 ¼ 12.36=Λ5 and
Λ ¼ 602.3 MeV. Accordingly, we find the light quark
masses and the correspondingmπ values as given in Table I.
With the mentioned light quark masses for different

values of mπ we investigated the condensate average in
Fig. 6. In panel (a), we have the plot for the physical point

with a clear demonstration of the IMC effect around the
phase transition region. With mπ ¼ 220 MeV, the IMC
effect is reduced but not completely wiped out. As we
increase mπ further, the IMC effect appears to be totally
eliminated in panels (c) and (d). However, to really demand
the elimination of the IMC effect for all values of eB, one
needs to look into the change in the condensate average due
to the presence of the magnetic field, which we discuss in
the next subsection. However, we can remark that the fate
of the IMC effect with increasing mπ behaves qualitatively
similar to that found in the LQCD study [27].
As we look at the plot for crossover temperature as a

function of eB for different values of mπ in the left panel of
Fig. 7, we observe that the model also successfully captures
the behavior of decreasing TCO found in LQCD. Here, the
behavior is smooth as opposed to what we found for the
2-flavor local model in Fig. 5. In the right panel, we display
the phase diagram with scaled transition temperatures and

FIG. 5. Left: crossover temperatures as a function of magnetic field for different values of mπ for a 2-flavor local model. Right: the
same plot with crossover temperatures scaled with respective zero eB-values and compared with LQCD result [3] for physical pions
(the magenta band). The lines are drawn to guide the eyes.

(a) (b)

(c) (d)

FIG. 6. Temperature dependence of the condensate average as a function of T for different mπ in a 2þ 1-flavor local NJL model. For
notations and legends, the readers are referred to Fig. 1. Here eB has the maximum strength of 0.8 GeV2.
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compare it with the LQCD data. The red points for the
physical pion mass, as anticipated, match with the data
well, as the model was fit to match with these data. With
higher values of mπ , the decreasing trend of the scaled
transition temperature goes up for higher values of eB.
This is qualitatively similar to the LQCD result. Thus, as
compared to the 2-flavor local model, the 2þ 1-flavor
reproduces more reliably results beyond the physical
pion mass.

C. Condensate-average differences
with respect to its value at B= 0

In an effort to understand the correlation between the
IMC effect around the crossover temperature and the
decreasing TCO, we calculate the condensate-average

difference, Δhψ̄ψiAve and investigate it for all the above-
mentioned frameworks. It is defined as the subtraction of
the condensate average for eB ¼ 0 from the ones with
nonzero eB,

Δhψ̄ψiAveðeB; T;mÞ
¼ hψ̄ψiAveðeB; T;mÞ − hψ̄ψiAveð0; T;mÞ: ð23Þ

If the IMC effect persists for a given value of eB with a
certain mπ , then Δhψ̄ψiAve becomes positive.
In Fig. 8, the condensate-average differences are shown

in the nonlocal framework. It is evident that the IMC effects
are present in panel (a) for the physical mπ , which
corroborates with panel (a) in Fig. 1. From panel (b) of

FIG. 7. Left: crossover temperatures as a function of eB for different values of mπ in a 2þ 1-flavor local model. Right: the same plot
with crossover temperatures scaled with respective zero eB-values and compared with LQCD result [3] for physical pions (the magenta
band). The lines between the points exist solely to guide the eyes.

FIG. 8. (Nonlocal 2-flavor): The condensate-average difference plotted as a function of temperature for different values of eB, with
increasing strength from blue to red as denoted by the legends. Panels (a)–(d) represent mπ-values of 135, 220, 340, and 440,
respectively. The condensate values are scaled with a factor of 103. The gray dashed line represents the TCO in the respective model
at eB ¼ 0.
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Fig. 1, it was not possible to make a definite comment on
the elimination of the IMC effect for all values of eB.
However, panel (b) in Fig. 8 demonstrates that the IMC
effect is indeed eliminated at mπ ¼ 220 in the nonlocal
model. The plots from the other panels in Fig. 8 are
consistent with our understanding from the respective pion
mass plots in Fig. 1. The gray dashed lines are the zero eB
crossover temperature at relevant mπ-values. They are
drawn to illustrate the temperature range where the IMC
effect appears.
Now, we move to the local 2-flavor NJL model. The

plots for Δhψ̄ψiAve for different mπ’s are shown in Fig. 9.
The results for the condensate average and the phase
diagram beyond physicalmπ did not look very encouraging
in this framework. This is again reflected in the plots of
Δhψ̄ψiAve. The IMC effect is present for all values of mπ

considered here. Also, the relative trend of Δhψ̄ψiAve for
heavier than physical pions does not show a consistent
pattern as we change eB. The description even worsens and
becomes random after the restoration of the symmetry.
The plots for the condensate-average differences for the

