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Modulus stabilization in the multiple-modulus framework
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In a class of modular-invariant models with multiple moduli fields, the viable lepton flavor mixing
pattern can be realized if the values of moduli are selected to be at the fixed points. In this paper, we
investigate a modulus stabilization mechanism in the multiple-modulus framework which is capable of
providing de Sitter (dS) minima precisely at the fixed points 7 =i and w, by taking into consideration
nonperturbative effects on the superpotential and the dilaton Kihler potential. Due to the existence of
additional Kéhler moduli, more possible vacua can occur, and the dS vacua could be the deepest under
certain conditions. We classify different choices of vacua and discuss their phenomenological implications

for lepton masses and flavor mixing.
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I. INTRODUCTION

The flavor problem—that of the origin of the three
quark and lepton families and their pattern of masses and
mixings—is an unresolved puzzle within the Standard
Model (SM) of particle physics. The discovery of very
small neutrino masses with large mixing enriches the
flavor problem still further, requiring a further seven
parameters (more or less) for its phenomenological
description and demanding new physics beyond the
SM. The unexpected phenomenon of large lepton mixing
has caused a schism in the community between those who
think that this is a hint of a family symmetry at work—in
particular, non-Abelian and discrete—and those who think
that it is just a random or anarchic choice of parameters. If
one follows the symmetry approach, one is immediately
confronted by the problem of how to break the symmetry,
without which there would be massless fermions with no
mixing, and this leads to the introduction of rather
arbitrary flavon fields and driving fields which determine
their vacuum alignments, which play a crucial role in
determining the masses and mixings (for a review, see,
e.g., Ref. [1]).

In an attempt to make the non-Abelian discrete family
symmetries—and in particular, the accompanying flavon
fields—Iless arbitrary, it has been suggested that a more
satisfactory framework for addressing the flavor problem,
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at least in the lepton sector, might be modular symmetry
broken by a single complex modulus field 7 [2]. Using
ideas borrowed from string theory [3,4], modular sym-
metry on the worldsheet represents a reparametrization
symmetry of the extradimensional coordinates, whose
toroidal compactification is controlled by one or more
moduli fields, the simplest example being a single complex
modulus field 7 describing the two-compact-dimensional
lattice of a six-dimensional theory, modulus field z, where
its vacuum expectation value (VEV) fixes the geometry of
the torus [5-7].

The resulting infinite modular symmetry in the upper
half of the complex plane, PSL(2, Z), has particularly nice
features which rely on holomorphicity, the lack of complex
conjugation symmetry, which seems to call for supersym-
metry. The infinite modular group has a series of infinite
normal subgroups called the principle congruence sub-
groups I'(N) of level N, whose elements are equal to the
2 x 2 unit matrix mod N (where typically N is an integer
called the level of the group). For a given choice of level
N > 2, the quotient group I'y = PSL(2, Z)/T'(N) is finite
and may be identified with the groups I'y = A4 [2,8-26],
Sy [27-30], or As [31-33] for levels N = 3,4,5, which
may subsequently be used as a family symmetry [2].

The only flavon present in such theories is the single
modulus field 7, whose VEV fixes the value of Yukawa
couplings which form representations of I'y, and are
modular forms. Remarkably, the resulting Yukawa cou-
plings involved in the terms in the superpotential contain-
ing superfields whose modular weights do not sum to zero,
but take even values, can exist as modular forms with a
precise functional dependence on 7 [2], leading to very
predictive theories independent of flavons [2]. However,
for general values of the modulus field z, the resulting
Yukawa couplings are not very hierarchical, so fermion
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mass hierarchies do not emerge naturally. There are also
more general formulations involving the double cover of
the finite groups, where modular forms may have integer
values, or—more general still—fractional values, called
metaplectic groups [34-48].

In all such theories, the modular symmetry acts on the
modulus field 7z in a nonlinear way, and also, the finite
modular symmetry is necessarily broken. 7 is restricted to a
fundamental domain in the upper-half complex plane which
does not include zero. However, it is well known that there
are three fixed points where a discrete subgroup of the
modular symmetry is preserved [28,49,50]: namely, 7 =i,
which preserves Z3; 7 = @ = ¢*/3, which preserves Z3';
and 7 = ico, which preserves Z]S\, for level N, where S, T are
the generators of the modular symmetry [2]. At these fixed
points, the Yukawa couplings may have some zero compo-
nents, which may correspond to massless charged leptons,
with the charged-lepton mass hierarchy possibly resulting
from small deviations from the fixed points [51-62].
Alternatively, the charged-lepton mass hierarchy could
result from the use of so-called weighton fields [63], which
are singlet fields with nonzero modular weights which
develop VEVs and provide a natural suppression mecha-
nism for Yukawa couplings.

Since string theories are usually formulated in ten
dimensions, the simplest factorizable compactifications
require three tori, which motivates bottom-up models based
on three moduli fields z; [64], and several realistic models
have been constructed along these lines [65-71]. In par-
ticular, the finite fixed points 7 = i and 7 = w seem to play a
special role in modular symmetry, since they emerge from
10D supersymmetric orbifold examples [72]. Realistic
orbifold models with three S; modular symmetries have
been constructed based on these fixed points, with two of
the moduli 7 =1 and 7 =1+ 2 controlling the neutrino
sector, and the third modulus 7 = @ being responsible for
(diagonal) charge lepton Yukawa matrices [68]. For the
chosen orbifold (7%)*/(Z, x Z,), two of the moduli are
constrained to lie at 7 =1, or equivalently 7 =1 and
7 =1+ 2, while the third modulus is not fixed by the
orbifold, but was chosen to be at 7 = @ for phenomeno-
logical reasons, although it was observed that this choice
enhanced the remnant symmetry of the orbifold [68]. It
would be interesting to see if such choices of moduli fields
are stabilized at these points.

Interestingly, the minima of the effective supergravity
potentials which are used to stabilize the moduli also seem
to be situated close to the fixed points 7 =1 and 7 = w.
Indeed, the most important physical implication of string
theory might be the existence of extra dimensions, and the
moduli are the most important particle species arising in the
compactifications of extra dimensions [73]. In this regard,
modulus stabilization is crucial for giving moduli nonzero
masses and arriving at phenomenologically variable mod-
els. One important question is whether the minima of the

potential are precisely at the fixed points 7 =i and 7 = w,
or are close to these fixed points but not precisely at them.
In the former case, fermion mass hierarchies could arise
from the weighton fields [63], while in the latter case, they
could arise from the deviations from the fixed points [51],
as discussed above.

One approach to modulus stabilization is the use of flux
compactifications, which is widely discussed in Type IIB
string theory [74-78]. In the context of modular flavor
symmetry, the authors in Ref. [7] consider the 3-form flux in
the Type IIB model. They systematically analyze the
stabilization of complex structure moduli in possible con-
figurations of flux compactifications on a (72)3/(Z, x Z,)
orbifold. The number of stabilized moduli depends on an
integer Npi* associated with the fluxes. The values of
moduli are found to be clustered at the fixed point 7 = @ in
the fundamental domain.

Another origin of the nontrivial scalar potential is the
nonperturbative effects. In Refs. [79,80], the authors realize
the modulus stabilization by constructing a simple non-
perturbative superpotential induced by the hidden dynamics
within the framework of supergravity. In heterotic strings,
there is an important nonperturbative effect called gaugino
condensation [81-83]. Although the potential is flat in terms
of the dilaton, Kihler, and complex structure moduli at tree
level, it is indeed shown that threshold corrections [84—87]
or worldsheet instantons can uplift the potential and lead to
nontrivial vacua [88]. In the presence of modular sym-
metries, the authors in Refs. [89,90] consider the stabiliza-
tion of Kihler moduli. They enumerate all possible
nonperturbative contributions and derive the scalar poten-
tial. Minimizing the scalar potential, they find that the anti—
de Sitter (AdS) vacua can generally appear at the imaginary
axis and the lower boundary of the fundamental domain.
They comment that no de Sitter (dS) vacuum is found in
their numerical calculations. They also discuss the case
where the dilaton comes into the superpotential, and argue
that their results will not change if the superpotential relies
on the dilaton as a sum of exponentials. The authors of
Ref. [91] adopt the same framework. However, they find
that in a special case, the VEV of 7 can actually be in the
interior of the fundamental domain, which is very close to
the fixed point 7 = w. Still, no dS vacuum is found.

