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Binder-cumulant analysis of the critical point in the heavy-quark region of QCD is performed by Monte-
Carlo simulations with the hopping-parameter expansion at Nt ¼ 6. We extend our previous analysis at
Nt ¼ 4 to finer lattices and perform high-precision analyses on large spatial volumes up to the aspect ratio
LT ¼ Ns=Nt ¼ 18. Higher order terms in the hopping-parameter expansion are incorporated effectively up
to 14th order. The numerical results show that the violation of the finite-size scaling becomes more
prominent on the finer lattice at a given aspect ratio.
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I. INTRODUCTION

Appearance of critical points (CPs) in quantum chromo-
dynamics (QCD) in medium with variations of various
external parameters is one of the interesting features of this
theory. CPs are expected to exist on the phase diagram of
QCD on the temperature and baryon chemical potential
plane at physical quark masses [1,2]. These CPs are the
main targets of the beam-energy scan program in relativ-
istic heavy-ion collisions [3–6]. Although their search in
lattice-QCD numerical simulations is difficult due to the
sign problem, various attempts to approach the CP are
ongoing [7–18]. CPs are also expected to manifest them-
selves at vanishing baryon chemical potential when the
quark masses are varied from the physical ones both toward
the light and heavy directions, as nicely summarized on the
so-called Columbia plot [19,20]. Even other CPs may
manifest themselves provoked by spatial boundary con-
ditions [21].
The CPs in the light and heavy quark-mass regions have

been investigated in lattice-QCD numerical simulations for
decades [12,22–32]. Since they appear at zero baryon
chemical potential, these analyses can be carried out
without suffering from the sign problem. For the CP in

the light-quark region, however, recent analyses give
controversial results and even the existence of the CP
off the chiral limit is not clear [12,20,29]. While the
existence of the CP is robust for the heavy-quark region,
a proper reproduction of the expected scaling behavior
from the Zð2Þ universality class, to which the CP is
believed to belong, is known to be difficult [30,31].
The Binder-cumulant analysis [33] is one of the useful

methods that have been used in these studies. Using the
finite-size scaling (FSS) of the scaling function, this
method allows us to reveal various properties of the CP
in the thermodynamic limit, such as the location and critical
exponents, from the numerical results for finite-volume
systems. In the Binder-cumulant analysis, however, it is
usually assumed that the thermodynamics is dominated by
the “singular part” that obeys the scaling behavior. This
assumption, however, is justified only in the vicinity of the
CP and for sufficiently large spatial volumes. In practical
numerical simulations that are performed on finite volumes,
the numerical results are always contaminated by the
“nonsingular part” that violates the ideal FSS behavior.
The controversial situations in the analyses both in the light
and heavy quark-mass regions may stem from the non-
singular part that is not suppressed well at the spatial
volumes used in the simulations.
In Ref. [31], motivated by this observation, part of the

authors of the present paper have performed the Binder-
cumulant analysis around the CP in the heavy-quark region
of QCD on large spatial volumes. The aspect ratio is taken
up to LT ¼ Ns=Nt ¼ 12, with L ¼ Nsa the spatial lattice
size and T ¼ 1=ðNtaÞ the temperature, while the lattice
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spacing awas fixed to a coarse one with the temporal lattice
extent Nt ¼ 4. To realize the large-volume simulations, the
hopping-parameter expansion (HPE) for the quark deter-
minant was employed: Monte-Carlo simulations are per-
formed at the leading nontrivial order (LO) of the HPE, and
the next-to-leading-order (NLO) contributions are taken
into account by reweighting. It has been shown that the
truncation error of the HPE is well suppressed around the
CP at Nt ¼ 4 in this analysis, and also this method enables
efficient numerical analysis there. Through the Binder-
cumulant analysis using the precision numerical results on
large lattices, it was found that the violation of the FSS is
not negligible even at LT ¼ 8 for Nt ¼ 4.
In the present study, we extend this analysis to a finer

lattice with Nt ¼ 6. To see the correct scaling behavior, we
also enlarge the aspect ratio up to LT ¼ 18. Besides the
prescription to deal with the HPE up to NLO used in
Ref. [31], we newly employ a method proposed in Ref. [34]
to incorporate higher order terms in the HPE effectively
into the analysis. Although the convergence of the HPE
becomes worse as the continuum limit is approached, this
method allows us to incorporate virtually all orders in the
HPE near the CP at Nt ¼ 6. These numerical results enable
us to fix the location of the CP with high precision. It will
also be shown that the violation of the FSS becomes more
prominent at Nt ¼ 6 compared to the coarse-lattice sim-
ulations in Ref. [31].
This paper is organized as follows. In the next section,

we describe the lattice action and its HPE, and the
procedure to deal with the higher-order terms of the
HPE in the numerical analysis. In Sec. III, we discuss
the detailed setup and parameters of our Monte-Carlo
simulations. The numerical results are then presented in
Sec. IV. The last section is devoted to a short summary. The
convergence of the HPE is discussed in Appendix.

II. HOPPING-PARAMETER EXPANSION

In this section, we summarize the HPE and a method to
handle the effects of its higher-order terms.

A. Lattice action

Our lattice QCD action is decomposed as S ¼ Sg þ Sq
with the gauge and quark actions Sg and Sq. We employ the
Wilson gauge action

Sg ¼ −6NsiteβP̂; ð1Þ

with the space-time lattice volume Nsite ¼ N3
s × Nt, the

gauge coupling parameter β ¼ 6=g2, and the plaquette
operator

P̂ ¼ 1

6NcNsite

X
x;μ<ν

Re trC½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�; ð2Þ

whereUx;μ is the link variable in the μ direction at site x, trC
is the trace over color indices, and Nc ¼ 3. For Sq, we
employ the Wilson quark action

Sq ¼
XNf

f¼1

X
x;y

ψ̄ ðfÞ
x MxyðκfÞψ ðfÞ

y ; ð3Þ

with the Wilson quark kernel

MxyðκÞ ¼ δxy − κBxy; ð4Þ

Bxy ¼
X4
μ¼1

½ð1 − γμÞUx;μδy;xþμ̂ þ ð1þ γμÞU†
y;μδy;x−μ̂�; ð5Þ

where the color and Dirac-spinor indices are suppressed for
simplicity. κf is the hopping parameter for the fth flavor,
which is related to the bare quark mass mf as
κf ¼ 1=ð2mfaþ 8Þ. In the following, we consider the
case of degenerated Nf flavors with a common hopping
parameter κ ¼ κf, whereas generalization to nondegenerate
cases is straightforward.
After integrating out the quark degrees of freedom, the

expectation value of a gauge operator ÔðUÞ is given by

hÔðUÞi ¼ 1

Z

Z
DU ÔðUÞe−Seff ; ð6Þ

with

Seff ¼ Sg − Nf ln detMðκÞ; ð7Þ
and the partition function Z ¼ R

DU e−Seff .