2þ 1-flavor local NJL model are shown in Fig. 10. Panels
(a) and (b) confirm the presence of the IMC effect, thus
corroborating the respective panels of Fig. 6. In this
framework, the IMC effect is present for mπ ¼ 220 MeV,
although with a nonsmooth behavior for different eB’s. To
compare, we have shown the results in the nonlocal
framework at mπ ¼ 180 MeV in the Appendix A, which
shows a gradual enhancement with increasing eB. With
even highermπ values in Fig. 10, the IMC effect disappears
for all the values of eB, except eB ¼ 0.2 GeV2. For this
value of eB, the IMC effect persists for all mπ-values we
tested. This observation is not obvious from panels (c) and
(d) of Fig. 6. In summary, the description of the condensate

for heavier pion mass QCD medium in the 2þ 1 frame-
work is qualitatively satisfactory; however, it shows IMC
for eB ¼ 0.2 GeV2 formπ ¼ 440 MeV, contrary to LQCD
results [27].

D. The pion mass beyond which the IMC effect
disappears

In this section, inspired by the LQCD study [28], we
obtain the pion mass above which the IMC effect around
the crossover temperature ceases to exist, which we
call the maximum pion mass ðmmax

π Þ. Reference [28] is a
2þ 1-flavor study which is done by fixing the strange
quark mass to its physical value. This is in contrast to
Ref. [27] in which the strange to light quark mass ratio is
kept fixed at a physical value. We followed the latter
approach while performing the 2þ 1-flavor local frame-
work in Sec. III B.
Out of the three frameworks that we tested, the nonlocal

2-flavor model is one where we can easily estimate such a
quantity. As demonstrated in the previous section, we
cannot draw clear conclusions about the fate of the IMC
effect with increasing mπ in the 2-flavor local model. This
is also true for the 2þ 1-flavor local model, in which the
IMC effect persists at eB ¼ 0.2 GeV2 for all values of the
pion mass that are tested.
In Fig. 11, we have plotted the maximum value of the

condensate-average difference [Eq. (23)] as a function of
the (vacuum) pion mass for different magnetic fields in the
nonlocal model. For convenience, we have quoted the
corresponding current quark masses on the upper axis. For
a fixed magnetic field, mmax

π is the vacuum pion mass for
which this condensate-average difference becomes zero.
Reference [28], which is a 2þ 1-flavor LQCD study, has

(a)
(b)

(d)(c)

FIG. 9. (Local 2-flavor): The condensate-average difference plotted as a function of temperature for different values of eB, with
increasing strength from blue to red as denoted by the legends. The notations and legends are the same as in Fig. 8. The gray dashed line
represents the TCO in the respective model at eB ¼ 0.
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obtained the maximum mass for a single magnetic field
eB ¼ 0.6 GeV2 which is 497(4) MeV. On the other
hand, our model’s simplicity allowed us to obtain the
maximum mass for the whole range of eB we explored.
We found that the maximum value has a little eB depend-
ence with a spread of 1.4% around the mean value of
mmax

π ¼ 215 MeV. This value is much smaller as compared
to the corresponding value in LQCD. However, we empha-
size that qualitatively the models can capture the LQCD
result beyond the physical point, and it is encouraging to
find a maximum pion mass similar to the LQCD study
within the model framework as well.