Cosmological observations imply that our Universe is in
a dS phase with a positive cosmological constant. If we
believe the string theory is the correct ultraviolet-complete
theory of particle physics and gravity, the string compacti-
fications should yield the 4D dS cosmology. It is then
interesting to investigate how to uplift the AdS vacua
obtained in the simple gaugino condensation to the dS
vacua. The authors of Ref. [92] find that nonperturbative
effects and uplifting terms can lead to dS vacua around
fixed points in the Type IIB theory. In Ref. [93], the authors
show that the AdS vacua can be uplifted by the matter
superpotential [94,95]. They introduce a heavy meson field,
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which couples with the moduli in the Kdhler potential and
superpotential. Due to the existence of the meson field, the
vacua can be uplifted to dS vacua, and the VEVs of 7 could
slightly deviate from the fixed points.

There are, however, still some possibilities to realize the
dS vacua without introducing the matter superpotential. In
Ref. [96], the authors investigate the modulus stabilization
within the framework of one Ké&hler modulus plus one
dilaton. They first prove three no-go theorems that forbid dS
vacua, which verify previous conjectures in Refs. [§89-91].
In order to evade the dS no-go theorems, they further
include Shenker-like effects [97] as nonperturbative cor-
rections to the dilaton Kéhler potential. As a result, they
obtain metastable dS vacua at the fixed points 7 =i and w.

In this paper, we shall consider a modulus stabilization
mechanism which is capable of providing dS minima
precisely at the fixed points 7 = i and 7 = w, in the absence
of matter fields, but taking into account the effect of the
dilaton field, with nonperturbative corrections to the dilaton
Kihler potential, along the lines of Ref. [96], but extended
to the three-modulus case. We find that the finite fixed
points can serve as dS vacua. Due to the existence of
additional Kéhler moduli, the vacuum structure becomes
more diverse, and we thereby classify the different possible
vacua. Conditions for these vacua to be dS vacua are distinct
from those in the single-modulus case. Moreover, the dS
vacua obtained at the fixed points can be the deepest under
certain conditions, which is also different from Ref. [96].
In addition, we discuss the relation between the modulus
stabilization mechanism studied in this paper and neutrino
mass models with multiple modular symmetries.

The layout of the remainder of the paper is as follows: In
Sec. II, we review the basic knowledge about modular
symmetries and nonperturbative effects in the string theory,
and we construct the scalar potential relevant for modulus
stabilization. We study the modulus stabilization and
investigate its phenomenological implications for lepton
masses and flavor mixing in Sec. III. We summarize our
main conclusion in Sec. IV.

II. THE MODULAR-INVARIANT
SCALAR POTENTIAL
A. Modular symmetry

To start with, we briefly review some basic knowledge
about modular symmetries. The modular group T is
isomorphic to PSL(2, Z), defined as [2]

{2y

where I is a two-dimensional unitary matrix. Under the
modular group, the modulus 7 and chiral supermultiplets
2D transform as

a,b,c,deZ, ad—bc=1 }, (2.1)

atr+b
N

2.2
ct+d’ (2.2)

yit 2= (et +d) (),
with y being an element of T, k; denoting the weight of the
chiral supermultiplet, and p;(y) representing the unitary
representation matrix of y. There are two generators S and
T in T satisfying §? = (ST)? = I, the matrix representa-
tions of which can be written as

s=( N () ) e

If we enact all the elements y € " on a given point 7 in the
upper-half complex plane C, = {r € C:Imz > 0}, we will
obtain an orbit of 7. Then, one can always find a minimal
connected set G, where all the orbits intersect the interior of
G at one and only one point. The set G is called the
fundamental domain of T, defined as

1 1
g= {T€C+: —ESRGT<§,|T| > 1}

q=1}

Enacting y €I" on G will generate another fundamental
domain, as shown in Fig. 1.

The modular form f(z) is a holomorphic function of
7 transforming under the modular group as

1
u{reC+:—§§Re150, (2.4)

flrr) =(ct+d)'f(r),  yeL(N). (25
where the level N and weight k are, respectively, positive
and even integers, and I'(N) denotes the principle con-
gruence subgroups of I". For a given N, the modular forms

can always be decomposed into several multiplets ng) =

(f1(2), f»(7),...)T that transform as irreducible unitary
representations of the quotient subgroups I'y = I'/I'(N):
namely,

1) = (et o (@), yeTy. (26)
where p.(y) denotes the representation matrix of Iy. Ty
are the finite modular groups, isomorphic to non-Abelian
discrete groups—e.g., I3 ~ Ay, 'y = Sy, and ['s ~ As.

Now, we consider the modular-invariant supersymmet-
ric theories. The invariance of the action S under the
modular transformations requires that the Kéhler poten-
tial K(z,7,y,}) remain unchanged up to a Kihler trans-
formation K(z,%,x,7) = K(z,7,x.7) + u(r,x) + u(z, jr)
[where u(z,y) itself is invariant under the modular trans-
formation], and the superpotential WW(z, ) should exactly
keep invariant. For the Kéhler potential, the minimal form
subject to the Kéhler transformation is
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FIG. 1.
points—z =i, ® and ico in G—are labeled by blue dots.

. - P2
K(z,7,x,y) = —hlog(— — 7
(2.7, 0.7) og(—ir +i7) + 21: (Cir + 170

where & is a positive constant. The superpotential W(z, y)
can be generally written as

Weer) =Y > (@™,

14 {’1 ,,,,, l]?}

(2.7)

In order for W(z,y) to be invariant under the modular
transformation, the Yukawa couplings Y, I, should take
the modular forms

Yy, 1, (y7)=(ct+ d)kyﬂy(i/)Yll...l,, (r), rely., (2.8)
where py denotes the representation matrix and ky is the
weight of Y,l.._,p(r). Note that ky = k;, +---+k; , and
Py ®pr®---®pp, 2 1 should be satisfied.

The modular symmetry can be extended to the frame-
work of multiple moduli [64]. Supposing that there are a
series of modular groups I'', T2, ....,T'™ associated with
different moduli 7, 7,, ..., )7, the modular transformation
of each modulus field would be

aﬂ'i + bi

. 2.9
CiT; + di ( )

Vit Tyt =

1 2 3

Fundamental domain G of I". Enacting T on G generates the entire upper-half complex plane with Imz > 0. Three fixed

Similarly to the single-modulus case, we can obtain a set of
finite modular groups T’y = T"/I"(N;). The chiral super-
field () then transforms under the modular group F,l\,l X
I3, x---xTy as

)((1)(71, e Tip) —UK(I) (1715 YMTu)
= H (citi+d;) ™
i=1,...M

where we label the elements in Ffv,. as y;. In addition, k;;
and p;,; are the weights of 7" and the corresponding
representation matrices in I > respectively, and @ repre-
sents the outer product of the representation matrices

Pr15P12s -5 PIM-
Correspondingly, the Kihler potential can be rewritten as

K(Tl,...,TM,%I,...,%M,)(,)_()
== ) hlog(~ir; +i7;)
i=1,..., M
)
n i (2.11)
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The superpotential W(zy, ..., 7y, ) becomes a modular-
invariant function of all the moduli fields as well as the
superfields, which takes the form

L),
(2.12)

Under the modular group, the modular forms Y; I,
transform as

= H (citi + d;)lrs ®MPY.i(Vi)Y1, ..... 1, (71
(2.13)

Since the modular symmetries associated with different
moduli are independent of each other, one modulus field
obtaining its VEV will not affect the others. Once all the
moduli acquire their individual VEVs, the entire modular
symmetry will be spontaneously broken down. However,
there are some fixed points of z, where the modular
symmetry is only partially broken and we are left with
residual symmetries [28]. There are three different fixed
points in the fundamental domain G (cf. Fig. 1): namely,

(1) zc =1, which is invariant under S and preserves a Zg

symmetry.

(2) 7, = —1/2 +1iy/3/2, which is invariant under ST

and preserves a Z3! symmetry.

(3) 71 = ico, which is invariant under 7" and preserves a

ZI symmetry.

It is very interesting to investigate whether these special
points which are fixed by residual symmetries also have
dynamical origins. This is exactly the main motivation for
our work.

B. N =1 supergravity theory

We consider the A/ =1 supergravity theory in the
Abelian heterotic orbifolds, which should generally include
the dilaton, the Ké&hler moduli, the complex structure
moduli, gauge fields, and twisted and untwisted matter
fields. Here we focus on a simple scenario, where only the
Kihler moduli z; and the dilaton field S are relevant for the
scalar potential.