B. Hopping-parameter expansion

In the heavy-quark region κ ≪ 1, ln detM in Eq. (7) is
expanded with respect to κ at κ ¼ 0 as

ln

�
detMðκÞ
detMð0Þ

�
¼ −

X∞
n¼1

1

n
Tr½Bn�κn: ð8Þ

Here, Tr is the trace over all indices and an irrelevant
contribution at κ ¼ 0 is subtracted in Eq. (8). The nth-order
terms in the HPE are graphically represented by the closed
trajectories of length n [31,35].
On gauge configurations at nonzero temperature with the

temporal extent Nt, the HPE of Seff is written as

Seff ¼ Sg − NfNsite

X∞
n¼1

ðŴðnÞ þ L̂ðNt; nÞÞκn; ð9Þ

where ŴðnÞ and L̂ðNt; nÞ are contributions from trajecto-
ries without and with windings along the temporal direc-
tion, provided that the spatial extent is sufficiently large
such that the spatial windings are negligible. We refer to the
terms included in the former and the latter as the Wilson
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loops and the Polyakov-loop-type (PLT) loops, respec-
tively. We set ŴðnÞ ¼ L̂ðNt; nÞ ¼ 0 if corresponding
closed loops of length n do not exist, e.g. ŴðnÞ ¼ 0 for
n < 4 or odd n, and L̂ðNt; nÞ ¼ 0 for n < Nt.
The LO contributions from theWilson and PLT loops are

calculated to be

Ŵð4Þ ¼ W0ð4ÞP̂; ð10Þ

L̂ðNt; NtÞ ¼ L0ðNt; NtÞReΩ̂; ð11Þ

with the Polyakov loop

Ω̂¼ 1

NcN3
s

X
x⃗

trC½Ux⃗;4Ux⃗þ4̂;4Ux⃗þ2·4̂;4 � ��Ux⃗þðNt−1Þ·4̂;4�; ð12Þ

where W0ðnÞ and L0ðNt; nÞ are the values of ŴðnÞ and
L̂ðNt; nÞ in the weak-coupling limit, respectively, which is
obtained by setting Ux;μ ¼ 1 for all link variables [34]. The
calculation of W0ðnÞ and L0ðNt; nÞ is given in Appendix.
For the LO we obtain

W0ð4Þ ¼ 96Nc; L0ðNt; NtÞ ¼
2Ntþ2Nc

Nt
: ð13Þ

The NLO terms are calculated to be

Ŵð6Þ ¼ W0ð6ÞP̂6; ð14Þ

L̂ðNt; Nt þ 2Þ ¼ L0ðNt; Nt þ 2ÞReΩ̂Ntþ2; ð15Þ

with W0ð6Þ ¼ 2816Nc and

P̂6 ¼
1

11
ð3Ŵrec þ 6Ŵchair þ 2ŴcrownÞ; ð16Þ

where Ŵrec, Ŵchair, and Ŵcrown represent the six-stepWilson
loops of the rectangular, chair, and crown types, respec-
tively. The Ω̂Ntþ2 in Eq. (15) is the summation of bent PLT
loops of length Nt þ 2. Definitions of these operators, as
well as the derivation of these results, are found in
Refs. [31,34]. Note that all the Wilson and PLT loops are
normalized such that P̂¼ P̂6¼ Ŵrec¼ Ŵchair¼ Ŵcrown¼1

and Ω̂ ¼ Ω̂Ntþ2 ¼ 1 in the weak-coupling limit.
We rewrite the expansion (9) as

Seff ¼ Sg þ SLO þ SNLO þ � � � ; ð17Þ

where SLO and SNLO, respectively, contain the LO and NLO
contributions from the Wilson and PLT loops as

SLO ¼ −NfNsiteðŴð4Þκ4 þ L̂ðNt; NtÞκNtÞ; ð18Þ

SNLO ¼ −NfNsiteðŴð6Þκ6 þ L̂ðNt; Nt þ 2ÞκNtþ2Þ: ð19Þ

The action at the LO is given by

SgþLO ¼ Sg þ SLO

¼ −6Nsiteβ
�P̂ − λN3

sReΩ̂; ð20Þ

with

β� ¼ β þ NfW0ð4Þ
6

κ4 ¼ β þ 16NfNcκ
4; ð21Þ

λ ¼ NfNtL0ðNt; NtÞκNt ¼ 2Ntþ2NfNcκ
Nt : ð22Þ

As shown in Ref. [31], we can adopt a pseudo-heat-bath
algorithm for the Monte-Carlo simulation of SgþLO with a
numerical cost comparable to that of the pure gauge theory
Sg, i.e., with a cost much lower than that of the full QCD.
This enables us to carry out simulations on lattices with
large spatial volumes.

C. Effective incorporation of higher order terms

InRef. [34], a method to effectively incorporate theNNLO
and yet higher order terms into numerical analyses has been
proposed. The key ingredient of the method is that ŴðnÞ and
L̂ðNt; nÞ at different n, respectively, are strongly correlated
with one another such that the approximate relations

ŴðnÞ
W0ðnÞ

≃ dn
Ŵð4Þ
W0ð4Þ

þ fn ¼ dnP̂þ fn; ð23Þ

L̂ðNt; nÞ
L0ðNt; nÞ

≃ cn
L̂ðNt; NtÞ
L0ðNt; NtÞ

¼ cnReΩ̂; ð24Þ

hold well configuration by configuration, where dn, fn, and
cn are parameters common to all configurations. In Ref. [34],
the validities of Eqs. (23) and (24) have been investigated on
pure gauge configurations, i.e. in the heavy quark limit. It was
found that Eq. (24) is well applicable up to very high n.
Although the correlations among theWilson loops turned out
to be weaker than the PLT loops, Eq. (23) is also found to be
well justified for small n. We will show later that the same
tendency is also obtained on the gauge configurations
generated by SgþLO around theCP in the heavy-quark region.
Once one accepts Eqs. (23) and (24) as equalities, one

can rewrite the action including the Wilson and PLT loops
up to nWth and nLth orders, respectively,

SðnW;nLÞ ¼ Sg − NfNsite

�XnW
n¼4

ŴðnÞκn þ
XnL
n¼Nt

L̂ðNt; nÞκn
�
;