E. Characteristics of the coupling constants

In this subsection, we describe the behavior of the
coupling constant in different frameworks in the presence
of the magnetic field. In the local NJL model, one assumes
the coupling strength to be constant while obtaining the free
energy. On the other hand, in the nonlocal model, the
coupling constant runs with the momentum [51]. These
features arising from the construction of the respective
models play a crucial role in obtaining the IMC effect. In a
nonlocal model, the IMC effect is captured automatically.
On the other hand, in the local models, one needs to
introduce a parametrized running of the coupling constant
to reproduce the IMC effect.
So far, our results suggest that the same running enables

models to describe the effects of heavier current quark
masses without introducing additional parameters.
However, while investigating the details, we find out
differences among these frameworks, which can be under-
stood by looking at the behavior of the coupling constant
in different frameworks as a function of T and eB
(Fig. 12).
The middle panel of Fig. 12 represents the effective

coupling as a function of T and eB in the 2-flavor local
model. It is obtained using Eq. (20) with the parameter
values taken from Ref. [56]. The effective coupling in a
local 2þ 1-flavor model as a function of eB is shown in the
right panel of the same figure. It is obtained from Eq. (22)
with appropriate parameters taken from Ref. [35].
The effective coupling in the 2-flavor nonlocal model is

shown in the left panel of Fig. 12. Unlike its local
counterparts, it is not straightforward to interpret. We
identify the effective coupling as the coefficient of σ̄ in

(a)

(c)

(b)

(d)

FIG. 10. (Local 2þ 1-flavor): The condensate-average difference plotted as a function of temperature for different values of eB with
increasing strength from blue to red as denoted by the legends. The notations and legends are the same as in Fig. 8. The gray dashed line
represents the TCO in the respective model at eB ¼ 0.

FIG. 11. The pion mass above which the IMC effect disappears
for various eB-values. The strength of the magnetic field
increases from 0.2GeV2 (blue) to 1.0GeV2 (red) in steps of
0.2GeV2.
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the effective mass relation as given in Eq. (17). Apart from
an explicit flavor dependence, this effective coupling
depends on the Landau level, spin polarization, momentum,
temperature, and Matsubara frequencies of the quark. For
simplicity, we have summed up the landau levels and the
polarization. On the other hand, the momentum and
temperature have a simple exponential form; hence, we
have presented the interaction strength for the lowest
Matsubara frequency with zero momentum mode.
Thus, apart from the major difference in the implemen-

tation of varying coupling, there is another difference that
can be important while dealing with magnetic fields: we
find that the effective coupling is independent of the flavor
in the local models. In other words, the constituent masses
for different flavors have an explicit dependency on eB
and/or T through the coupling GðeBÞ. However, this
dependency is blind to the charges of the associated quark
flavor. This is evident from the middle and the right panels
of Fig. 12 as well as from Eqs. (20) and (22). Contrary to
that, a nonlocal version takes into account the strength with
which a particular quark flavor interacts with the magnetic
field (left panel in Fig. 12).
By looking at the middle panel, we can explain the

irregular behavior of the IMC effect found in Fig. 9. The
running of the coupling has a sudden drop in strength around
the TCO for all eB-values. There is also a crossing of the
strength of the coupling between 0.4 and 0.6 GeV2. This
explains the irregular trend in TCO’s for all values ofmπ . On
the other hand, panel (b) in Fig. 10 produces IMC effect
around the crossover temperature atmπ ¼ 220 MeVwith an
irregular strength for different eB’s. This happens due to the
flavor-independent nature of the running of the coupling, as
shown in the right panel of Fig. 12. In fact, this flavor
independence of the coupling is the reason that the IMC
effect cannot be eliminated for the lowest strength of the eB
[panels (c) and (d) in Fig. 10] for higher pion masses.
On the contrary, the results in the nonlocal model look

consistent throughout. This can be attributed to the flavor-
dependent smooth running of the coupling, as shown in the
left panel in Fig. 12. In fact, this is the reason that in this
model, the observed IMC effect in a heavier pion mass
(mπ ¼ 180 MeV) behaves consistently as described in the
Appendix A. This is contrary to panel (b) in Fig. 10, where
the behavior is irregular for different eB-values.

To conclude this section, it is evident from the left panel
of Fig. 12 that the effective coupling decreases with
increasing magnetic field, with a stronger effect for the
u quark than for the d quark at a given eB. The interaction
strength for the u quark in a magnetic field of strength eB is
equal to that for the d quark in a field of strength 2eB.
The behavior of the individual light quark condensate in the
presence of eB with increasing mπ-values is detailed in
the Appendix B.