Let us first consider the case of one Kihler modulus 7
plus one dilaton field S. In the framework of supergravity
theory, supersymmetry should be regarded as a local
symmetry. In this case, the Kéihler potential and the
superpotential are dependent on each other via the follow-
ing modular-invariant Kéhler function:

G(1,7,8,8) = K*K(7,%,8,8) + log | W(z, S)|?,

(2.14)

with k? = 8z/M3 (Mp is the Planck mass). Assuming the
Kihler potential of 7 to be the minimal form, K(z,7, S, S)
can be essentially expressed as
K(7,%,8,8) = AL[K(S, S) — 31og(2Imz)], (2.15)
where Ay is a mass scale and K (S, S) represents the Kihler
potential for the dilaton." At tree level, we have a simple
relation K (S, ) « —log(S + S), which is related to the 4D
universal gauge coupling via g3/2 = 1/(S + S) once the
dilaton gets its VEV. However, if nonperturbative effects
such as the Shenker-like effects are included [97], additional
corrections 5K (S, S) could be added into K (S, S). We will
see later that such effects play a crucial role in generating dS
vacua. On the other hand, it is straightforward to check that
Imz — |c7 + d|~2Imz under the modular transformation,
hence ¢~ should possess a weight of 6. The modular
invariance of G(r,7) implies that the transformation of
K(z,7,8,S) under the modular group is compensated by
that of W(z). As a result, under the modular transformation,
W(z) should transform as
W(z) = (ct +d)>W(z), (2.16)
indicating that the superpotential possesses a weight of —3.
In the next subsection, we will show that the superpotential
satisfying Eq. (2.16) can be induced by a nonperturbative
effect—gaugino condensation.
Once the Kihler potential and superpotential are known,
we can construct the scalar potential V as [98]
V = M (KTIDWDW =33 WP),  (2.17)
where D; = 0; + (9;K), with 9; being the first derivative
with respect to the Kihler moduli (which is simply d/dr in
the single-modulus case) together with the dilaton, and KV
is the inverse of the Kéhler metric K;; = 9;0;K. The scalar

potential given in Eq. (2.17) is modular invariant, which is
proved in Appendix A.

C. Gaugino condensation

In the heterotic string constructions, gaugino condensa-
tion is a simple example that can lead to the spontaneous
breakdown of supersymmetry. A gauge group G, under-
going gaugino condensation will give rise to a nonpertur-
bative superpotential of the form [81-83]

W ~ e~falba, (2.18)

where f, is the gauge kinetic function and b, is the beta
function of the group G,. The gaugino condensation

'In fact, the Kihler potential for the dilaton could also depend
on 7. Here, we neglect the = dependence for simplicity.

076026-5



STEPHEN F. KING and XIN WANG

PHYS. REV. D 110, 076026 (2024)

typically occurs at an energy scale Ay, ~ 10'¢ GeV [82]. At
the tree level, the gauge kinetic function simply takes the
form f, = k,S, with k, being the level of the Kac-Moody
algebra of G,, which is apparently modulus independent.
However, if the orbifolds of our interest arise in N = 2
subsectors, threshold corrections to the gauge kinetic
functions induced by integrating out heavy string states
should be taken into consideration [74-78]. In the single-
modulus case, the modified f, can be written as

fa:kaS+bzzlog’76(T)+"" (219)

where 7(7) is the Dedekind # function (See Appendix B for
the definition). The modulus-dependent term b, log #%(7)
indicates that )V indeed transforms under the modular
group with a weight of —3, and the dots denote additional
contributions to threshold corrections which are also
modulus dependent but keep invariant under the modular
transformation. Apart from the threshold corrections, one-
loop anomaly cancellation could also lead to significant
modifications to f, [99-102], which however can be
absorbed into S by redefining the dilaton field [103].
Substituting Eq. (2.19) into Eq. (2.18), we arrive at the
following parametrized form of W:

Q(S)H(7)

W(z,S) = A3, FIERE

(2.20)

where Q(S) denotes a function of the dilaton field S, and
H(z) is a dimensionless modular-invariant function.” We
can further require H(z) to be a rational function to avoid
any singularity in the fundamental domain; thus, the most
general form of H(z) should be [104]

H(r) = (j(z) = 1728)"2j(2)"PP(j(2)),  (2.21)

with j(z) being the modular-invariant Klein j function
invariant under the modular transformation defined in
Appendix B, m and n being non-negative integers, and
P denoting a polynomial with respect to j(z). In the
following, we take P = 1 for simplicity. It is interesting to
mention that j(w) = 0 and j(i) = 123 = 1728 are satisfied
at the two fixed points 7 = w and i, respectively. Hence,
H(z) would be vanishing at =1 (or w) if m#0
(or n # 0).

Once we substitute the Kéhler potential in Eq. (2.15)
and the superpotential in Eq. (2.20) into Eq. (2.17), the
single-modulus scalar potential can be immediately
expressed as [96]

*For the single gaugino condensation, a generic form of Q(S)
should be Q(S) = v + e~5/%, with v being a constant.

V(1,%,8,8) = A}C(z,7, S, S)[M(z,7)

+ (A(S.8) = 3)[H(2) ], (2.22)
with
o KEIQ(9))?
C(T,T, S,S) —W,
mr 2 T) A~
M(z,7) = (HT) iH (1) +3’;’—7([)GZ(T, A,
2
A(S. 5) :7@;;'[;5'?' : (2.23)

where we have Ay = (K*A$,)"/* and K55 = (K45)~!, and
the subscripts S and S represent the first derivatives with

respect to S and S, respectively. Moreover, G, is the
nonholomorphic Eisenstein function of weight 2 defined as

A _ pis
Gy (7,7) = Gy(1) “ime’

(2.24)

where the Eisenstein series G, is a holomorphic counter-
part of G,(z,7), and it can be related to the Dedekind 7
function via

(2.25)

III. MODULUS STABILIZATION

Before going into the details of minimizing the scalar
potential, we can first gain some general insights without
specifying the form of the scalar potential. One salient
feature of the scalar potential is that it diverges in the limit
Imz — o0. Hence, the fixed point 7 — ico seems not to be
the vacuum. The finite fixed points, however, are able to be
the minima of the scalar potential. In fact, since V is a zero-
weight modular form, 0V /dr must be a modular form with
weight 2 (see Appendix A for proof). Then, if we consider
the modular transformation of 0V /dr under the generator S
at =1, we will arrive at
(0V/01)| o = (=0)*(0V/07)| = = —(0V /0r)| .. (3.1)
Similarly, if we consider the modular transformation of
0V /ot under the generator ST at 7 = w, we will obtain

(0V/01)|,—, = (@ = 1)*(0V/07)|,_,, = @(0V /7).
(3.2)
Equations (3.1) and (3.2) tell us that 0V /dz has to be zero at

7 = 1 and w. Therefore, the finite fixed points should be the
extrema of the scalar potential in the Kdhler modulus space.
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However, identifying whether they are exactly the minima
requires an in-depth analysis of certain scalar potentials.
Another important aspect is that the dilaton sector also
plays a crucial role in modulus stabilization. The effects of
the dilaton are mainly twofold. On the one hand, a positive
A(S.,S) term in the superpotential could uplift the minima
to dS vacua. On the other hand, stringy corrections to the
Kihler potential K(S,S) are required to stabilize the
potential in the dilaton sector. In fact, the scalar potential
should satisfy 0V /dS = 0 at the minima. Hence, we arrive at

oV AbeX
AV Qi+ KQ@)Q =0, (33
35 ~ @imo) (a2 s T KDQ (33)

where
_ K Kot
0= 6_21"|H|2 |:<QS + KSQ) <_S _ ﬂ)
K KLZ?S
Qi QKg QK A
+ oy S S M- alap). ()
R sS SS

with ¢ being the phase angle of Qg + K. Then, we can
immediately gain the following two possibilities of the
necessary conditions for S to be stabilized:

ConditionA: Qg+ K¢Q = 0;

ConditionB: Qg+ KsQ#0, Q=0. (3.5)
Indeed, Condition A corresponds to the case where A(S, S)
is vanishing—i.e., the scalar potential can be written as a
factorized form of the dilaton and Kihler moduli sector. In
Ref. [96], the authors have proved three no-go theorems
regarding the dS vacua under Condition A, indicating that
Condition A can never lead to dS vacua—i.e., the depend-
ence of the scalar potential on the dilation and Kéhler moduli
should not be factorized. Hence, one must switch to
Condition B in order to obtain dS vacua.

Nevertheless, even if it is possible for the extrema that
satisfy Condition B to be the dS vacua, such vacua may
still be unstable in the dilaton sector. Indeed, one can prove
that if only the tree-level Kéhler potential for the dilaton,
K(S,S) x —log(S+S), is included, =1 and @ could
never be the dS vacua, no matter which form Q(S) takes,
since the extrema are unstable in the dilaton sector [96]. In
order to evade the dS no-go theorems, one should go
beyond the minimal Kéhler potential of S. It is found in
Ref. [96] that nonperturbative Shenker-like effects can
result in nontrivial corrections to K(S,S), rendering the
dilaton sector metastable at the fixed points 7 =1 and w.
Differently from the gaugino condensation, which has a
generic strength 6L = e~/ % with g, being the string
coupling constant, Shenker-like effects are inherently
stringy effects which lead to modifications of O(e~!/%).