ð25Þ
as

SðnW;nLÞ ≃ SðnW;nLÞ
eff½LO� ¼ −6Nsiteβ

�
nWP̂ − λ�nLN

3
sReΩ̂; ð26Þ
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with

β�nW ¼ β þ Nf

6

XnW
n¼4

dnW0ðnÞκn; ð27Þ

λ�nL ¼ NfNt

XnL
n¼Nt

cnL0ðNt; nÞκn; ð28Þ

up to an irrelevant constant. The fact that Eq. (26) has the
same form as Eq. (20) with the replacements β� → β�nW and
λ → λ�nL means that the numerical results at the LO can be
reinterpreted as those for the action SðnW;nLÞ with a simple
replacement of the simulation parameters. The measure-
ments of higher order terms in the HPE are not necessary in
this analysis once dn and cn are determined numerically.
This interpretation, however, relies on Eqs. (23) and (24),

which become less reliable for larger n. This problem can
be partially resolved if one measures the NLO terms, Ŵð6Þ
and L̂ðNt; Nt þ 2Þ, on every configuration. Since the
correlations of ŴðnÞ or L̂ðNt; nÞ between different n are
stronger for closer n, it is better to approximate higher order
terms as

ŴðnÞ
W0ðnÞ

≃ d̃n
Ŵð6Þ
W0ð6Þ

þ f̃n ¼ d̃nP̂6 þ f̃n; ð29Þ

L̂ðNt; nÞ
L0ðNt; nÞ

≃ c̃n
L̂ðNt; Nt þ 2Þ
L0ðNt; Nt þ 2Þ ¼ c̃nReΩ̂Ntþ2; ð30Þ

for n ≥ 8 and n ≥ Nt þ 4, respectively, than Eqs. (23) and
(24). Assuming Eqs. (29) and (30) as equalities, one obtains
an approximate action of SðnW;nLÞ as

SðnW;nLÞ
eff½NLO� ¼ SgþLO − NsiteðγnWP̂6 þ ξnLReΩ̂Ntþ2Þ; ð31Þ

with

γnW ¼ Nf

XnW
n¼6

d̃nW0ðnÞκn; ð32Þ

ξnL ¼ Nf

XnL
n¼Ntþ2

c̃nL0ðNt; nÞκn: ð33Þ

In later sections, we use Eq. (31) for the numerical analyses
by performing Monte-Carlo simulations with SgþLO and
taking the effects of the second term by reweighting. A
comparison with the method using Eq. (26), as well as the
analysis at NLO, is given in Appendix A 2.

D. Numerical study of higher order terms

Now, let us investigate the validity of the above approxi-
mate formulas for the action numerically. For this purpose
we generate 100 gauge configurations for the action SgþLO

withNf ¼ 2 on the 363 × 6 lattice at the parameters close to

the CP at the LO, (β�; λÞ ¼ ð5.8905; 0.0012Þ. We measure
ŴðnÞ and L̂ðNt; nÞ on each configuration through the
measurement of Bn by the noise method [34] with 5,000
noise vectors.
In Fig. 1, we show the scatter plots of ðδŴðnÞ=W0ðnÞ; P̂Þ

and ðL̂ðNt; nÞ=L0ðNt; nÞ; Ω̂R ¼ ReΩ̂Þ measured on every
configuration for various n with δŴðnÞ ¼ ŴðnÞ − hŴðnÞi.
The figure shows that each result distributes linearly,
indicating the strong correlations (23) and (24), whereas
the distribution tends to be more scattered as n becomes
larger, especially in ŴðnÞ.
The coefficients dn, cn, d̃n, and c̃n determined from these

results by the linear fits are summarized in Table I, where
the statistical errors are estimated by the jackknife method.
The errors from the noise method are well suppressed
compared to the statistical ones.1 The results of dn and cn

FIG. 1. Scatter plots of ðδŴðnÞ=W0ðnÞ; δP̂Þ and ðL̂ðNt; nÞ=
L0ðNt; nÞ; Ω̂RÞ on 100 gauge configurations of the size
N3

s × Nt ¼ 363 × 6 near the CP for various values of n. The lines
show the results of the linear fits with Eqs. (23) and (24) for each n.

1As discussed in Ref. [34], concerning cn and c̃n in Table I, the
cases n ¼ 18 and 20 for Nt ¼ 6 are special because the sign of
L0ðNt; nÞ changes between n ¼ 18 and 20 and thus L0ðNt; nÞ
suffers from strong cancellation of positive and negative terms at
n ¼ 18 and 20. For Nt ¼ 8, this happens first between n ¼ 26
and 28.
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are close to those obtained on pure gauge simulations [34],
suggesting a mild dependence of dn and cn on λ and β� near

the phase transition. We thus employ the values given in
Table I in the following analyses.
To see the correlations in more detail, in Fig. 2 we plot

D̂Wðn;mÞ ¼ δŴðnÞ
dnW0ðnÞ

−
δŴðmÞ

dmW0ðmÞ ; ð34Þ

D̂Lðn;mÞ ¼ L̂ðNt; nÞ
cnL0ðNt; nÞ

−
L̂ðNt;mÞ

cmL0ðNt;mÞ : ð35Þ

These quantities vanish when the nth- and mth-order terms
are perfectly correlated. Since we measure exact values of
Ŵð4Þ, Ŵð6Þ, L̂ð6; 6Þ, L̂ð6; 8Þ in our simulations, we use
them for ŴðmÞ and L̂ðNt;mÞ, while the values measured
by the noise method are used for ŴðnÞ and L̂ðNt; nÞ in
Eqs. (34) and (35). The figure shows that their distribution
around zero becomes broader as n becomes larger with
fixedm. We also note that the scattering is more suppressed
in D̂Wðn; 6Þ [D̂Lðn; 8Þ] than D̂Wðn; 4Þ [D̂Lðn; 6Þ] for n ≥ 8
(n ≥ 10). This result shows that Eqs. (29) and (30) are
superior to Eqs. (23) and (24), respectively, as expected.
One also sees that the correlations between the PLT loops
survive up to large n, while those between the Wilson loops
tend to be blurred more quickly [34].
In Fig. 3, we plot the coefficients in Eq. (26), β�n, λ�n, as

functions of λ in the range relevant for later analyses for
various n; as we will see in Sec. IV, the CP is located at
λ ≃ 0.0007. The upper and lower panels plots β�n − β and

TABLE I. Values of dn, cn, d̃n, and c̃n obtained on the 363 × 6
lattice with SgþLO near the CP at Nf ¼ 2. The errors are the
statistical ones.