IV. SUMMARY AND CONCLUSION

We have explored the effect of the varying pion mass on
the chiral crossover line of a magnetized QCD medium
within an effective model framework. It is now known that
to obtain the inverse magnetic catalysis (IMC) around the
crossover temperature (TCO), as first observed in lattice
QCD (LQCD) simulation, the running of the effective
coupling plays the most crucial role. Such running of the
coupling has been implemented in different ways in
effective models. Following a recent LQCD result [27],
we have explored these models with larger pion mass
beyond the physical point in the presence of magnetic
fields, which, to the best of our knowledge, is the first in an
effective model scenario.
We utilize the widely used Nambu–Jona-Lasinio (NJL)

model and study both its local and nonlocal versions. We
use the nonlocal model constructed with two light quark
flavors. In this model, the coupling runs with the momen-
tum. This feature, when incorporated appropriately, natu-
rally bears out the IMC effect in the presence of an external
magnetic field. For a local interaction, the coupling con-
stant is considered to be independent of the momentum up
to the cutoff scale of the theory (in this case, the
3-momentum cutoff). But to achieve the IMC effect, one
needs to make it dependent on available thermodynamic
parameters, for example, temperature, external magnetic
field, etc. In this work, we explored two local model
scenarios: one with a temperature and magnetic field-
dependent coupling constant, constructed with two light
quark flavors. The other one, with only a magnetic field-
dependent coupling strength, is constructed with two light
and a heavier strange quark. On the other hand, the
nonlocal model, constructed with two light flavors of

FIG. 12. The effective coupling as a function of T and eB. The left panel is for the nonlocal model, with the continuous and dashed
lines for u and d flavor, respectively. The middle panel represents effective coupling in the 2-flavor local case [36]. The right panel
represents the same in the 2þ 1-flavor local model.
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quark, takes into the effects of every thermodynamic
parameter present in the theory naturally.
We observe that the IMC effect ceases to appear as we

increase the pion mass, but the decreasing trend of the TCO
persists. Thus, the NJL model is able to reproduce the
observations found in LQCD qualitatively. However, the
value of the pion mass at which the IMC effect goes away is
lower than what is found in the LQCD study [27]. We also
find the pion mass above which the IMC effect around the
crossover temperature ceases to exist. In the nonlocal
model, the IMC effect disappears around mπ ¼ 215 MeV
with a spread of 1.4% due to its magnetic field dependency.
The LQCD estimate is 497(4) MeV at eB ¼ 0.6 GeV2.
Obtaining quantitative agreement with LQCD may require
introducing additional mass and eB dependent parameters
in the model. The other frameworks are not suitable to
perform such an analysis, as the IMC effect is not
consistently produced for beyond physical point. For
example, in the 2þ 1-flavor local NJL model, the IMC
effect exists for all values of mπ that we tested for
eB ¼ 0.2 GeV2. For magnetic filed larger than 0.2 GeV2

it disappears between mπ ¼ 220 and 340 MeV.
Although the observations hold for both the nonlocal and

local frameworks, for the local version, it is dependent on
the way the medium-dependent coupling is implemented in
the model. We observe some irregularities at larger pion
masses that might stem from the fitting of the parameter at
the physical point in the local model. In 2-flavor local
framework, the decreasing trend of TCO’s is not smooth as
we increase the pion mass. Also, it is not possible to make
any conclusive comment there on the status of the IMC
effect beyond the physical point. In the 2þ 1-flavor local
model, the IMC effect for higher mπ-value (220 MeV)
shows an irregular pattern for eB-dependence and
the IMC effect is present for eB ¼ 0.2 GeV2 for all the
mπ-values tested. In contrast, the IMC effect for beyond
physical mπ-value shows smooth behavior in the non-
local model.
We further explored the effective coupling to understand

the results. In the local scenario, though the coupling
constants are magnetic field dependent, it is blind to the

strength (here, the charges of the quarks) at which a
particular flavor interacts with the magnetic field. We find
that the fitting of the parameters to reproduce LQCD results
at the physical point is not enough to capture the physics for
heavier pion masses. In that respect, we find that a smooth
effective coupling via a form factor in the nonlocal model
captures the physics more naturally. This is further ana-
lyzed in Appendix B by showing the behavior of the
individual condensates.
Through the detailed analysis, we tested the reliability of

the NJL-like models by going to unphysical regions guided
by LQCD observations. We conclude that such simple
effective models, when treated consistently, can capture the
essence of a complex theory like QCD.
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APPENDIX A: AT mπ = 180 MeV IN 2-FLAVOR
NONLOCAL MODEL

Here, we display the results in a 2-flavor nonlocal model
for pion mass value, 180 MeV (Fig. 13). The IMC effect is
seen for this pion mass. In the left panel of the figure, we
have the condensate average capturing the IMC effect. The
right panel, by showing the condensate-average difference,
demonstrates clearly. The gray dashed line is the zero
magnetic field crossover temperature at mπ ¼ 180 MeV.
This is drawn to illustrate the temperature range where the
IMC effect appears.