In the rest of this paper, we first explore how A(S, S) can
modify the modulus stabilization, assuming the dilaton has
been stabilized, and then we show concrete examples of
the Shenker-like effects that can generate nontrivial
A(S, S) in Appendix D.

A. Minimizing the single-modulus scalar potential

For the convenience of the readers, we first briefly
review the minimization of the scalar potential with a
single modulus, which has been widely studied under
both Condition A and Condition B in the previous literature
[89-91,104]. In Refs. [90,104], assuming A(S, S) = 0, the
authors analyze different scalar potentials by varying the
indices m and n in Eq. (2.21). They have numerically
searched the minima of the scalar potentials and concluded
that the vacua should appear either on the lower boundary
of the fundamental domain or on the imaginary axis of z.
The authors in Ref. [91] find a special case where m # 0
and n = 0 can lead to global minima very close to but not
precisely at the fixed point 7 = w. In summary, there are
four different types of AdS vacua depending on the choices
of m and n if Condition A is satisfied:

(1) m =0 and n = 0: The vacuum (z) = 1.235i.

(2) m =0 and n # 0: The vacuum (z) = i.

(3) m# 0 and n = 0: The vacua are close to, but not

precisely at, 7 = w.

(4) m # 0 and n # 0: The vacua are located at the lower
boundary of the fundamental domain.

A detailed analysis of minimizing the one-modulus
scalar potential under Condition B can be found in
Ref. [96]. In this case, the finite fixed points can be dS
or Minkowski vacua. The types of these vacua dramatically
depend on the values of A(S, S), which can be analyzed by
calculating the Hessian matrices (See Appendix C). The
main conclusions are collected as follows:

(1) m=0and n =0: 7 = w is always the dS vacuum,
while 7 = i can be the dS vacuum if 3 < A(S, S) <
3.5964 is satisfied;

2) m>1, n=0: 7=w is always a dS vacuum if
A(S,S) > 3, and 7 =i is a Minkowski vacuum.

(3) m=0,n > 1:7 =1is adS vacuum within a window
of A(S, S) which increases with n, and 7 = @ is a
Minkowski vacuum.

@4 m=1or n=1. t=1 or t=w could be the
minimum in terms of the Ké&hler modulus, but it
is actually unstable in the dilaton sector.

(5) m>1,n> 1: Both r =i and = w are Minkowski
vacua when A(S, S) > 3.

As can be seen above, the inclusion of dilaton effects will
not only uplift the vacua to dS/Minkowski vacua, but also
shift the VEVs of 7 toward the fixed points. For illustration,
we consider a specific case with m =2 and n =0. In
Fig. 2, we exhibit the distribution of log;o(AV/|V ninl),
with AV defined as the difference between V and its
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FIG. 2. Density plots of the distribution of 10g;o(AV/|V nin|), With AV = V — V. in the vicinity of 7 = @. We take m = 2 and n = 0,
for instance. In the left panel, we choose A(S, S) = 0, while A(S, S) is fixed to be 4 in the right panel. We use white stars to label the
vacua. The dashed lines correspond to the boundaries of the fundamental domain.

minimal value V., in the vicinity of 7 = @ under the
assumptions A(S,S) =0 and A(S,S) =4. In the case
where A(S, S) = 0, the fixed point 7 = @ turns out to be a
local maximum, and the global AdS vacuum appears at
7= —0.492 + 0.875i with V,;, = —2.48 x 10’A},, which
is consistent with the result in Ref. [91]. However, if
A(S,S) >3 [e.g., A(S,S) =4], we obtain a vacuum
precisely at 7 = w, where the value of V is found to be
Vinin = 8.29 x 10%A},, indicating that 7 = w is indeed a dS
vacuum.

Moreover, the presence of the dilaton term in the
superpotential may also transition the fixed points into
global minima. This can be understood by considering the
expression of the scalar potential in Eq. (2.22). Since both
M(z,7) and |H(7)|* are non-negative, the scalar potential
would be semipositive definite if A(S,S) > 3. M(z,7)
depends on H(z) and H'(r), both of which could be
vanishing at 7 = i or @ when m > 1 or n > 1, hence there
would be at least one finite fixed point corresponding to the
global minimum of the scalar potential.

In order to verify that finite fixed points can truly be the
global vacua, we also implement a numerical approach. In
specific, we initiate our analysis by randomly generating
starting points in the fundamental domain. Subsequently,
we employ the gradient descent technique to meticulously
search for the local minima. The results are shown in Fig. 3,
where the blue dots and orange diamonds represent the
complete sets of local minima obtained with vanishing
A(S, S) and nonvanishing A(S, S) [.A(S, ) = 3.3], respec-
tively. By including the dilaton effects, both 7 =1 and @
can be the vacua for certain ranges of A(S,S). It is
interesting to point out that there are additional vacua
inside the fundamental domain even if A(S,S) > 3. For
example, when m =2 and n =0, we have another dS

vacuum at 7 = —0.489 + 0.872i, which is very close to
7 = w. However, this vacuum is not the global one, as
V|, _0489+08721 = 8:29 x 10°A},, while V|,_; = 0. In addi-
tion, when m = 2 and n = 3, we can find an additional
vacuum on the lower boundary of the fundamental domain
with 7 = —0.211 4 0.9781, which is again not the deepest,
as both 7 =i and w turn out to be Minkowski vacua.

B. Modulus stabilization
in the three-modulus framework

Since the compactification of 10D heterotic string theory
will generally lead to three moduli, associated with three
2D tori,” we should extend the single-modulus stabilization
into this more complete scenario and explore how the
nonperturbative effects can give a dynamical explanation of
the VEVs of moduli with multiple modular symmetries.

In the three-modulus case, the modular-invariant func-
tion H(z) in the superpotential should be replaced by a
more general form,

H(zy, 10, 73) = Hmm) (gy) Hmm) (7)) Hmm) (75),
mlAmz.m:;
ny.np.n3

(3.6)

31t should be mentioned that here, we focus on the scenario
where the extra 6D space can be factorized into three T2 tori.
However, nonfactorizable toroidal manifolds [105—-108] can have
different geometries from factorizable ones, since the number of
fixed tori could be less. Consequently, the moduli are not
separable and may be incorporated into some larger symmetry
groups—e.g., the Siegel modular group [5,109—112]. The sce-
nario for modulus stabilization in the nonseparable case could be
different, which is beyond the scope of the present paper.
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FIG. 3.

Complete sets of the minima of the single-modulus scalar potential in the fundamental domain, where the blue dots and orange

diamonds represent the vacua obtained with vanishing A(S, §) and nonvanishing A(S, S) [A(S, S) = 3.3], respectively. Different values

of m and n are taken into consideration.

where H"mi) = (j(z) — 1728)"/2j(z)"/3  for i=1,
2,3. Given the infinite number of modular-invariant
H(zy,75,73), it is difficult to investigate the modulus
stabilization for all H(z;,7,,73) in a systematic way.
Instead, we try to find the minimal superpotential that
can lead to global dS vacua at the fixed points. One may
notice that the simplest H(z;, 7, 73) should be a factorized
form* HOmm) (¢, )Hmm2) (1, ) Hm53) (75), which, however,

“The factorized form of the superpotential was considered in
Ref. [104], where H"")(z;) for all the moduli take the same
form.

would become zero as long as one H"")(z;) is vanishing
at the fixed points. Consequently, this scenario will essen-
tially lead to Minkowski vacua at the fixed points. Instead,
we consider H(z;, 75, 73) as the summation of three differ-
ent H™n) (7;)—namely,’

It seems more natural to expect a factorized form for
H(zy,7,,73), since the loop-level corrections from each torus
contribute to the superpotential as exponential forms, as can be
seen in Eq. (2.18). However, H(z;, 7, 73) in Eq. (3.7) may still be
realized by, e.g., introducing multiple dilatons, each of which is
associated with one torus.
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H(T1’T2’T3)

— H(Wll-”l)(’[l) + H(mzvnz)(;[z) + H(mzq"3)<f3).