n dn d̃n

4 1
6 1.374(24) 1
8 1.498(52) 1.126(21)
10 1.454(76) 1.120(40)
12 1.324(96) 1.041(56)
14 1.17(11) 0.938(68)
16 1.03(13) 0.845(79)
18 0.96(14) 0.797(93)
20 1.02(18) 0.86(12)

n cn c̃n

6 1
8 0.8091(14) 1
10 0.6251(16) 0.7727(9)
12 0.4710(15) 0.5822(12)
14 0.3585(13) 0.4430(12)
16 0.3084(14) 0.3808(16)
18 1.0074(67) 1.2419(91)
20 −0.02730ð6Þ −0.0334ð9Þ
22 0.0088(3) 0.01083(3)

FIG. 2. Scatter plots of ðD̂Wðn;mÞ; δP̂Þ and ðD̂Lðn;mÞ; Ω̂RÞ for various values of n and m. The values measured by the noise method
are used for ŴðnÞ and L̂ðNt; nÞ in Eqs. (34) and (35), while ŴðmÞ and L̂ðNt;mÞ are exactly measured values. Nonzero scatterings in
D̂Wðn; nÞ and D̂Lðn; nÞ come from the noise method.
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λ�n=λ. Notice that these quantities represent the magnitude
of the quark contributions to the action at the nth
order provided the validity of Eqs. (23) and (24). The
figure shows that the coefficients almost converge around
nW ¼ 10 and nL ¼ 14, indicating the convergence of the
HPE. These results agree with the case of free fermions
discussed in Appendix A 1.
Applicability of Eq. (31) may become less justified with

large nW and nL. However, the rapid convergence of
the HPE shown in Fig. 3 indicates that the contribution of
the higher-order terms is more suppressed. From Fig. 2,
the correlations (29) and (30) hold well until nW ¼ 10 and
nL ¼ 14 where the contribution of higher order terms is
well negligible in Fig. 3. Therefore, to a good
approximation Eq. (31) can be regarded as the action
that includes all orders of the HPE near the CP in the
heavy-quark region. In the following, we employ Eq. (31)
with

ðnW; nLÞ ¼ ð10; 14Þ; ð36Þ

for numerical analyses, whereas the use of yet larger nW
and nL hardly changes the following results.

III. NUMERICAL SETUP FOR
BINDER-CUMULANT ANALYSIS

We generate gauge configurations with the action SgþLO
using the method proposed in Ref. [31]. In our previous
study at Nt ¼ 4, it was found that this method enables
high-precision measurements of observables around theCP
in the heavy-quark region thanks to efficient Monte-
Carlo updates avoiding the overlapping problem in
reweighting [31]. As we will see below, the method works
well also at Nt ¼ 6.
In the present study, we perform the numerical analyses

with Nt ¼ 6, while the spatial lattice size N3
s is varied

in the range of the aspect ratio 6 ≤ LT ¼ Ns=Nt ≤ 18.
For each LT, gauge configurations are generated for SgþLO

at 4–6 sets of ðβ�; λÞ given in Table II. The value of β�
for each λ is chosen to be close to the transition point at
the LO.
The gauge configurations are updated by the pseudo-

heat-bath (PHB) and over-relaxation (OR) algorithms [31].
Each PHB step is followed by five OR steps. We measure
observables for every 5 set of the PHBþ OR updates for
LT ≤ 10. The separation is enlarged to 20 (40) sets for
LT ¼ 12, 15 (LT ¼ 18). We have performed 106 mea-
surements at each ðβ�; λÞ for 8 ≤ LT ≤ 12, while the
number of measurements is 5 × 105 for LT ¼ 6, 7 and
15 × 105 (8 × 105) for LT ¼ 15 (LT ¼ 18).
Near a first-order phase transition, the autocorrelation

length in the Monte-Carlo time tends to be large due to the
suppression of the flippings between metastable states.
This problem becomes more serious on larger lattices, as
well as for smaller λ where the first-order transition is
stronger. To see the rate of flippings in the Monte-Carlo
time, we show in Fig. 4 the Monte-Carlo history of Ω̂R at
the smallest λ for LT ¼ 10 (top), 15 (middle), and 18
(bottom). The horizontal axis is the Monte-Carlo time in

FIG. 3. λ dependence of β�nW and λ�nL for various nW and nL for
Nf ¼ 2. The top scale shows the value of κ.

TABLE II. Simulation parameters β� and λ. The circles in the
right columns denote the values of LT at which the simulations
are performed at the parameters in the left columns.

LT

λ β� 6 7 8 9 10 12 15 18

0.0008 5.8918 ∘ ∘ ∘ ∘ ∘
0.0010 5.8911 ∘ ∘ ∘ ∘ ∘ ∘ ∘
0.0012 5.8905 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
0.0013 5.8901 ∘
0.0014 5.8899 ∘ ∘ ∘ ∘ ∘ ∘ ∘
0.0014 5.8897 ∘
0.0015 5.8894 ∘
0.0016 5.8892 ∘ ∘ ∘ ∘ ∘ ∘ ∘
0.0018 5.8886 ∘ ∘ ∘ ∘ ∘ ∘
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the unit of measurement and the figure shows 105

measurements among the total ones for visibility. From
the figure, one sees that the flipping occurs frequently
within the Monte-Carlo time shown in the figure.
The autocorrelation lengths of these histories are within
400–800. Since the autocorrelation is moderate even on
the largest LT, we do not employ additional Monte-Carlo
techniques for its reduction, such as the parallel tempering
method [36–38].
To estimate the statistical errors of observables, we use

the jackknife analysis with the bin size 25,000, unless
otherwise stated. This bin size is significantly larger than
the autocorrelation length and large enough to eliminate its
effect. In fact, we have checked that statistical errors do not
have a clear dependence on the bin size within the interval
10,000–40,000.
On each set of simulation parameters, ðβ�; λÞ, we

measure P̂, P̂6, Ω̂, Ω̂Ntþ2, and other observables on every
measurement. From these results, we calculate observables
at a physical parameter ðβph; λphÞ for the action (31) by
reweighting, where both the effects of the parameter shift
ðβ�; λÞ → ðβph; λphÞ and the higher-order terms in the HPE

are taken into account. The numerical results thus obtained
from individual simulation parameters are averaged over to
obtain the final result for each LT.

IV. BINDER CUMULANT

In this section, we perform the numerical analysis of the
Binder cumulant of Ω̂R near the CP of heavy-quark QCD.
In the following, we set Nf ¼ 2 unless otherwise stated.