FIG. 13. Condensate average (left panel) and condensate-average difference (right panel) as a function of temperature for different
values of eB with increasing strength from blue to red for mπ ¼ 180 MeV. The legends carry the same meaning as for the respective
plots in Figs. 1 and 8.
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APPENDIX B: IMC EFFECT FOR THE
INDIVIDUAL LIGHT QUARK

In Fig. 14, we have plotted the condensate difference for
u (top row of panels) and d quarks (bottom row of panels)
in a nonlocal NJL model. This is done to investigate the
IMC effect for the individual light quarks. The definition
for the individual quark flavors is similar to the definition
for the condensate-average difference given in Eq. (23). For
each flavor we define,

Δhψ̄fψfiðeB;T;mÞ¼hψ̄fψfiðeB;T;mÞ−hψ̄fψfið0;T;mÞ:
ðB1Þ

For a fixed eB value, we observe from the figure
(Fig. 14) that with increasing pion mass the IMC effect
for u quark disappears at lower mπ as compared to the d
quark. This might appear counter-intuitive as one expects
the u quark to get a stronger response (whether it is IMC or
MC effect) with an increasing magnetic field than the d
quark due to the former’s larger electric charge. Such an
expectation should hold for all values of the pion mass, as
we take the current quark mass to be equal for both the light
flavors. However, this intuition holds true only when there
is no mixing or coupling between different flavors [26], or
G2 ¼ 0 in Eq. (2), when the gap equations for the u and d
flavors decouple. For G1 ¼ G2 (the usual form of the NJL
model, the case we consider here), the gap equations for the
u and d quarks are coupled [see Eq. (17)] since σ̄ depends
on both the flavors [Eq. (4)]. The second point to note is
that mixing only affects the first term on the right-hand side
of Eq. (18)—the “free,” “free,reg” parts of the condensate
[Eq. (19)] are independent of σ. Since the mixing reduces

the difference between the u and d condensates, it tends to
reduce the IMC effect for u but increases that for d. A larger
contribution from the “free,reg” part for the u condensate
reduces the IMC effect further around the crossover region.
On the other hand, with a smaller contribution from the
“free,reg” term, the IMC persists for d condensate up to a
higher value of mπ than that for the u quark. However, for
both flavors, the IMC effect disappears within the range of
the studied pion mass.
For fixed lightmπ values, note that the maximum value of

Δhψ̄fψfi for each flavor increases monotonically with eB
signifying a stronger IMC effect near the crossover. For high
mπ , Δhψ̄fψfi becomes more negative monotonically with
increasing eB. Intuitively, one would expect such a regular
pattern of the individual condensate in the presence of eB.
The same plots in the 2þ 1-flavor local model are shown

in Fig. 15. In this case, with the increase of the pion mass,
the IMC effect disappears for the u-quark, and the con-
densate behaves similar to the case in the nonlocal model
with increasing eB-values. On the other hand, the IMC
effect never disappears for the d quark and survives for all
the pion mass values that we tested. This is contrary to what
we observed and explained in the nonlocal model. Also, the
IMC effect is nonmonotonic in eB for the d quark for fixed
higher pion masses for different eB-values, as shown in
panels (c) and (d). This irregular pattern might arise due to
the flavor-independent running of the coupling as shown in
the right panel of Fig. 12. For the moment, no beyond-
physical-point studies exist on individual light quark
condensates or the condensate difference in LQCD calcu-
lations [27,28]. The models’ predictions for individual
quark condensates can be tested qualitatively once such
data become available in the future.

FIG. 14. (Nonlocal): The condensate-difference for u (solid) and d (dashed) quarks are plotted as a function of temperature for
different values of eB with increasing strength from blue to red as denoted by the legends. The notations and legends are the same as in
Fig. 8. The gray dashed lines represent the TCO in the respective model at eB ¼ 0.
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