(3.7)

Then, H(7,,7,,7;) would be nonzero as long as at least one of H"":)(z;) is nonvanishing, making the realization of dS
vacua more likely. As a result, the Kahler potential and superpotential can be rewritten as

K(t;,%;,S,8) = AZ{K(S,S) — log[(2Imz,)(2Imz,)(2Imz3)]}, (3.8)
A3 QS H(mlﬂl) H(mz-’lz) H(m3»”3)
W(Ti,S) _ W ( )[ (271) +2 > (72) + (73)] , (39)
n>(v)n (v2)n*(73)
respectively, where the variables 7; go through {7, 7,, 73}. The scalar potential in this scenario turns out to be
V(1,.7.8.8) = NYC(r,. 70, S, SH{M(7,.7,;) + [A(S. S) = 3][H(z)) ]}, (3.10)
with
B 3 K(S.S) QS
be [Taeatsr o(s)P
-1 (2Ima; ) | (z;)[*
3 3
OH (mini) ; Hmin) (z) 2
= Z (2Imz;)? T(T)+ 27[( ) 2(7.7) (3.11)

One can observe that apart from 7, , 3 and A(S, S), there are
six additional parameters that can affect the minima of the
scalar potential—namely, m; ; 5 and n; 5 ;. In the following,
we discuss the minimization of the scalar potential given in
Eq. (3.10), mainly focusing attention on the finite fixed
points i and @. In order to identify whether they are indeed
the minima of the potential, we again calculate the Hessian
matrices at the fixed points and make them positive definite.

We also thoroughly search the minima of V in the entire
fundamental domain for different m, 5 3, ;5 3, and A(S, S)
using the gradient descent approach, which could help us
identify whether the fixed points can be the global minima
of the scalar potential.

The second derivatives of V in terms of Kéhler moduli
are expressed as

*v  oC 02/\/1 0% H (mi-mi)
3 -3 ,
A“‘,ar " or 2 M+ (A= 3)HP] + ar% +(A-3H or?
% *C . - _[0*M QF (mini) |2
= -3)H|?] +C -3 , 3.12
with
*C _ 500 Gz(rl,r)
0t;07; YWor,  2nm
626 :1581[62(‘[],7])]
aTia%j Y 0Ti 277: ’
M — 5,.(2Imz,)? iazH(m"’"")(Ti)_'_H(Ti)aéz(fi»fi) H(z;) 0G5 (:, %)
oror; Y ' or? 2 or; P 3 or;
*M PHmm) (2)) H(z;) 06, (1;, %) | | H(z;) 06, (71, %) |2
= §..(2Imz)2 | i ! ! Lol ! LRAIA B 3.13
01,07, i (2Ime;) {‘ o2 T2 o, | | T2r om ] (3.13)

where all the derivatives above are calculated at 7 =i or w.
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According to the choices of (m;,n;), we have the
following three distinct classes:

(1) Class A: (my,n) = (my, ny) = (ms3, n3). This is an
exactly symmetric class, where three modulus
parameters can be exchanged. It is natural to expect
that the global minima should appear at 7; = 7, =
75. Then, one can find that C(z;,7;,S,5) and
M(z;,%;) in Eq. (3.11) reduce to the single-modulus
case, and thus the results for the minima are the same
as those obtained in the single-modulus case.

(2) Class B: (my,ny) = (my,ny) # (mz,n3). In this
case, we can freely exchange z; and 7, without
affecting the value of the scalar potential, hence it is
effectively a two-modular case, where only two
Kéhler moduli, 7z; (or 7,) and 73, are independent.

(3) Class C: (my,n,) # (my,ny) # (m3, n3). This class
becomes more complicated, since there is no sym-
metry among the three moduli parameters. In this
class, we should consider all three moduli as free
parameters.

We first focus on Class B. In this class, the number of
independent real variables is reduced to four, indicating that
the Hessian matrices should be four dimensional. On the
other hand, Eq. (3.13) tells us that all the mixed second
derivatives in terms of different moduli are vanishing.
Moreover, the imaginary parts of 0*V/(dr;0z;) are also
zero at the finite fixed points. Hence, we arrive at the
following diagonal Hessian matrices:

P’V

Y0 0 0
1
0 2¥ 0 0
1
H= . (3.14)
0 0 ¥ 0
0 0 0 2V

2
o

Therefore, in order for finite fixed points to be the minima
of the scalar potential, we should require each element in
Eq. (3.14) to be positive.

Since effectively we have two independent modulus
parameters 7, and 73, there are 12 kinds of arrangements of
the indices (m;, n;) depending on whether they are zero or
not, including

(1) (my,ny) =(0,0), (m3,n3) = (0,n3),
(2) (my,n) =(0,0), (m3,n3) = (m3,0),
(3) (my,ny) = (0,0), (m3,n3) = (m3, n3),
) (my,ny) =(0,n,), (m3,n3) = (m3,0),
(5) (my,ny) = (0.ny), (m3,n3) = (m3,n3),
(6) (my,n) = (m,0), (m3,n3) = (m3,n3),

together with their counterparts formed by exchanging the
subscripts 1 and 3. Note that we use m; and n; to underline
nonvanishing m; and n;. In the following, we choose m; =
2 and n; = 3 for illustration. Then, the powers of j(z) —
1728 and j(r) in H(zr;,7,,73) become integers, which

simplifies the calculation. Such a parameter choice also
allows us to avoid the problem that the scalar potential
cannot be stabilized in the dilaton sector [96].

We can take (m,n;) = (0,0) and (ms3,n3) = (0,3) as
an example. In order for the Hessian matrix in Eq. (3.14) to
be positive definite, one should require

*V *V ~ 0 VvV o*V
ds?’ or ' ds3 o1

Substituting the values of m; and n; into the above
inequalities, we arrive at the following conditions:

> 0.

Ty=iorw T3=i0r

(3.15)

7 =1i: 3.596 - A >0, A —0.4036 > 0.

n=w: A-2>0.

3=1: 1172-A>0, A+ 1132 > 0.

n=w: A-2>0. (3.16)

Then, we can immediately find that 7; = i and @ can be the
vacua of the scalar potential only if 0.4036 < A < 3.596
and A > 2, respectively. These conditions are exactly
consistent with those in the one-modulus case with
(m,n) = (0,0), which can be understood as follows.
From Egs. (C3) and (3.13), one could realize that the
main difference between the second derivatives in the
three-modulus case and those in the single-modulus
case is that we replace H(z) with H(z;) = H"™ ™) (7,) +
Hm2m2) (7,) + H"3%)(z5). Given that 0H®%) /dz; = 0 and
0*H"9) /972 = 0, |H|? can actually be extracted out as an
overall factor in Eq. (3.12). As a consequence, we obtain
the same conditions for 7 = i, w to be the vacua as those in
the single-modulus case. Meanwhile, the conditions for
73 = 1 and  to be the vacua turn out to be —113.2 < A <
117.2 and A > 2, respectively, the former of these being
different from that in the single-modulus case with
(m,n) = (0,3) obtained in Ref. [96]. This is because
0*H"3) /977 # 0 at the fixed points, and therefore one
cannot extract an overall |H|? in Eq. (3.12). As a summary,
we arrive at the following conditions for different fixed
points to be the dS vacua in the case where (m;,n;) =
(m2,l’l2) = (O’O) and <m37n3> = (0’3)

(1) T =T =13 =i 3 < A< 3.59.

Q) r1=1=i,3=w:3 < A<3.59.

B)rn=n=w,3=1:3<A<117.2.

@ ry=1,=13=w: A>3.

We have also numerically searched the minima of
V by scanning the parameter space of 7, 7,, 73, and \A.
The results support the above conclusions. The nume-
rical calculation also reveals where the deepest vacuum
is. Assuming A = 3.3, we arrive at V|, ) = 3.331A},

Vi) = 3475AY, V] = 2656 x 10°A},  and

iiw)
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TABLE L

Possible vacua of the scalar potential at fixed points for different choices of m; and n; in Class B, where we set

(my,ny) = (my,ny) # (m3, n3), together with the corresponding constraints on A(S, S) for the vacua not to be AdS vacua. Note that
7; = 7, should be satisfied in Class B. The global minima in each case are indicated in bold font.