A. FSS of Binder cumulant

The Binder cumulant [33] of Ω̂R is defined by

B4 ¼
hΩ̂4

Ric þ 3

hΩ̂2
Ri2c

; ð37Þ

where hΩ̂n
Ric is the nth-order cumulant of Ω̂R.

The CP in heavy-quark QCD is believed to belong to the
Zð2Þ universality class, to which the CP in the three-
dimensional Ising model also belongs. If Ω̂R corresponds to
the magnetization in the Ising model, from the FSS argu-
ment it is shown that the minimum of B4 with the variation
of β with fixed λ behaves as

B4ðλ; LTÞ ¼ b4 þ cðλ − λcÞðLTÞ1=ν; ð38Þ

near the CP, where the higher-order terms of λ − λc and
1=LT are neglected. The CP exists at λ ¼ λc, at which
B4ðλ; LTÞ with different LT cross at the universal value b4.
In the Zð2Þ universality class, the values of b4 and ν are [39]

b4 ¼ 1.604; ν ¼ 0.630; ð39Þ

whereas the values of λc and c are not constrained by the
universality.
When Ω̂R is not solely given by the magnetization but

corresponds to a linear combination of the magnetic- and
energylike observables in the Ising model, Eq. (39) is
modified as [23,30]

B4ðλ; LTÞ ¼ ðb4 þ cðλ − λcÞðLTÞ1=νÞð1þ dðLTÞYÞ; ð40Þ

with

Y ¼ −0.894; ð41Þ

in the Zð2Þ universality class [39]. In this case, B4ðλ; LTÞ
with different LT no longer cross at a point.

B. Numerical results

The use of the minimum value of B4 in the above
argument is motivated by the observation that B4 takes the
minimum at the transition point β ¼ βtrðλÞ, which corre-
sponds to the vanishing external magnetic field in the Ising

FIG. 4. Monte-Carlo time history of Ω̂R for LT ¼ 10, 15, 18 at
the smallest λ in the simulations. The horizontal axis is the
Monte-Carlo time in the unit of measurement. The time history
for 105 measurements is shown for visibility.
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model, for a given λ. Alternatively, βtrðλÞ may also be
defined through [31,40]

(i) Maximum of hΩ2
Ric,

(ii) Zero of hΩ3
Ric.

To check the consistency of these three definitions of βtrðλÞ,
in Fig. 5 we plot βtrðλÞ obtained by each definition for
λ ¼ 0.0006 (left), 0.0007 (middle), and 0.0008 (right) as
functions of ðLTÞ−3. The figure shows that all the defi-
nitions for βtrðλÞ converge to the same value in the
LT → ∞ limit. Among them, the definition through

hΩ2
Ric has the strongest dependence on LT, while the

dependence is milder in the other definitions. In Fig. 6, we
show βtrðλÞ obtained from the minimum of B4 at LT ¼ 15
on the β-λ and β-κ planes. The statistical errors are smaller
than the thickness of the line.
In Fig. 7, we show the λ dependence of the minimum of

B4 obtained on various LT. The lower panel is an
enlargement of the upper. Statistical errors are shown by

FIG. 5. Transition point βtrðλÞ determined by (i) minimum of B4, (ii) zero of hΩ3
Ric, and (iii) maximum of hΩ2

Ric, as a function of
ðLTÞ−3 for λ ¼ 0.0006, 0.0007, and 0.0008.

FIG. 6. Transition line βtrðλÞ as a function of λ (upper) and κ
(lower) obtained from the minimum of B4 at LT ¼ 15. The CP
determined by the fit with Eq. (40) is shown by the circle marker.
The solid and dashed lines show the first-order transition and
crossover. Errors of the line are smaller than the thickness.

FIG. 7. λ dependence of the minimum of B4 obtained at various
LT. The lower panel is an enlargement of the upper around the
crossing point. The circle (square) symbol shows the fit result of
the crossing point based on Eq. (38) with LT ≥ 12 (LT ≥ 10).
The diamond and triangle symbols at B4 ¼ b4 denote the fit
results based on Eq. (40).
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the shaded band. To obtain the statistical errors in the
jackknife analysis, we measure the minimum value of B4

on each jackknife sample and use them for the error
estimate, i.e., the minimum β value fluctuates sample by
sample. The value of B4 at the CP in the LT → ∞ limit,
b4 ¼ 1.604, in Eq. (39) is indicated by the black-
dashed lines.
Figure 7 shows that the results for different LT cross

around λ ¼ 0.0007, while the results at smaller LT deviate
from this trend; a clear deviation from the crossing point is
visible even at LT ¼ 8 in the lower panel. Comparing this
result to the one on the coarser lattice at Nt ¼ 4 [31], one
finds that the deviation from the crossing at Nt ¼ 6 is more
prominent at the same LT. This suggests that the violation
of the FSS is more significant, and/or the effect of the
mixing of energy-like observable in Ω̂R described by
Eq. (40) is stronger, on finer lattices.

C. Fit analysis

To determine the location of the CP and the critical
exponent ν, we perform the fit analyses of the lattice data
based on Eqs. (38) and (40).
First, we perform the four-parameter fit with Eq. (38),

where b4, c, λc, ν are the fitting parameters. For the data
points to be fitted, we use B4 at two values of λ, λ1 and λ2,
for various combinations of LT, where the values of λ1 and
λ2 are varied within the range 0.00067 ≤ λ1 ≤ 0.00069 and
0.00071 ≤ λ2 ≤ 0.00073 to estimate the systematic uncer-
tainty associated to their choices. The values of B4 at
different λ’s are correlated in our analysis because their
measurements are performed on the same gauge configu-
rations through reweighting. We take the correlations into
account by the correlated fits.
The results of the fits for b4; λc; ν are summarized in

Table III for various combinations of LT, where ðλ1; λ2Þ ¼
ð0.00069; 0.00071Þ is employed for the central values. The
first and second errors show the statistical and systematic
errors, where the latter is estimated from the variations of
ðλ1; λ2Þ, which is well suppressed compared to the
statistical error. The results for LT ¼ ð18; 15; 12Þ and
LT ¼ ð15; 12; 10Þ are shown in the lower panel of
Fig. 7 by the circle and square symbols with the double
errors.
The result in Table III shows that the value of the critical

exponent ν is consistent with Eq. (39). However, b4 has
more than 2σ deviation from the Zð2Þ value in Eq. (39)
even for the fit with LT ≥ 12.
To investigate the possible mixing effects of energy-like

observable to this result, we next perform the fits based on
Eq. (40). However, we found that the six-parameter fit,
where b4, c, λc, ν, d, Y are the fitting parameters, is unstable
with many local minima of χ2. We thus fixed b4, ν, Y to the
Zð2Þ values in Eqs. (39) and (41) and performed the three
parameter fit to determine c, λc, and d. The results for λc for
various combinations of LT are shown in Table IV, where

the meaning of errors is the same as Table III while the
central value is set to ðλ1; λ2Þ ¼ ð0.00067; 0.00071Þ. The
table shows that the fit works well with reasonable χ2=dof
when LT ≥ 10. The results for LT ¼ ð18; 15; 12Þ and
LT ¼ ð15; 12; 10Þ are indicated in the lower panel of
Fig. 7 by the diamond and triangle symbols at B4 ¼ b4
with horizontal error bars. The result for LT ¼ ð18; 15; 12Þ
is also shown in Fig. 6 by the circle symbol.

D. Violation of the FSS

Tables III and IV show that χ2=dof becomes unaccept-
ably large when the numerical results for smaller LT are
included. This result indicates that the violation of the FSS
shows up for LT ≤ 8 in our data, presumably because the
nonsingular contribution to the free energy is not well
suppressed there. Compared to Ref. [31], the nonsingular
contribution seems to be amplified at the same LT on the
finer lattice.
To understand the origin of the violation of the FSS at

small LT, we show in Fig. 8 the distribution of Ω̂ on the
complex plane at ðβ; λÞ ¼ ð5.8817; 0.0007Þ, the parameter
close to the CP, by the color-contour map for LT ¼ 6, 10,
15. From the left panel, one finds that the distribution has a
triangular shape at LT ¼ 6, with distributions extending
toward large jImΩ̂j around ReΩ̂ ¼ 0. This behavior is
clearly attributed to the remnant of the Zð3Þ center
symmetry at λ ¼ 0. As a result, the two peaks of the
distribution are clearly asymmetric.
In the Zð2Þ universality class, on the other hand, the

scaling function has the rigorous Zð2Þ symmetry; the
magnetization is symmetric against the change of the sign
in the Ising model. However, the breaking of this symmetry

TABLE III. Results of the four-parameter fit based on Eq. (38)
for various combinations of LT. The first and second errors are
the statistical and systematic ones, respectively, where the latter is
estimated from the choices of λ values. The last column shows
χ2=dof of each fit.

LT b4 λc × 104 ν χ2=dof

18, 15, 12 1.6297(84)(6) 7.048(52)(8) 0.627(19)(5) 0.40
15, 12, 10 1.6294(81)(4) 7.046(68)(4) 0.626(17)(1) 0.35
18–10 1.6295(55)(5) 7.047(38)(3) 0.621(11)(3) 0.23
18–9 1.6331(41)(4) 7.061(32)(7) 0.616(87)(2) 0.47
18–8 1.6418(32)(4) 7.120(27)(8) 0.616(87)(2) 3.95

TABLE IV. Results of the three-parameter fit based on Eq. (40)
for various combinations of LT.

LT λc × 104 χ2=dof

18, 15, 12 6.986(32)(9) 0.51
15, 12, 10 6.973(42)(5) 0.83
18–10 6.984(25)(8) 1.07
18–9 6.998(21)(5) 4.23
18–8 7.035(19)(3) 36.4
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is manifest in the left panel of Fig. 8, indicating the
violation of the scaling behavior at LT ¼ 6. While the
distribution approaches a symmetric one as LT becomes
larger, such violation is visible even on the right panel
for LT ¼ 15.
The stronger violation of the FSS at Nt ¼ 6 than Nt ¼ 4

may be related to the strength of the first-order phase
transition in SU(3) Yang-Mills (YM) theory corresponding
to λ ¼ 0. It is known that the latent heat in SUð3Þ YM
theory is large at Nt ¼ 4 owing to the lattice artifact
[41,42]. The large latent heat implies that a stronger
external field is necessary to make the transition crossover.
As a result, the CP is located at larger λ at Nt ¼ 4, where
the influence of the original Zð3Þ symmetry at λ ¼ 0 is
more suppressed.

E. Location of CP: Nf dependence

So far, we have discussed the numerical results for the
case of Nf ¼ 2. The generalization of these results to other
Nf and nondegenerate cases is straightforward as the
Nf -dependence of the HPE is explicitly known. In
Table V, we summarize the location of the CP for
Nf ¼ 1, 2, 3. The fitting result using Eq. (40) with
LT ¼ ð18; 15; 12Þ is employed as the central value, and
the difference from the fit with Eq. (38) is shown by the
second error as an estimate of the systematic error due to
the fit ansatz.
The location of the CP in the heavy-quark QCD with

Nf ¼ 2 at Nt ¼ 6 has been investigated in Ref. [30] on
smaller lattices with the same gauge and quark actions as
ours. In this study, the value of κ at the CP is estimated as

κc ¼ 0.0877ð9Þ. This value agrees with the one in Table V,
while the error is significantly suppressed in our analysis.
Finally, we may translate the results of theCP in terms of

physical observables. In Ref. [30], the pseudoscalar meson
mass at zero temperature,mPS, is measured in Nf ¼ 2QCD
at several points near the CP at Nt ¼ 6 (See, Table III in
Ref. [30]). Assuming the absence of β dependence and
interpolating κ dependence by the linear interpolation to the
value in Table V, we find mPS=Tc ¼ 18.07ð2Þð þ0−2Þ
at κ ¼ κc for Nf ¼ 2.

V. SUMMARY

In this study, we have performed the Binder-cumulant
analysis of the CP in the heavy-quark QCD. We extended
our previous analysis at Nt ¼ 4 to finer lattices with
Nt ¼ 6. To see the proper scaling behavior, numerical
analyses have been performed on large lattices up to the
aspect ratio LT ¼ 18. The gauge configurations are gen-
erated at the LO action in the HPE, and the effects of
higher-order terms are incorporated by the reweighting
method. Contributions of the NLO are treated exactly, and
yet higher-order terms are incorporated effectively up to
virtually infinite order. We have succeeded in realizing
high-precision analysis of the Binder cumulant on large
spatial volumes while suppressing the truncation errors of
the HPE. Precision results for the location of the CP at
Nt ¼ 6 have been obtained from these results forNf ¼ 1, 2,
3. We also found that the violation of the scaling behavior
due to finite volume is more prominent at Nt ¼ 6 than our
previous study at Nt ¼ 4. From the distribution of the
Polyakov loop in the complex plane, we argued that the
remnant of the Zð3Þ symmetry at λ ¼ 0 affects this result.
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APPENDIX: CONVERGENCE OF HPE

In this appendix, we discuss the convergence of the HPE.