(mi2.n2) (m3, n3) 712 73 A(S. ) (myp.n15) (m3, n3) 712 73 A(S.S)
(0,0) 0,3) i i (3,3.596) 0,3) (0,0) i i (3,3.596)
1 0] (3,3.596) i 0} (3,60.43)
® i (3,117.2) @ i (3,3.596)
® @ (3.+) ® @ (3.+)
(0,0) (2,0) i i (3,3.596) (2,0) (0,0) i i (3,3.596)
i ® (3,3.596) i 0] (3,198624)
0] i (3,99314) @ i (3,3.596)
® @ (3,4) ® ® (3,4)
0,0) 2.3) i i (3,3.596) 2.3) (0,0) i i (3,3.596)
i ® (3.3.596) i ®  (3.343x 10%)
» i (3,1.72 x 108) » i (3.3.596)
) w 3,4 x) 7 ) (3,4 )
(2,0) 0,3) i i (3,117.3) 0,3) (2,0) i i (3,60.45)
i P [3.400) i ® 3, 117.3)
0] i (3,114.1) W i [3,+0)
® ) (3,+o0) ® ® (3, +)
2.0) 2.3) i i [3.+00) 2.3) 2.0) i i [3.400)
i @ [3,+o0) i ® (3, 40)
® i (3,+) ® i [3,+)
® ) (3,+) ® ® (3,+)
0,3) (2,3) i 1 (3,60.45) (2,3) 0,3) i i (3,117.3)
i 0] (3,60.45) i w [3,4+0)
® i [3,+0) o) i (3,117.3)
® ® [3,+o0) 0 ® [3,4+0)

Vlpwi) = 2.546 x 10°Ay,. It is then apparent that 7, =
7, = 73 = @ corresponds to the global minimum.
Following the same procedure, we can also calculate the
vacua for other arrangements of (m;, n;). The results are
summarized in Table I, where we show possible vacua
situated at the fixed points, together with the corresponding
constraints on A(S, §). Some remarks are as follows:

)]

@

As mentioned before, since (m,n,) = (my,n,) is
assumed, we only consider the vacua with 7; = 7,
that preserve the symmetry between 7; and 7,.
Although the vacuum may also exist when 7; and
7, take different values, the symmetric vacua should
be in general deeper.

(71,75) = (@, ®) is always the vacuum, while other
fixed points could be the vacua for certain ranges of
A(S, S). If there is at least one pair of (m;, n;) equal
to (0,0), the global minimum of the scalar potential
would be the dS vacuum. If none of (m;, n;) equals
zero, the Minkowski vacuum could exist. Similarly
to the single-modulus case, numerically we could
find dS vacua close to the fixed points 7 = @ in some
cases, but they are not the deepest vacua of the scalar
potential.

3

“

(&)
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If we exchange the values of (m;,n;) and (ms, n3),
we will arrive at a mirrored case, in which similar
vacua could also be easily obtained by reversing the
values of 7; and 75. The allowed ranges of A(S, S)
for dS vacua may change by roughly a factor of 2,
since there are actually two moduli, 7; and 7,,
associated with (m,n;).

In the single-modulus case, it is shown that 7 =1
will always be the minimum as long as m > 1 [95],
since the Hessian matrix is positive definite and does
not depend on A(S, S). However, this is not the case
in the three-modulus extension. Taking (m,n;) =
(0,0) and (m3,n3) = (2,0), for instance, nonvan-
ishing H*% () recruits the dependence on A(S, S)
in the Hessian matrix, setting an upper bound on
A(S, S) for r = i to be the minimum, which is of the
order of [?H®)(z;) /07, _;.

Among all the dS vacua, two of them are phenom-
enologically interesting. These two vacua appear at
7, =1, =iand 73 = w when (m,n;) = (2,0) and
(m3,n3) = (0,0), and at 7, =7, =w and 73 =1
when (m;,n;) =(0,0) and (ms3,n3) =(2,0). In
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Ilustration for the vacua of the scalar potential in the case where (my, ny) = (m,,ny) = (2,0) and (m3, n3) = (0,0). We focus

on the global vacuum (71, 75, 73) = (i, 1, w). For each plot, we fix 7 (;) or 73 and exhibit the projection of log;o(AV/|V in|) in terms of
the other modulus parameter. Left: 73 = @ is fixed. Right: 7; = 7, =1 is fixed.

Fig. 4, we show the projections of logo(AV/|V ninl)
with the choice (m,n;) = (2,0) and (ms,n3) =
(0,0) by fixing 73 = @ (left panel) and 7; =7, =i
(right panel), where one can indeed find that the
global minimum appears when 7; =7, =1 and
73 = w in this case. In the next subsection, we will
demonstrate that they can lead to viable models
which can account for neutrino masses and flavor
mixing.
In the above analysis of searching for the minima of
the scalar potential, we regard A as a free parameter.
As we mentioned at the beginning of this section,
obtaining the required values of .4 is nontrivial, but it
depends on specific Shenker-like corrections in the
dilaton Kihler potential. As preliminary examples,
in Appendix D, we construct concrete Shenker-like
terms that can stabilize the dilaton sector and
generate feasible A(S, S) as shown in Table 1.

At the end of this subsection, let us discuss Class C. As
each pair of (m;,n;) should be different from the others,
there are in total four different choices of (m;, n;):

Q)

(1)
(my,ny) = (0,0), (my,ny) = (0,ny), (m3,n3) = (m3,0).

(2)

(my,ny) = (0,0), (my, ny) = (0, n2), (m3, n3) = (m3, n3).

3)

(my,n)=(0,0), (my,ny) = (m,0), (m3,n3) = (m3, n3).

“)

(my,n) =(0,n,), (my,ny) = (m,0), (m3, n3) = (m3, n3).

Although this entire nonsymmetric class would be much
more complicated since all the moduli should be regarded
as free variables, one can still follow the similar method
adopted with Class B to determine the vacua. It is
straightforward to obtain the following conditions for the
finite fixed points to be the minima:

PV PV PV -0
as% ’ asZ , as% T;=iorw ’
0’V 0*V oV

1 2 3 T;/=lorw

Taking (m,n;) = (0,0), (my, ny) = (0,3), and (m3, n3) =
(2,0), for instance, according to Eq. (3.17), 7 =1 or
being the dS minimum requires

T =n=13=1: 3 <A <3.59.

T, =1, =1, 3=w: 3<.A<23.596.
T =13 =1, n=w: 3<A<23.596.
T, =13 =1, T =w: 3<A<1185.
T, =17, = W, 3 =1: 3 <A< 198624.

T, =173 = w, 7, =i: 3 <. A <200907.
T, =173 = o, 71 =1 3 <A <3.596.
n=n=rn=w. A>3 (3.18)

Hence, either I or w can be the dS vacuum for certain ranges
of A. Differently from Class B, we have two degenerate
global minima in the fundamental domain. To be specific,
the numerical calculation shows that (7, 7,,73) = (@, ,1)
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Im 7

Rer
3

FIG. 5. The fundamental domain G(4) of I'(4) is shaded red. Red dots label the values of = which can be converted to 7 = i via the
modular transformation y €Iy, where the hollow dots are removed due to redundancies.

and (7, 7,,73) = (®,1, ®) correspond to the minimal value
of the potential, V,;, = 0.851A}, [A(S,S) = 3.3 has been
assumed].

The other three cases can also be analyzed in a similar
way. If (m,n;) =(0,0), (my, n,) = (0,3), and (m3,n3) =
(2,3), the global minima appear at (71, 7,,73) = (0, ®, ®)
with Vmin = 0833/\“‘} If (ml,nl) = (0, 0), (mz,nz) =
(2,0), and (ms3,n3) = (2,3), the global minimum would
be at (71,75,73) = (0,1, ) with Vi = 0.851A}. In
addition, if no pair of (m;, n;) is selected to be (0,0), the
global minima would become Minkowski vacua.

C. Phenomenological implications for lepton
masses and flavor mixing

The simplest factorizable compactifications with more
than one torus motivate several bottom-up models based on
multiple moduli fields, which can account for lepton
masses, flavor mixing, and CP violation [64—68]. The
main idea is to introduce multiple modular symmetries,
each of which is related to one modulus field. The trans-
formation of each modulus under the corresponding modu-
lar group is independent of the transformations of all other
moduli, as shown in Eq. (2.9). Similarly to the single-
modulus case, the chiral supermultiplets and Yukawa
couplings are arranged as irreducible representations under
different finite modular groups F}V It should be mentioned
that we also need to introduce a couple of extra flavon fields,
which transform as bimultiplets under the Fj\,i groups. Once
these flavons obtain their individual VEVs, multiple modu-
lar symmetries are spontaneously broken to a unified finite
modular symmetry, and then the flavor structures in the
charged-lepton and neutrino sectors are governed by the
VEVs of different moduli fields. The VEVs of bimultiplets
can be determined by introducing driving fields [64], which
are assumed to be irrelevant for the modulus stabilization.

The modulus stabilization we have discussed in the
previous sections is based on the infinite modular group I".