1. HPE for free-fermion system

In this subsection, we study the magnitudes of higher
order terms of the HPE for the free lattice fermion, which is
obtained by substituting Ux;μ ¼ 1 into Eq. (3). As dis-
cussed in Ref. [34], in this case one can calculate the values
of ŴðnÞ and L̂ðNt; nÞ analytically, which are denoted by
W0ðnÞ and L0ðNt; nÞ in the text.
For the free Wilson fermions, the hopping term (5) is

given by [34]

bxy ¼
X4
μ¼1

½ð1 − γμÞδy;xþμ̂ þ ð1þ γμÞδy;x−μ̂�; ðA1Þ

where the Dirac-spinor and color indices are suppressed for
notational simplicity. To calculate W0ðnÞ, one may con-
sider infinitely large lattice and Fourier transform the
spatial coordinates of Eq. (A1). This procedure leads to

W0ðnÞ ¼ −
1

n
Tr½bn�

¼ −
Nc

n

Z
2π

0

d4φ
ð2πÞ4 tr½b̃ðφÞ

n�; ðA2Þ

with

b̃ðφÞ ¼ b̃ðφ1;φ2;φ3;φ4Þ

¼
X4
μ¼1

½ð1 − γμÞeiφμ þ ð1þ γμÞe−iφμ �: ðA3Þ

Notice that the PLT loops do not contribute to Eq. (A3)
since both Ns and Nt are taken to be infinite.
To calculate L0ðNt; nÞ we perform the same procedure

on the lattice of size N3
s × Nt, which leads to

W0ðnÞ þ L0ðNt; nÞ

¼ −
Nc

Nsiten

XNs

k1;k2;k3¼1

XNt

k4¼1

tr
�
b̃
�
2πk1
Ns

;
2πk2
Ns

;
2πk3
Ns

;
2πk4
Nt

��
:

ðA4Þ

Then, substracting Eq. (A2) from Eq. (A4) gives L0ðNt; nÞ.
Note that Eq. (A4) is equivalent to Eq. (A2) for n < Ns
and n < Nt.
For the free-quark system, the quark determinant is

given by

− ln detM ¼
X∞
n

W0ðnÞκn þ
X∞
n

L0ðNt; nÞκn: ðA5Þ

To see the truncation error of the HPE in Eq. (A5), in Fig. 9
we show

Xnmax

n

W0ðnÞκn;
Xnmax

n

L0ðNt; nÞ; ðA6Þ

normalized by the exact value for various nmax. In the lower
panel, we show the case of Nt ¼ 6. From the figure, one
sees that Eq. (A6) approaches the exact value as nmax
becomes larger. As discussed in Sec. IV, the value of κ at
the critical point is κc ¼ 0.0877. At this κ, the HPE at NLO,
i.e. nmax ¼ 6 and 8 for the Wilson and PLT loops,
respectively, is already beyond 95% of the exact one.
This result suggests that the analysis at NLO gives a good
approximation around the CP at Nt ¼ 6. The inclusion of

FIG. 9. Convergence of the HPE in the weak-coupling limit.
The upper (lower) panel shows the contributions of the Wilson
(PLT) loops up to nth order to the action S normalized by the
exact value.
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one more higher-order contribution gives an almost perfect
approximation.
As discussed in Ref. [34], the convergence of the HPE in

the interacting systems is faster than the free-fermion case,
since nonunit link variables Ux;μ tends to suppress the
higher order terms more significantly.

2. Location of the CP in heavy-quark QCD

In Sec. II C, we introduced two methods to effectively
incorporate higher-order terms of the HPE with the actions
(26) and (31). In this subsection, we compare the numerical
results obtained by these methods, as well as the analysis
at NLO.
In Fig. 10, we show the transition line as a function

of κ and the CP determined adopting the actions Eq. (31)
(eff[NLO]) and Eq. (26) (eff[LO]), together with the results
at NLO, where the transition lines are obtained from the
minimum of B4 at LT ¼ 15. The statistical errors are
smaller than the thickness of the lines. The CPs are
determined by the same analysis as for Table V.
From the figure, we find that, though the NLO calcu-

lation should contain about 95% contributions to the action
as discussed in the previous subsection, the incorporation
of higher-order terms causes a shift of the transition line
and the CP toward smaller κ compared to the NLO results.
Thus, the incorporation of higher-order effects is important
for their precise determination. On the other hand, the two
alternatives to incorporate higher-order terms, eff[NLO]
and eff[LO], give similar results. As discussed in Sec. II D,
these results are stable under variations of nW and nL. These
suggest that the truncation error is well suppressed in these

methods. As the eff[NLO] should give the most reliable
results among them, we use it in the analyses in the
main text.
The convergence of the HPE is eventually violated as

the lattice spacing becomes finer with fixed physical
quark masses. However, since the difference between
eff[NLO] and eff[LO] results is well suppressed in
Fig. 10, it is expected that our analysis of the CP with
eff[NLO] would be well applicable to slightly finer
lattices than Nt ¼ 6. To go even finer lattices, the analysis
of the next-to-next-to-leading order terms in simulations
may be necessary to control the truncation errors of the
HPE properly.
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Phys. Rev. D 105, 034513 (2022).

[14] S. Borsanyi, Z. Fodor, M. Giordano, S. D. Katz, D. Nogradi,
A. Pasztor, and C. H. Wong, Phys. Rev. D 105, L051506
(2022).

[15] Y. Namekawa, K. Kashiwa, H. Matsuda, A. Ohnishi, and H.
Takase, Phys. Rev. D 107, 034509 (2023).

[16] G. Aarts et al., Prog. Part. Nucl. Phys. 133, 104070 (2023).
[17] T. Yokota, Y. Ito, H. Matsufuru, Y. Namekawa, J.

Nishimura, A. Tsuchiya, and S. Tsutsui, J. High Energy
Phys. 06 (2023) 061.

[18] D. A. Clarke, P. Dimopoulos, F. Di Renzo, J. Goswami, C.
Schmidt, S. Singh, and K. Zambello, arXiv:2405.10196.

FIG. 10. Transition line and the CP obtained for the action
Eq. (31) (eff[NLO]), Eq. (26) (eff[LO]), and the action at NLO.
The solid and dashed lines show the first-order transition and
crossover. The eff[NLO] result is the same as that shown in Fig. 6.