As has been shown in Fig. 5, the modulus parameter inside
the fundamental domain G can be mapped into other
domains via modular transformations, hence we should
have an infinite number of degenerate vacua of 7 in the
upper-half complex plane. If we consider a specific finite
modular group I'y, enacting I'y on G will give rise to the
fundamental domain of I'(N)—namely, G(N) = I'yG. Any
transformation y €'y acting on G(N) will leave G(N)
invariant, indicating that G(N) is actually a target space of
I'y [50]. In Fig. 5, we exhibit the fundamental domain G(4)
of I'(4). In order to illustrate the degeneracy of vacua inside
G(4), we take the fixed point 7 = i, for instance. The red
dots in Fig. 5 denote the values of = which can be converted
to 7 =i via the modular transformation y €I'4. Given that
§? = (ST)* =T* =1 should be satisfied, we have the
following equalities:

dtic—24q 24l 21 T 1 3.0
= b 5T5T 7575 5757 55

7 i 3 i 8 i 8 i

—§+§——§+§, g+§——§+§’ (3.19)

indicating that there are redundant points on the boundary of
G(4), which are represented by the hollow dots in Fig. 5.
Then, one can easily observe that if z = i turns out to be the
vacuum, there will be 11 additional degenerate vacua in the
target space of the S, group. In the single-modulus case, if
two moduli can be related to each other via a modular
transformation, the resulting physical observables would be
the same, since the modular transformation in the neutrino
sector compensates for that in the charged-lepton sector, and
the final physical quantities will be modular invariant.
Nevertheless, if multiple modulus parameters come into
the superpotential, we are unable to arbitrarily vary the
values of moduli via modular transformations without
changing the results of physical observables, due to the
relative phases among the moduli. For example, (i,1,1) and
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TABLE II. Models with multiple modular symmetries investigated in the previous literature. The values of modulus parameters in the
charged-lepton and neutrino sectors that can generate viable lepton masses and flavor mixing, together with the corresponding flavor
mixing patterns, are summarized. In addition, we explicitly present benchmark values of m; and n; that can realize such kinds of vacua.

Modular group Charged-lepton sector Neutrino sector Flavor pattern References
§4 x 8B x 8¢ Tc=w T4 = —0? ™, Ref. [64]
3 =1/2+1i/2
(mc.nc) = (0,0) (ma,ny) = (0,0)
(mp.ng) = (2,0)
SLx 84 =W 7, =—1/2+1i/2 ™, Ref. [65]
(my,n;) = (0,0) (m,,n,) =(2,0)
S x Sy* Tp = oy =—-1/2+41/2 CM + TM; Ref. [66]
(mp,np) = (0,0) (my,ny) = (2,0)
S4 x 88 x 8¢ Tc=o 7, =1/241/2 Littlest modular seesaw Refs. [67,71]
53 =3/2+1i/2

(me,nc) = (0,0)

(ma,ny) = (2,0)
(mg,ng) = (2,0)

S4x SB x S¢ Tc=w Ty =142 Littlest modular seesaw Ref. [68]
Ty =1
(me,ne) = (0,0) (my,ny) = (2,0)
mg,ng) = (2,0)
Al x AY 7, =3/2+1/(2V3) 7, =1 ™, Ref. [69]
(my,ny) = (0,0) (my,n,) =(2,0)
AL x A 7, = ico 7, =i GR, Ref. [70]

“In Ref. [66], the authors work in a SU(5) grand unified extension of flavor models involving two modular S, groups. S§ acts on
quarks and left-handed lepton doublets, while S} acts on the right-handed neutrino sector. An approximate TM; lepton flavor mixing
and a Cabbibo mixing (CM) in the quark sector are realized in their model.

(i,i,i+2) would in principle result in different physical
consequences.

In Table II, we summarize various lepton flavor models
with multiple modular symmetries, where the values of =
are taken to be precisely at the fixed points. Moreover, we
also show some benchmark values of m; and n; that can
lead to such kinds of vacua. Except for the modular A% x A%
model [70] where the value of 7; is fixed to be ico, the
VEVs of moduli required in all the other models can indeed
be realized in our formalism. In particular, in the modular
54 x S8 x 8¢ model discussed in Ref. [65], the TM;
mixing pattern requires 7, = —@’, 75 = 1/2+i/2 and
7c¢ = w, which can be fulfilled by choosing (my,n,) =
(me,nc) = (0,0) and (mp,ng) = (2,0). The littlest see-
saw models can also be realized in the framework of the
§4 x S8 x 8¢ symmetry [67,68,71], where the required
VEVs of moduli can be generated by choosing (my, n,) =
(mg,ng) = (2,0) and (mc,nc) = (0,0). Although our
primary focus in this paper is on the vacua of the three-
modulus scalar potential, the case with two moduli fields is
analogous to Class B discussed previously, which involves
two sets of identical (m;, n;). Consequently, it is straightfor-
ward to derive the conditions for the vacua to be located at
the fixed points in the two-modulus scenario. Therefore, we

indeed find a dynamical origin of the VEVs of moduli fields
in the modular-invariant models with multiple moduli.

IV. SUMMARY

The modular symmetry provides us with a satisfactory
and appealing framework for addressing the flavor prob-
lem. The only flavons present in such a framework are one
or more moduli fields z. It seems that the fixed points 7 = i
and 7 = w play a special role in both the phenomenological
model building and the 10D supersymmetric orbifold
examples. However, revealing the origin of the VEVs of
moduli is still an intricate challenge.

In this paper, we study the modulus stabilization within
the multiple-modulus framework. In line with Ref. [96], we
consider the Kéhler moduli and dilaton but neglect their
coupling with matter fields. The influence of the dilaton
sector is twofold. On the one hand, the tree-level dilaton
Kihler potential will be modified by additional nonpertur-
bative stringy effects—e.g., Shenker-like effects—which
are vital for us to evade several dS no-go theorems. On the
other hand, the dilaton will enter the superpotential as a
functional form Q(S). The parametrized form of the super-
potential turns out to be Eq. (3.9), where the modular-
invariant function H(z) in the single-modulus case is
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replaced by H(zy,75,73) = H"™ ™) (7)) + H™™m) (1,) +
H"33) (75) in the three-modulus case. The scalar potential
in the three-modulus scenario is then given by Eq. (3.10),
where the contribution from the dilaton sector is para-
metrized by A(S, S).

We numerically search the minima of the scalar potential
in the entire parameter space of 7; and A(S,S), and we
calculate the Hessian matrices at the fixed points 7 = i and
w. Due to the existence of additional Kédhler moduli, the
vacua look rather different from those in the single-
modulus case. In fact, both the finite fixed points 7 =1
and 7 = w could be the dS vacua of the scalar potential if
specific conditions on A(S,S) are satisfied. We classify
different choices of vacua by varying the indices (m;, n;),
and we summarize conditions for the vacua to be dS
minima in Table I, which are also distinct from the single-
modulus case. In addition, dS vacua can be found in the
interior of the fundamental domain (even close to the fixed
points), which are, however, not the global minima of the
potential.

Modulus stabilization as discussed in this paper has
significant phenomenological implications for fermion
masses and flavor mixing, once the finite modular
groups are specified. In particular, we find that the vacua
(71,72,73) = (0, w,1) [obtained by setting (m,n;) =

|

(ma,ny) = (0,0) and (m3,n3) = (2,0)] and (7,75, 73) =
(i,i, w) [obtained by setting (my,n;) = (my,ny) = (2,0)
and (ms3,n3) = (0,0)] can lead to the TM; mixing and
littlest modular seesaw model, respectively. It should be
mentioned that there are several degenerate vacua inside
the fundamental domain G(N) of I'(N). Therefore, it
would be interesting to explore whether the domain wall
problem could exist and how to break this degeneracy,
which we leave for future work.
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APPENDIX A: WHY IS THE SCALAR
POTENTIAL MODULAR INVARIANT?

Before going further, it is useful to find out how the
derivative of modular forms changes under the modular
transformation. Supposing f(z) is a modular form, we have

d d
P10 = 0 5 10 = e+ 0] s = ehler + @)+ (ex + a0 (D)
I
where we have used the relations e — (et + d)ser,
Kl — |eT 4 d|™*K7,

at+b dr DW — (ct+d)"'DW. (A4)

= d =—. A2 ! !

}/T CT+d’ (}/T) (CT+d)2 ( )

From Eq. (Al), we can easily find that f’(z) becomes a
modular form with weight 2 only if f(z) is a zero-weight
modular form. In this regard, we introduce the derivative
D;, which is covariant under the modular transformation.
Keeping Eq. (2.14) in mind, we find that

— (0,G)W. (A3)

Since G is a modular-invariant function—i.e., a modular
form with weight 0—D;)V then turns out to be a modular
form with k = —1.

Now, we can write down the transformation properties of
all the components in the scalar potential:

Taking the above transformation rules into consideration,
we can conclude that the scalar potential V is indeed
invariant under the modular transformation.