ASHIKAWA, KITAZAWA, EJIRI, and KANAYA PHYS. REV. D 110, 074508 (2024)

074508-12

https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1143/PTP.108.929
https://doi.org/10.1143/PTP.108.929
https://doi.org/10.1143/PTP.110.185
https://doi.org/10.1016/j.ppnp.2016.04.002
https://doi.org/10.1016/j.ppnp.2016.04.002
https://doi.org/10.1016/j.nuclphysa.2020.122016
https://doi.org/10.1103/PhysRevC.104.024902
https://doi.org/10.1103/PhysRevC.104.024902
https://doi.org/10.1103/PhysRevC.107.024908
https://doi.org/10.1103/PhysRevC.107.024908
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevD.102.014515
https://doi.org/10.1103/PhysRevD.102.014515
https://doi.org/10.1140/epja/s10050-021-00354-6
https://doi.org/10.1093/ptep/ptab010
https://doi.org/10.1093/ptep/ptab010
https://doi.org/10.1103/PhysRevD.105.034510
https://doi.org/10.1103/PhysRevD.105.034513
https://doi.org/10.1103/PhysRevD.105.L051506
https://doi.org/10.1103/PhysRevD.105.L051506
https://doi.org/10.1103/PhysRevD.107.034509
https://doi.org/10.1016/j.ppnp.2023.104070
https://doi.org/10.1007/JHEP06(2023)061
https://doi.org/10.1007/JHEP06(2023)061
https://arXiv.org/abs/2405.10196


[19] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338
(1984).

[20] O. Philipsen, Symmetry 13, 2079 (2021).
[21] D. Fujii, A. Iwanaka, M. Kitazawa, and D. Suenaga,

arXiv:2404.07899.
[22] H. Saito, S. Ejiri, S. Aoki, K. Kanaya, Y. Nakagawa, H.

Ohno, K. Okuno, and T. Umeda, Phys. Rev. D 89, 034507
(2014).

[23] X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda, and A.
Ukawa, Phys. Rev. D 88, 094508 (2013).

[24] S. Ejiri, R. Iwami, and N. Yamada, Phys. Rev. D 93, 054506
(2016).

[25] A. Bazavov, H. T. Ding, P. Hegde, F. Karsch, E. Laermann,
S. Mukherjee, P. Petreczky, and C. Schmidt, Phys. Rev. D
95, 074505 (2017).

[26] X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda, and A.
Ukawa, Phys. Rev. D 96, 034523 (2017).

[27] S. Ejiri, S. Itagaki, R. Iwami, K. Kanaya, M. Kitazawa, A.
Kiyohara, M. Shirogane, and T. Umeda (WHOT-QCD
Collaboration), Phys. Rev. D 101, 054505 (2020).

[28] O. Philipsen, Proc. Sci., LATTICE2019 (2019) 273
[arXiv:1912.04827].

[29] Y. Kuramashi, Y. Nakamura, H. Ohno, and S. Takeda, Phys.
Rev. D 101, 054509 (2020).

[30] F. Cuteri, O. Philipsen, A. Schön, and A. Sciarra, Phys. Rev.
D 103, 014513 (2021).

[31] A. Kiyohara, M. Kitazawa, S. Ejiri, and K. Kanaya, Phys.
Rev. D 104, 114509 (2021).

[32] Y. Zhang, Y. Aoki, S. Hashimoto, I. Kanamori, T. Kaneko,
and Y. Nakamura, Proc. Sci., LATTICE2022 (2023) 197
[arXiv:2212.10021].

[33] K. Binder, Z. Phys. B 43, 119 (1981).
[34] N. Wakabayashi, S. Ejiri, K. Kanaya, and M. Kitazawa,

Prog. Theor. Exp. Phys. 2022, 033B05 (2022).
[35] H. J. Rothe, Lattice Gauge Theories: An Introduction

(World Scientific, Singapore, 1992), Vol. 43.
[36] B. Joo, B. Pendleton, S. M. Pickles, Z. Sroczynski, A. C.

Irving, and J. C. Sexton (UKQCD Collaboration), Phys.
Rev. D 59, 114501 (1999).

[37] G. Burgio, M. Fuhrmann, W. Kerler, and M. Muller-
Preussker, Phys. Rev. D 75, 014504 (2007).

[38] S. Borsanyi, K. R., Z. Fodor, D. A. Godzieba, P. Parotto, and
D. Sexty, Phys. Rev. D 105, 074513 (2022).

[39] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[40] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, P. Parotto, A.

Pasztor, and D. Sexty, Proc. Sci., LATTICE2021 (2022) 496
[arXiv:2112.04192].

[41] M. Shirogane, S. Ejiri, R. Iwami, K. Kanaya, and M.
Kitazawa, Phys. Rev. D 94, 014506 (2016).

[42] M. Shirogane, S. Ejiri, R. Iwami, K. Kanaya,M. Kitazawa, H.
Suzuki, Y. Taniguchi, and T. Umeda (WHOT-QCD Collabo-
ration), Prog. Theor. Exp. Phys. 2021, 013B08 (2021).

HIGH-PRECISION ANALYSIS OF THE CRITICAL POINT IN … PHYS. REV. D 110, 074508 (2024)

074508-13

https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.3390/sym13112079
https://arXiv.org/abs/2404.07899
https://doi.org/10.1103/PhysRevD.89.034507
https://doi.org/10.1103/PhysRevD.89.034507
https://doi.org/10.1103/PhysRevD.88.094508
https://doi.org/10.1103/PhysRevD.93.054506
https://doi.org/10.1103/PhysRevD.93.054506
https://doi.org/10.1103/PhysRevD.95.074505
https://doi.org/10.1103/PhysRevD.95.074505
https://doi.org/10.1103/PhysRevD.96.034523
https://doi.org/10.1103/PhysRevD.101.054505
https://doi.org/10.22323/1.363.0273
https://arXiv.org/abs/1912.04827
https://doi.org/10.1103/PhysRevD.101.054509
https://doi.org/10.1103/PhysRevD.101.054509
https://doi.org/10.1103/PhysRevD.103.014513
https://doi.org/10.1103/PhysRevD.103.014513
https://doi.org/10.1103/PhysRevD.104.114509
https://doi.org/10.1103/PhysRevD.104.114509
https://doi.org/10.22323/1.430.0197
https://arXiv.org/abs/2212.10021
https://doi.org/10.1007/BF01293604
https://doi.org/10.1093/ptep/ptac019
https://doi.org/10.1103/PhysRevD.59.114501
https://doi.org/10.1103/PhysRevD.59.114501
https://doi.org/10.1103/PhysRevD.75.014504
https://doi.org/10.1103/PhysRevD.105.074513
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.22323/1.396.0496
https://arXiv.org/abs/2112.04192
https://doi.org/10.1103/PhysRevD.94.014506
https://doi.org/10.1093/ptep/ptaa184