APPENDIX B: THE DEDEKIND 5 FUNCTION
AND KLEIN j FUNCTION

In this appendix, we present the definitions of several
important modular forms. The Dedekind # function is a
modular form with a weight of —1/2, defined as

a0 =g [ (1- g, (B1)
n=1

where ¢ = ¢*'". One can express 7;(7) as the following ¢
expansions:
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2 _ qIS + O(q22))‘
(B2)

n=q¢"*(l-q-¢+¢+q -¢'

The Eisenstein series G, (7) is another kind of modular
form with a weight of 2k, the definition of which is

Z (ny 4 np7) ™,

ny.ny €Z

(ny.n2)#(0.0)

Gy (r) = (B3)

which converges to the holomorphic function in the upper-
half complex plane for the integer k > 2. The series does
not converge when k = 1, but one can still define G,(7) via
a specific prescription on the order of summation. With the
help of 7(7) and G4(7), one can define a modular-invariant
function, which is called the Klein j function, as

3653 G
0 - S5 8L, (B4

which is also a modular form with weight O.

APPENDIX C: HESSIAN MATRIX ANALYSIS
IN THE SINGLE-MODULUS CASE

Nonzero A(S, S’) can reshape the scalar potential, and
thus shift the vacua. The dependence of the vacua on the
|

value of A(S, S) can be analyzed by calculating the Hessian
matrices—in particular, at the fixed points. Since we have
assumed that the scalar potential is stabilized in terms of the
dilaton S via Shenker-like terms a priori, we only need to
calculate the second derivatives of V with respect to z and 7,
and convert the complex variables into real variables {s, ¢}
(where s and ¢ are the real and imaginary parts of 7,
respectively) using the following relations:

o’V L% L%
— = 2— 2R ,
0s? 0107 TeRe [612

2 2 2
6V:20V__2ReaV’
or? 0107 or?

2V 2V
T _ oml|2Y. Cl
dsor m[aﬁ] (€D

In general, the second derivatives of the scalar potential
would be very complicated, given that V relies on the
moduli 7 in a highly nonlinear way. However, one can
easily check that the first derivatives of C and M defined in
Eq. (2.23) with respect to 7 vanish at the fixed points 7 = i
and o, rendering the calculations of the second derivatives
at the fixed points much simpler. As a result, we arrive at

PV *C PM _0*H
R —3)|HI?
= e Mo (A3 | (- 2]
o’V oC *M 0H |2
3007~ e M (A= 3P+ {616% A= 3)‘5 } (€2)

with

v A -
0 C__iciGz(r,T)

o2 or 6r
PC_ L0 [Ga(n D)
0107 Jr  6m ’
M (2Imz)? [.P*H(r) H(r)0G,(1,7)] H*(7) 0G5 (2, %)
or? B 3 [1 or? + 2r Jt } b4 or '
FM _ (2mr)’ [ iaZH(f) H(z) 0G5 (z,7) 2+ H(z) 0G,(7,7) 2} )
0ot 3 or? 2 ot 2 ot ’

where all the derivatives above are calculated at 7 = i or w.
One can check that the imaginary parts of 0>V /dz? are zero
at the finite fixed points. Hence, we arrive at the 2 x 2
diagonal Hessian matrices,

2’V
= 0
_ 0s?
H_<0 ﬂ)
or

(C4)

In order for finite fixed points to be the minima of the scalar
potential, we should require both 0’V /ds? and 0>V /0f* in
Eq. (C4) to be positive at the fixed points. For example, if
we set (m,n) = (0,0), the conditions for 7 = i and @ to be
the minima are given by

3.596 — A >0,
A-2>0.

A —0.4036 > 0.

T=1:

(Cs)

T=w.
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Notice that A > 3 should also be satisfied if we require dS
vacua, which can be directly obtained from Eq. (2.22),
given that M = 0 and |H| > 0 at the fixed points. Hence,
7 =1 could be the dS vacuum if 3 < A(S, S) < 3.5964 is
satisfied, while 7 = w can always be the dS vacuum as long
as A(S,S) > 3.

APPENDIX D: STABILIZING
THE DILATON SECTOR

In this appendix, we investigate how the Shenker-like
terms in the Kéhler potential can stabilize the dilaton sector.
Concrete examples for the single Kéhler modulus have
been provided in Ref. [96]. We build on their discussion
and extend it to the multiple-modulus framework.

As mentioned above, the Kéhler potential of the dilaton S
takes the simple form K(S,S) = —log(S + S) at the tree
level, resulting in a 4D wuniversal gauge coupling
g3/2 = 1/(S + S). Nevertheless, stringy nonperturbative
effects, scaling as 6L ~ e~1/95, can also exist in the heterotic
models due to the dualities of heterotic theories with type-I
and type-IIA string theories [97,113,114]. Such effects
manifest as the Shenker-like terms in the Kéhler potential.
In the following, we adopt the linear multiplet superfield
formalism for the dilaton, akin to the approach taken in
Ref. [96], which makes it more convenient for us to
parametrize the Shenker-like terms. To be more specific,
the dilaton is represented by a real scalar £ embedded into a
linear multiplet superfield L. Then, the coupling coefficient
g4 can be connected to the dilaton via [96]

- {wmm)

where f(¢) is a function which parametrizes the stringy
nonperturbative effects. Keeping in mind that in the chiral
superfield formalism we have g3/2 = 1/(S + S), we can
thereby establish a relation between ¢ and S—namely,

(D1)

¢ 1
1+ f(¢)

S+S (b2)

In the linear multiplet formalism, the dilaton “Kihler
potential”6 reads

K(¢) =log(?) +9(£). (D3)

where g(Z) denotes the Shenker-like terms, satisfying the
following differential equation:

®More accurately, it should be described as a kinetic potential.

df _dg
t=—Cg T

(D4)
As a parametrized form which can manifest the

structure of the 10D heterotic action, f(¢) is usually taken
as [96]

(D5)

—= ZAnfqne_B/\/;
n=0

with A, ¢,,, and B being constants. Substituting the above
expression of f(#) into the differential equation (D4), and
considering the initial condition ¢(0) = 0, which guaran-
tees that the nonperturbative effects vanish as the string
couplings tend to zero, we can gain the general expression
of ¢g(¢) as [96]

= A,B* {2(1 - q,)T(~2q,. B/V/?)
n=0

—T(1 -2q,.B/V?)}. (D6)

where I'(a, x) is the upper incomplete gamma function

Mo, = [Tyea, (D7)

Finally, the scalar potential in Eq. (2.22) can be
rewritten as

eY £)+1)/b, ¢
(T g ) (A =307(e)
+M(Ti,%i)}, (DS)

V(¢,7,7)=

where the definitions of H(z;, 7,, 73) and M (71,75, 73) can
be found in Egs. (3.7) and (3.11), respectively, and

(1 +b,0(1 +24(¢))

Alf) = b2e?

(D9)

Let us now examine the stability of the vacua presented
in Table I in the dilaton sector. For simplicity, we consider a
trivial polynomial

= Aoe_B/\/?’

f(?) (D10)

with
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— T1,2=W, T3 =1

T172=i, T3=1

T 7120, T3EW

logyo[ V/AIN]
[\]
[

Ti2=1, 3=w

(=}
T T ]

L
T

e}

FIG. 6. The projection of the scalar potential in the £ direction
in the case of (my,n;) = (my,n,) = (0,0), (m3,n3) =(2,0),
where we choose Ay =26, B=x, and b, = 0.4. In order to
obtain these curves, we have fixed 7, , and 73 to be either i or w.
Note that the choice 7, , = w, 73 = i corresponds to the deepest
minimum in this case.

Ag=26, B=nm  b,=04  (DII)

We still restrict ourselves to the fixed points of the Kihler
moduli. In the case of (m,n;) = (my, ny)=10,0),
(ms3,n3) = (2,0), by fixing 7, 7,, and 73 at their respective
vacua, we exhibit the projection of the scalar potential in the
¢ direction in Fig. 6. One can observe that, regardless of
which fixed points the Kéhler moduli take, the scalar
potential always reaches a local minimum at (¢) ~ 1.47.
Furthermore, at this minimum we have

(f(£)) =195,  (A(£))~3.09. (DI12)

gs ~0.99,

It is easy to identify that A(¢) ~ 3.09 satisfies the conditions
for the fixed points of the Kihler moduli to be the metastable
vacua in the case where (m,n;) = (my,n,)=(0,0),
(m3,n3) = (2,0). Therefore, the Kihler moduli and the
dilaton can indeed be simultaneously stabilized due to
the inclusion of Shenker-like terms. We also scrutinize
the remaining cases shown in Table I, and find that the
simple polynomial f(¢), as defined in Eq. (D10) with the
parameter choices Ay =26, B=anx, and b, = 0.4, can
account for the dilaton stabilization across all cases.
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